JP2012045694A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2012045694A
JP2012045694A JP2010192317A JP2010192317A JP2012045694A JP 2012045694 A JP2012045694 A JP 2012045694A JP 2010192317 A JP2010192317 A JP 2010192317A JP 2010192317 A JP2010192317 A JP 2010192317A JP 2012045694 A JP2012045694 A JP 2012045694A
Authority
JP
Japan
Prior art keywords
sintered body
cutting tool
powder
raw material
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010192317A
Other languages
Japanese (ja)
Inventor
Shuhei Nonaka
脩平 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010192317A priority Critical patent/JP2012045694A/en
Publication of JP2012045694A publication Critical patent/JP2012045694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool having good wear resistance and high thermal shock resistance.SOLUTION: The cutting tool 1 includes a laminated body in which second sintered bodies 3 comprising a carbonitride titanium based cermet are laminated on the upper and lower surface of a first sintered body 2 comprising a titanium diboride (TiB) based sintered body. The cutting edges 7 includes the second sintered body 3. The thickness of the second sintered body 3 is preferably 10-35% of the entire thickness of the cutting tool 1.

Description

本発明は切削工具に関する。   The present invention relates to a cutting tool.

現在、切削工具として、WCを主成分とする超硬合金や、TiCNを主成分とするサーメットが広く使われている。サーメットは超硬合金に比べて硬度は高いが耐熱衝撃性が低く突発欠損しやすいことが知られている。   Currently, cemented carbides mainly composed of WC and cermets mainly composed of TiCN are widely used as cutting tools. It is known that cermet has higher hardness than cemented carbide, but has low thermal shock resistance and easily breaks down suddenly.

例えば、特許文献1では、サーメットの表面にて結合相濃度の高い軟化層を形成して、サーメットの靭性を高めることが開示されている。また、特許文献2では、TiBを50〜80重量%と残部がTiNからなる複合セラミックスが開示され、TiN粒子がTiB粒子内に取り込まれた組織とすることによって、焼結しやすくて硬度、強度、靭性に富んだセラミックスとなることが開示されている。 For example, Patent Document 1 discloses that a softened layer having a high binder phase concentration is formed on the surface of a cermet to increase the toughness of the cermet. Patent Document 2 discloses a composite ceramics composed of 50 to 80% by weight of TiB 2 and the balance being TiN. By forming a structure in which TiN particles are taken into TiB 2 particles, it is easy to sinter and has a hardness. It is disclosed that the ceramic is rich in strength and toughness.

特開平07−62482号公報Japanese Patent Laid-Open No. 07-62482 特開平09−208322号公報JP 09-208322 A

しかしながら、特許文献1、2の構成では、いずれも焼結体の耐熱衝撃性が不十分であるという問題があった。   However, the configurations of Patent Documents 1 and 2 have a problem that the thermal shock resistance of the sintered body is insufficient.

本発明は上記問題を解決するためのものであり、その目的は耐摩耗性および耐熱衝撃性がよくて切削性能が高い積層体および切削工具を提供することである。   The present invention is to solve the above-mentioned problems, and an object thereof is to provide a laminate and a cutting tool having good wear resistance and thermal shock resistance and high cutting performance.

本発明の切削工具は、二硼化チタン質焼結体からなる第1焼結体の上下面に、炭窒化チタン基サーメットからなる第2焼結体を積層した積層体からなり、切刃は前記第2焼結体にて構成されているものである。   The cutting tool of the present invention comprises a laminate in which a second sintered body made of titanium carbonitride-based cermet is laminated on the upper and lower surfaces of a first sintered body made of a titanium diboride sintered body, The second sintered body is used.

ここで、前記第2焼結体の厚みは切削工具全体の厚みに対して10〜35%であることが望ましい。   Here, the thickness of the second sintered body is preferably 10 to 35% with respect to the thickness of the entire cutting tool.

本発明の切削工具によれば、切刃はサーメットで構成されるので耐摩耗性がよく、かつ切削工具の中心部にTiB質焼結体が配置されているので耐熱衝撃性も高い。 According to the cutting tool of the present invention, since the cutting edge is made of cermet, the wear resistance is good, and since the TiB 2 sintered body is disposed at the center of the cutting tool, the thermal shock resistance is also high.

そして、前記第2焼結体の厚みは切削工具全体の厚みに対して10〜35%であることが、耐摩耗性の維持と耐熱衝撃性の向上の点で望ましい。   The thickness of the second sintered body is preferably 10 to 35% with respect to the thickness of the entire cutting tool in terms of maintaining wear resistance and improving thermal shock resistance.

本発明の積層体からなる切削工具の一例を示し、(a)概略斜視図、(b)断面模式図である。An example of the cutting tool which consists of a laminated body of this invention is shown, (a) A schematic perspective view, (b) A cross-sectional schematic diagram.

本発明の積層体からなる切削工具の一例について、その(a)概略斜視図、(b)断面模式図である図1を基に説明する。   An example of a cutting tool made of the laminate of the present invention will be described with reference to FIG. 1 which is a schematic perspective view thereof and FIG.

図1の切削工具1は、第1焼結体2および第2焼結体3は、二硼化チタン質焼結体からなる第1焼結体2の上下面に、炭窒化チタン基サーメット(以下、単にサーメットという。)からなる第2焼結体3を積層した積層体からなり、切刃7は第2焼結体3にて構成されている。   In the cutting tool 1 of FIG. 1, the first sintered body 2 and the second sintered body 3 are made of titanium carbonitride-based cermets on the upper and lower surfaces of the first sintered body 2 made of a titanium diboride sintered body. Hereinafter, the laminate is formed by laminating a second sintered body 3 composed of simply cermet, and the cutting edge 7 is composed of the second sintered body 3.

上記構成によって、切刃7は耐摩耗性が高い第2焼結体3の組織からなるとともに、中央部を構成する第1焼結体2は熱伝導度が高いので、切刃7をなす第2焼結体3の耐熱衝撃性の向上に寄与する。なお、図1の切削工具1のすくい面8の中央部にはネジ穴14が形成されている。   With the above configuration, the cutting blade 7 is made of the structure of the second sintered body 3 having high wear resistance, and the first sintered body 2 constituting the central portion has high thermal conductivity. 2 Contributes to the improvement of the thermal shock resistance of the sintered body 3. In addition, the screw hole 14 is formed in the center part of the rake face 8 of the cutting tool 1 of FIG.

第1焼結体2をなすTiB質焼結体は、TiBを主成分として、これに周期表第4、5、6族金属およびSiの群から選ばれる少なくとも1種の金属の炭化物、窒化物、炭窒化物、酸化物、硼化物、および所望により鉄族金属等を添加したものからなる。一方、第2焼結体3をなすサーメットは、Tiを主成分として、これにTi以外の周期表第4、5および6族金属の1種以上が固溶した炭窒化物の硬質相と、鉄族金属の結合相とを含有したものからなる。 The TiB 2 -based sintered body constituting the first sintered body 2 is composed of TiB 2 as a main component, and a carbide of at least one metal selected from the group consisting of Group 4, 5, 6 metals and Si of the periodic table. It consists of nitrides, carbonitrides, oxides, borides, and optionally added iron group metals and the like. On the other hand, the cermet forming the second sintered body 3 is mainly composed of Ti, and a hard phase of carbonitride in which one or more kinds of metals of Group 4, 5, and 6 of the periodic table other than Ti are dissolved, It consists of a binder phase of an iron group metal.

ここで、第2焼結体3の厚みは切削工具全体の厚みに対して10〜35%であることが望ましい。なお、第2焼結体3が上下層の両方存在する場合には、第2焼結体3の総厚みは切削工具全体の厚みに対して20〜70%となる。これにより、切削性能が高くかつ変形が小さい切削工具1が製造上容易に作製できる。   Here, it is desirable that the thickness of the second sintered body 3 is 10 to 35% with respect to the thickness of the entire cutting tool. In addition, when the 2nd sintered compact 3 exists in both upper and lower layers, the total thickness of the 2nd sintered compact 3 will be 20 to 70% with respect to the thickness of the whole cutting tool. Thereby, the cutting tool 1 with high cutting performance and small deformation can be easily manufactured.

また、第1焼結体2の表面に凹凸が存在すると、第2焼結体3の剥離が生じにくくかつ第2焼結体3の放熱性も向上する。   Further, if there are irregularities on the surface of the first sintered body 2, it is difficult for the second sintered body 3 to peel off and the heat dissipation of the second sintered body 3 is improved.

さらに、第1焼結体2と第2焼結体3の積層体は、同時に焼成して得られるものであってもよいが、第1焼結体2を先に焼成しておいてこの第1焼結体2に隣接して第2焼結体3を形成する原料粉末を所定形状にて載置した状態で焼成する方法であってもよい。または、第1焼結体2と第2焼結体3を別々に焼成して貼り合わせる方法であってもよい。   Furthermore, the laminated body of the first sintered body 2 and the second sintered body 3 may be obtained by firing at the same time. A method of firing the raw material powder forming the second sintered body 3 adjacent to the first sintered body 2 in a predetermined shape may be used. Alternatively, the first sintered body 2 and the second sintered body 3 may be separately fired and bonded.

(製造方法)
次に、上述した切削工具の製造方法の一例について説明する。
(Production method)
Next, an example of the manufacturing method of the cutting tool mentioned above is demonstrated.

原料として、2種類の混合原料粉末を準備する。
第1の原料粉末は第2焼結体を形成する第2の原料粉末よりも焼成温度の高い組成からなり、平均粒径1〜2μmのTiB粉末と、平均粒径0.5〜10μmの上記金属元素の化合物粉末と、平均粒径1〜3μmの鉄族金属粉末を混合した原料粉末とする。
Two kinds of mixed raw material powders are prepared as raw materials.
The first raw material powder has a composition having a higher firing temperature than the second raw material powder forming the second sintered body, and has an average particle size of 1 to 2 μm and TiB 2 powder and an average particle size of 0.5 to 10 μm. Let it be the raw material powder which mixed the compound powder of the said metal element, and the iron group metal powder with an average particle diameter of 1-3 micrometers.

一方、第2の混合原料粉末は第1焼結体よりも低温で焼結するサーメット組成からなり、具体的には、平均粒径0.6〜1μmのTiCN粉末と、平均粒径0.1〜2μmの上述した他の周期表第4、5および6族金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、平均粒径1.0〜3.0μmのCo粉末と平均粒径0.3〜0.8μmのNi粉末との少なくとも1種と、所望により平均粒径0.5〜10μmのMnCO粉末を混合した原料粉末とする。なお、上記第2の原料中にTiC粉末やTiN粉末を添加することもあるが、これらの原料粉末は焼成後のサーメットにおいてTiCNを構成する。 On the other hand, the second mixed raw material powder has a cermet composition that is sintered at a lower temperature than the first sintered body. Specifically, the TiCN powder having an average particle diameter of 0.6 to 1 μm and an average particle diameter of 0.1 Any one of carbide powders, nitride powders, or carbonitride powders of the above-mentioned other periodic tables Nos. 4, 5 and 6 metals of ˜2 μm, and Co powder having an average particle size of 1.0 to 3.0 μm, A raw material powder obtained by mixing at least one of Ni powder having an average particle size of 0.3 to 0.8 μm and optionally MnCO 3 powder having an average particle size of 0.5 to 10 μm is used. In addition, although TiC powder and TiN powder may be added to the second raw material, these raw material powders constitute TiCN in the cermet after firing.

次に、上記異なる2種類の混合原料を用いて切削工具形状に成形する。成形方法として、例えば、同時焼成によって第1の焼結体と第2の焼結体との積層体を作製する場合には、プレス金型の中に、第2の混合原料を上下面に配置するとともに、中央部に第1の原料粉末を配置して積層した状態でプレス成形する方法が採用可能である。その他に、第2の原料粉末のみを用いてプレス成形した成形体を一旦焼成してTiB質焼結体を作製してから、この焼結体の表面に第1の原料粉末を含むスラリーを塗布する方法も挙げられる。この方法によれば、第2焼結体は一旦焼成した後でそれよりも低い焼成温度にて焼成するので、焼結による変形量wが小さくて、焼結体全体の変形を抑制できて複雑な形状でも容易に寸法精度の高い切削工具1を作製できる。 Next, it shape | molds in the shape of a cutting tool using the said two different types of mixed raw materials. As a forming method, for example, when a laminated body of the first sintered body and the second sintered body is manufactured by simultaneous firing, the second mixed raw material is arranged on the upper and lower surfaces in the press mold. In addition, it is possible to employ a method of press molding in a state where the first raw material powder is disposed and laminated in the central portion. In addition, a compact that has been press-molded using only the second raw material powder is once fired to prepare a TiB 2 sintered body, and then a slurry containing the first raw material powder on the surface of the sintered body is provided. The method of apply | coating is also mentioned. According to this method, since the second sintered body is fired once and then fired at a lower firing temperature, the deformation amount w due to sintering is small, and the deformation of the entire sintered body can be suppressed and complicated. Even with a simple shape, the cutting tool 1 with high dimensional accuracy can be easily produced.

第1の焼結体の上/下面に第2の原料粉末を配置する方法としては、金型内に第1焼結体を載置するとともにその上下面に第2の原料粉末を投入する方法や、第1の焼結体および第2の焼結体を別体として作製して貼り合せる方法が好適に採用できる。   As a method of placing the second raw material powder on the upper / lower surface of the first sintered body, the first sintered body is placed in a mold and the second raw material powder is placed on the upper and lower surfaces thereof. Alternatively, a method in which the first sintered body and the second sintered body are separately manufactured and bonded can be suitably employed.

その後、所望により上記構造体を焼成して、上述した所定組織の積層体を作製することができる。そして、所望により、積層体の表面に被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。   Thereafter, the structure can be fired as desired to produce a laminate having the above-described predetermined structure. Then, if desired, a coating layer is formed on the surface of the laminate. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method.

マイクロトラック法による測定で平均粒径(d50値)が1.5μmのTiB粉末、平均粒径3μmのSiC粉末、Cr粉末、NbC粉末、平均粒径9μmのWC粉末、平均粒径2μmのCo粉末を用いて、表1に示す割合で調製した第1の原料粉末を調製し、バインダを混合して、スプレードライヤにて第1の原料粉末の顆粒を作製した。そして、試料No.1、2、7については、この顆粒を用いてプレス成形した成形体をHIP処理によって焼成してTiB質焼結体を作製した。また、試料No.3〜5、8については、この顆粒と下記第2の原料粉末を用いてプレス成形により積層構造の成形体を作製した。 TiB 2 powder having an average particle diameter (d 50 value) of 1.5 μm, SiC powder having an average particle diameter of 3 μm, Cr 3 C 2 powder, NbC powder, WC powder having an average particle diameter of 9 μm and an average particle A first raw material powder prepared at a ratio shown in Table 1 was prepared using a Co powder having a diameter of 2 μm, a binder was mixed, and granules of the first raw material powder were produced by a spray dryer. And sample no. For 1, 2, and 7, the compacts press-molded using these granules were fired by HIP treatment to produce TiB 2 sintered bodies. Sample No. About 3-5, 8, the molded object of the laminated structure was produced by press molding using this granule and the following 2nd raw material powder.

第2の原料粉末は、マイクロトラック法による測定で平均粒径(d50値)が2μmのTiCN粉末、平均粒径2μmの表1の炭化物粉末、平均粒径2μmのNi粉末、および平均粒径2μmのCo粉末を用いて、表1に示す第2の混合原料粉末を調合し、バインダを混合して、スプレードライヤして作製した。 The second raw material powder is a TiCN powder having an average particle diameter (d 50 value) of 2 μm, a carbide powder of Table 1 having an average particle diameter of 2 μm, a Ni powder having an average particle diameter of 2 μm, and an average particle diameter as measured by the microtrack method. A 2 μm Co powder was used to prepare a second mixed raw material powder shown in Table 1, mixed with a binder, and spray-dried to produce.

そして、この成形用の原料粉末を用いて、試料No.1、2、7については、金型のうすの中に表1に示す第2の原料粉末を投入して平らに均して上パンチを降下させて手押しで仮成形した後、上パンチを上昇させ、この仮成形した粉末の上に上記第1の原料粉末を投入するかまたは第1の焼結体を載置して、所望により平らに均し、かつ所望によって上記同様に仮成形を行い、さらにこの製粒した粉末の上に第2の原料粉末を投入して平らに均し、最後に上パンチを降下させて200MPaで加圧してCNMG120408HQまたはCNMG120408PS(チップ厚み4.76mm)の工具形状にプレス成形した。   And using this raw material powder for molding, sample No. For 1, 2, and 7, the second raw material powder shown in Table 1 was put into the mold mold, leveled flat, the upper punch was lowered and temporarily formed by hand, then the upper punch was raised. Then, the first raw material powder is put on the temporarily formed powder or the first sintered body is placed, leveled as desired, and temporarily formed as desired. Further, the second raw material powder is put on the granulated powder and leveled, and finally the upper punch is lowered and pressed at 200 MPa to form a tool shape of CNMG120408HQ or CNMG120408PS (chip thickness 4.76 mm). Press molded.

さらに、この成形体を焼成炉に投入して、(a)10℃/分の昇温速度で1200℃まで昇温し、(b)窒素(N)を1000Pa充填した雰囲気で0.5℃/分の昇温速度で1400℃まで昇温し、(c)真空雰囲気で7℃/分の昇温速度で表1に示す温度まで昇温するとともに、その状態で1時間維持し、(d)10℃/分の冷却速度で冷却する工程にて焼成する焼成条件で焼成した。なお、第1焼結体と第2焼結体との間の平均凹凸高さ、各焼結体の多孔度は表2に示した。 Furthermore, this molded body was put into a firing furnace, (a) heated to 1200 ° C. at a heating rate of 10 ° C./min, (b) 0.5 ° C. in an atmosphere filled with 1000 Pa of nitrogen (N 2 ). (C) The temperature was raised to 1400 ° C. at a temperature rising rate of 1 minute per minute, (c) the temperature was raised to the temperature shown in Table 1 at a temperature rising rate of 7 ° C./minute in a vacuum atmosphere, and maintained in that state for 1 hour. ) It baked on the baking conditions baked in the process cooled at the cooling rate of 10 degree-C / min. Table 2 shows the average unevenness height between the first sintered body and the second sintered body and the porosity of each sintered body.

次に、得られたサーメット製の切削工具を用いて以下の切削条件にて切削試験を行った。また、金属顕微鏡を用いてサーメットの側面(逃げ面)形状をトレースし、側面の中央部における膨らみ量を算出した。結果は表2に併記した。
摩耗評価
被削材:SCM435
切削速度:250m/分
送り:0.20 mm/刃
切込み:1.0mm
切削状態:湿式(水溶性切削液使用)
評価方法:ノーズの摩耗が0.1mmに達するまでの時間
熱衝撃評価
被削材:SCM435
切削速度:300m/分
送り:0.30 mm/
切込み:2.0mm
切削状態:湿式(水溶性切削液使用)
評価方法:20mm/passとし欠損するまでのパス数
Next, the cutting test was done on the following cutting conditions using the obtained cermet cutting tool. Moreover, the side surface (flank) shape of the cermet was traced using the metal microscope, and the bulge amount in the center part of the side surface was calculated. The results are shown in Table 2.
Wear evaluation work material: SCM435
Cutting speed: 250 m / min Feed: 0.20 mm / blade cutting: 1.0 mm
Cutting condition: wet (use water-soluble cutting fluid)
Evaluation method: Time until nose wear reaches 0.1 mm Thermal shock evaluation Workpiece: SCM435
Cutting speed: 300 m / min Feed: 0.30 mm /
Cutting depth: 2.0mm
Cutting condition: wet (use water-soluble cutting fluid)
Evaluation method: 20 mm / pass and the number of passes until loss

表1、2より、TiB質焼結体とサーメット質焼結体との積層構造でない試料No.6、7では、放熱性が悪いか切刃の硬度が悪くて耐熱衝撃性と耐摩耗性の両立ができずに、チッピングからの摩耗が進行し、また早期に熱衝撃による欠損が生じた。また、サーメット質焼結体の上下面にTiB質焼結体を積層した試料No.8では、耐欠損性が悪くてこれによる摩耗の進行が見られるとともに耐熱衝撃性も悪いものであった。 From Tables 1 and 2, sample Nos. That are not laminated structures of a TiB 2 sintered body and a cermet sintered body. In Nos. 6 and 7, the heat dissipation was poor or the cutting edge hardness was poor, so that both thermal shock resistance and wear resistance could not be achieved, wear from chipping progressed, and defects due to thermal shock occurred early. Sample No. 1 in which a TiB 2 sintered body was laminated on the upper and lower surfaces of the cermet sintered body. In No. 8, the chipping resistance was poor, and the progress of wear due to this was seen, and the thermal shock resistance was also bad.

これに対し、TiB質焼結体の上下面にサーメット質焼結体を積層した構造の試料No.1〜5では、優れた耐摩耗性を発揮するとともに耐熱衝撃性も良好であり、工具寿命が長いものであった。 On the other hand, sample No. 1 having a structure in which a cermet sintered body is laminated on the upper and lower surfaces of the TiB 2 sintered body. Nos. 1 to 5 exhibited excellent wear resistance, good thermal shock resistance, and long tool life.

1 切削工具
2 第1焼結体
3 第2焼結体
7 切刃
8 すくい面
9 逃げ面
10 内部
14 ネジ穴
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 1st sintered compact 3 2nd sintered compact 7 Cutting edge 8 Rake face 9 Relief face 10 Internal 14 Screw hole

Claims (2)

二硼化チタン質焼結体からなる第1焼結体の上下面に、炭窒化チタン基サーメットからなる第2焼結体を積層した積層体からなり、切刃は前記第2焼結体にて構成されている切削工具。   It consists of a laminate in which a second sintered body made of a titanium carbonitride-based cermet is laminated on the upper and lower surfaces of a first sintered body made of a titanium diboride sintered body, and the cutting edge is attached to the second sintered body Cutting tool configured. 前記第2焼結体の厚みは全体の厚みに対して10〜35%である請求項1記載の切削工具。   The cutting tool according to claim 1, wherein the thickness of the second sintered body is 10 to 35% with respect to the total thickness.
JP2010192317A 2010-08-30 2010-08-30 Cutting tool Pending JP2012045694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192317A JP2012045694A (en) 2010-08-30 2010-08-30 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192317A JP2012045694A (en) 2010-08-30 2010-08-30 Cutting tool

Publications (1)

Publication Number Publication Date
JP2012045694A true JP2012045694A (en) 2012-03-08

Family

ID=45901174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192317A Pending JP2012045694A (en) 2010-08-30 2010-08-30 Cutting tool

Country Status (1)

Country Link
JP (1) JP2012045694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074589A (en) * 2022-06-29 2022-09-20 南京理工大学 Thermosensitive/structural material composite laminated temperature measuring cutter and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074589A (en) * 2022-06-29 2022-09-20 南京理工大学 Thermosensitive/structural material composite laminated temperature measuring cutter and preparation method thereof
CN115074589B (en) * 2022-06-29 2022-12-13 南京理工大学 Thermosensitive/structural material composite laminated temperature measuring cutter and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5608269B2 (en) Composite materials
CN101407905B (en) Cemented carbide cutting tool for multi-component coating
KR101366028B1 (en) Cutting tool
JP6614491B2 (en) Composite sintered body cutting tool and surface-coated composite sintered body cutting tool
JP2004100004A (en) Coated cemented carbide and production method therefor
JP5273987B2 (en) Cermet manufacturing method
JP2011156645A (en) Surface-coated cutting tool made of wc-based cemented carbide excellent in thermal plastic deformation resistance
JP2012045694A (en) Cutting tool
JP5436083B2 (en) Cermet sintered body and cutting tool
JP2017007062A (en) Composite sintered body cutting tool and surface-coated composite sintered body cutting tool
JP2011045954A (en) Cermet sintered body and cutting tool
JP5676955B2 (en) Cutting tool and manufacturing method thereof
JP5381616B2 (en) Cermet and coated cermet
EP2715784B1 (en) Manufacturing process for a thick cubic boron nitride (cbn) layer
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP5424935B2 (en) Surface coating tool
JP2011200972A (en) Cutting tool
JP6410210B2 (en) Cubic boron nitride composite sintered body insert
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JPS644989B2 (en)
JP2019065330A (en) Composite sintered body
JP2001181775A (en) Cermet sintered body
JP5451507B2 (en) Cutting tools
JP4770387B2 (en) Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting
JP2564898B2 (en) Manufacturing method for surface coated tungsten carbide based cemented carbide cutting tools