JP2782524B2 - High density phase boron nitride based reaction sintered body and method for producing the same - Google Patents

High density phase boron nitride based reaction sintered body and method for producing the same

Info

Publication number
JP2782524B2
JP2782524B2 JP1028097A JP2809789A JP2782524B2 JP 2782524 B2 JP2782524 B2 JP 2782524B2 JP 1028097 A JP1028097 A JP 1028097A JP 2809789 A JP2809789 A JP 2809789A JP 2782524 B2 JP2782524 B2 JP 2782524B2
Authority
JP
Japan
Prior art keywords
phase
binder phase
sintered body
boron nitride
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1028097A
Other languages
Japanese (ja)
Other versions
JPH02208259A (en
Inventor
菱 山家
保 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP1028097A priority Critical patent/JP2782524B2/en
Publication of JPH02208259A publication Critical patent/JPH02208259A/en
Application granted granted Critical
Publication of JP2782524B2 publication Critical patent/JP2782524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高圧高温により得られる高密度相窒化ホウ
素基反応焼結体に関し、具体的には、例えば焼入れ鋼,
高硬度鋳鉄又は耐熱合金などの難削材料を加工するため
のドリル,フライス工具,旋削工具などに用いる切削工
具用材料、又はスリッター,ダイスなどの耐摩耗工具用
材料として適する立方晶窒化ホウ素及び/又はウルツ鉱
型窒化ホウ素を含有する高密度相窒化ホウ素基反応焼結
体及びその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a high-density phase boron nitride-based reaction sintered body obtained by high pressure and high temperature, specifically, for example, hardened steel,
Cubic boron nitride and / or a material suitable for cutting tools used for drills, milling tools, turning tools, etc. for machining hard-to-cut materials such as high-hardness cast iron or heat-resistant alloys, or for wear-resistant tools such as slitters and dies. Also, the present invention relates to a high-density phase boron nitride-based reaction sintered body containing wurtzite boron nitride and a method for producing the same.

(従来の技術) 立方晶窒化ホウ素及び/又はウルツ鉱型窒化ホウ素の
硬質相と、結合相とからなる高密度相窒化ホウ素基焼結
体は、多数の提案が行われている。この高密度相窒化ホ
ウ素基焼結体を結合相成分で大別すると、第1に結合相
が金属又は合金からなる、所謂金属系結合相と、第2に
結合相がセラミックスと金属又は合金とからなる、所謂
サーメット系結合相と、第3に結合相がセラミックスの
みからなる、所謂セラミックス系結合相とがある。この
内、第1の金属系結合相でなる高密度相窒化ホウ素基焼
結体は、高温にさらされるような条件下では結合相の軟
化が生じて耐摩耗性を著しく低下させるという問題があ
る。また、第3のセラミックス系結合相でなる高密度相
窒化ホウ素基焼結体は、高温における結合相の耐軟化性
に対しては著しくすぐれるけれども、衝撃の加わるよう
な用途に用いるとチッピング又は欠損により短寿命にな
るという問題がある。この第1の結合相と第3の結合相
との両者の長所を有する結合相を目的としたものに第2
のサーメット系結合相でなる高密度相窒化ホウ素基焼結
体があるけれども、耐摩耗性と耐欠損性の両方を向上さ
せるまでには至っていないという問題がある。
(Prior Art) Many proposals have been made for a high-density phase boron nitride-based sintered body composed of a hard phase of cubic boron nitride and / or wurtzite-type boron nitride and a binder phase. The high-density phase boron nitride-based sintered body can be roughly classified by a binder phase component. First, a so-called metal-based binder phase in which the binder phase is made of a metal or an alloy, and secondly, the binder phase is composed of a ceramic and a metal or an alloy. Thirdly, there is a so-called cermet-based binder phase, and thirdly, a so-called ceramic-based binder phase in which the binder phase comprises only ceramics. Among these, the high-density phase boron nitride-based sintered body composed of the first metal-based binder phase has a problem that the binder phase is softened under conditions where it is exposed to a high temperature, and the wear resistance is significantly reduced. . Further, the high-density phase boron nitride-based sintered body composed of the third ceramic-based binder phase is remarkably excellent in the softening resistance of the binder phase at a high temperature, but when used for an application in which an impact is applied, chipping or There is a problem that the life is shortened due to the loss. A second binder phase having both advantages of the first binder phase and the third binder phase is a second binder phase.
Although there is a high-density phase boron nitride-based sintered body composed of a cermet-based binder phase, there is a problem that both the wear resistance and the fracture resistance have not yet been improved.

この高密度相窒化ホウ素基焼結体における結合相につ
いて検討されている代表的なものとしては、特公昭55−
49031号公報,特公昭57−3631号公報及び特公昭58−575
02号公報がある。
A representative example of the binder phase in this high-density phase boron nitride-based sintered body has been examined.
49031, JP-B-57-3631, and JP-B-58-575.
There is 02 publication.

(発明が解決しようとする問題点) 特公昭55−49031号公報は、高圧相窒化ホウ素粉末
に、アルミニウム粉末又はニオブもしくはその合金粉末
を加え、成形もしくは造粒し、窒素もしくはアンモニア
雰囲気において600〜1500℃で加熱する高圧相窒化ホウ
素焼結物の製造法が開示されている。この特公昭55−49
031号公報にはニオブもしくはその合金粉末を出発物質
として、窒素もしくはアンモニア雰囲気中で窒化して、
窒化ニオブを生成し、この窒化ニオブの含有した結合相
の高圧相窒化ホウ素焼結物の製造法が開示されているけ
れども、超高圧高温装置を用いる場合には窒素もしくは
アンモニア雰囲気に保持するのが困難であること、又窒
素もしくはアンモニア雰囲気により窒化した窒化ニオブ
の結合相と高圧相窒化ホウ素との密着性が低いためにチ
ッピングや欠損が生じやすいという問題がある。
(Problems to be Solved by the Invention) Japanese Patent Publication No. 55-49031 discloses that high pressure phase boron nitride powder is added with aluminum powder or niobium or its alloy powder, molded or granulated, and subjected to a nitrogen or ammonia atmosphere in a nitrogen or ammonia atmosphere. A method for producing a high-pressure phase boron nitride sintered body heated at 1500 ° C. is disclosed. 55-49
No. 031 discloses that niobium or its alloy powder is used as a starting material, and is nitrided in a nitrogen or ammonia atmosphere.
Although a method for producing niobium nitride and producing a high-pressure phase boron nitride sintered body of a binder phase containing the niobium nitride is disclosed, when using an ultrahigh-pressure high-temperature apparatus, it is necessary to maintain the nitrogen or ammonia atmosphere. However, there is a problem that chipping and chipping are apt to occur due to low adhesion between the bonding phase of niobium nitride nitrided in a nitrogen or ammonia atmosphere and the high-pressure phase boron nitride.

特公昭57−3631号公報は、立方晶窒化ホウ素を体積で
80〜20%含有し、残部が周期律表4a,5a,6a族金属の炭化
物,窒化物,ホウ化物,ケイ化物もしくはこれらの混合
物又は相互固溶体化合物からなり、この混合物又は化合
物が焼結体組織中で連続した結合相をなしている高硬度
工具用焼結体が開示されている。この特公昭57−3631号
公報には、周期律表4a,5a,6a族金属の炭化物,窒化物,
ホウ化物,ケイ化物もしくはこれらの混合物又は相互固
溶体化合物の粉末を出発物質とし、この出発物質でなる
結合相の立方晶窒化ホウ素基焼結体が開示されているけ
れども、緻密な焼結体を得るのが非常に困難である。そ
こで、特公昭57−3631号公報にはMC1±X,MN1±X,M(C,
N)±X,(MはTi,Zr,Hfの金属を示し、±は0.97
以下0.40以上を示す。)で表わされる非化学量論組成の
比合物を出発物質とすることにより焼結の困難性を解決
することも開示されているけれども、得られる焼結体中
の立方晶窒化ホウ素と結合相との密着性がまだ満足でき
るものでなく、そのために耐チッピング性又は耐欠損性
が劣化しやすいという問題がある。
Japanese Patent Publication No. 57-3631 discloses cubic boron nitride by volume.
80 to 20%, with the balance consisting of carbides, nitrides, borides, silicides or their mixtures or mutual solid solution compounds of metals of groups 4a, 5a and 6a of the periodic table, and this mixture or compound is a sintered body There is disclosed a sintered body for a high-hardness tool in which a continuous bonded phase is formed. This Japanese Patent Publication No. 57-3631 discloses a periodic table 4a, 5a, 6a group metal carbide, nitride,
A powder of a boride, a silicide, a mixture thereof, or a mutual solid solution compound is used as a starting material. A cubic boron nitride-based sintered body of a binder phase composed of the starting material is disclosed, but a dense sintered body is obtained. It is very difficult. Therefore, Japanese Patent Publication No. 57-3631 discloses MC 1 ± X , MN 1 ± X , M (C,
N) 1 ± X , (M indicates a metal of Ti, Zr, Hf, and 1 ± X is 0.97
Below 0.40 is shown. Although it is disclosed that the difficulty of sintering is solved by using a non-stoichiometric composition represented by the formula (1) as a starting material, cubic boron nitride and a binder phase in the obtained sintered body are disclosed. However, there is a problem that chipping resistance or chipping resistance is apt to deteriorate.

特公昭58−57502号公報は、立方晶窒化ホウ素40〜97v
ol%、W,Mo,Ta,Ti及びNbのうちの1種又は2種以上の高
融点金属及び不可避不純物3〜60vol%からなる焼結材
料が開示されている。この特公昭58−57502号公報に
は、W,Mo,Ta,Ti及びNbのうちの1種又は2種以上の高融
点金属を出発物質とし、この高融点金属の結合相でなる
立方晶窒化ホウ素基焼結体が開示されているけれども、
結合相が高温において軟化しやすく、そのために工具と
して用いても損傷しやすいという問題がある。
JP-B-58-57502 discloses cubic boron nitride 40-97v.
ol%, a sintered material comprising one or more refractory metals of W, Mo, Ta, Ti and Nb and 3 to 60 vol% of unavoidable impurities is disclosed. Japanese Patent Publication No. 58-57502 discloses a cubic nitride comprising one or more of W, Mo, Ta, Ti and Nb as a starting material and a binding phase of the high melting metal. Although a boron-based sintered body is disclosed,
There is a problem that the binder phase easily softens at a high temperature, and is therefore easily damaged even when used as a tool.

本発明は、上述のような問題点を解決したもので、具
体的には、立方晶窒化ホウ素及び/又はウルツ鉱型窒化
ホウ素の硬質相の粒界を周期律表4a,5a,6a族金属の窒化
物とホウ化物とを含有した結合相でもって包囲した状態
にすることにより緻密化を高め、耐摩耗性と耐欠損性の
両方を向上させた高密度相窒化ホウ素基反応焼結体及び
その製造方法の提供を目的とするものである。
The present invention has solved the above-mentioned problems. Specifically, the grain boundaries of the hard phase of cubic boron nitride and / or wurtzite-type boron nitride are formed in the periodic table 4a, 5a, 6a group metal. A high-density phase boron nitride-based reaction sintered body, which is made denser by being surrounded by a binder phase containing nitride and boride, thereby improving both wear resistance and fracture resistance, and An object of the present invention is to provide a manufacturing method thereof.

(問題点を解決するための手段) 本発明者らは、立方晶窒化ホウ素及び/又はウルツ鉱
型窒化ホウ素の含有してなる高密度相窒化ホウ素基焼結
体の耐摩耗性と耐欠損性の両方を向上させることを目的
に、サーメット系結合相について検討していた所、セラ
ミックスと金属又は合金とでなるサーメット系結合相の
内、金属又は合金として周期律表4a,5a,6a族金属又はそ
の合金を出発物質とし、高圧高温での焼結条件におい
て、この金属又は合金と窒化ホウ素とを反応焼結させる
と(例えば、3Ti+2BN→2TiN+TiB2の反応)、この金属
又は合金の窒化物とホウ化物とを含有した結合相でなる
窒化ホウ素基焼結体が得られること、この焼結体は窒化
ホウ素を芯部とし、この芯部を包囲してなる周辺部が反
応焼結により形成された窒化物とホウ化物との結合相に
なること、又こうして得られる焼結体の工具としての性
能、特に耐摩耗性及び耐欠損性が著しくすぐれるように
なるという知見を得たものである。この知見に基づいて
本発明を完成するに至ったものである。
(Means for Solving the Problems) The present inventors have developed a high-density phase boron nitride-based sintered body containing cubic boron nitride and / or wurtzite-type boron nitride, which has wear resistance and chipping resistance. For the purpose of improving both, the cermet-based binder phase was studied, and among the cermet-based binder phases composed of ceramics and metals or alloys, metals of the periodic table 4a, 5a, and 6a as metals or alloys were used. or its alloy as the starting material, the sintering conditions at high pressure and temperature, is reacted sintering the metal or alloy and boron nitride (e.g., reaction of 3Ti + 2BN → 2TiN + TiB 2 ), and a nitride of the metal or alloy A boron nitride-based sintered body consisting of a binder phase containing boride is obtained, and the sintered body has boron nitride as a core, and a peripheral portion surrounding the core is formed by reaction sintering. Between nitride and boride To become possible, the performance of a tool of the sintered body also thus obtained, and in particular wear resistance and breakage resistance was obtained a finding that will significantly superior as. Based on this finding, the present invention has been completed.

すなわち、本発明の高密度相窒化ホウ素基反応焼結体
は、立方晶窒化ホウ素及び/又はウルツ鉱型窒化ホウ素
の硬質相20〜90vol%と、残りが結合相と不可避不純物
とからなる窒化ホウ素基焼結体であって、該結合相が周
期律表4a,5a,6a族金属の窒化物及びこれらの相互固溶体
の中の少なくとも1種の第1結合相と、周期律表4a,5a,
6a族金属のホウ化物及びこれらの相互固溶体の中の少な
くとも1種の第2結合相とからなり、該結合相中に含有
している窒素とホウ素との原子比が10:1〜1:10からな
り、芯部が該硬質相であり、該芯部を取り囲んでなる周
辺部が該第1結合相及び/又は該第2結合相からなる有
芯構造の粒子として含有していることを特徴とする焼結
体である。
That is, the high-density phase boron nitride-based reaction sintered body of the present invention comprises a boron nitride having a hard phase of cubic boron nitride and / or wurtzite-type boron nitride of 20 to 90 vol%, and a balance of a binder phase and unavoidable impurities. A base sintered body, wherein the binder phase comprises at least one first binder phase in a periodic table 4a, 5a, 6a group metal nitride and a mutual solid solution thereof, and a periodic table 4a, 5a,
A boride of a Group 6a metal and at least one second binder phase in a mutual solid solution thereof, wherein the atomic ratio of nitrogen to boron contained in the binder phase is 10: 1 to 1:10. Wherein the core portion is the hard phase and the peripheral portion surrounding the core portion contains particles having a cored structure composed of the first binding phase and / or the second binding phase. It is a sintered body.

この本発明の高密度相窒化ホウ素基反応焼結体におけ
る硬質相量が焼結体中の20vol%未満になると、焼結体
の硬度が低くなりすぎて、耐摩耗性及び耐欠損性の低下
となる。逆に、硬質相量が焼結体中の90vol%を超えて
多くなると、硬質相粒子相互の接触割合の増加、及び相
対的に焼結体中の反応焼結に寄与した金属により形成さ
れる結合相量が10vol%未満となり、その結果硬質相と
結合相の粒界の密着強度が低下し、耐摩耗性及び耐欠損
性の劣化となる。このために焼結体中の硬質相量は、20
〜90vol%と定めたものである。この硬質相の粒径は、
特に制限されるものでなく、従来の立方晶窒化ホウ素や
ウルツ鉱型窒化ホウ素の粒径でなるものを用いることが
できる。
When the amount of the hard phase in the high-density phase boron nitride-based reaction sintered body of the present invention is less than 20 vol% in the sintered body, the hardness of the sintered body becomes too low, and the wear resistance and the fracture resistance are deteriorated. Becomes Conversely, when the amount of the hard phase exceeds 90 vol% in the sintered body, the contact ratio between the hard phase particles increases, and the metal is relatively formed in the sintered body by the metal that has contributed to the reaction sintering. The amount of the binder phase is less than 10 vol%, and as a result, the adhesion strength between the hard phase and the binder phase at the grain boundary is reduced, and the wear resistance and the fracture resistance are deteriorated. For this reason, the amount of the hard phase in the sintered body is 20
9090 vol%. The particle size of this hard phase is
There is no particular limitation, and those having a particle size of conventional cubic boron nitride or wurtzite boron nitride can be used.

本発明の高密度相窒化ホウ素基反応焼結体における結
合相は、周期律表4a,5a,6a族金属の窒化物及びこれらの
相互固溶体の中の少なくとも1種の第1結合相、例えば
TiN,ZrN,HfN,VN,NbN,TaN,CrN,(Ti,Zr)N,(Ti,Cr)N,
(Ti,Nb)N,(Ti,V)Nでなる第1結合相と、周期律表4
a,5a,6a族金属のホウ化物及びこれらの相互固溶体の中
の少なくとも1種の第2結合相、例えばTiB2,ZrB2,Hf
B2,VB2,NbB2,TaB2,CrB2,MoB2,WB2,W2B5,(Ti,Zr)B2,
(Ti,Cr)B2,(Ti,Mo)B2,(Ti,V)B2でなる第2結合相
とからなるもので、この結合相中に含有している窒素と
ホウ素との原子比が10:1〜1:10からなるものである。こ
の結合相中に含有している窒素とホウ素との原子比が1
0:1〜1:10から外れると反応焼結により得られる第1結
合相としての窒化物と第2結合相としてのホウ化物との
合計量が少くなり、その結果焼結体の耐摩耗性及び耐欠
損性の劣化となる。このために、結合相中に含有してい
る窒素とホウ素との原子比は、10:1〜1:10と定めたもの
である。そして、硬質相を芯部とし、この芯部を包囲し
てなる周辺部が反応焼結により生じる第1結合相及び/
又は第2結合相でなる有芯構造の粒子を含有することに
より、硬質相と結合相の粒界が緻密になり、強度のすぐ
れた焼結体が得られるのである。
The binder phase in the high-density phase boron nitride-based reaction sintered body of the present invention is at least one type of first binder phase in the periodic table 4a, 5a, 6a group metal nitride and their mutual solid solution, for example,
TiN, ZrN, HfN, VN, NbN, TaN, CrN, (Ti, Zr) N, (Ti, Cr) N,
The first bonded phase consisting of (Ti, Nb) N and (Ti, V) N and the periodic table 4
at least one second binder phase in borides of group a, 5a, 6a metals and their mutual solid solutions, for example, TiB 2 , ZrB 2 , Hf
B 2, VB 2, NbB 2 , TaB 2, CrB 2, MoB 2, WB 2, W 2 B 5, (Ti, Zr) B 2,
A second binder phase consisting of (Ti, Cr) B 2 , (Ti, Mo) B 2 , (Ti, V) B 2 , and the atoms of nitrogen and boron contained in this binder phase The ratio is comprised between 10: 1 and 1:10. The atomic ratio of nitrogen to boron contained in this bonded phase is 1
When the ratio deviates from 0: 1 to 1:10, the total amount of the nitride as the first binder phase and the boride as the second binder phase obtained by the reaction sintering decreases, and as a result, the wear resistance of the sintered body is reduced. And deterioration of the fracture resistance. For this reason, the atomic ratio between nitrogen and boron contained in the binder phase is determined to be 10: 1 to 1:10. Then, the hard phase is used as a core, and a peripheral part surrounding the core is formed of a first binder phase and / or
Alternatively, by containing cored particles composed of the second binder phase, the grain boundaries between the hard phase and the binder phase become denser, and a sintered body having excellent strength can be obtained.

また、本発明の高密度相窒化ホウ素基反応焼結体にお
ける結合相は、第1結合相と第2結合相の他に、3%以
下がCr,Mo,W,Fe,Ni,Co及びこれらの2種以上の合金の中
の少なくとも1種の第3結合相で置換されてなる、第1
結合相と第2結合相と第3結合相とからなる場合も耐摩
耗性及び耐欠損性のすぐれた焼結体になる。この第3結
合相の内、Cr,Mo,Wは、未反応として焼結体中に残存す
る場合の許容値に相当し、Fe,Ni,Co,は、不可避不純物
として焼結体中に残存する場合及び耐摩耗性を低下させ
ないで焼結促進として含有させる場合を併せた許容値に
相当するものである。さらに、本発明の高密度相窒化ホ
ウ素基反応焼結体における結合相は、第1結合相と第2
結合相の他に、結合相中の85%以下が周期律表4a,5a,6a
族金属の炭化物,炭窒化物及びこれらの相互固溶体、並
びに酸化アルミニウム,窒化アルミニウム,ホウ化アル
ミニウム,炭化ケイ素,窒化ケイ素及びこれらの相互固
溶体の中の少なくとも1種の第4結合相で置換されてな
る第1結合相と第2結合相と第4結合相とからなる場
合、もしくは第1結合相と第2結合相と第3結合相と第
4結合相とからなる場合も耐摩耗性及び耐欠損性のすぐ
れた焼結体になる。この結合相の内、第4結合相は、例
えばTiC,ZrC,HfC,VC,NbC,TaC,Cr3C2,Mo2C,WC,Ti(C,
N),Zr(C,N),Hf(C,N),V(C,N),Nb(C,N),Ta(C,
N),(Ti,Zr)C,(Ti,Hf)C,(Ti,V)C,(Ti,Ta)C,
(Ti,Nb)C,(Ti,Ta,Nb)C,(Ti,W)C,(Ti,Mo,W)C,
(Ti,Ta,W)C,(Ti,Zr)(C,N),(Ti,Ta)(C,N),
(Ti,W)(C,N),(Ti,Ta,W)(C,N),Al2O3,AlN,Al
B2,SiC,Si3N4,(Si,Al)(O,N)を挙げることができ
る。この第4結合相や前述の第2結合相及び第1結合相
は、非化学量論組成又は化学量論組成でなるもので、こ
れらの第4結合相と第2結合相と第1結合相とは、例え
ば第4結合相と第2結合相の相互固溶体,第4結合相と
第1結合相の相互固溶体,第2結合相と第1結合相の相
互固溶体又は第4結合相と第2結合相と第1結合相との
相互固溶体として存在している場合もある。
In the high-density phase boron nitride-based reaction sintered body of the present invention, in addition to the first binder phase and the second binder phase, 3% or less of Cr, Mo, W, Fe, Ni, Co and Replaced by at least one third binder phase in two or more alloys of
A sintered body having excellent abrasion resistance and fracture resistance is also formed of the binder phase, the second binder phase, and the third binder phase. Of the third binder phase, Cr, Mo, W correspond to the allowable value when remaining in the sintered body as unreacted, and Fe, Ni, Co, remain in the sintered body as unavoidable impurities. This corresponds to a permissible value including both the case where it is included and the case where it is contained as a sintering accelerator without reducing the wear resistance. Further, the binder phase in the high-density phase boron nitride-based reaction sintered body of the present invention comprises a first binder phase and a second binder phase.
In addition to the binder phase, less than 85% of the binder phase accounts for 4a, 5a, 6a of the periodic table.
Group metal carbides, carbonitrides and their mutual solid solutions, and aluminum oxides, aluminum nitrides, aluminum borides, silicon carbide, silicon nitrides and at least one of these mutual solid solutions substituted by a fourth binder phase The first and second binder phases, or the first and second binder phases, the third and third binder phases, and the fourth and fourth binder phases also have wear resistance and resistance to wear. It becomes a sintered body with excellent deficiency. Among the binder phases, the fourth binder phase is, for example, TiC, ZrC, HfC, VC, NbC, TaC, Cr 3 C 2 , Mo 2 C, WC, Ti (C,
N), Zr (C, N), Hf (C, N), V (C, N), Nb (C, N), Ta (C,
N), (Ti, Zr) C, (Ti, Hf) C, (Ti, V) C, (Ti, Ta) C,
(Ti, Nb) C, (Ti, Ta, Nb) C, (Ti, W) C, (Ti, Mo, W) C,
(Ti, Ta, W) C, (Ti, Zr) (C, N), (Ti, Ta) (C, N),
(Ti, W) (C, N), (Ti, Ta, W) (C, N), Al 2 O 3 , AlN, Al
B 2 , SiC, Si 3 N 4 , (Si, Al) (O, N) can be mentioned. The fourth bonded phase, the second bonded phase and the first bonded phase described above have a non-stoichiometric composition or a stoichiometric composition, and the fourth bonded phase, the second bonded phase, and the first bonded phase. Are, for example, a mutual solid solution of a fourth binder phase and a second binder phase, a mutual solid solution of a fourth binder phase and a first binder phase, a mutual solid solution of a second binder phase and a first binder phase, or a fourth binder phase and a second binder phase. It may be present as a mutual solid solution of the binder phase and the first binder phase.

この本発明の高密度相窒化ホウ素基反応焼結体におけ
る結合相は、結合相中に含有している窒素とホウ素との
原子比が、特に2:1〜1:2であることが好ましく、後述す
る製造方法における出発物質として第1結合相,第2結
合相又は第4結合相を多量に含有させておく場合には、
結合相中に含有している窒素とホウ素との原子比が2:1
〜1:2の範囲から外れても、4:1〜1:7の範囲内にあれ
ば、殆ど同様の効果を発揮することができるので、特に
好ましい範囲である。
The binder phase in the high-density phase boron nitride-based reaction sintered body of the present invention, the atomic ratio of nitrogen and boron contained in the binder phase is particularly preferably 2: 1 to 1: 2, When a large amount of the first bonded phase, the second bonded phase or the fourth bonded phase is contained as a starting material in the production method described below,
The atomic ratio of nitrogen to boron contained in the binder phase is 2: 1
Even if it is out of the range of 〜1: 2, if it is in the range of 4: 1 to 1: 7, almost the same effect can be exerted, so that it is a particularly preferable range.

本発明の高密度相窒化ホウ素基反応焼結体は、高密度
相窒化ホウ素である立方晶窒化ホウ素及び/又はウルツ
鉱型窒化ホウ素と周期律表4a,5a,6a族金属とを高圧高温
中でもって反応焼結させることにより得られるものであ
る。
The high-density phase boron nitride-based reaction sintered body of the present invention comprises a high-density phase boron nitride, cubic boron nitride and / or wurtzite-type boron nitride, and a group 4a, 5a, or 6a metal of the periodic table under high pressure and high temperature. This is obtained by reaction sintering.

すなわち、本発明の高密度相窒化ホウ素基反応焼結体
の製造方法は、立方晶窒化ホウ素粉末及び/又はウルツ
鉱型窒化ホウ素粉末の第1出発物質と、周期律表4a,5a,
6a族金属粉末及びこれら2種以上の合金粉末の中の少な
くとも1種の第2出発物質とでなる混合粉末又は該混合
粉末を成形体とした後、超高圧高温装置内に設置し、次
いで高圧力及び高温度で焼結して得られる焼結体が立方
晶窒化ホウ素及び/又はウルツ鉱型窒化ホウ素20〜90vo
l%と、残り結合相と不可避不純物とからなり、該結合
相が周期律表4a,5a,6a族金属の窒化物及びこれらの相互
固溶体の中の少なくとも1種の第1結合相と、周期律表
4a,5a,6a族金属のホウ化物及びこれらの相互固溶体の中
の少なくとも1種の第2結合相で、該結合相中に含有し
ている窒素とホウ素との原子比が10:1〜1:10からなり、
芯部が該硬質相であり、該芯部を取り囲んでなる周辺部
が該第1結合相及び/又は該第2結合相からなる有芯構
造の粒子として含有している焼結体を得る方法である。
That is, the method for producing a high-density phase boron nitride-based reaction sintered body of the present invention comprises the first starting material of cubic boron nitride powder and / or wurtzite-type boron nitride powder and the periodic table 4a, 5a,
A mixed powder consisting of the 6a group metal powder and at least one of the two or more alloy powders as the second starting material or the mixed powder is formed into a compact, and then placed in an ultrahigh-pressure high-temperature apparatus, Sintered body obtained by sintering under pressure and high temperature is cubic boron nitride and / or wurtzite boron nitride 20 to 90 vo
l%, the remaining binder phase and unavoidable impurities, wherein the binder phase comprises at least one first binder phase of a nitride of a metal of Group 4a, 5a, or 6a of the periodic table and their mutual solid solution; Law table
The at least one second binder phase in the boride of a group 4a, 5a, or 6a metal and their mutual solid solution has an atomic ratio of nitrogen to boron contained in the binder phase of 10: 1 to 1: 1. : 10,
A method of obtaining a sintered body in which a core portion is the hard phase and a peripheral portion surrounding the core portion contains particles having a cored structure composed of the first binder phase and / or the second binder phase. It is.

本発明の高密度相窒化ホウ素基反応焼結体の製造方法
は、高圧高温における焼結時に第1出発物質と第2出発
物質とを反応させながら焼結体とするもので、こうして
得た焼結体中には第1出発物質と第2出発物質との反応
により生成してなる第2出発物質の窒化物と第2出発物
質のホウ化物が結合相として存在するようになる方法で
ある。
The method for producing a high-density phase boron nitride-based reaction sintered body of the present invention is a method of forming a sintered body while reacting a first starting material and a second starting material during sintering at high pressure and high temperature. This is a method in which a nitride of the second starting material and a boride of the second starting material, which are formed by the reaction between the first and second starting materials, are present as a binder phase in the aggregate.

この本発明の製造方法における第1出発物質と第2出
発物質は、市販されている粒径のものを用いてもよく、
特に第2出発物質の粒径は微細なものほど活性化が高い
ことから反応焼結を行わせるのに好ましいものである。
また、第2出発物質は、微細になると、その粉末の表面
の酸化又は酸素の付着が生じやすいことから還元処理を
施すのも好ましく、更に周期律表4a,5a,6a族金属の水素
化合物及びこれらの2種以上の水素化合物の中の少なく
とも1種を還元処理して得た粉末を第2出発物質として
用いることが好ましいことである。
As the first starting material and the second starting material in the production method of the present invention, those having commercially available particle sizes may be used,
In particular, the smaller the particle size of the second starting material is, the higher the activation is. Therefore, it is preferable to carry out the reaction sintering.
When the second starting material becomes finer, it is preferable that the second starting material is subjected to a reduction treatment because oxidation or adhesion of oxygen easily occurs on the surface of the powder. Further, a hydrogen compound of a metal of Group 4a, 5a, or 6a of the periodic table and It is preferable that a powder obtained by reducing at least one of these two or more hydrogen compounds is used as the second starting material.

この本発明の製造方法における第2出発物質は、焼結
時に第1出発物質と反応して緻密な焼結体にするための
量があればよく、緻密な焼結体にするための第2出発物
質の最適量は、高圧高温の焼結条件により異なるけれど
も、特に出発物質全体の少なくとも10vol%含有してい
ることが好ましいことである。また、この第2出発物質
が多く含有していると得られる焼結体中に未反応の第2
出発物質が多量に残存して耐摩耗性及び耐欠損性の低下
となる。このために、第2出発物質の85%以下を周期律
表4a,5a,6a族金属の炭化物,窒化物,ホウ化物及びこれ
らの相互固溶体、並びに酸化アルミニウム,窒化アルミ
ニウム,アルミニウム,炭化ケイ素,窒化ケイ素,ケイ
素及びこれらの相互固溶体の中の少なくとも1種の粉末
でなる第4出発物質で置換することは好ましく、特に第
1出発物質の量が少なく、第2出発物質の量が多い組合
わせにする場合は第4出発物質の添加が好ましいことで
ある。
The second starting material in the production method of the present invention only needs to have an amount for reacting with the first starting material at the time of sintering to form a dense sintered body. The optimum amount of the starting material depends on the sintering conditions at high pressure and high temperature, but it is preferable that the starting material contains at least 10 vol% of the whole starting material. When the second starting material contains a large amount of the second starting material, the unreacted second
A large amount of the starting material remains, resulting in a decrease in wear resistance and fracture resistance. To this end, less than 85% of the second starting material is made of carbides, nitrides, borides and their mutual solid solutions of metals of groups 4a, 5a and 6a of the periodic table, as well as aluminum oxide, aluminum nitride, aluminum, silicon carbide and nitride. It is preferred to substitute the fourth starting material consisting of at least one powder of silicon, silicon and their mutual solid solution, especially for a combination having a small amount of the first starting material and a large amount of the second starting material. If so, the addition of a fourth starting material is preferred.

本発明の製造方法における高圧高温での焼結条件は、
従来の高密度相窒化ホウ素基反応焼結体における条件で
よいけれども、得られる焼結体中に第2出発物質をでき
るだけ残存しないようにするために圧力2GPa以上,温度
1500℃以上の条件が好ましく、特に焼結体中に第2出発
物質を殆ど残存しないようにするためには圧力2GPa以
上,温度1600℃以上の条件が好ましいことである。
The sintering conditions at high pressure and high temperature in the production method of the present invention are as follows:
Although the conditions for a conventional high-density phase boron nitride-based reaction sintered body may be sufficient, a pressure of 2 GPa or more and a temperature of
The condition of 1500 ° C. or higher is preferable, and in particular, the condition of a pressure of 2 GPa or higher and a temperature of 1600 ° C. or higher is preferable in order that almost no second starting material remains in the sintered body.

上述のような粉末でなる第2出発物質の替りに第1出
発物質の表面に、例えば物理蒸着法でもって第2出発物
質を被覆してなる複合粉末を出発物質として用いること
もできる。
Instead of the powdered second starting material, a composite powder obtained by coating the surface of the first starting material with the second starting material by, for example, a physical vapor deposition method can be used as the starting material.

このようにして得る本発明の高密度相窒化ホウ素基反
応焼結体を例えば超硬合金の基材に直接接合したり、又
は超硬合金の基材の表面に、例えば周期律表4a,5a,6a族
金属などの中間層を施し、この中間層の表面に本発明の
焼結体を接合して複合焼結体にすると、第1出発物質と
第2出発物質との反応と同時に、基材と第2出発物質と
の反応や中間層と第2出発物質との反応も生じて接合強
度のすぐれた複合焼結体が得られるので好ましいことで
ある。
The high-density phase boron nitride-based reaction sintered body of the present invention thus obtained is directly bonded to, for example, a cemented carbide substrate, or on the surface of a cemented carbide substrate, for example, the periodic table 4a, 5a An intermediate layer of a metal such as group 6a or 6a is applied, and the sintered body of the present invention is joined to the surface of the intermediate layer to form a composite sintered body. This is preferable because a reaction between the material and the second starting material and a reaction between the intermediate layer and the second starting material also occur to obtain a composite sintered body having excellent bonding strength.

(作用) 本発明の高密度相窒化ホウ素基反応焼結体は、第1結
合相と第2結合相が硬質相の粒界を包囲するような状態
になって緻密化を高める作用をすると共に、硬質相を強
く保持する作用をもしているもので、その結果工具とし
ての耐欠損性を高める作用をし、硬質相が工具としての
耐摩耗性を高める作用をしているものである。
(Function) The high-density phase boron nitride-based reaction sintered body of the present invention acts to enhance the densification while the first binder phase and the second binder phase surround the grain boundary of the hard phase. The hard phase also has a function of strongly retaining the hard phase. As a result, the hard phase has a function of increasing the fracture resistance of the tool, and the hard phase has a function of enhancing the wear resistance of the tool.

また、本発明の高密度相窒化ホウ素基反応焼結体の製
造方法は、塑性変形の容易な第2出発物質が第1出発物
質の粒界を包囲することにより、第1出発物質の抵圧相
窒化ホウ素への逆変換を防止する作用をすると共に、さ
らに第2出発物質と第1出発物質との反応性を高める作
用をし、第1出発物質のブリッジング(粉末粒子の空
隙)の生じるのを防止する作用をしているものである。
Further, in the method for producing a high-density phase boron nitride-based reaction sintered body of the present invention, the second starting material, which is easily plastically deformed, surrounds the grain boundary of the first starting material. In addition to acting to prevent back-conversion to phase boron nitride, it also acts to increase the reactivity between the second starting material and the first starting material, resulting in bridging of the first starting material (voids in the powder particles). It has the function of preventing the occurrence.

(実施例) 実施例1 粒径5μm以下の立方晶窒化ホウ素(CBN)粉末と、
粒径1μm以下のウルツ鉱型窒化ホウ素(WBN)粉末
と、平均粒径5μm以下の各種の金属粉末及び各種の水
素化合物粉末とを用いて第1表の如くに配合し、それぞ
れの配合粉末と超硬合金製ボールとエタノールとをステ
ンレス製容器に入れて30分間混合した後、乾燥して混合
粉末を得た。
(Example) Example 1 Cubic boron nitride (CBN) powder having a particle size of 5 μm or less;
A wurtzite-type boron nitride (WBN) powder having a particle size of 1 μm or less, and various metal powders and various hydrogen compound powders having an average particle size of 5 μm or less are compounded as shown in Table 1, and each compounded powder is A cemented carbide ball and ethanol were placed in a stainless steel container, mixed for 30 minutes, and then dried to obtain a mixed powder.

これらの混合粉末の内、水素化合物粉末の含有してい
るものは、10-6torr,600℃,1時間保持にて還元処理し、
他は10-6torr,600℃,1時間保持にて脱ガス処理した後,2
t/cm2の圧力で所定形状に金型成形し、この成形体を圧
力媒体及び黒鉛ヒーターからなる超高圧高温装置内に設
置し、圧力5GPa,温度は第1表に示すそれぞれの温度で3
0分間保持して焼結した。こうして得たそれぞれの試料
をX線回折して焼結体の構成成分を分析し、その結果を
第1表に併記した。この第1表に示した本発明品1〜
7、結合相含有量の外れた比較品1、結合相成分の異な
る比較品2及び3の各焼結体の組織構造を走査型電子顕
微鏡にて観察したところ、本発明品1〜7は、有芯構造
の粒子を主体として含有していたのに対し、比較品1〜
3、特に比較品3は有芯構造の粒子が存在していなかっ
た。また、これらの試料の硬さをマイロクビッカースで
測定し、その結果を第2表に示し、さらにWC−6%Co超
硬合金の基材表面に第1表に示したそれぞれの試料を1m
m厚さになるように焼結と同時に接合して複合焼結体と
し、SNGN160408の形状に仕上げた後、下記(A)及び
(B)の条件でもって切削試験をし、その結果を第2表
に併記した。
Among these mixed powders, those containing a hydrogen compound powder are subjected to reduction treatment at 10 -6 torr, 600 ° C., and held for 1 hour.
Others are degassed by holding at 10 -6 torr, 600 ° C, 1 hour, then 2
The molded body was molded into a predetermined shape at a pressure of t / cm 2 , and the molded body was placed in an ultrahigh-pressure high-temperature apparatus comprising a pressure medium and a graphite heater. The pressure was 5 GPa and the temperature was 3 g at each temperature shown in Table 1.
Hold for 0 minutes and sinter. Each of the samples thus obtained was subjected to X-ray diffraction to analyze the constituent components of the sintered body, and the results are shown in Table 1. Inventive products 1 to 1 shown in Table 1
7, when the microstructures of the respective sintered bodies of the comparative product 1 with the binder phase content deviated and the comparative products 2 and 3 having different binder phase components were observed with a scanning electron microscope, the products 1 to 7 of the present invention showed that Comparative products 1 to 1 mainly contained cored particles
No. 3, especially Comparative product 3, had no cored particles. The hardness of these samples was measured by Myloc Vickers, and the results are shown in Table 2. Each of the samples shown in Table 1 was 1 m on the surface of the WC-6% Co cemented carbide substrate.
m and joined together at the same time as sintering to form a composite sintered body, finished in the shape of SNGN160408, and then performed a cutting test under the following conditions (A) and (B). Also shown in the table.

(A)切削試験 被削材 SKH 9(HRC 60〜65) 150φの外周連続切削 切削速度:100m/min 切込み量:0.5mm 送 り :0.1mm/rev 評 価 :平均逃げ面摩耗量(VB)が0.2mmに達する
か、又は途中欠損,チッピングして寿命になるまでの時
間。
(A) Cutting Test Workpiece SKH 9 (H R C 60~65) 150φ outer peripheral continuous cutting Cutting speed of: 100 m / min Depth of cut: 0.5mm feed Ri: 0.1 mm / rev Evaluation: average flank wear ( Time until V B ) reaches 0.2 mm, or reaches the end of its life due to chipping or chipping.

(B)切削試験 被削材 FC 35(HS 28〜33) 200φの被削材に15mm巾×20mm深さの溝4本
入での断続切削 切削速度:500m/min 切込み量:0.5mm 送 り :0.2mm/rev 評 価 :チッピング又は欠損するまでの時間。
(B) Cutting Test Workpiece FC 35 (H S 28~33) 200φ interrupted cutting cutting speed in the groove 4 pieces of 15mm wide × 20 mm depth in the work material: 500 meters / min Depth of cut: 0.5mm feed : 0.2mm / rev Evaluation: Time until chipping or breakage.

実施例2 実施例1で用いた各出発物質の他に、平均粒径3μm
以下の各種セラミックス粉末でもって第3表の如くに配
合し、高圧高温時の焼結温度は第3表の如くにし、他の
条件は実施例1と同様にしてそれぞれの試料を作製し
た。こうして得たそれぞれの試料をX線回折して焼結体
の構成成分を分析し、その結果を第3表に併記した。実
施例1と同様に、本発明品13〜20及び比較品7,8の各焼
結体の組織構造を走査型電子顕微鏡にて観察したとこ
ろ、本発明品13〜20は、有芯構造の粒子を主体として含
有していたのに対し、比較品7,8は有芯構造の粒子が存
在していなかった。また、これらの試料の硬さをマイク
ロビッカースで測定し、その結果を第4表に示し、さら
に実施例1と同様にして複合焼結体を作製した後、下記
(C)及び(D)の条件でもって切削試験をし、その結
果を第4表に併記した。
Example 2 In addition to the starting materials used in Example 1, the average particle size was 3 μm.
The following various ceramic powders were blended as shown in Table 3, the sintering temperature at high pressure and high temperature was as shown in Table 3, and other conditions were the same as in Example 1 to prepare respective samples. Each sample thus obtained was subjected to X-ray diffraction to analyze the constituent components of the sintered body, and the results are shown in Table 3. As in Example 1, the microstructures of the sintered bodies of the inventive products 13 to 20 and the comparative products 7 and 8 were observed with a scanning electron microscope. As a result, the inventive products 13 to 20 had a cored structure. While the particles mainly contained particles, Comparative Examples 7 and 8 did not have particles having a cored structure. Further, the hardness of these samples was measured with a micro Vickers, and the results are shown in Table 4. Further, after preparing a composite sintered body in the same manner as in Example 1, the following (C) and (D) A cutting test was performed under the conditions, and the results are shown in Table 4.

(C)切削試験 被削材 SKD 11(HRC 60〜63) 150φの外周連続切削 切削速度:100m/min 切込み量:0.5mm 送 り :0.1mm/rev 評 価 :平均逃げ面摩耗量(VB)が0.15mmに達する
か、又は途中欠損,チッピングして寿命になるまでの時
間。
(C) cutting test workpiece SKD 11 (H R C 60~63) 150φ outer peripheral continuous cutting Cutting speed of: 100 m / min Depth of cut: 0.5mm feed Ri: 0.1 mm / rev Evaluation: average flank wear ( The time until V B ) reaches 0.15 mm, or until the end of life due to chipping or chipping.

(D)切削試験 被削材 SKD 11(HRC 60〜63) 150φの被削材に15mm巾×20mm深さの溝4本
入った断続切削 切削速度:100m/min 切込み量:0.5mm 送 り :0.1mm/rev 評 価 :チッピング又は欠損するまでの時間。
(D) cutting test workpiece SKD 11 (H R C 60~63) 15mm wide × 20 mm deep grooves four to work material 150φ entered was interrupted cutting Cutting speed: 100 m / min Depth of cut: 0.5mm feed : 0.1mm / rev Evaluation: Time until chipping or breakage.

(発明の効果) 本発明の高密度相窒化ホウ素基反応焼結体は、本発明
の範囲から外れた比較の窒化ホウ素基焼結体や従来の窒
化ホウ素基焼結体に比べて耐摩耗性及び耐欠損性に著し
くすぐれており、HRC60程度の高硬度材料を切削した場
合に約1.7〜8倍も長寿命になるという効果があり、鋳
鉄材料を切削した場合には4〜9倍も長寿命になるとい
う効果がある。
(Effect of the Invention) The high-density phase boron nitride-based reaction sintered body of the present invention has a higher abrasion resistance than a comparative boron nitride-based sintered body outside the scope of the present invention or a conventional boron nitride-based sintered body. and chipping resistance is excellent significantly, there is an effect that even about 1.7 to 8 times when cutting high hardness material of about H R C60 becomes long life, 4-9 times when cutting cast iron Also has the effect of extending the life.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】立方晶窒化ホウ素及び/又はウルツ鉱型窒
化ホウ素の硬質相20〜90vol%と、残りが結合相と不可
避不純物とからなる窒化ホウ素基焼結体において、該結
合相が周期律表4a,5a,6a族金属の窒化物及びこれらの相
互固溶体の中の少なくとも1種の第1結合相と、周期律
表4a,5a,6a族金属のホウ化物及びこれらの相互固溶体の
中の少なくとも1種の第2結合相とからなり、該結合相
中に含有している窒素とホウ素との原子比が10:1〜1:10
からなり、芯部が該硬質相であり、該芯部を取り囲んで
なる周辺部が該第1結合相及び/又は該第2結合相から
なる有芯構造の粒子として含有していることを特徴とす
る高密度相窒化ホウ素基反応焼結体。
1. A boron nitride-based sintered body comprising 20 to 90 vol% of a hard phase of cubic boron nitride and / or wurtzite-type boron nitride and the balance being a binder phase and unavoidable impurities, wherein the binder phase is periodic. Table 4a, 5a, 6a At least one first binder phase in the metal nitride and their mutual solid solution, and the periodic table 4a, 5a, 6a boride of the metal and their mutual solid solution It comprises at least one kind of second binder phase, and the atomic ratio of nitrogen to boron contained in the binder phase is 10: 1 to 1:10
Wherein the core portion is the hard phase and the peripheral portion surrounding the core portion contains particles having a cored structure composed of the first binding phase and / or the second binding phase. High density phase boron nitride based reaction sintered body.
【請求項2】上記結合相は、該結合相の3%以下がCr,M
o,W,Fe,Ni,Co及びこれらの2種以上の合金の中の少なく
とも1種の第3結合相で置換されていることを特徴とす
る特許請求の範囲第1項記載の高密度相窒化ホウ素基反
応焼結体。
2. The binder phase according to claim 1, wherein 3% or less of said binder phase is Cr, M.
2. The high-density phase according to claim 1, wherein the high-density phase is replaced by at least one third binder phase among o, W, Fe, Ni, Co and two or more of these alloys. Boron nitride-based reaction sintered body.
【請求項3】上記結合相は、該結合相中の85%以下が周
期律表4a,5a,6a族金属の炭化物,炭窒化物及びこれらの
相互固溶体、並びに酸化アルミニウム,ホウ化アルミニ
ウム,窒化アルミニウム,炭化ケイ素,窒化ケイ素及び
これらの相互固溶体の中の少なくとも1種の第4結合相
で置換されていることを特徴とする特許請求の範囲第1
項又は第2項記載の高密度相窒化ホウ素基反応焼結体。
3. The binder phase according to claim 1, wherein 85% or less of the binder phase comprises carbides, carbonitrides and mutual solid solutions of metals belonging to groups 4a, 5a and 6a of the periodic table, and aluminum oxide, aluminum boride, and nitride. 2. The method according to claim 1, wherein said at least one fourth binder phase is substituted among aluminum, silicon carbide, silicon nitride, and a mutual solid solution thereof.
Item 3. The high-density phase boron nitride-based reaction sintered body according to item 2 or 2.
【請求項4】立方晶窒化ホウ素粉末及び/又はウルツ鉱
型窒化ホウ素粉末の第1出発物質と周期律表4a,5a,6a族
金属の粉末及びこれらの2種以上の合金粉末の中の少な
くとも1種の第2出発物質とでなる混合粉末又は該混合
粉末を成形体とした後、超高圧高温装置内に設置し、次
いで高圧力及び高温度でもって該第1出発物質と該第2
出発物質とを反応焼結させることにより、立方晶窒化ホ
ウ素及び/又はウルツ鉱型窒化ホウ素20〜90vol%と、
残り結合相と不可避不純物とからなり、該結合相が周期
律表4a,5a,6a族金属の窒化物及びこれらの相互固溶体の
中の少なくとも1種の第1結合相と、周期律表4a,5a,6a
族金属のホウ化物及びこれらの相互固溶体の中の少なく
とも1種の第2結合相とからなり、該結合相中に含有し
ている窒素とホウ素との原子比が10:1〜1:10からなり、
芯部が該硬質相であり、該芯部を取り囲んでなる周辺部
が該第1結合相及び/又は該第2結合相からなる有芯構
造の粒子として含有している焼結体を得ることを特徴と
する高密度相窒化ホウ素基反応焼結体の製造方法。
4. A cubic boron nitride powder and / or a wurtzite-type boron nitride powder as a first starting material, a powder of a Group 4a, 5a, or 6a metal of the periodic table, and at least one of these two or more alloy powders. A mixed powder of one kind of the second starting material or the mixed powder is formed into a compact, and then placed in an ultra-high pressure and high temperature apparatus. Then, the first starting material and the second
By reacting and sintering the starting material, cubic boron nitride and / or wurtzite-type boron nitride 20 to 90 vol%,
The remaining binder phase and unavoidable impurities, wherein the binder phase comprises at least one first binder phase of a nitride of a group 4a metal, a group 6a metal and their mutual solid solution, and a periodic table 4a, 5a, 6a
A boride of a group metal and at least one second binder phase in a mutual solid solution thereof, wherein the atomic ratio of nitrogen to boron contained in the binder phase is from 10: 1 to 1:10. Become
Obtaining a sintered body in which a core portion is the hard phase and a peripheral portion surrounding the core portion contains particles having a cored structure composed of the first binder phase and / or the second binder phase. A method for producing a high-density phase boron nitride-based reaction sintered body, characterized in that:
【請求項5】上記第2出発物質は、周期律表4a,5a,6a族
金属及びこれらの2種以上の合金でなる水素化合物の中
の少なくとも1種を還元処理して得た粉末であることを
特徴とする特許請求の範囲第4項記載の高密度相窒化ホ
ウ素基反応焼結体の製造方法。
5. The second starting material is a powder obtained by subjecting at least one of metals belonging to groups 4a, 5a, and 6a of the periodic table and a hydrogen compound comprising an alloy of two or more thereof to a reduction treatment. The method for producing a high-density phase boron nitride-based reaction sintered body according to claim 4, characterized in that:
【請求項6】上記第2出発物質は、該第2出発物質の3
%以下をFe,Ni,Co及びこれらの2種以上の合金の中の少
なくとも1種の粉末でなる第3出発物質で置換し、反応
焼結により得られる焼結体の上記結合相中の3%以下が
Cr,Mo,W,Fe,Ni,Co及びこれらの2種以上の合金の中の少
なくとも1種の第3結合相で置換されていることを特徴
とする特許請求の範囲第4項又は第5項記載の高密度相
窒化ホウ素基反応焼結体の製造方法。
6. The second starting material is 3% of the second starting material.
% Of Fe, Ni, Co and at least one of the three or more alloys thereof is replaced by a third starting material, and 3% of the sintered body obtained by reaction sintering is used in the above-mentioned binder phase. Less than%
6. The method according to claim 4, wherein said at least one third binder phase is substituted with at least one of Cr, Mo, W, Fe, Ni, Co and two or more of these alloys. 4. The method for producing a high-density phase boron nitride-based reaction sintered body according to claim 1.
【請求項7】上記第2出発物質は、該第2出発物質の85
%以下を周期律表4a,5a,6a族金属の炭化物,窒化物,ホ
ウ化物及びこれらの相互固溶体、並びに酸化アルミニウ
ム,ホウ化アルミニウム,窒化アルミニウム,アルミニ
ウム,炭化ケイ素、窒化ケイ素ケイ素及びこれらの相互
固溶体の中の少なくとも1種の粉末でなる第4出発物質
で置換し、反応焼結により得られる焼結体の上記結合相
の85%以下が周期律表4a,5a,6a族金属の炭化物,炭窒化
物及びこれらの相互固溶体、並びに酸化アルミニウム,
窒化アルミニウム,ホウ化アルミニウム,炭化ケイ素,
窒化ケイ素及びこれらの相互固溶体の中の少なくとも1
種の第4結合相で置換されていることを特徴とする特許
請求の範囲第4項,第5項又は第6項記載の高密度相窒
化ホウ素基反応焼結体の製造方法。
7. The second starting material comprises 85% of the second starting material.
% Or less of carbides, nitrides, borides and their mutual solid solutions of metals of Groups 4a, 5a and 6a of the periodic table, as well as aluminum oxide, aluminum boride, aluminum nitride, aluminum, silicon carbide, silicon nitride and their silicon 85% or less of the binder phase of the sintered body obtained by reaction sintering, which is replaced by a fourth starting material consisting of at least one kind of powder in the solid solution, is a carbide of a metal of Group 4a, 5a, 6a of the periodic table; Carbonitrides and their mutual solid solutions, aluminum oxide,
Aluminum nitride, aluminum boride, silicon carbide,
At least one of silicon nitride and their mutual solid solution;
7. The method for producing a high-density phase boron nitride-based reaction sintered body according to claim 4, characterized in that the sintered body is substituted with a kind of a fourth bonded phase.
JP1028097A 1989-02-07 1989-02-07 High density phase boron nitride based reaction sintered body and method for producing the same Expired - Lifetime JP2782524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028097A JP2782524B2 (en) 1989-02-07 1989-02-07 High density phase boron nitride based reaction sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028097A JP2782524B2 (en) 1989-02-07 1989-02-07 High density phase boron nitride based reaction sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02208259A JPH02208259A (en) 1990-08-17
JP2782524B2 true JP2782524B2 (en) 1998-08-06

Family

ID=12239289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028097A Expired - Lifetime JP2782524B2 (en) 1989-02-07 1989-02-07 High density phase boron nitride based reaction sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2782524B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030690B (en) * 2014-06-09 2015-10-07 河海大学 A kind of preparation method of titanium nitride-TiB2-cubic boron nitride material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08732B2 (en) * 1987-01-16 1996-01-10 三菱マテリアル株式会社 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool
JPS6369760A (en) * 1987-02-18 1988-03-29 住友電気工業株式会社 Sintered body for high hardness tools and manufacture

Also Published As

Publication number Publication date
JPH02208259A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
US5037704A (en) Hard sintered compact for a tool
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
JPS6011288A (en) Surface coated sialon-base ceramic tool member
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
JPH0694580B2 (en) Sintered body for high precision machining tools
JP3949181B2 (en) Diamond sintered body using hard alloy as binder and method for producing the same
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP3132843B2 (en) High toughness high pressure phase boron nitride sintered body
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JPS644989B2 (en)
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JP3976285B2 (en) Cermet tool having a hard nitrided layer and method for producing the same
JPH01122971A (en) Cubic boron nitride sintered product
JP3132849B2 (en) High toughness high pressure phase boron nitride sintered body
JP2001179508A (en) Cutting tool
EP0689525B1 (en) Complex multi-phase reaction sintered hard and wear resistant materials
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JPH0215622B2 (en)
JP2003236707A (en) Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11