JP2019006662A - Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same - Google Patents

Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same Download PDF

Info

Publication number
JP2019006662A
JP2019006662A JP2017203486A JP2017203486A JP2019006662A JP 2019006662 A JP2019006662 A JP 2019006662A JP 2017203486 A JP2017203486 A JP 2017203486A JP 2017203486 A JP2017203486 A JP 2017203486A JP 2019006662 A JP2019006662 A JP 2019006662A
Authority
JP
Japan
Prior art keywords
diamond
boron
particles
composite material
matrix composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017203486A
Other languages
Japanese (ja)
Other versions
JP7188726B2 (en
Inventor
博 石塚
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2019006662A publication Critical patent/JP2019006662A/en
Application granted granted Critical
Publication of JP7188726B2 publication Critical patent/JP7188726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

To provide a diamond aggregation that can be adapted to process all materials including iron, does not occur in phase transformation acceleration to graphitization by binder, and can be produced at the cobalt-based diamond sintered body (PCD) manufacturing condition generally at present.SOLUTION: The present invention provides a diamond-boron composite aggregation that can be used to ferrous material processing such as various steel materials by using, as binder, boron instead of a conventional ferrous metal such as cobalt having catalysis to graphitization of diamond, and boron carbide that is high melting point substance, in creating of high hardness diamond aggregation.SELECTED DRAWING: None

Description

本発明は、ダイヤモンド粒子が炭化ホウ素を介して固結一体化されたダイヤモンド質複合材、及びその製造方法に関する。本発明は特に、硬度及び耐熱性に優れた切削工具要素および研磨研削材として鉄系金属材を始め多様な材種の加工に適用可能で、また幅広い分野の切削,研削・研磨加工に使用可能なダイヤモンド集合体及びその製造方法に関する。   The present invention relates to a diamond composite material in which diamond particles are consolidated and integrated via boron carbide, and a method for producing the same. The present invention is particularly applicable to machining of various types of materials including ferrous metal materials as cutting tool elements and abrasive grinding materials with excellent hardness and heat resistance, and can be used for cutting, grinding and polishing in a wide range of fields. The present invention relates to a diamond aggregate and a method for producing the same.

硬度が高く耐摩耗性に優れた研磨材である粉状ダイヤモンドを結合させた焼結体が切削工具のチップ等の製作に利用されてきた。このような焼結体はダイヤモンド多結晶体(PCD)とも呼ばれ、一般には超高圧高温下でコバルト(Co)を溶融してダイヤモンド粉末間に流入させ、融液相を介してダイヤモンド粉末を一体化したもので、工具材として広く利用されている。   A sintered body bonded with powdered diamond, which is an abrasive having high hardness and excellent wear resistance, has been used for manufacturing chips and the like of cutting tools. Such a sintered body is also called a diamond polycrystal (PCD). Generally, cobalt (Co) is melted and flown between diamond powders under high pressure and high temperature, and the diamond powder is integrated through a melt phase. It has been widely used as a tool material.

しかしながら結合材のコバルトは700℃位からダイヤモンドをグラファイト化させる触媒として作用し、温度上昇に伴ってこの作用が顕著になるので、切削時の発熱による高温条件下での使用が困難という耐熱性の問題があった。また、ダイヤモンド自体、鉄との反応性があるという問題もある。従ってダイヤモンドに内包されるこれらの問題を克服し、極めて硬いダイヤモンドの特性が発揮できる切削チップ材として、鉄系材質の切削にも適用可能なダイヤモンド質塊体の開発が望まれている。   However, the binder cobalt acts as a catalyst for graphitizing diamond from around 700 ° C, and this effect becomes significant as the temperature rises, making it difficult to use under high temperature conditions due to heat generation during cutting. There was a problem. Another problem is that diamond itself is reactive with iron. Therefore, it is desired to develop a diamond mass that can be applied to the cutting of ferrous materials as a cutting tip material that can overcome these problems contained in diamond and exhibit the characteristics of extremely hard diamond.

コバルトを使用せずにダイヤモンド多結晶体(塊体)を調製する方法は公知である。例えば結合材としてコバルトに代えてアルカリ土類炭酸塩(特許文献1)、炭化ホウ素(特許文献2)を用いる方法、結合材を用いないで、ダイヤモンドが直接結合した一体品とする方法(特許文献3)が知られている。   A method for preparing a polycrystalline diamond (agglomerate) without using cobalt is known. For example, a method of using alkaline earth carbonate (Patent Document 1) and boron carbide (Patent Document 2) instead of cobalt as a binding material, or a method of making a diamond directly bonded without using a binding material (Patent Document) 3) is known.

特許文献1の方法においては、ダイヤモンド粉末に導電性付与のためのドーピング材としてボロン粉末0.5〜15wt%と、焼結体の結合相を形成する成分としてMg、Ca等の「アルカリ土類炭酸塩」粉末とが混合添加され、第一段階でボロンの拡散によるダイヤモンド粉末への導電性付与、第二段階で結合相のダイヤモンド粉末粒子間隙への溶浸充填によって導電性のダイヤモンド焼結体が得られている。これらの処理には超高圧高温が必要で、特に第二段階は6.0〜9.0GPa、1600〜2500℃で行われている。   In the method of Patent Document 1, boron powder 0.5 to 15 wt% as a doping material for imparting conductivity to diamond powder, and “alkaline earth carbonates such as Mg and Ca as components for forming the binder phase of the sintered body”. The powder is mixed and added. In the first stage, conductivity is imparted to the diamond powder by the diffusion of boron, and in the second stage, the conductive phase is sintered by filling the gap between the diamond powder particles in the binder phase. It has been. These treatments require ultra-high pressure and high temperature. In particular, the second stage is performed at 6.0 to 9.0 GPa and 1600 to 2500 ° C.

特許文献2の方法においては溶融温度2450℃の炭化ホウ素を溶融乃至半溶融状態でダイヤモンドの粒子間へ浸透させる操作が必要であり、微粉末化による焼結温度の低下を見込んでも2000℃程度の加熱を必要とし、この温度においてダイヤモンドを熱力学的に安定な状態に保つには7GPa以上の超高圧力維持が必要で、焼結装置の負担がさらに大きくなる。   In the method of Patent Document 2, it is necessary to allow boron carbide having a melting temperature of 2450 ° C. to penetrate between the diamond particles in a molten or semi-molten state. Heating is required, and in order to keep the diamond thermodynamically stable at this temperature, it is necessary to maintain an ultrahigh pressure of 7 GPa or more, which further increases the burden on the sintering apparatus.

特許文献3の方法はグラファイトからダイヤモンドへの直接変換と焼結とを同時に実施することで、ダイヤモンドのみで構成されたタフな焼結体が得られるが、高温での反応においてダイヤモンドの熱力学的安定性を確保するために、8GPa以上の更なる超高圧力維持が必要とされる。 In the method of Patent Document 3, a tough sintered body composed only of diamond can be obtained by simultaneously performing direct conversion from graphite to diamond and sintering. However, the thermodynamics of diamond in a reaction at a high temperature. In order to ensure stability, it is necessary to maintain an extra high pressure of 8 GPa or more.

特開2008−133173号公報JP 2008-133173 A 米国特許第3,136,615号U.S. Pat.No. 3,136,615 特開2012−106925号公報JP 2012-106925 A

本発明は、ダイヤモンド粒子が添加したホウ素との反応で生じた炭化ホウ素を介して強固に結合一体化したと解される複合材に関するものである。
本発明は特に、鉄を含むすべての材料の加工への適用が可能であり、結合材によるグラファイト化への相転換促進も生じず、さらに現在一般的なコバルト系ダイヤモンド焼結体(PCD)製造条件で製作が可能なダイヤモンド集合体を提供することを課題とする。
The present invention relates to a composite material that is understood to be firmly bonded and integrated through boron carbide produced by reaction with boron added by diamond particles.
In particular, the present invention can be applied to the processing of all materials including iron, does not cause the phase conversion to be graphitized by the binder, and further produces a general cobalt-based diamond sintered body (PCD). It is an object to provide a diamond aggregate that can be manufactured under conditions.

本発明は切削工具等の素材として、或いは研磨・研削砥粒の原料として好適な高硬度ダイヤモンド集合体の作成において、結合材として、ダイヤモンドのグラファイト化への触媒作用を持つ従来のコバルト等の鉄系金属や、高融点物質であるボロンカーバイドに代えてホウ素を用いることにより、各種鋼材等、鉄系材料加工への利用が可能なダイヤモンド−ホウ素複合集合体を提供するものである。   The present invention is a conventional iron such as cobalt having a catalytic action for graphitization of diamond as a binder in the production of a high-hardness diamond aggregate suitable as a material for a cutting tool or as a raw material for polishing and grinding abrasive grains. The present invention provides a diamond-boron composite aggregate that can be used for processing iron-based materials such as various steel materials by using boron instead of boron carbide, which is a high-melting-point material or boron carbide.

本発明は、ダイヤモンド粒子を単体の(金属)ホウ素粉末と密に混合して加圧下での加熱操作に供し、その際にダイヤモンド粒子の表面に形成された(in situ formed)炭化ホウ素層を結合材として一体化したものである。ダイヤモンド粒子の表面のホウ化物層はダイヤモンドの酸素との接触を断つ保護層として作用するため、本発明の処理には必ずしもダイヤモンドが熱力学的に安定な超高圧を必要としない。即ち従来のダイヤモンド焼結体に匹敵する硬さを有する複合材が、より低圧領域でも製作可能という、利点が達成される。   In the present invention, diamond particles are intimately mixed with a single (metal) boron powder and subjected to a heating operation under pressure, in which a boron carbide layer formed in situ on the surface of the diamond particles is bonded. It is integrated as a material. Since the boride layer on the surface of the diamond particles acts as a protective layer that breaks contact of diamond with oxygen, the treatment of the present invention does not necessarily require an ultrahigh pressure at which diamond is thermodynamically stable. That is, an advantage is achieved that a composite material having a hardness comparable to that of a conventional diamond sintered body can be manufactured even in a lower pressure region.

ダイヤモンド粒子を、予め形成された(preformed)炭化ホウ素BCで結合する試みは前記のとおり公知である。また導電性付与のドープ材としてのホウ素粉末を結合材粉末と混合してダイヤモンド粒子と共に超高圧高温下で加圧加熱処理する方法も公知である。しかしこの例においては前記のように結合相成分としてMg、Ca、Sr、Baの炭酸塩やこれらの複合炭酸塩が使用され、これらはダイヤモンド粒子間隙中に溶浸することによって焼結体が製造されており、多数のダイヤモンド粒子を一体化・塊体とする際に金属ホウ素を結合材として用いダイヤモンド粒子と混合処理した例は見られない。 Attempts to bond diamond particles with preformed boron carbide B 4 C are known as described above. Also known is a method in which boron powder as a doping material imparting conductivity is mixed with a binder powder and subjected to pressure and heat treatment together with diamond particles at an ultrahigh pressure and high temperature. In this example, however, carbonates of Mg, Ca, Sr, Ba and complex carbonates thereof are used as binder phase components as described above, and these are infiltrated into the diamond particle gaps to produce a sintered body. However, when a large number of diamond particles are integrated and agglomerated, there is no example in which metallic boron is used as a binder and mixed with diamond particles.

ダイヤモンド(炭素)とホウ素との反応によって炭化ホウ素を形成する反応は発熱反応であることから、加熱加圧操作において両成分の界面では、周囲からの加熱温度に加えてホウ化物形成反応による反応熱が生じることにより、局部的に生成ホウ化物の融点を超える箇所も出現し、緻密化が促進されると考えられる。この反応熱を利用することにより、加熱に必要なエネルギーの消費量を軽減することが出来る。   Since the reaction to form boron carbide by the reaction of diamond (carbon) and boron is an exothermic reaction, at the interface between both components in the heating and pressurizing operation, the heat of reaction due to the boride formation reaction in addition to the heating temperature from the surroundings. As a result of this, a part exceeding the melting point of the product boride appears locally, and it is considered that densification is promoted. By using this reaction heat, the energy consumption required for heating can be reduced.

炭化ホウ素の形成は固相における相互拡散でも生じるが、加熱温度の上昇に伴ってより速やかに進行する。但し界面に形成されたBC層は相互拡散の障壁になり、新たなBC層の形成速度が低下すると考えられ、実際通常の加熱操作においてダイヤモンドの全量が炭化ホウ素に転化する現象は認められていない。 Boron carbide formation also occurs by interdiffusion in the solid phase, but proceeds more rapidly with increasing heating temperature. However, the B 4 C layer formed at the interface becomes a barrier for interdiffusion, and the formation rate of the new B 4 C layer is considered to decrease. In fact, the phenomenon that the total amount of diamond is converted into boron carbide in the normal heating operation is Not allowed.

本発明においてはまた、少量の金属、特に遷移金属を添加することにより、金属ホウ化物形成時の大きな反応熱を利用した緻密化と、金属ホウ化物による集合体への靭性付与を行うこともできる。この場合には添加した金属とダイヤモンドとの間で金属炭化物の形成も生じる。この反応も大きな発熱を伴い、生成物の緻密化と化学結合による相互の一体化が促進される。   In the present invention, by adding a small amount of metal, particularly a transition metal, it is also possible to perform densification using a large reaction heat at the time of metal boride formation and to impart toughness to the aggregate by the metal boride. . In this case, metal carbide is also formed between the added metal and diamond. This reaction is also accompanied by a large exotherm, which promotes densification of the product and mutual integration by chemical bonding.

すなわち本発明は、以下のダイヤモンド複合材およびその製造方法に関する。
[1] 複数個のダイヤモンド粒子と、ホウ素或いはホウ素および不可避不純物からなる結合材料とからなる出発物質の加圧加熱処理によって、結合一体化された複合材。
[2] 出発物質全体におけるダイヤモンド粒子の含有量が60%〜99.5%(質量比。以下同様)、ホウ素或いはホウ素および不可避不純物からなる結合材料の含有量が0.5%〜40%である、[1]に記載の複合材。
[3]複数個のダイヤモンド粒子と金属ホウ素とを含む出発物質の加圧加熱処理によって緻密に結合一体化された複合材であって、ダイヤモンド粒子の表面が上記加圧加熱処理においてホウ素との反応により形成された炭化ホウ素層を有し、かつ該ダイヤモンド粒子の隣接粒子同士が直接結合および/又は出発物質成分および/又はその派生物と共に結合一体化されてなる[1]または[2]に記載のダイヤモンド基複合材。
[4]前記出発物質に加えてさらに、第一の金属質成分を、該出発物質の質量に対して15%以下含有せしめた、[1]乃至[3]のいずれか一項に記載のダイヤモンド基複合材。
[5]第一の金属質成分が前記加圧加熱処理において少なくとも表面に成分ホウ素との反応によりその場で形成されたホウ化物層を有する、[4]に記載のダイヤモンド基複合材。
[6]前記第一の金属質成分がAl、Si、Fe、Co、Ni、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である、[4]または[5]に記載のダイヤモンド基複合材。
[7]ビッカース硬さが40GPa以上である、[1]乃至[6]のいずれか一項に記載のダイヤモンド基複合材。
[8]前記ダイヤモンド粒子の平均粒径が100μm以下である、[1]乃至[7]のいずれか一項に記載のダイヤモンド基複合材。
[9]前記ダイヤモンド粒子の平均粒径が20μm以下である、[8]に記載のダイヤモンド基複合材。
[10]前記ダイヤモンド粒子の平均粒径が1μm以下である、[8]又は[9]に記載のダイヤモンド基複合材。
[11]前記ダイヤモンド粒子が規定された粒度分布及び平均粒度を有する、[1]乃至[10]のいずれか一項に記載のダイヤモンド基複合材。
That is, the present invention relates to the following diamond composite material and a manufacturing method thereof.
[1] A composite material that is bonded and integrated by pressurizing and heating a starting material composed of a plurality of diamond particles and a bonding material composed of boron or boron and inevitable impurities.
[2] The content of diamond particles in the entire starting material is 60% to 99.5% (mass ratio; the same applies hereinafter), and the content of a binding material composed of boron or boron and inevitable impurities is 0.5% to 40%. [1 ] The composite material as described in.
[3] A composite material in which a starting material containing a plurality of diamond particles and metallic boron is densely bonded and integrated by pressure heat treatment, and the surface of the diamond particles reacts with boron in the pressure heat treatment. [1] or [2], in which the boron carbide layer is formed by bonding and adjacent particles of the diamond particles are directly bonded and / or bonded and integrated together with starting material components and / or derivatives thereof. Diamond matrix composite.
[4] The diamond according to any one of [1] to [3], further including a first metal component in an amount of 15% or less based on the mass of the starting material in addition to the starting material. Base composite material.
[5] The diamond-based composite material according to [4], wherein the first metallic component has a boride layer formed in situ by reaction with the component boron at least on the surface in the pressurizing and heating treatment.
[6] The first metallic component is at least one selected from Al, Si, Fe, Co, Ni, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and WC. The diamond matrix composite material according to [4] or [5].
[7] The diamond-based composite material according to any one of [1] to [6], wherein the Vickers hardness is 40 GPa or more.
[8] The diamond-based composite material according to any one of [1] to [7], wherein an average particle diameter of the diamond particles is 100 μm or less.
[9] The diamond matrix composite according to [8], wherein the diamond particles have an average particle size of 20 μm or less.
[10] The diamond matrix composite according to [8] or [9], wherein the diamond particles have an average particle size of 1 μm or less.
[11] The diamond matrix composite according to any one of [1] to [10], wherein the diamond particles have a prescribed particle size distribution and average particle size.

[12]ダイヤモンド粒子の集合体を粉末状のホウ素と混合してなる出発混合集合体を処理セルに充填し、1500℃以上の反応温度にて加熱加圧処理することを特徴とするダイヤモンド基複合材の製法。
[13]前記ダイヤモンド粒子の集合体を粉末状のホウ素及び粉末状の第一金属材と密に混合して処理セルに充填する、[12]に記載の方法。
[14]前記第一金属がAl、Si、Fe、Co、Ni、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である、[13]に記載の方法。
[15]前記加熱加圧処理をダイヤモンドの熱力学的安定領域内の温度圧力条件で行う、[12]乃至[14]のいずれか一項に記載の方法。
[16]前記加熱加圧処理をホットプレス工程によって行う、[12]乃至[14]のいずれか一項に記載の方法。
[17]前記加熱加圧処理を放電プラズマ工程によって行う、[12]乃至[14]のいずれか一項に記載の方法。
[18]前記加熱加圧処理を燃焼合成反応によって行う、[12]乃至[14]のいずれか一項に記載の方法。
[19][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材で構成される切削工具要素。
[20][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材から一定の形状に切り出された切削工具要素。
[21][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材で構成される構造部材。
[22][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材を破砕して得られた研削砥粒。
[23][1]乃至[11]のいずれか一項に記載のダイヤモンド基複合材を破砕して砕粒とし、該砕粒の集合体を整粒し、さらに金属質、樹脂質又はセラミック質ボンド剤で成形してなる研磨研削工具。
[12] A diamond-based composite characterized by filling a processing cell with a starting mixed aggregate obtained by mixing an aggregate of diamond particles with powdered boron and subjecting the mixture to heat and pressure treatment at a reaction temperature of 1500 ° C. or higher. How to make the material.
[13] The method according to [12], wherein the diamond particle aggregate is intimately mixed with powdered boron and the powdered first metal material and filled into a processing cell.
[14] The first metal is at least one selected from Al, Si, Fe, Co, Ni, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and WC. ] Method.
[15] The method according to any one of [12] to [14], wherein the heat and pressure treatment is performed under a temperature and pressure condition within a thermodynamically stable region of diamond.
[16] The method according to any one of [12] to [14], wherein the heat and pressure treatment is performed by a hot press process.
[17] The method according to any one of [12] to [14], wherein the heat and pressure treatment is performed by a discharge plasma process.
[18] The method according to any one of [12] to [14], wherein the heat and pressure treatment is performed by a combustion synthesis reaction.
[19] A cutting tool element comprising the diamond-based composite material according to any one of [1] to [11].
[20] A cutting tool element cut out from the diamond-based composite material according to any one of [1] to [11] into a certain shape.
[21] A structural member composed of the diamond-based composite material according to any one of [1] to [11].
[22] A grinding abrasive grain obtained by crushing the diamond-based composite material according to any one of [1] to [11].
[23] The diamond-based composite material according to any one of [1] to [11] is crushed into crushed particles, the aggregate of the crushed particles is sized, and further a metallic, resinous, or ceramic bond agent Polishing grinding tool formed with

本発明の炭化ホウ素結合ダイヤモンド基複合材は、特にダイヤモンド粒子と共に出発物質として不定形ホウ素を用い、ダイヤモンド粒子を炭化ホウ素及びホウ素を結合材として一体化結合することにより、ダイヤモンド基の硬質複合材が、従来のB4C結合による焼結体よりも低温で製造可能となる、という優れた効果を奏する。 The boron carbide-bonded diamond matrix composite of the present invention is obtained by using amorphous boron as a starting material together with diamond particles, and by integrally bonding diamond particles with boron carbide and boron as a binder, Thus, it has an excellent effect that it can be manufactured at a lower temperature than a conventional sintered body by B 4 C bonding.

集合体としての硬さは結合材の硬さにも依存する。本発明においてはダイヤモンド粒子の表面がホウ素と接触し、両者の反応によって炭化ホウ素の層が形成されることにより、ホウ素との間に強い結合力が発生していると考えることができる。炭化ホウ素はバルク材ではビッカース硬さは33GPa(約3370VHN)とされているが、本発明における炭化ホウ素層の厚さはnmオーダーまたはそれ以下の薄膜であることから、本発明品における炭化ホウ素の影響は限定的である。   The hardness of the aggregate depends on the hardness of the binder. In the present invention, it can be considered that the surface of the diamond particles is in contact with boron, and a boron carbide layer is formed by the reaction between the two, thereby generating a strong bonding force with boron. Boron carbide has a bulk material with a Vickers hardness of 33 GPa (about 3370 VHN), but the thickness of the boron carbide layer in the present invention is a thin film of the order of nm or less. The impact is limited.

本発明の複合材においてはまた、ダイヤモンド粒子間にホウ素が存在する可能性があるが、標準状態において安定なβ-ホウ素が45GPa(約4590VHN)の硬さを有しており、硬さの面では焼結バインダーを用いたcBN(立方晶窒化硼素)焼結体を凌ぐレベルである。従ってダイヤモンド粒子の結合材としてホウ素由来の硬質材料を用いる本発明品は、ダイヤモンドに近い硬さを有する複合材として、鉄系材料を含むすべての材料の切削加工工具素材としての、広い用途が期待される。   In the composite material of the present invention, boron may exist between the diamond particles, but β-boron stable in the standard state has a hardness of 45 GPa (about 4590 VHN), and the hardness surface Then, it is a level that surpasses a cBN (cubic boron nitride) sintered body using a sintered binder. Therefore, the product of the present invention using a hard material derived from boron as a binder for diamond particles is expected to be widely used as a cutting tool material for all materials including iron-based materials as a composite material having hardness close to diamond. Is done.

さらに、本発明のダイヤモンド複合材は、従来のダイヤモンド焼結体とは異なり、ダイヤモンドのグラファイト化への相転換を促進するコバルト等の鉄系金属を含まない、または微量に含んでいてもダイヤモンドへの影響が殆どないことから、耐熱性の高いダイヤモンド集合体となる。
なお、本発明の複合材は、その構造または特性により直接特定することが、凡そ実際的でないものである。
Furthermore, unlike the conventional diamond sintered body, the diamond composite material of the present invention does not contain iron-based metals such as cobalt, which promote the phase conversion of diamond to graphitization, or even contains a trace amount. Therefore, a diamond aggregate with high heat resistance is obtained.
Note that it is not practical to specify the composite material of the present invention directly by its structure or characteristics.

本発明のダイヤモンド−ホウ素複合体は、ダイヤモンド粒子を粉末状の結晶質または不定形またはこれらの混在したホウ素と混合し、この混合粉末を、加圧状態での高温下に置く加圧・加熱処理によって、より効率よく得られる。加圧方法として最も好ましいのはダイヤモンド焼結体製造用の超高圧高温装置であって、1450℃以上、5GPa以上の温度、圧力の使用が好ましい。   In the diamond-boron composite of the present invention, diamond particles are mixed with powdered crystalline or amorphous or mixed boron, and the mixed powder is subjected to pressure and heat treatment under high pressure in a pressurized state. Can be obtained more efficiently. The most preferable pressurizing method is an ultra-high pressure and high temperature apparatus for producing a diamond sintered body, and it is preferable to use a temperature and pressure of 1450 ° C. or higher and 5 GPa or higher.

上記の圧力条件は、長時間の高温付与を行った場合にも、ダイヤモンドのグラファイト化を効果的に防止してダイヤモンドが熱力学的に安定相として存在できる環境を実現するための要件である。   The above pressure condition is a requirement for realizing an environment in which diamond can exist as a thermodynamically stable phase by effectively preventing the graphitization of diamond even when applied at a high temperature for a long time.

但し、超高圧力の付与は必須ではない。ダイヤモンドとホウ素との反応により、ダイヤモンド粒子表面にB4C層が形成される反応は速く、グラファイト化への誘導時間内のごく短時間で完了することが予期される。一方、誘導時間は還元雰囲気中では長くなることが認められていることから、ダイヤモンドのグラファイト化への誘導時間内に実質的な反応完了が可能な加熱方法を用いる場合には、HIP、ホットプレス、放電プラズマ焼結、あるいは燃焼合成技術も用いることができる。 However, application of ultra high pressure is not essential. Due to the reaction between diamond and boron, the reaction in which the B 4 C layer is formed on the diamond particle surface is fast and is expected to be completed in a very short time within the induction time for graphitization. On the other hand, since the induction time is recognized to be long in a reducing atmosphere, when using a heating method capable of substantially completing the reaction within the induction time for graphitization of diamond, HIP, hot press Also, discharge plasma sintering or combustion synthesis techniques can be used.

従って本発明のダイヤモンド基複合材の製造には、既存の各種焼結装置を用いることができ、高性能切削、研削工具素材の大量生産が可能である。   Therefore, various existing sintering apparatuses can be used for manufacturing the diamond matrix composite of the present invention, and mass production of high-performance cutting and grinding tool materials is possible.

加熱操作を還元雰囲気内で実施するために、出発原料中に例えば水素化チタンなどの金属水素化物を添加することもできる。昇温の際に生じたガスによって出発原料が水素雰囲気に保たれ、反応によって生じる金属ホウ化物は、複合体の靭性、導電性などの物性に好ましい効果を生じる。   In order to carry out the heating operation in a reducing atmosphere, a metal hydride such as titanium hydride can be added to the starting material. The starting material is kept in a hydrogen atmosphere by the gas generated during the temperature rise, and the metal boride generated by the reaction has a favorable effect on the physical properties such as toughness and conductivity of the composite.

本発明のダイヤモンド基複合材は硬質材として様々な用途への利用が見込まれる。この際、特に切削工具、研磨・研削工具の用途を意図する場合には、結合材の靭性改善のために少量の金属成分の添加が有効である。このような靭性改善金属としてはAl、Si、Fe、Co、Ni、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Wが適し、これらの金属種は単独又は組み合わせて利用可能である。靭性改善金属の添加は得られる複合材の硬度を低下させることから、ダイヤモンドとホウ素とから成る出発材料に添加する際、好適な硬度を維持するために、出発材料の質量に対し外掛けで15%以下とすることが望ましい。   The diamond matrix composite of the present invention is expected to be used for various purposes as a hard material. In this case, particularly when intended for use as a cutting tool or a polishing / grinding tool, it is effective to add a small amount of a metal component in order to improve the toughness of the binder. Al, Si, Fe, Co, Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W are suitable as such toughness improving metals, and these metal species can be used alone or in combination. is there. The addition of the toughness improving metal reduces the hardness of the resulting composite, so when added to the starting material consisting of diamond and boron, it is scaled to the starting material mass to maintain a suitable hardness. It is desirable to make it below%.

前記の金属成分の添加は、放電加工等のために導電性を付与する場合にも有効に作用する。添加する金属成分の種類及び量は、個々の用途に応じて適宜選択決定される。さらにこれらの金属は使用目的に合わせて炭化物、窒化物或いはホウ化物等、化合物の形で添加することも可能である。   The addition of the metal component also works effectively when imparting conductivity for electrical discharge machining or the like. The kind and amount of the metal component to be added are appropriately selected and determined according to each application. Furthermore, these metals can be added in the form of a compound such as carbide, nitride or boride in accordance with the purpose of use.

一方、本発明において結合一体化されるダイヤモンド粒子としては、目的とする硬さに応じて100μmまで如何なる粒度のものも使用可能であるが、加工工具として必要な靭性を確保する観点からは20μm以下、特に1μm以下の粒子が好適である。   On the other hand, as the diamond particles bonded and integrated in the present invention, particles of any particle size up to 100 μm can be used depending on the target hardness, but from the viewpoint of ensuring the toughness required as a processing tool, it is 20 μm or less. Particularly, particles having a size of 1 μm or less are suitable.

本発明において複合材に含有されるホウ素は、ダイヤモンド粒子と接触して表面に炭化ホウ素層を形成すると解される。このためホウ素の量は複合材中に一様に分布しダイヤモンド粒子成分の全表面と接触させるのに十分な量を含有させることが好ましいが、一方生成される複合材中にホウ素相が過剰に存在すると複合材の靭性が低下することになる。従って複合材に含有されるホウ素の量は用いるダイヤモンドの粒度にもよるが、全体の0.5%以上40%以下が好適である。   It is understood that boron contained in the composite material in the present invention forms a boron carbide layer on the surface in contact with diamond particles. For this reason, it is preferable that the amount of boron be uniformly distributed in the composite material and contained in an amount sufficient to make contact with the entire surface of the diamond particle component, while the composite material produced has an excess of boron phase. If present, the toughness of the composite will be reduced. Therefore, although the amount of boron contained in the composite material depends on the particle size of the diamond used, it is preferably 0.5% to 40% of the total.

これまでに単体のホウ素をダイヤモンド粒子と組合せ、加熱操作によってその場で形成された炭化ホウ素によってダイヤモンド粒子を結合した複合材は知られていない。本願発明においては、効果的な結合材の有効な利用によってきわめて高い硬度と共に、またダイヤモンド粒子のグラファイトへの相転移を来さない高い耐熱性も同時に達成された、高性能の複合体が達成される。   So far, there is no known composite material in which a single boron is combined with diamond particles and the diamond particles are bonded by boron carbide formed in situ by a heating operation. In the present invention, a high-performance composite is achieved that has achieved both extremely high hardness by effective use of an effective binder, and at the same time high heat resistance that does not cause a phase transition of diamond particles to graphite. The

耐熱性の発現は、ダイヤモンド粒子表面において、結合した炭化ホウ素を含むホウ化物から転じた酸化ホウ素膜がダイヤモンド粒子表面を覆い、ダイヤモンドが酸素に触れることによるグラファイト化の開始が阻止されることによる、とも説明されている。   The expression of heat resistance is due to the fact that on the diamond particle surface, a boron oxide film converted from a boride containing bonded boron carbide covers the diamond particle surface, and the start of graphitization due to contact of diamond with oxygen is prevented. Both are explained.

本発明によるダイヤモンド基複合材は、従来の超砥粒焼結体と同様に、反応装置から取出し未切断の原複合材塊体として所定の形状に整えられ、さらにレーザー切断や放電切断により所要形状に切断して、或いは未切断のまま各種切削工具ブランクや工具要素として利用可能である。ここで塊体とは、焼結体調製装置から回収され、混在物を除去して単離された工具要素に切断される前の大断面複合材塊体を指す。   Like the conventional superabrasive sintered body, the diamond-based composite material according to the present invention is taken out from the reaction apparatus and arranged into a predetermined shape as an uncut raw composite material mass, and further, the required shape is obtained by laser cutting or electric discharge cutting. Can be used as various cutting tool blanks or tool elements. Here, the lump refers to a large cross-section composite lump that has been recovered from the sintered body preparation device and has been removed into a tool element that has been isolated by removing the inclusions.

本発明の複合体はまた、高強度の研削砥粒、特に通常の高温・高圧合成技術では製作が困難な粒径0.5mm以上の研磨研削工具用の高硬度砥粒を製造するための原料としても用いることができる。即ち一旦直径数十mmの大断面の複合材塊体を調製した後、破砕して篩い分け整粒することにより、呼称#40よりも粗いダイヤモンド―ホウ素複合材からなるダイヤモンド多結晶粒子が容易に得られる。ホウ素はダイヤモンド、炭化ホウ素に比して脆いので、複合材中に未反応の形で残留しているホウ素の箇所で破断する傾向がある。   The composite of the present invention is also used as a raw material for producing high-strength abrasive grains, particularly high-hardness abrasive grains for abrasive grinding tools having a grain size of 0.5 mm or more, which are difficult to produce by ordinary high-temperature / high-pressure synthesis technology. Can also be used. In other words, once a composite mass having a large cross section with a diameter of several tens of millimeters is prepared, it is crushed and sieved, and diamond polycrystalline particles made of a diamond-boron composite material coarser than the name # 40 can be easily obtained. can get. Since boron is more brittle than diamond and boron carbide, there is a tendency to break at the location of boron remaining in an unreacted form in the composite.

得られた多結晶質集合粒子はcBN砥粒に匹敵する硬さであることから、重研削に耐える大粒の安価な研削砥粒として、コバルトボンド、超硬合金ボンド、あるいはセラミックスボンドの掘削工具として岩盤掘削に用いたり、鉄筋コンクリート構造物の切断や穿孔のための工具に用いることができる。ダイヤモンド粒子表面を覆っている炭化ホウ素は工具製作のための上記各種ボンド剤と容易に化合物を生じるので、各ボンド剤による砥粒保持力がダイヤモンド単体を用いた工具に比して向上する傾向が認められる。   Since the obtained polycrystalline aggregate particles have hardness comparable to cBN abrasive grains, they are used as drilling tools for cobalt bonds, cemented carbide bonds, or ceramic bonds, as large, inexpensive abrasive grains that can withstand heavy grinding. It can be used for rock excavation and as a tool for cutting and drilling reinforced concrete structures. Since boron carbide covering the surface of diamond particles easily forms compounds with the above various bond agents for tool manufacture, the abrasive grain retention by each bond agent tends to improve compared to tools using diamond alone. Is recognized.

特にメタルボンド砥石の製作の際にNi、Coが含まれるボンド剤を用いてこの砥粒を固定すると、1000℃付近の砥石の加熱成型の段階で、砥粒はBC層や表面に残留しているホウ素とボンド剤金属とによって生じる金属ホウ化物を介して、化学結合によりボンド剤金属中に固定される。即ちダイヤモンド・炭化ホウ素・金属ホウ化物・ボンド剤金属がそれぞれ化学結合によって連続した組織となる。 In particular, when this abrasive grain is fixed by using a bonding agent containing Ni and Co during the manufacture of a metal bond grinding stone, the abrasive grain remains on the B 4 C layer or on the surface at the stage of heat molding of the grinding stone near 1000 ° C. It is fixed in the bond metal by a chemical bond via a metal boride generated by the boron and the bond metal. That is, diamond, boron carbide, metal boride, and bond agent metal each have a continuous structure by chemical bonding.

一方、ミクロンサイズにまで粉砕した多結晶質集合粒子をコバルトで結合した複合材は、超硬合金において炭化タングステン粒子をダイヤモンド粒子で置換した構造となり、ダイヤモンド粒子は表面の炭化ホウ素層を介してコバルトと化学結合していることから、超硬合金よりも硬く、超硬合金と同等の抗折力を有する切削、旋削工具として用いることができる。   On the other hand, a composite material in which polycrystalline aggregate particles pulverized to micron size are bonded with cobalt has a structure in which tungsten carbide particles are replaced with diamond particles in a cemented carbide, and the diamond particles are cobalt via a boron carbide layer on the surface. Therefore, it can be used as a cutting or turning tool that is harder than cemented carbide and has the same bending strength as cemented carbide.

〔実施例1〕
平均粒度1μmの合成ダイヤモンド(トーメイダイヤ株式会社製IRM級。以下同様)及び呼称粒度1μm(比表面積値12.5m2/g)の不定形ホウ素粉末を質量比85:15(容積比でほぼ80:20)の割合でボールミルに入れ、充分に混合して出発材料とした。この混合粉末200gをニオブ製のカプセルに充填して超高圧高温装置に装填し5.5GPa、1600℃の条件下に15分間供して複合材塊体を完成させた。
回収された複合材塊体は強固に結合されており、ビッカース硬さ62GPaを示した。
[Example 1]
Synthetic diamond having an average particle size of 1 μm (IRM class manufactured by Tomei Dia Co., Ltd., and the same applies below) and amorphous boron powder having a nominal particle size of 1 μm (specific surface area value of 12.5 m 2 / g) are 85:15 in mass ratio (approximately 80 by volume ratio). It was put into a ball mill at a ratio of 20) and mixed well to obtain a starting material. 200 g of this mixed powder was filled into a niobium capsule, loaded into an ultrahigh pressure and high temperature apparatus, and subjected to conditions of 5.5 GPa and 1600 ° C. for 15 minutes to complete a composite mass.
The recovered composite mass was firmly bonded and exhibited a Vickers hardness of 62 GPa.

〔実施例2〕
平均粒度1μmの合成ダイヤモンドに、結合材として(上記と同じ)粒度1μmの不定形ホウ素粉末に粒度約2μmの炭化タングステン(WC)粉末を加えてボールミルに入れて混合し、ダイヤモンド:B:WC質量比75:10:15の出発材料とした。この混合粉末200gをニオブ製のカプセルに充填して超高圧高温装置に装填し5.5GPa、1600℃の条件下に15分間供して複合材塊体を完成させた。
回収された複合材塊体は抗折力及びビッカース硬さの測定においてそれぞれ0.9GPa及び65GPaを示した。また20〜30Ωcmの電気抵抗値を有した。
[Example 2]
To a synthetic diamond having an average particle size of 1 μm, an amorphous boron powder having a particle size of 1 μm is added as a binder (same as above), and tungsten carbide (WC) powder having a particle size of about 2 μm is added to a ball mill and mixed. Diamond: B: WC mass A starting material with a ratio of 75:10:15 was obtained. 200 g of this mixed powder was filled into a niobium capsule, loaded into an ultrahigh pressure and high temperature apparatus, and subjected to conditions of 5.5 GPa and 1600 ° C. for 15 minutes to complete a composite mass.
The recovered composite mass showed 0.9 GPa and 65 GPa in the measurement of bending strength and Vickers hardness, respectively. It also had an electrical resistance value of 20-30 Ωcm.

前記実施例と同種の合成ダイヤモンド、不定形ホウ素粉末及びWC粉末を用い、但し比率を変えて混合し、出発材料とした。それぞれを実施例1と同様に超高圧高温装置に装填し加熱加圧操作を行った。得られた複合材塊体の密度及びビッカース硬さを出発材料の組成と共に表1に示す。   Synthetic diamond, amorphous boron powder and WC powder of the same type as in the above examples were used, but mixed at different ratios to obtain a starting material. Each was loaded into an ultra-high pressure and high temperature apparatus in the same manner as in Example 1, and a heating and pressing operation was performed. Table 1 shows the density and Vickers hardness of the resulting composite mass together with the composition of the starting materials.

〔実施例3〕
前記実施例と同種の合成ダイヤモンド、不定形ホウ素粉末及びWC粉末を用い、ただし出発材料におけるホウ素の比率を0.5%から35%まで変えて加圧加熱操作を行った。ダイヤモンドの粒度はホウ素0.5%の場合のみ、1μmと10μmとを混合使用し、他は全量1μmとした。得られた複合材塊体の密度、ビッカース硬さ及び電気抵抗値を測定し、表2の結果を得た。
Example 3
Synthetic diamond, amorphous boron powder, and WC powder of the same type as in the above example were used, but the pressure heating operation was performed while changing the boron ratio in the starting material from 0.5% to 35%. Only when the particle size of diamond was 0.5% boron, 1 μm and 10 μm were mixed and used, and the others were 1 μm in total. The density, Vickers hardness, and electrical resistance value of the obtained composite mass were measured, and the results shown in Table 2 were obtained.

〔実施例4〕
平均粒度1μmの合成ダイヤモンド、及び結合材として1μmのホウ素及び公称粒度1.85μmのTiC粉末をそれぞれ質量比70:20:10の割合でボールミルに入れ、充分に混合して出発材料とした。この混合粉末200gをニオブ製のカプセルに充填して超高圧高温装置に装填し6GPa、1650℃の条件下に15分間供して一体化を完成させた。回収された複合材塊体は58.1GPaの硬さを示した。
Example 4
Synthetic diamond having an average particle size of 1 μm, 1 μm boron as a binder and TIC powder having a nominal particle size of 1.85 μm were placed in a ball mill at a mass ratio of 70:20:10, and mixed well to obtain a starting material. 200 g of this mixed powder was filled into a niobium capsule, loaded into an ultrahigh pressure and high temperature apparatus, and subjected to conditions of 6 GPa and 1650 ° C. for 15 minutes to complete the integration. The recovered composite mass showed a hardness of 58.1 GPa.

〔実施例5〕
実施例4における結合材中のTiC粉末に代えて6μmの金属Si粉末を用いて前記操作を繰り返した。平均粒度1μmの合成ダイヤモンド、及び結合材としてホウ素及びSiをそれぞれ質量比70:20:10の割合で配合、充分に混合して出発材料とした。この混合粉末を前記同様に超高圧高温装置に装填し、加圧加熱条件に供した。回収された複合材塊体のXRD観察においてSiは炭化物に変換しており、複合材塊体のビッカース硬さは52.0GPaを示した。
Example 5
The above operation was repeated using 6 μm metal Si powder instead of the TiC powder in the binder in Example 4. Synthetic diamond having an average particle size of 1 μm and boron and Si as binders were blended in a mass ratio of 70:20:10, and mixed well to obtain a starting material. This mixed powder was loaded into an ultra-high pressure and high temperature apparatus in the same manner as described above and subjected to pressurized heating conditions. In XRD observation of the recovered composite mass, Si was converted to carbide, and the Vickers hardness of the composite mass was 52.0 GPa.

〔実施例6〕
焼結アルミナの切削加工素材として、呼称 1μm以下のダイヤモンド微粉、呼称0.6μmのアモルファスホウ素、呼称0.8μmのタングステン粉末を75:15:10で混合し、6GPa、1700℃に15分間保持した。得られた複合材はビッカース硬さ59GPa、抗折力1.35GPaを示した。
Example 6
As a cutting material of sintered alumina, diamond fine powder having a name of 1 μm or less, amorphous boron having a name of 0.6 μm, and tungsten powder having a name of 0.8 μm were mixed at 75:15:10 and held at 6 GPa at 1700 ° C. for 15 minutes. The obtained composite material had a Vickers hardness of 59 GPa and a bending strength of 1.35 GPa.

〔実施例7〕
平均粒径4.5μmのダイヤモンド粉、平均粒径1μmのダイヤモンド粉、呼称0. 6μmのアモルファスホウ素粉(比表面積25m2/g)、呼称10μm以下の水素化チタン粉を50:10:30:10の割合(質量比。以下同様)で混合し、出発原料とした。カーボンるつぼに充填した混合原料を面圧200kg/cm2で加圧しながら、高周波によってるつぼ温度1500℃に加熱し、5分間保持した。
生成物は一部がガラス状となったTiB2を介して一体化した塊体となっており、ワイヤーカットによってスチール加工用の切削バイトに仕上げた。
Example 7
Diamond powder with an average particle diameter of 4.5 μm, diamond powder with an average particle diameter of 1 μm, amorphous boron powder with a nominal name of 0.6 μm (specific surface area 25 m 2 / g), titanium hydride powder with a nominal value of 10 μm or less at 50: 10: 30: 10 (Mass ratio; the same applies hereinafter) to obtain a starting material. While the mixed raw material filled in the carbon crucible was pressurized at a surface pressure of 200 kg / cm 2, it was heated to a crucible temperature of 1500 ° C. by high frequency and held for 5 minutes.
The product was a lump integrated through TiB 2 partly glassy, and was finished into a cutting tool for steel processing by wire cutting.

〔実施例8〕
呼称2-3μmのダイヤモンド粒子(平均粒径1.9μm、比表面積4m2/g)200gと呼称0.6μmのアモルファスホウ素20gとの混合粉末をニオブ製のカプセルに充填し、6GPa、1650℃に15分間保持した。反応生成物の塊体は鋼球を用いるボールミルで粉砕し、粉砕の際に生じた鉄粉を塩酸で溶解除去した後、比重差を利用して未反応ホウ素を除いた。
(Example 8)
A mixed powder of 200 g of diamond particles with a nominal size of 2-3 μm (average particle size of 1.9 μm, specific surface area of 4 m 2 / g) and 20 g of amorphous boron with a nominal size of 0.6 μm is filled in a niobium capsule, and 6 GPa at 1650 ° C. for 15 minutes. Retained. The mass of the reaction product was pulverized by a ball mill using steel balls, and iron powder generated during the pulverization was dissolved and removed with hydrochloric acid, and then unreacted boron was removed using the difference in specific gravity.

得られたBCで被覆されたダイヤモンド粒子と、粒径2μmのコバルト粉末とを85:15で混合し、カーボン型を用いて1300℃でホットプレス焼結を行った。
得られた切削バイト素材の物性値はビッカース硬さHv 70GPa、抗折力 1.23GPaであった。
The obtained diamond particles coated with B 4 C and cobalt powder having a particle diameter of 2 μm were mixed at 85:15, and hot press sintering was performed at 1300 ° C. using a carbon mold.
The physical properties of the obtained cutting tool material were Vickers hardness Hv 70 GPa and bending strength 1.23 GPa.

〔実施例9〕
粒径50μmのダイヤモンド粉、粒径6μmのダイヤモンド粉、粒径1μmのダイヤモンド粉、呼称0.6μmのアモルファスホウ素粉、呼称1μmのモリブデン粉を200:40:5:2.5:20の割合で混合し、出発原料とした。
先端部を円錐形に加工したカーボン型へ入れた混合原料を、面圧200kg/cm2で加圧しながら、高周波加熱によって1800℃に5分間保持した。得られた複合材は円錐部を研磨仕上げし、円筒研削盤のレースセンターとして用いた。
Example 9
Diamond powder with a particle size of 50 μm, diamond powder with a particle size of 6 μm, diamond powder with a particle size of 1 μm, amorphous boron powder with a name of 0.6 μm, molybdenum powder with a name of 1 μm are mixed in a ratio of 200: 40: 5: 2.5: 20, Used as starting material.
The mixed raw material put into a carbon mold whose tip was processed into a conical shape was held at 1800 ° C. for 5 minutes by high frequency heating while being pressurized at a surface pressure of 200 kg / cm 2 . The resulting composite material was polished at the conical portion and used as a race center for a cylindrical grinder.

〔実施例10〕
平均粒度0.6μmの合成ダイヤモンド、結合材として比表面積値27.1m2/gの不定形ホウ素及び呼称3μmのAl粉末をそれぞれ質量比90:7:3の割合で配合、充分に混合した出発材料を用い、5.5GPa、1550℃の条件に供して直径65mm、厚さ5mmの板状複合材を多数作製した。これを集めて内径1m長さ1.2mのボールミル中で直径25mmの鋼球1トンを用いて粉砕し、5時間ごとに粉砕物を取出して篩分ける操作を繰り返し、20/30メッシュの多結晶質複合砥粒を得た。
この砥粒をコバルト粉末中に埋め込んで焼結してブレード用のチップを作製し、耐火煉瓦切断ブレードの刃として用いた。
Example 10
The average particle size of 0.6μm of synthetic diamond, respectively Al powder amorphous boron and designations 3μm of specific surface area 27.1m 2 / g as a binder weight ratio of 90: 7: blending at a ratio of 3, a sufficiently mixed starting materials A large number of plate-like composite materials having a diameter of 65 mm and a thickness of 5 mm were prepared under the conditions of 5.5 GPa and 1550 ° C. This is collected and pulverized in a ball mill with an inner diameter of 1 m and a length of 1.2 m using 1 ton of steel balls with a diameter of 25 mm. A composite abrasive was obtained.
The abrasive grains were embedded in cobalt powder and sintered to produce a blade tip, which was used as a blade of a refractory brick cutting blade.

〔実施例11〕
呼称#170のダイヤモンド粒子(粒径約100μm)200gと呼称0.6μmのアモルファスホウ素(比表面積25m2/g) 10gとの混合粉末をニオブ製のカプセルに充填し、6GPa、1650℃に15分間保持した。
反応生成物の塊体は鋼球を用いてボールミル粉砕し、粉砕の際に生じた鉄粉と未反応ホウ素とを篩い分けによって除いた後、残留鉄分を塩酸で溶解除去した。
得られたB4Cで被覆されたダイヤモンド粒子はブロンズボンド(主成分% Cu:75、Sn:15、Ni:10)(質量%)の研削砥石としてダイス鋼の仕上げ加工に用いた。
Example 11
Niobium capsules were filled with a mixed powder of 200g of diamond particles with a nominal size of 170 (particle size of about 100μm) and 10g of amorphous boron with a nominal size of 0.6μm (specific surface area 25m 2 / g) and held at 6GPa at 1650 ° C for 15 minutes did.
The mass of the reaction product was pulverized with a steel ball in a ball mill, and the iron powder and unreacted boron produced during pulverization were removed by sieving, and the residual iron content was dissolved and removed with hydrochloric acid.
The obtained diamond particles coated with B 4 C were used as a grinding wheel of bronze bond (main component% Cu: 75, Sn: 15, Ni: 10) (mass%) for finishing the die steel.

〔実施例12〕
石材研削砥石用の砥粒として、平均粒径20μmのダイヤモンド粉、呼称0.6μmのアモルファスホウ素、呼称2μmのニッケル粉を75:13:12で混合し出発原料とした。この混合原料150gを内径 100 mm、長さ200mmの円筒状カーボン型に充填し、5トンの荷重を加えた状態で上下のカーボンパンチを経由して通電加熱することにより、1500℃に昇温し1分間保持した。
Example 12
As abrasive grains for stone grinding wheels, diamond powder having an average particle diameter of 20 μm, amorphous boron having a nominal name of 0.6 μm, and nickel powder having a nominal name of 2 μm were mixed at 75:13:12 to obtain a starting material. 150 g of this mixed material is filled into a cylindrical carbon mold with an inner diameter of 100 mm and a length of 200 mm, and heated to 1500 ° C by energizing and heating through the upper and lower carbon punches under a load of 5 tons. Hold for 1 minute.

得られた複合材を粉砕し、篩い分けによって#100の砥粒とした。この砥粒からはX線回折によってダイヤモンドの他にBC、NiBも検出された。この砥粒をコバルトボンドの円筒研削砥石として使用したところ、通常のダイヤモンドの裸砥粒を用いた砥石に比して、50%の寿命向上が得られた。 The obtained composite material was pulverized and sieved into # 100 abrasive grains. In addition to diamond, B 4 C and Ni 2 B were also detected from the abrasive grains by X-ray diffraction. When this abrasive grain was used as a cobalt-bonded cylindrical grinding wheel, a life improvement of 50% was obtained as compared with a grinding stone using bare diamond grains of ordinary diamond.

本発明において使用するダイヤモンド粒子は、合成された、または天然に産出するダイヤモンド材を処理して個々の粒子の集合体(粉体)とし、さらに粒度を揃えた、即ち管理された一定の粒度分布を有する粉体の構成粒子を言い、市販されているメッシュサイズ及びミクロン・サブミクロンサイズの粒度のものを含む。 また、複数の粒度分布、複数の平均粒度の粒子粉体の配合とは、一定の粒度分布の或る平均粒度を有する粒子群と、それとは異なる粒度分布および平均粒度を有する複数の粒子群が混ざっているものを指す。   The diamond particles used in the present invention are obtained by treating a diamond material that is synthesized or naturally produced into an aggregate (powder) of individual particles, and having a uniform particle size, that is, a controlled constant particle size distribution. The particle | grains of the powder which have, and the thing of the particle size of the mesh size and micron submicron size which are marketed are included. In addition, the blending of particle powders having a plurality of particle size distributions and a plurality of average particle sizes includes a particle group having a certain average particle size having a certain particle size distribution and a plurality of particle groups having a particle size distribution and an average particle size different from the particle group Refers to a mixture.

Claims (23)

複数個のダイヤモンド粒子と、ホウ素或いはホウ素および不可避不純物からなる結合材料とからなる出発物質の加圧加熱処理によって、結合一体化された複合材。   A composite material that is bonded and integrated by pressurization and heating treatment of a starting material composed of a plurality of diamond particles and a bonding material composed of boron or boron and inevitable impurities. 出発物質全体におけるダイヤモンド粒子の含有量が60%〜99.5%(質量比。以下同様)、ホウ素或いはホウ素および不可避不純物からなる結合材料の含有量が0.5%〜40%である、請求項1に記載の複合材。   The content of diamond particles in the starting material as a whole is 60% to 99.5% (mass ratio; the same applies hereinafter), and the content of a binding material composed of boron or boron and inevitable impurities is 0.5% to 40%. Composite material. 複数個のダイヤモンド粒子と金属ホウ素とを含む出発物質の加圧加熱処理によって緻密に結合一体化された複合材であって、ダイヤモンド粒子の表面が上記加圧加熱処理においてホウ素との反応により形成された炭化ホウ素層を有し、かつ該ダイヤモンド粒子の隣接粒子同士が直接結合および/又は出発物質成分および/又はその派生物と共に結合一体化されてなる請求項1または2に記載のダイヤモンド基複合材。   A composite material in which a starting material containing a plurality of diamond particles and metallic boron is closely bonded and integrated by pressure heating treatment, and the surface of the diamond particles is formed by reaction with boron in the pressure heating treatment. 3. A diamond-based composite material according to claim 1 or 2, wherein the diamond-based composite material comprises a boron carbide layer and adjacent particles of the diamond particles are directly bonded and / or bonded and integrated together with a starting material component and / or a derivative thereof. . 前記出発物質に加えてさらに、第一の金属質成分を、該出発物質の質量に対して15%以下含有せしめた、請求項1乃至3のいずれか一項に記載のダイヤモンド基複合材。   The diamond-based composite material according to any one of claims 1 to 3, wherein a first metallic component is further contained in an amount of 15% or less with respect to the mass of the starting material in addition to the starting material. 第一の金属質成分が前記加圧加熱処理において少なくとも表面に成分ホウ素との反応によりその場で形成されたホウ化物層を有する、請求項4に記載のダイヤモンド基複合材。   The diamond-based composite material according to claim 4, wherein the first metallic component has a boride layer formed in situ by reaction with the component boron at least on the surface in the pressure heat treatment. 前記第一の金属質成分がAl、Si、Fe、Co、Ni、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である、請求項4または5に記載のダイヤモンド基複合材。   The first metallic component is at least one selected from Al, Si, Fe, Co, Ni, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and WC. 4. The diamond matrix composite material according to 4 or 5. ビッカース硬さが40GPa以上である、請求項1乃至6のいずれか一項に記載のダイヤモンド基複合材。   The diamond matrix composite according to any one of claims 1 to 6, wherein the Vickers hardness is 40 GPa or more. 前記ダイヤモンド粒子の平均粒径が100μm以下である、請求項1乃至7のいずれか一項に記載のダイヤモンド基複合材。   The diamond matrix composite according to any one of claims 1 to 7, wherein an average particle diameter of the diamond particles is 100 µm or less. 前記ダイヤモンド粒子の平均粒径が20μm以下である、請求項8に記載のダイヤモンド基複合材。   The diamond matrix composite according to claim 8, wherein the diamond particles have an average particle size of 20 μm or less. 前記ダイヤモンド粒子の平均粒径が1μm以下である、請求項8又は9に記載のダイヤモンド基複合材。   The diamond matrix composite according to claim 8 or 9, wherein an average particle diameter of the diamond particles is 1 µm or less. 前記ダイヤモンド粒子が規定された粒度分布及び平均粒度を有する、請求項1乃至10のいずれか一項に記載のダイヤモンド基複合材。   The diamond matrix composite according to any one of claims 1 to 10, wherein the diamond particles have a defined particle size distribution and an average particle size. ダイヤモンド粒子の集合体を粉末状のホウ素と混合してなる出発混合集合体を処理セルに充填し、1500℃以上の反応温度にて加熱加圧処理することを特徴とするダイヤモンド基複合材の製法。   A process for producing a diamond matrix composite comprising filling a processing cell with a starting mixed aggregate obtained by mixing an aggregate of diamond particles with powdered boron, and subjecting the mixture to heat and pressure treatment at a reaction temperature of 1500 ° C. or higher. . 前記ダイヤモンド粒子の集合体を粉末状のホウ素及び粉末状の第一金属材と密に混合して処理セルに充填する、請求項12に記載の方法。   The method according to claim 12, wherein the diamond particle aggregate is intimately mixed with powdered boron and a powdered first metal material to fill a processing cell. 前記第一金属がAl、Si、Fe、Co、Ni、Cu、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、WCから選ばれる1種以上である、請求項13に記載の方法。   The said 1st metal is 1 or more types chosen from Al, Si, Fe, Co, Ni, Cu, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, WC. the method of. 前記加熱加圧処理をダイヤモンドの熱力学的安定領域内の温度圧力条件で行う、請求項12乃至14のいずれか一項に記載の方法。   The method according to any one of claims 12 to 14, wherein the heat and pressure treatment is performed under a temperature and pressure condition within a thermodynamic stability region of diamond. 前記加熱加圧処理をホットプレス工程によって行う、請求項12乃至14のいずれか一項に記載の方法。   The method according to claim 12, wherein the heat and pressure treatment is performed by a hot press process. 前記加熱加圧処理を放電プラズマ工程によって行う、請求項12乃至14のいずれか一項に記載の方法。   The method according to claim 12, wherein the heat and pressure treatment is performed by a discharge plasma process. 前記加熱加圧処理を燃焼合成反応によって行う、請求項12乃至14のいずれか一項に記載の方法。   The method according to any one of claims 12 to 14, wherein the heat and pressure treatment is performed by a combustion synthesis reaction. 請求項1乃至11のいずれか一項に記載のダイヤモンド基複合材で構成される切削工具要素。   The cutting tool element comprised with the diamond base composite material as described in any one of Claims 1 thru | or 11. 請求項1乃至11のいずれか一項に記載のダイヤモンド基複合材から一定の形状に切り出された切削工具要素。   A cutting tool element cut out from the diamond matrix composite according to any one of claims 1 to 11 into a predetermined shape. 請求項1乃至11のいずれか一項に記載のダイヤモンド基複合材で構成される構造部材。 A structural member comprising the diamond matrix composite according to any one of claims 1 to 11. 請求項1乃至11のいずれか一項に記載のダイヤモンド基複合材を破砕して得られた研削砥粒。   Grinding abrasive grains obtained by crushing the diamond matrix composite according to any one of claims 1 to 11. 請求項1乃至11のいずれか一項に記載のダイヤモンド基複合材を破砕して砕粒とし、該砕粒の集合体を整粒し、さらに金属質、樹脂質又はセラミック質ボンド剤で成形してなる研磨研削工具。   The diamond-based composite material according to any one of claims 1 to 11 is crushed into crushed particles, the aggregate of the crushed particles is sized, and further molded with a metallic, resinous or ceramic bond agent. Abrasive grinding tool.
JP2017203486A 2017-06-28 2017-10-20 Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same Active JP7188726B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017126280 2017-06-28
JP2017126280 2017-06-28

Publications (2)

Publication Number Publication Date
JP2019006662A true JP2019006662A (en) 2019-01-17
JP7188726B2 JP7188726B2 (en) 2022-12-13

Family

ID=65025753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203486A Active JP7188726B2 (en) 2017-06-28 2017-10-20 Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same

Country Status (1)

Country Link
JP (1) JP7188726B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079954A1 (en) * 2019-10-24 2021-04-29 積水化学工業株式会社 Resin composition and heat dissipation member
CN116041063A (en) * 2022-12-24 2023-05-02 河南联合精密材料股份有限公司 Preparation method of diamond boron carbide composite ceramic
JP7441441B2 (en) 2020-11-18 2024-03-01 トーメイダイヤ株式会社 Sintered diamond electrode material
JP7470291B2 (en) 2020-11-27 2024-04-18 トーメイダイヤ株式会社 Carbide-bonded polycrystalline diamond electrode material
EP4252941A4 (en) * 2020-11-30 2024-04-24 Sumitomo Electric Hardmetal Corp Sintered body and cutting tool
CN116041063B (en) * 2022-12-24 2024-04-30 河南联合精密材料股份有限公司 Preparation method of diamond boron carbide composite ceramic

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169179A (en) * 1980-05-30 1981-12-25 Kagaku Gijutsucho Mukizai Manufacture of diamond sintered body
JPS58199776A (en) * 1982-05-12 1983-11-21 住友電気工業株式会社 Diamond sintered body for tool and manufacture
JPS62114879A (en) * 1986-03-29 1987-05-26 Osaka Daiyamondo Kogyo Kk Manufacture of grinding stone of abrasive grains composed of massive grain-formed grinding stone piece
JPH06199571A (en) * 1991-06-20 1994-07-19 Nippon Seratetsuku:Kk Wear resistant ceramic material and its production
JP2003011019A (en) * 2001-07-03 2003-01-15 Ishizuka Kenkyusho:Kk Sintered super abrasive grain tip material and method of manufacture
JP2003181765A (en) * 2002-12-24 2003-07-02 Alps Electric Co Ltd Porous supergrain grinding stone and method for manufacturing the same
JP2008133173A (en) * 2006-10-31 2008-06-12 Mitsubishi Materials Corp Diamond sinter with good electrical conductivity and process for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421745B2 (en) 2001-12-28 2010-02-24 東洋炭素株式会社 Graphite material for semiconductor diamond synthesis and method for producing semiconductor diamond

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169179A (en) * 1980-05-30 1981-12-25 Kagaku Gijutsucho Mukizai Manufacture of diamond sintered body
JPS58199776A (en) * 1982-05-12 1983-11-21 住友電気工業株式会社 Diamond sintered body for tool and manufacture
JPS62114879A (en) * 1986-03-29 1987-05-26 Osaka Daiyamondo Kogyo Kk Manufacture of grinding stone of abrasive grains composed of massive grain-formed grinding stone piece
JPH06199571A (en) * 1991-06-20 1994-07-19 Nippon Seratetsuku:Kk Wear resistant ceramic material and its production
JP2003011019A (en) * 2001-07-03 2003-01-15 Ishizuka Kenkyusho:Kk Sintered super abrasive grain tip material and method of manufacture
JP2003181765A (en) * 2002-12-24 2003-07-02 Alps Electric Co Ltd Porous supergrain grinding stone and method for manufacturing the same
JP2008133173A (en) * 2006-10-31 2008-06-12 Mitsubishi Materials Corp Diamond sinter with good electrical conductivity and process for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079954A1 (en) * 2019-10-24 2021-04-29 積水化学工業株式会社 Resin composition and heat dissipation member
JP7441441B2 (en) 2020-11-18 2024-03-01 トーメイダイヤ株式会社 Sintered diamond electrode material
JP7470291B2 (en) 2020-11-27 2024-04-18 トーメイダイヤ株式会社 Carbide-bonded polycrystalline diamond electrode material
EP4252941A4 (en) * 2020-11-30 2024-04-24 Sumitomo Electric Hardmetal Corp Sintered body and cutting tool
CN116041063A (en) * 2022-12-24 2023-05-02 河南联合精密材料股份有限公司 Preparation method of diamond boron carbide composite ceramic
CN116041063B (en) * 2022-12-24 2024-04-30 河南联合精密材料股份有限公司 Preparation method of diamond boron carbide composite ceramic

Also Published As

Publication number Publication date
JP7188726B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6585179B2 (en) Ultra-hard structure and its manufacturing method
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
CN103561911B (en) Superhard construction body, tool elements and preparation method thereof
US20100104874A1 (en) High pressure sintering with carbon additives
CN105392584B (en) Superhard constructions and methods of making same
US20190017153A1 (en) Superhard constructions & methods of making
JP7188726B2 (en) Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
JP2011520031A (en) Super hard reinforced cemented carbide
GB2528732A (en) Superhard Constructions & Methods of making same
GB2540482A (en) Superhard constructions & methods of making same
WO2015059207A2 (en) Superhard constructions & methods of making same
WO2015166730A1 (en) Composite sintered body
GB2524401A (en) Superhard constructions & methods of making same
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
JPH0564691B2 (en)
KR100700197B1 (en) Process for Manufacturing Sintered Materials Containing Cobalt Component
Li et al. Fabrication and performance evaluation of metal bond diamond tools based on aluminothermic reaction
JP6528516B2 (en) Method of manufacturing diamond-metal carbide composite sintered body
JPH10310838A (en) Superhard composite member and its production
JP7473149B2 (en) High-hardness diamond-based block tool material and its manufacturing method
CN114728853B (en) Polycrystalline diamond with iron-containing binder
JP2020147462A (en) Diamond-based conductive hard sintered material and manufacturing method thereof
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPS62274044A (en) Diamond lump for tool and its production
JPS6310119B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171020

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220809

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220922

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221124

R150 Certificate of patent or registration of utility model

Ref document number: 7188726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150