JPS62274044A - Diamond lump for tool and its production - Google Patents

Diamond lump for tool and its production

Info

Publication number
JPS62274044A
JPS62274044A JP11639586A JP11639586A JPS62274044A JP S62274044 A JPS62274044 A JP S62274044A JP 11639586 A JP11639586 A JP 11639586A JP 11639586 A JP11639586 A JP 11639586A JP S62274044 A JPS62274044 A JP S62274044A
Authority
JP
Japan
Prior art keywords
diamond
powder
iron group
metals
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11639586A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakamura
勉 中村
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11639586A priority Critical patent/JPS62274044A/en
Publication of JPS62274044A publication Critical patent/JPS62274044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve strength as well as heat resistance, by subjecting a powder mixture of a diamond powder and a powder of transition metals of group IVa, Va, or VIa of the periodic table and/or carbides of the above metals, etc., to sintering at and under the prescribed high temp. and high pressure. CONSTITUTION:The diamond powder and the powders of transition metals of group IVa, Va, or VIa of the periodic table and/or the carbides of the above metals and iron group metals are mixed. The resulting powder mixture is sintered under the conditions of a pressure of >=50kb, a temp. of >=1,300 deg.C, and a time of >=5min to be formed into a diamond lump. This lump is composed of 80-95vol% diamond and the balance binding phase consisting of the above mentioned carbides of the transition metals of group IVa, Va, and VIa of the periodic table and iron group metals which are mutually bound. Moreover, the content of the above-mentioned iron group metals and the grain size of the above diamond are regulated to 0.05-3vol% (in the form of the relative ratio to diamond) and 0.1-200mum, respectively.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野コ 本発明は、切削工具、岩石掘削工具として使用するのに
適した高強度でかつ耐熱性を有するダイヤモンド塊体お
よびその製造方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application] The present invention provides a diamond block having high strength and heat resistance suitable for use as a cutting tool and a rock excavation tool. The present invention relates to a manufacturing method thereof.

C従来の技術] 現在、ダイヤモンドの含有量が70容量%以上でダイヤ
モンド粒子が互いに接合した焼結体が販売され、非鉄金
属、プラスチック、セラミックの切削、ドレッサ、ドリ
ルビット、伸線ダイスと−して使用されている。
C. Prior Art] Currently, sintered bodies with a diamond content of 70% by volume or more and diamond particles bonded to each other are sold, and are used for cutting nonferrous metals, plastics, and ceramics, dressers, drill bits, and wire drawing dies. is used.

特に、非鉄金属の切削や銅線などの比較的軟らかい線材
を伸線するダイスとして、これらのダイヤモンド焼結体
を使用した場合、その性能は非常に優れている。
In particular, when these diamond sintered bodies are used as dies for cutting non-ferrous metals or drawing relatively soft wire materials such as copper wire, their performance is extremely excellent.

たとえば、特公昭52−12126号公報には、この種
の焼結体の製造方法が開示されており、そこではダイヤ
モンド粉末をWC−Co超硬合金の成形体または焼結体
に接するように配置し、超硬合金の液相が生じる温度以
上の温度ならびに超高圧下で焼結が行なわれている。こ
のとき、超硬合金中のCoの一部は、ダイヤモンド粉末
層中に侵入し、結合金属として作用する。この先行技術
に開示された方法で作られたダイヤモンド焼結体は、役
10〜15容量%のCoを含有する。
For example, Japanese Patent Publication No. 52-12126 discloses a method for manufacturing this type of sintered body, in which diamond powder is arranged so as to be in contact with a compact or sintered body of WC-Co cemented carbide. However, sintering is carried out at a temperature higher than the temperature at which the liquid phase of the cemented carbide occurs and under ultra-high pressure. At this time, a part of Co in the cemented carbide penetrates into the diamond powder layer and acts as a bonding metal. The diamond sintered body made by the method disclosed in this prior art contains 10 to 15% by volume of Co.

[発明が解決しようとする問題点] 上記の焼結体は非鉄金属などの切削加工用工具としては
十分に実用的な性能を有する。しかしながら、耐熱性に
おいて劣るという欠点があった。
[Problems to be Solved by the Invention] The above-mentioned sintered body has sufficient practical performance as a cutting tool for non-ferrous metals and the like. However, it had the drawback of being inferior in heat resistance.

たとえば、この焼結体を750’C以上の温度に加熱す
ると、耐摩耗性および強度の低下が見られ、さらに90
0℃以上の温度では焼結体が破壊することになる。
For example, when this sintered body is heated to a temperature of 750'C or higher, a decrease in wear resistance and strength is observed;
At temperatures above 0°C, the sintered body will be destroyed.

したがって、ドリルビットなどに使用された場合、現在
のところ満足できる性能をaするダイヤモンド焼結体は
得られていないのが現状である。
Therefore, at present, no diamond sintered body with satisfactory performance has been obtained when used in drill bits and the like.

本発明者達は、市販のダイヤモンド焼結体を安山岩や花
崗岩等の硬質岩石掘削用ドリルビットとして使用した場
合に十分な性能が発揮されていない原因がCo等の鉄族
金属を結合材として用いる点にあることを見い出した。
The present inventors have discovered that the reason why commercially available diamond sintered bodies do not exhibit sufficient performance when used as drill bits for drilling hard rocks such as andesite and granite is that iron group metals such as Co are used as binding materials. I found out that there is a point.

すなわち、硬質岩石掘削時には掘削力が高くなり、焼結
ダイヤモンドは高温となるため、 (1)  Co等の鉄族金属結合材の存在により、ダイ
ヤモンドの黒鉛化が促進されて粒子間の結合力が低下す
る。
In other words, when excavating hard rocks, the drilling force becomes high and the sintered diamond becomes hot. descend.

(2)  Co等の鉄族金属結合材の熱膨張率(たとえ
ば、Coの線膨張率は18×10′″′′)とダイヤモ
ンドの熱膨張率(線膨張率で4.5×107’)の差が
大きいため、高温使用時にその熱膨張差に起因した亀裂
が発生して粒子間の結合力が低下する。
(2) Coefficient of thermal expansion of iron group metal binders such as Co (for example, Co has a coefficient of linear expansion of 18 x 10''''') and coefficient of thermal expansion of diamond (coefficient of linear expansion is 4.5 x 107') Because of the large difference between the two, cracks occur due to the difference in thermal expansion when used at high temperatures, reducing the bonding strength between the particles.

ということが判明した。It turned out that.

ダイヤモンド焼結体の耐熱性を向上させる方法としでは
、特開昭53−114589号公報に記載されているよ
うに、高温時にダイヤモンドの黒鉛化を促進するCo等
の鉄族金属を取り除けばよい。
A method for improving the heat resistance of a diamond sintered body is to remove iron group metals such as Co, which promote graphitization of diamond at high temperatures, as described in JP-A-53-114589.

しかしながら、ダイヤモンド焼結体がらCo等の鉄族金
属を溶出した場合、ダイヤモンド焼結体の強度が20〜
30%低下する。特に、ダイヤモンド焼結体をビットと
して使用した場合、強度と耐7摩耗性と耐熱性が同時に
要求されるため、特開昭53−114589号公報に記
載されているよウナタイヤモンド焼結体を用いたドリル
ビットでは、ダイヤモンド焼結体の強度不足のため、刃
先が欠損し寿命が短い。
However, when iron group metals such as Co are eluted from the diamond sintered body, the strength of the diamond sintered body increases from 20 to 20.
30% decrease. In particular, when a diamond sintered body is used as a bit, strength, wear resistance, and heat resistance are required at the same time. The drill bit used had a short lifespan due to the cutting edge breaking due to the lack of strength of the diamond sintered body.

他方、ダイヤモンドの粉末のみを超高圧下で焼結する試
みも行なわれているが、ダイヤモンド粒子0身が変形し
難いため、粒子の間隙には圧力が伝達されず、したがっ
て黒鉛化を生じ、ダイヤモンド−黒鉛の複合体しが得ら
れていない。
On the other hand, attempts have been made to sinter only diamond powder under ultra-high pressure, but since the diamond particles are difficult to deform, pressure is not transmitted to the gaps between the particles, resulting in graphitization and diamond - A graphite composite has not been obtained.

さらに、上記の(1)および(2)の欠点を改善する他
の方法としては、Co等の鉄族金属結合材の代わりにc
BNやSiCを結合材とすることが考えれる。cBNお
よびSiCは、ダイヤモンドとの熱膨張差がわずかであ
り、かつ熱伝導率、熱的安定性ともに良好である。
Furthermore, as another method to improve the above drawbacks (1) and (2), instead of using iron group metal binder such as Co, c
It is conceivable to use BN or SiC as the binding material. cBN and SiC have a small difference in thermal expansion from diamond, and have good thermal conductivity and thermal stability.

しかしながら、ダイヤモンド粉末とcBN粉末のみから
なる焼結体は、ダイヤモンドとcBNの結合が弱いため
、工具として使用した場合には粒子の脱落が生じやすく
、耐摩耗性が低下する。
However, in a sintered body made only of diamond powder and cBN powder, the bond between diamond and cBN is weak, so when used as a tool, particles tend to fall off, resulting in reduced wear resistance.

このため、従来切削工具材料として開発されてきたダイ
ヤモンドとcBNとを含む焼結体はC。
For this reason, the sintered body containing diamond and cBN, which has been developed as a cutting tool material, is C.

等の鉄族金属相を含み、これを介して結合せしめたもの
である。
It contains an iron group metal phase such as, and is bonded through this phase.

したがって、この方法では、上記の(1)の欠点を改善
することはできない。
Therefore, this method cannot improve the above drawback (1).

一方、SiCを結合材として用いる試みは、ダイヤモン
ド粉末と溶融Siを反応させる方法やダイヤモンドとS
iCを固相焼結する方法等が知られているが、いずれも
ダイヤモンド粒子同士の結合が見られないため、工具と
して使用した場合には耐摩耗性に劣るものであった。
On the other hand, attempts to use SiC as a binder have been made using a method in which diamond powder and molten Si are reacted, and a method in which diamond and S
Methods such as solid-phase sintering of iC are known, but in any of these methods, bonding between diamond particles is not observed, so when used as a tool, the wear resistance is poor.

特開昭59−16126111号公報には、この改良と
して、結合材原料にNiおよびSiを用いて、ダイヤモ
ンド粒子同士の結合を促進する方法が開示されているが
、焼結さた塊体の結合材はNi1珪化ニツケル、Sl、
SiC等からなる。しかしながら、Ni1珪化ニツケル
およびSiは、塊体の耐熱性・耐摩耗性の点からは、含
有することの好ましくない物質である。したがって、こ
の方法においても満足される性能を備えたものは得られ
ていない。
As an improvement to this, JP-A-59-16126111 discloses a method of promoting bonding between diamond particles by using Ni and Si as binder raw materials. Materials are Ni1 nickel silicide, Sl,
It consists of SiC etc. However, Ni1 nickel silicide and Si are substances that are not desirable to contain from the viewpoint of heat resistance and wear resistance of the mass. Therefore, even with this method, a product with satisfactory performance has not been obtained.

それゆえに、本発明の目的は、耐熱性および強度の双方
に優れた工具用ダイヤモンド塊体およびその製造方法を
提供することにある。
Therefore, an object of the present invention is to provide a diamond ingot for tools that is excellent in both heat resistance and strength, and a method for manufacturing the same.

[問題点を解決するための手段] 本発明者達は、より一層耐熱性および強度に優れた工具
用ダイヤモンドを得るべく、鋭意検討した結果、以下の
発明をなしたものである。すなわち、本発明の工具用ダ
イヤモンド塊体は、相互に結合したダイヤモンドが80
〜95容量%占め、残部結合相が周期律表■a −、V
 aもしくは■a族の遷移金属の炭化物と鉄族金属から
なり、かつ該鉄族金属の含kmがダイヤモンドとの相対
比として0.05〜3. 0容量%であることを特徴と
している。
[Means for Solving the Problems] The inventors of the present invention have made the following invention as a result of extensive studies in order to obtain a diamond for tools that has even better heat resistance and strength. That is, the diamond mass for tools of the present invention has 80 diamonds bonded to each other.
~95% by volume, the remaining bonded phase is from the periodic table ■a -, V
It consists of a carbide of a transition metal of group a or group a and an iron group metal, and the km content of the iron group metal is 0.05 to 3.0 km relative to diamond. It is characterized by being 0% by volume.

さらに、上記の工具用ダイヤモンド塊体を製造する方法
として、ダイヤモンド粉末と周期律表■a、Vaもしく
はVIa族の遷移金属および/または該遷移金属の炭化
物ならびに鉄族金属との混合粉末を作製し、該混合粉末
を高圧発生装置の内部に配置し、ダイヤモンドが安定な
50kb以上で1300℃以上の高温高圧下に5分間以
上さらして焼結する製造方法を開示するものである。
Furthermore, as a method for manufacturing the above-mentioned diamond lump for tools, a mixed powder of diamond powder and a transition metal of group IVa, Va or VIa of the periodic table and/or a carbide of the transition metal and an iron group metal is prepared. , discloses a production method in which the mixed powder is placed inside a high-pressure generator, and the diamond is sintered by exposing it to a high temperature and pressure of 1300° C. or higher for 5 minutes or more in a stable diamond of 50 kb or more.

′   [作用コ 本発明のダイヤモンド塊体は、従来の焼結ダイヤモンド
に比べて耐熱性が大幅に改善されており、約1000℃
のl晶度への加熱にも耐え得ることかわかった。耐熱性
が著しく向上した理由は、結合材中に含有されている鉄
族金属の容量がダイヤモンドとの相対比として、0.0
5〜3. 08二%程度の微二であるため、従来のCo
を結合材とした焼結体が熱劣化する高温状態においても
、ダイヤモンド→黒鉛の逆変換が生じにくい点にあると
考えられる。
' [Function] The diamond mass of the present invention has greatly improved heat resistance compared to conventional sintered diamond, and has a heat resistance of about 1000°C.
It was found that it can withstand heating to a crystallinity of 1. The reason for the remarkable improvement in heat resistance is that the capacity of the iron group metal contained in the binder is 0.0 as a relative ratio to diamond.
5-3. 0.82%, so conventional Co
This is thought to be due to the fact that the reverse conversion from diamond to graphite is difficult to occur even in high-temperature conditions where a sintered body using carbon as a binder undergoes thermal deterioration.

また、結合相の1つである周期律表IVa、Vaもしく
はVIa族の遷移金属の炭化物は、ダイヤモンドと熱膨
張係数が近似しているため、高温時での亀裂発生はほと
んど見られない。さらに、これらの炭化物は、それ自身
耐摩耗性の高いものであり、かつダイヤモンドとの結合
強度すなわちダイヤモンド粒子の保持力が高いため、本
発明によるダイヤモンド塊体は従来のもの以上の耐摩耗
性を備えている。
Further, carbides of transition metals in groups IVa, Va, or VIa of the periodic table, which are one of the bonding phases, have a coefficient of thermal expansion similar to that of diamond, so that almost no cracking occurs at high temperatures. Furthermore, these carbides themselves have high wear resistance and have a high bonding strength with diamond, that is, a high retention force for diamond particles, so the diamond mass according to the present invention has higher wear resistance than conventional ones. We are prepared.

本発明の実施に際し、出発原料であるダイヤモンド粉末
は天然、合成いずれでもよいが、ダイヤモンド粉末を真
空中あるいは非酸化性雰囲気中で1300℃以上の温度
に加熱し、その一部もしくは全部を黒鉛に変換したもの
が最も好ましい。
In carrying out the present invention, diamond powder, which is a starting material, may be either natural or synthetic, but diamond powder is heated to a temperature of 1300°C or higher in vacuum or in a non-oxidizing atmosphere, and part or all of it is converted into graphite. The converted one is most preferable.

ここで、表面を黒鉛化したダイヤモンド粒子を原料とし
て用いることには、2つの理由がある。
Here, there are two reasons for using diamond particles whose surfaces are graphitized as a raw material.

すなわち、まず、■ダイヤモンドは塑性変形し難いため
、超高圧下においても個々の粒子間に空隙が残り、部分
的にダイヤモンドが不安定な圧力となって焼結性が低下
するが、表面を黒鉛化しておくと、これがその空隙を充
填するため実効圧力の低下が生じない。また■炭素原料
のバインダへの溶解−ダイヤモンドとしての析出の反応
過程において、黒鉛の方がダイヤモンドよりも化学ポテ
ンシャルが低くバインダに溶解する能力が高いため、そ
の反応速度が大きい。
Firstly, ■Diamond is difficult to deform plastically, so even under ultra-high pressure, voids remain between individual particles, which creates unstable pressure in some parts of the diamond and reduces sinterability. If this is done, the effective pressure will not drop because it fills the void. In addition, in the reaction process of (1) dissolving the carbon raw material in the binder and precipitating it as diamond, graphite has a lower chemical potential than diamond and has a higher ability to dissolve in the binder, so the reaction rate is faster.

これらの効果が顕著に現われるためには、ダイヤモンド
粒子の0.5〜80容量%を黒鉛化する必要がある。
In order for these effects to be noticeable, it is necessary to graphitize 0.5 to 80% by volume of the diamond particles.

黒鉛化量が0. 5容量96より少ないと、充填密度の
増加が不十分であり、合成された焼結体中のダイヤモン
ド粒子同士の接合は弱く、また80容;%より多いと黒
鉛が残留して低強度の焼結体しか1りられない。
Graphitization amount is 0. If the volume is less than 96%, the increase in packing density will be insufficient and the bond between diamond particles in the synthesized sintered body will be weak, and if it is more than 80%, graphite will remain and the sintering strength will be low. I can only get one body.

なお、ダイヤモンド粉末表面の黒鉛化は、遷移金属や鉄
族金属等との混合の前に行なってもよいし、混合後に行
なってもよい。
Note that graphitization of the surface of the diamond powder may be performed before or after mixing with transition metals, iron group metals, etc.

上記のダイヤモンド粉末は、最終的に得られる塊体が相
互に結合したダイヤモンドが80〜95容量%を占め、
残部結合相が周期律表IVa、VaもしくはVIa族の
遷移金属の炭化物と鉄族金属からなり、かつ該鉄族金属
の含有量がダイヤモンドとの相対比としてOo 05〜
3.0容量%となるように、周期律表rVa、Vaもし
くはVIa族の遷移金属および/または該遷移金属の炭
化物ならびに鉄族金属と均一に混合する。
The above-mentioned diamond powder has 80 to 95% by volume of diamond in which the final mass is bonded to each other, and
The remaining binder phase consists of a carbide of a transition metal of group IVa, Va, or VIa of the periodic table and an iron group metal, and the content of the iron group metal is Oo 05 to 05 as a relative ratio to diamond.
It is uniformly mixed with a transition metal of group rVa, Va or VIa of the periodic table and/or a carbide of the transition metal and an iron group metal so that the amount is 3.0% by volume.

ここで、結合材原料は、その粒径が小さいほど好ましく
、通常数μm程度の微粒子あるいは1次粒子が数10O
Aの超微粒粉末を用いる。
Here, the smaller the particle size of the binder raw material, the more preferable it is, and usually fine particles of about several μm or primary particles of several tens of micrometers are used.
Use ultrafine powder of A.

また、本発明者達の先願(特願昭52−51881号)
に開示されているように、ボールミル時のポットとボー
ルとを、混入する周期律表IV a 。
In addition, the inventors' earlier application (Japanese Patent Application No. 52-51881)
The periodic table of mixing pots and balls during ball milling as disclosed in IV a of the Periodic Table.

Va、VIa族の炭化物と鉄族金属との焼結体で作製し
ておき、ダイヤモンド粉末をボールミル粉砕すると同時
に、ポットとボールとから周期律表■asVasV1a
族の炭化物と鉄族金属との焼結体の微細粉末を混入させ
る方法もとり得る。
A sintered body of Va and VIa group carbides and iron group metals is prepared, and at the same time diamond powder is ground in a ball mill, the periodic table ■asVasV1a is prepared from the pot and ball.
A method may also be adopted in which fine powder of a sintered body of a group carbide and an iron group metal is mixed.

さらには、結合材原料をダイヤモンド粉末表面にコーテ
ィングする方法も有効である。
Furthermore, a method of coating the surface of the diamond powder with a binder raw material is also effective.

以上の方法で、調整された混合粉末は、そのまま焼結原
料となるが、混合した原料ダイヤモンド粉末が黒鉛化処
理を施されていないときには、上記のように混合した後
、真空中あるいは非酸化性雰囲気中で1300℃以上の
温度に加熱してもよい。
The mixed powder prepared by the above method serves as a raw material for sintering as it is, but if the mixed raw diamond powder has not been graphitized, it must be heated in a vacuum or in a non-oxidizing state after being mixed as described above. It may be heated to a temperature of 1300° C. or higher in an atmosphere.

上記の焼結体原料の混合粉末は、ベルト型装置等の既知
の高圧発生装置によって熱力学的にダイヤモンドが安定
な50kb以上で1300℃以上の高温高圧下に5分間
以上さらされる。結合材原料として周期律表IVa、V
aもしくはVIa族の遷移金属を用いた場合には、上記
の高温高圧状態時に、該遷移金属がダイヤモンドと炭化
反応をし、該遷移金属の炭化物が個々のダイヤモンド粒
子表面に生成する。これらの炭化物は、鉄族金属と溶融
状態で濡れ性が良好であるため、ダイヤモンドとの相対
比として0.05〜3. 0容量%の微量に混合された
鉄族金属は、混合物中に均一に浸透する。この溶融した
鉄族金属は、ダイヤモンド粒子間の結合および上記炭化
物間の結合、さらにダイヤモンドと上記炭化物間の結合
を促進する。
The mixed powder of the above-mentioned sintered body raw material is exposed to high temperature and high pressure of 1300° C. or higher for 5 minutes or more using a known high-pressure generating device such as a belt-type device at a temperature of 50 kb or more, at which diamond is thermodynamically stable. Periodic table IVa, V as a binder raw material
When a transition metal of Group a or VIa is used, the transition metal undergoes a carbonization reaction with diamond under the above-mentioned high temperature and high pressure conditions, and carbides of the transition metal are formed on the surfaces of individual diamond particles. Since these carbides have good wettability with iron group metals in a molten state, their relative ratio to diamond is 0.05 to 3. The iron group metal mixed in a trace amount of 0% by volume permeates uniformly into the mixture. This molten iron group metal promotes bonding between diamond particles and the carbides, as well as bonding between the diamond and the carbides.

焼結終了後、圧力を保持した状態で加熱のみを停止し、
高温高圧発生室内が室温付近まで冷却した後に保持圧力
を徐々に解除して常圧に戻す。以上の方法に従って得ら
れた焼結体は、いずれも高硬度であり、かつ1000℃
の加熱にも耐えられるものである。
After sintering, only the heating is stopped while maintaining the pressure.
After the high temperature and high pressure generation chamber has cooled to around room temperature, the holding pressure is gradually released to return to normal pressure. The sintered bodies obtained according to the above method all have high hardness and
It can also withstand heating.

[実施例] 実施例1 粒度20〜30μmの合成ダイヤモンド粉末を5X10
−’ torrの真空中で、1450℃、30分間の条
件で加熱処理を行ない、個々の粒子表面を10容量%黒
鉛化した。この黒鉛化ダイヤモンド粉末を平均粒度1μ
mのWC粉末および1次粒子径500Aの超微粒Co粉
末とそれぞれ容量比で85:13.5:1.5の割合に
配合し、ミキサによって12時時間式混合を行なった。
[Example] Example 1 Synthetic diamond powder with a particle size of 20 to 30 μm was prepared in a 5×10
Heat treatment was performed in a vacuum of −' torr at 1450° C. for 30 minutes to graphitize the surface of each particle by 10% by volume. This graphitized diamond powder has an average particle size of 1 μm.
The mixture was mixed with a WC powder of 500 mm and an ultrafine Co powder of a primary particle size of 500 A in a volume ratio of 85:13.5:1.5, and mixed for 12 hours using a mixer.

この混合粉末をMo製のカプセルに充填し、べルト型高
圧発生装置により、60kb、1400℃で30分間焼
結した。得られた焼結体は黒色を呈し、その組成はダイ
ヤモンド粒子同士が相互に結合し、残部をW C−Co
合金が充填していた。
This mixed powder was filled into Mo capsules and sintered at 1400° C. for 30 minutes at 60 kb using a belt-type high pressure generator. The obtained sintered body has a black color, and its composition is such that diamond particles are bonded to each other and the remainder is W C-Co.
It was filled with alloy.

ビッカース硬度は10000 k g/mm2 を示し
た。
The Vickers hardness was 10000 kg/mm2.

この焼結体A(実施例)を、真空中で950℃に30分
間加熱した。なお、比較として、焼結体Aと同じ硬度を
示す、9容量%のCOで結合した従来の焼結ダイヤモン
ドB(比較例)も同様にして真空中で950℃に30分
間加熱した。
This sintered body A (Example) was heated to 950° C. for 30 minutes in a vacuum. For comparison, a conventional sintered diamond B (comparative example) bonded with 9% by volume of CO and exhibiting the same hardness as the sintered body A was similarly heated to 950° C. for 30 minutes in a vacuum.

その結果、比較例の焼結ダイヤモンドBは、ダイヤモン
ドとCOとの界面で黒鉛が生成し、硬度は2500 k
 g/mm2 に低下した。一方、本発明による実施例
の焼結体Aでは、黒鉛の生成は認められず、また硬度の
低下も認められなかった。
As a result, in the comparative example sintered diamond B, graphite was generated at the interface between diamond and CO, and the hardness was 2500 k.
g/mm2. On the other hand, in the sintered body A of Example according to the present invention, no graphite formation was observed, and no decrease in hardness was observed.

実施例2 平均粒度10μmの天然ダイヤモンド粉末をアルゴンガ
ス中で1500℃、15分間の条件で加熱処理を行ない
、12容量%その表面を黒鉛化した。この黒鉛化ダイヤ
モンド粉末に平均粒度5μmのTiおよびMo粉末と1
次粒子径25OAのNi超微粉末とをそれぞれ容量比で
86:12:0.2:1.8の割合で配合した。2時間
乾式混合した粉末をZr製の容器に充填し、ベルト型高
圧発生装置で55kb、1500℃の条件で焼結した。
Example 2 Natural diamond powder having an average particle size of 10 μm was heat-treated in argon gas at 1500° C. for 15 minutes to graphitize the surface of the powder by 12% by volume. This graphitized diamond powder was mixed with Ti and Mo powder with an average particle size of 5 μm.
Ni ultrafine powder with a secondary particle size of 25 OA was blended in a volume ratio of 86:12:0.2:1.8. The powder that was dry mixed for 2 hours was filled into a Zr container and sintered at 55 kb and 1500° C. using a belt-type high pressure generator.

得られた焼結体は、X線回折による分析で、その結合材
がTiCとMo2Cの固溶体およびNiからなることが
判明した。この焼結体C(実施例)を、市販のCoを結
合材として10容量%含有する焼結ダイヤモンドD(比
較例)および結合材のCoを酸処理により抽出して残留
COが2容量%で空孔が8容量%である耐熱性焼結ダイ
ヤモンドE(比較例)とともに、以下の条件で加熱テス
トを行なった。
Analysis of the obtained sintered body by X-ray diffraction revealed that the binder was composed of a solid solution of TiC and Mo2C and Ni. This sintered body C (example) was combined with a commercially available sintered diamond D containing 10% by volume of Co as a binder (comparative example), and the Co binder was extracted by acid treatment, resulting in a residual CO of 2% by volume. A heating test was conducted under the following conditions together with heat-resistant sintered diamond E (comparative example) having 8% by volume of pores.

く加熱テスト条件〉 加熱温度:室温−1000℃(5分間保持)雰囲気:大
気中 以上の加熱テストの結果、焼結体D(比較例)は、膨張
し亀裂が入った。また焼結体E(比較例)は粉々の状態
となった。一方、本発明による実施例の焼結体Cは形状
不変であり、また加熱前後の重量変化も見られなかった
Heating test conditions> Heating temperature: room temperature - 1000°C (held for 5 minutes) Atmosphere: As a result of the heating test above the atmosphere, sintered body D (comparative example) expanded and cracked. Moreover, the sintered body E (comparative example) was in a powdered state. On the other hand, the shape of the sintered body C of Example according to the present invention remained unchanged, and no change in weight was observed before and after heating.

実施例3 実施例2と同じ粒度のダイヤモンド粉末とTi粉末を容
量比で9:1で混合後、真空中で1500℃、30分間
加熱処理を行なった。
Example 3 After mixing diamond powder and Ti powder having the same particle size as in Example 2 at a volume ratio of 9:1, heat treatment was performed at 1500° C. for 30 minutes in vacuum.

得られた粉末は、X線回折の結果、ダイヤモンド、Ti
Cおよび微量の黒鉛からなることが判明した。この粉末
に、さらにMo粉末およびNi粉末をそれぞれ0. 2
容ff196.1.8容量%添加し、再度混合した。こ
の混合粉末を実施例2と同様に焼結し、得られた焼結体
F(実施例)の加熱テストを行なった。その結果、実施
例2と全く同様に、形状が不変であり、また加熱前後の
重量変化も見られなかった。
As a result of X-ray diffraction, the obtained powder was found to contain diamond, Ti
It was found to consist of C and a trace amount of graphite. To this powder, 0.0% Mo powder and 0.0% Ni powder were added respectively. 2
ff196.1.8% by volume was added and mixed again. This mixed powder was sintered in the same manner as in Example 2, and the resulting sintered body F (Example) was subjected to a heating test. As a result, as in Example 2, the shape remained unchanged, and no change in weight was observed before and after heating.

実施例4 第1表に示した配合割合で、ダイヤモンドと結合材原料
を混合し、得られた混合粉末を5111kb、1600
℃で焼結した。
Example 4 Diamond and binder raw materials were mixed in the proportions shown in Table 1, and the resulting mixed powder was 5111 kb, 1600 kb
Sintered at °C.

*)ダイヤモンドがすべて黒鉛化されたものの値を1.
0とした場合の容量比 得られた焼結体で切削チップを作製し、ビッカース硬度
2200のアルミナ焼結体を切削して、それぞれの性能
を評価した。
*) The value when all diamonds are graphitized is 1.
A cutting tip was prepared using the obtained sintered body with a capacity ratio of 0, and an alumina sintered body having a Vickers hardness of 2200 was cut, and the performance of each was evaluated.

なお、切削試験は、切削速度:50m/分、切込み:0
.2mm、送り: 0.25mm/r pmならびに切
削時間:15分湿式の条件で行なった。
The cutting test was conducted at a cutting speed of 50 m/min and a depth of cut of 0.
.. 2 mm, feed: 0.25 mm/rpm, and cutting time: 15 minutes under wet conditions.

切削試験の結果を第2表に示す。The results of the cutting test are shown in Table 2.

第2表から明らかなように、比較例の焼結体Iは、ダイ
ヤモンドの含有量が少ないため耐摩耗性に劣り、同じく
比較例の焼結体JはCo含有量が本発明の範囲を越えて
いるため耐熱性の劣化を招いたと考えられる。また、比
較例の焼結体には市販のCoを結合材としたものと同組
成であるが、本発明による実施例の焼結体G、 Hは、
この焼結体Kに比べて、耐熱性、耐摩耗性ともに改良さ
れていることがわかった。
As is clear from Table 2, the sintered body I of the comparative example has poor wear resistance due to the low diamond content, and the sintered body J of the comparative example has a Co content exceeding the range of the present invention. It is thought that this caused the deterioration of heat resistance. In addition, the sintered bodies of the comparative examples had the same composition as those using commercially available Co as a binder, but the sintered bodies G and H of the examples according to the present invention had the same composition.
It was found that both heat resistance and wear resistance were improved compared to this sintered body K.

[発明の効果] 以上説明したように、本発明の工具用ダイヤモンド塊体
は耐熱性および強度の双方に優れているため、切削工具
、掘削工具、伸線ダイス、ドレッサーなどの各種工具材
料として有効に利用されるものである。特に、従来のダ
イヤモンド焼結体と異なり、強度を低下させることなく
耐熱性が大幅に改善されているため、工具材料として適
用範囲を飛躍的に拡大することが可能となる。
[Effects of the Invention] As explained above, the diamond block for tools of the present invention is excellent in both heat resistance and strength, so it is effective as a material for various tools such as cutting tools, drilling tools, wire drawing dies, and dressers. It is used for. In particular, unlike conventional diamond sintered bodies, the heat resistance has been significantly improved without reducing strength, making it possible to dramatically expand the range of applications as a tool material.

(ほか2名)(2 others)

Claims (6)

【特許請求の範囲】[Claims] (1)相互に結合したダイヤモンドが80〜95容量%
を占め、残部結合相が周期律表IVa、VaもしくはVIa
族の遷移金属の炭化物と鉄族金属からなり、かつ該鉄族
金属の含有量が前記ダイヤモンドとの相対比として0.
05〜3.0容量%であることを特徴とする、工具用ダ
イヤモンド塊体。
(1) 80-95% by volume of mutually bonded diamonds
, and the remaining bonded phase is from the periodic table IVa, Va or VIa
The iron group metal is composed of a carbide of a group transition metal and an iron group metal, and the content of the iron group metal is 0.0% relative to the diamond.
A diamond ingot for tools, characterized in that the content is 0.05 to 3.0% by volume.
(2)前記ダイヤモンドの粒径が0.1〜200μmで
あることを特徴とする、特許請求の範囲第1項記載の工
具用ダイヤモンド塊体。
(2) The diamond mass for a tool according to claim 1, wherein the diamond has a particle size of 0.1 to 200 μm.
(3)ダイヤモンド粉末と周期律表IVa、Vaもしくは
VIa族の遷移金属および/または該遷移金属の炭化物な
らびに鉄族金属との混合粉末を作製し、該混合粉末を高
圧発生装置の内部に配置し、ダイヤモンドが安定な50
kb以上で1300℃以上の高温高圧下に5分間以上さ
らして焼結することにより、相互に結合したダイヤモン
ドが80〜95容量%を占め、残部結合相が周期律表I
Va、VaもしくはVIa族の遷移金属の炭化物と鉄族金
属からなり、かつ該鉄族金属の含有量が前記ダイヤモン
ドとの相対比として0.05〜3.0容量%であるダイ
ヤモンド塊体を製造することを特徴とする、工具用ダイ
ヤモンド塊体の製造方法。
(3) Diamond powder and periodic table IVa, Va or
A mixed powder of a group VIa transition metal and/or a carbide of the transition metal and an iron group metal is prepared, and the mixed powder is placed inside a high-pressure generator.
By sintering it by exposing it to high temperature and high pressure of 1,300℃ or more for 5 minutes or more at a temperature of 1,300℃ or more, the diamonds bonded to each other account for 80 to 95% by volume, and the remaining bonding phase is a phase I of the periodic table.
Producing a diamond lump consisting of a carbide of a Va, Va or VIa group transition metal and an iron group metal, and in which the content of the iron group metal is 0.05 to 3.0% by volume relative to the diamond. A method for producing a diamond block for tools, characterized by:
(4)前記ダイヤモンド粉末として、ダイヤモンドが熱
力学的に不安定な条件下で高温にさらしその一部もしく
は全部を黒鉛に変換したダイヤモンド粉末を用いること
を特徴とする、特許請求の範囲第3項記載の工具用ダイ
ヤモンド塊体の製造方法。
(4) As the diamond powder, use is made of diamond powder obtained by exposing diamond to high temperature under thermodynamically unstable conditions and converting part or all of it into graphite. The method for manufacturing the described diamond block for tools.
(5)前記混合粉末を、ダイヤモンドが熱力学的に不安
定な条件下で高温にさらし、該混合粉末中のダイヤモン
ドの一部もしくは全部を黒鉛に変換してから用いること
を特徴とする、特許請求の範囲第3項記載の工具用ダイ
ヤモンド塊体の製造方法。
(5) A patent characterized in that the mixed powder is exposed to high temperature under conditions in which diamond is thermodynamically unstable to convert some or all of the diamond in the mixed powder into graphite before use. A method for manufacturing a diamond block for tools according to claim 3.
(6)前記ダイヤモンド粉末として、その粒径が0.1
〜200μmのものを用いることを特徴とする、特許請
求の範囲第3、4または5項に記載の工具用ダイヤモン
ド塊体の製造方法。
(6) The diamond powder has a particle size of 0.1
The method for producing a diamond block for tools according to claim 3, 4 or 5, characterized in that a diamond block having a diameter of 200 μm is used.
JP11639586A 1986-05-20 1986-05-20 Diamond lump for tool and its production Pending JPS62274044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11639586A JPS62274044A (en) 1986-05-20 1986-05-20 Diamond lump for tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11639586A JPS62274044A (en) 1986-05-20 1986-05-20 Diamond lump for tool and its production

Publications (1)

Publication Number Publication Date
JPS62274044A true JPS62274044A (en) 1987-11-28

Family

ID=14685976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11639586A Pending JPS62274044A (en) 1986-05-20 1986-05-20 Diamond lump for tool and its production

Country Status (1)

Country Link
JP (1) JPS62274044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459474A1 (en) * 1990-06-01 1991-12-04 United Technologies Corporation Diamond-containing materials and a method of making products from the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459474A1 (en) * 1990-06-01 1991-12-04 United Technologies Corporation Diamond-containing materials and a method of making products from the same

Similar Documents

Publication Publication Date Title
EP0181258B1 (en) Improved cubic boron nitride compact and method of making
EP0174546B1 (en) Diamond sintered body for tools and method of manufacturing the same
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
CN102203374A (en) High pressure sintering with carbon additives
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JPH09194978A (en) Superhard composite member and its production
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPS6012991B2 (en) Manufacturing method of sintered body for high hardness tools
JP7188726B2 (en) Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
JPH0530897B2 (en)
US20050226691A1 (en) Sintered body with high hardness for cutting cast iron and the method for producing same
CN113528879B (en) Polycrystalline diamond combined by compounds generated by in-situ reaction and preparation method thereof
JPS62105911A (en) Hard diamond mass and production thereof
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPS62274044A (en) Diamond lump for tool and its production
JPH10310838A (en) Superhard composite member and its production
JPS6283447A (en) Sintered diamond and its production
JPH01116048A (en) High hardness sintered diamond and its manufacture
JPS6319585B2 (en)
JPS6350401B2 (en)
JPS6022680B2 (en) Composite sintered body for tools and its manufacturing method
JPS61111965A (en) Polycrystal diamond for tool and manufacture
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPS60152649A (en) High hardness sintered body of diamond and its manufacture
JPS62275062A (en) High hardness diamond sintered body and manufacture