JPS6350401B2 - - Google Patents

Info

Publication number
JPS6350401B2
JPS6350401B2 JP12451282A JP12451282A JPS6350401B2 JP S6350401 B2 JPS6350401 B2 JP S6350401B2 JP 12451282 A JP12451282 A JP 12451282A JP 12451282 A JP12451282 A JP 12451282A JP S6350401 B2 JPS6350401 B2 JP S6350401B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
volume
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12451282A
Other languages
Japanese (ja)
Other versions
JPS5916942A (en
Inventor
Tetsuo Nakai
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12451282A priority Critical patent/JPS5916942A/en
Priority to SE8204983A priority patent/SE457537B/en
Priority to US06/414,821 priority patent/US4505746A/en
Priority to FR8215073A priority patent/FR2512430B1/en
Priority to DE19823232869 priority patent/DE3232869A1/en
Priority to GB08225302A priority patent/GB2107298B/en
Publication of JPS5916942A publication Critical patent/JPS5916942A/en
Publication of JPS6350401B2 publication Critical patent/JPS6350401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

現在、ダイヤモンドの含有量が70容量%以上で
ダイヤモンド粒子が互いに接合した焼結体が販売
され、非鉄金属、プラスチツク、セラミツクの切
削、ドレツサー、ドリルビツト、伸線ダイスとし
て使用されている。特に非鉄金属の切削や銅線な
どの比較的軟かい線材を伸線するダイスとしてこ
れらのダイヤモンド焼結体を使用した場合、その
性能は非常に優れている。しかしながら、ドリル
ビツトなどに使用された場合、今のところ満足さ
れる性能を有するダイヤモンド焼結体はないのが
現状である。本発明はドリルビツトにも使用可能
なダイヤモンド焼結体に関するものである。 まず、市販のダイヤモンド焼結体をドリルビツ
トとして用いた場合、満足した性能を示さない原
因を調べるため、粒度1μm以下、粒度30〜60μ
m、粒度80〜100μmの3種のダイヤモンド焼結
体を用いて安山岩を切削した。その結果粒度1μ
m以下のダイヤモンド焼結体は刃先は欠損しなか
つたものの摩耗量が多かつた。一方ダイヤモンド
粒子の粒度が30〜60μmの焼結体及び80〜100μm
の焼結体は双方とも切期の段階で刃先が欠損し
た。この原因としては、次の如く推測できる。ダ
イヤモンド焼結体の強度は第1図に示した如く粒
度の増大に伴ない低下する。微粒ダイヤモンド焼
結体は抗折力が高く、靭性に優れているため刃先
は欠損しにくいものの、個々の粒子は小さなダイ
ヤモンドスケルトンにより保持されているので、
個々の粒子の結合力は弱い。したがつて切削中に
個々の粒子が脱落しやすいため、耐摩耗性が劣る
ものと考えられる。一方、粗粒ダイヤモンド焼結
体は大きなスケルトンにより保持されており、
個々のダイヤモンド粒子の結合力は強いため、耐
摩耗性は優れているものの、スケルトン部が大き
いので、一度、クラツクが発生すると伝播しやす
く、刃先が欠損するものと考えられる。これらの
用途に使用できるダイヤモンド焼結体は耐摩耗性
に優れており、かつ靭性の高いものでなければな
らない。 本発明者等は、耐摩耗性と靭性が優れるダイヤ
モンド焼結体を開発すべく、鋭意研究を続けた。
その結果、粒度10〜100μmのダイヤモンド粒子
を1μm以下の超微粒のダイヤモンド粒子と1μm
以下のWCまたはこれと同一結晶構造を有する
(Mo、W)Cおよび鉄族金属、あるいはこれに
微量の硼素または硼化物を含有する結合材を用い
た焼結体は粗粒ダイヤモンド焼結体の耐摩耗性の
良さと超微粒ダイヤモンド焼結体の靭性の高さを
兼ね備えるものであることがわかつた。 本発明者等は、上述した材質の最適組成を求め
るため、粗粒のダイヤモンド粒度及び含有量、結
合材中に含まれる1μm以下のダイヤモンド粒子
の含有量を変えたダイヤモンド焼結体を試作し、
安山岩の切削により評価した。その結果を第2図
及び3図に示す。図中1は正常摩耗、2は刃先欠
損の領域を示す。粗粒のダイヤモンド粒度が10μ
m以下であると耐摩耗性が低下する。粗粒のダイ
ヤモンド粒度が100μmを越すと、焼結中にダイ
ヤモンド粒子内にクラツクを生じるが、このラツ
クを通して刃先が欠損し、摩耗量は大きくなるも
のと考えられる。粗粒のダイヤモンド粒子の含有
量は容量で50〜85%が良い。粗粒のダイヤモンド
の含有量が50%未満であると微粒のダイヤモンド
を含有する結合材が多くなるため耐摩耗性が低下
する。一方粗粒のダイヤモンドの含有量が85%を
越えると、粗粒ダイヤモンド同志が結合するため
靭性が低下する。 結合材中の微粒のダイヤモンド粒子の粒度は
1μm以下が良い。微粒のダイヤモンド粒子の粒
度は1μm以下、好ましくは0.5μm以下が良い。微
粒のダイヤモンド粒子の粒度が1μmを越すと靭
性は低下する。結合材中の微粒ダイヤモンド粒子
の含有量は容積で60〜90%が好ましい。微粒ダイ
ヤモンド粒子の含有量が60%未満であると結合相
の耐摩耗性が低下し、結合相が早期に摩耗し粗粒
のダイヤモンド粒子が脱落してしまう。一方、微
粒ダイヤモンド粒子の含有量が90%を越すと結合
材が脆くなつたり、あるいはWCまたはこれと同
一結晶構造を有する(Mo、W)Cの含有量が減
るため、1μm以下のダイヤモンドが粒成長し、
靭性が低下する。 結合材の一部として用いるWCまたはこれと同
一結晶構造を有する(Mo、W)Cと鉄族金属と
の割合がその共晶組成に相当するものより炭化物
含有量が多いほうが好ましい。例えばWC―Coで
は48重量%WC―Co52重量%が共晶組成である。
炭化物含有量が共晶組成相当量以下では炭化物の
折出がなく、ダイヤモンドの成長を抑制できな
い。炭化物は結合相中のダイヤモンドの粒成長を
抑える効果があるからである。また、炭化物含有
量の上限としては95重量%までである。金属が少
なすぎる場合には十分な強度の焼結体を得ること
ができない。 特に本発明の焼結体に焼結体の重量で0.005〜
0.15%の硼素または硼化物を含有させた場合、そ
の性能は一段と向上する。通常ダイヤモンド粒子
は超高圧高温下で鉄族金属等の触媒によるダイヤ
モンドの溶解、析出現象により焼結される。硼素
または硼素化合物を添加した場合、鉄族金属の硼
化物を生じ融点が低下するのと、溶解析出速度が
増すためダイヤモンド粒子同志の結合部(ダイヤ
モンドスケルトン部)が成長し、ダイヤモンド粒
子の保持力が向上したものと推測できる。硼素あ
るいは硼化物の含有量が0.005%未満であるとダ
イヤモンドスケルトン部の形成が遅い。一方硼素
あるいは硼化物の含有量が0.15%を越すと、ダイ
ヤモンドスケルトン部に多量の硼素が侵入し、ダ
イヤモンドスケルトン部の強度が低下する。 次に、本発明のダイヤモンド焼結体を直接WC
―Co板に接合したブランクをビツト本体にロー
付けしてコアビツトを作成し掘削テストを行つ
た。その結果、掘削条件を厳しくした場合ダイヤ
モンド焼結体は欠損しなかつたもののダイヤモン
ド焼結体がWC―Co母材より剥離するという問題
を生じた。特にロー付け温度が高くなれば、剥離
の頻度が増加した。この原因を調査するため、接
合部近傍の組織を観察したところダイヤモンド焼
結体と、超硬合金の界面にはCoが富化された層
があつた。さらに、界面近傍の超硬合金には遊離
炭素が存在していた。ロー付け温度は一般に、
750〜800℃であるが、界面においてはCoが多量
に存在し、このCoのため、ダイヤモンドがグラ
フアイト化され、強度が低下し、剥離するものと
考えられる。また、超硬合金中に遊離炭素が存在
すると、超硬合金の強度が低下するが、これも剥
離の原因と考えられる。 本発明者等は強度の高い接合を得るため、種々
検討した結果、高圧相型窒化硼素を70容量%以下
と残部が周期律表の4a、5a族の炭化物、窒化物、
炭窒化物より残る中間層を用いれば良いことを発
見した。 本発明者等の実験によると、ダイヤモンド焼結
体を製造する超高圧、高温条件下では、ダイヤモ
ンド焼結体と超硬合金母材は、この中間接合層を
介して強固に接合していた。これらの高圧相型窒
化硼素と炭化物、窒化物から成る中間接合層を有
する複合焼結体はダイヤモンド焼結体層と中間接
合層との界面には超硬合金母材等より流出した
Co等のダイヤモンド溶媒金属が多量に存在せず、
ダイヤモンド粒子と中間接合層が直接接している
領域が大である。このため再加熱による強度低下
が生じない。 また、界面近傍の超硬合金中にも遊離炭素はほ
とんど存在しないので接合強度は高い。 以上の如く、本発明によればダイヤモンド焼結
層を超硬合金母材に強固に付着させることがで
き、非常に有用であるが、このように強固に接合
させられる理由としては次のように推測される。 まず、中間接合層と超硬合金母材との接着につ
いてであるが、中間接合層中に含有される周期律
表第4a、5a族の炭化物や窒化物は、超硬合金母
材の主成分であるWCと相互固溶体を形成し、更
に中間層中の高圧相型窒化硼素は超硬合金母材の
WC―Coと反応してボライドを生成するため、両
者は強固に付着するものと思われる。 次に中間接合層とダイヤモンド焼結体の接着に
ついてはダイヤモンド粉末や通常ダイヤモンドの
結合相として用いられる鉄族金属や炭化物、窒化
物とも中間接合層中の周期律表第4a、5a族の炭
化物、窒化物と親和性に優れており、更に中間接
合層とダイヤモンド焼結体層は焼結前において粉
末状態で接しているため、焼結後、中間接合層と
ダイヤモンド焼結体層が混合した層が存在して、
強く接合するものと考えられる。 また、周期律表第4a、5a族の炭化物、窒化物
に0.1重量%以上のAlやSiを添加することにより、
中間接合層自体の焼結性が向上すると共に、これ
らの炭化物や窒化物とダイヤモンド粒子との親和
性も向上する。特に周期律表第4a族の窒化物で
あるTiNにAlを0.1重量%以上含有したものを用
いるとその効果は大になる。 本発明による中間接合層は高圧相型窒化硼素を
含有しているため熱伝導率が高く、高温強度も高
く、熱膨張係数もダイヤモンド焼結体と同程度の
ものとすることができる。高圧相型窒化硼素の含
有量が70容積%以上になると残部の周期律表第
4a、5a族の炭化物や窒化物の量が30容積%未満
となり、この炭化物や窒化物と超硬合金母材の主
成分であるWCとで形成する相互固溶体の量が減
少し、更に中間接合層中の高圧相型窒化硼素と
WC―Coが反応して生じるボライドが脆いため、
中間接合層と超硬合金母材との接着強度が低下す
る傾向がある。 従つて、中間接合層中の高圧相型窒化硼素の含
有量は70容積%未満が望ましい。 この中間接合層を用いて接合する母材としては
WC―Co超硬合金または、Moを主成分とする
(Mo、W)C型の炭化物結晶を鉄族金属で結合
したサーメツトが良い。WC―Coや(Mo、W)
C―鉄族金属母材は剛性が高く熱伝導性も優れて
おり、また金属結合材を含むことから靭性も良好
であるため、ドリルビツト用ダイヤモンド焼結体
の母材として適している。 本発明の中間接合層における炭化物、窒化物と
しては例えばTiC、ZrO、HfC、NbC、TaCとい
つた炭化物やTiN、ZrN、HfN、NbN、TaNと
いつた窒化物、またはこれ等の混合物やTi(C、
N)、Zr(C、N)といつた炭窒化物が用いられ
る。特にTiNを用いた場合、中間接合層として
の性能は最も優れている。 本発明の焼結体に使用するダイヤモンド原料粉
末は10μm以上のダイヤモンド粒子と1μm以下、
好ましくは0.5μm以下のミクロンパウダーであ
る。合成ダイヤモンド天然ダイヤモンドのいずれ
でも良い。 このダイヤモンドド粉末とWCまたは(Mo、
W)C及びFe、Co、Niの鉄族金属粉末あるいは
これに硼素または硼化物を加えた粉末をボールミ
ル等の手段を用いて均一に混合する。この鉄族金
属は予め混合せずに焼結時に溶浸せしめても良
い。また本発明者等の先願(特願昭52−51381号)
の如くボールミル時のポツトとボールを混入する
WCまたは(Mo、W)Cの炭化物と鉄族金属の
焼結体で作成しておき、ダイヤモンド粉末をボー
ルミル粉砕すると同時にポツトとボールからWC
または(Mo、W)Cと鉄族金属の焼結体の微細
粉末を混入せしめる方法もある。 これらの混合粉末の焼結体を製造する方法とし
ては高圧相型窒化硼素と炭化物や窒化物の粉末を
超硬合金母材とダイヤモンド含有硬質層形成粉末
の間に必要な量を粉末状でまたは型押体として、
また超硬合金母材に適当な溶媒を加えてスラリー
状にした粉末を塗布することによつて中間接合層
を形成する粉末層を設け、これを超高圧、高温下
でホツトプレスすることにより、ダイヤモンド含
有硬質層の焼結と同時に炭化物、窒化物よりなる
中間接合層を焼結し、同時に母材と接合せしめる
方法も採用できる。 本発明で用いる中間接合層中の周期律表第4a、
5a族金属の炭化物や窒化物は高強度の化合物で
あるが、ダイヤモンド含有層の焼結を行う超高圧
条件下(一般には20Kb〜90Kb)ではこれ等化合
物の理想剪断強度に近い圧力で加圧されており、
これ等化合物粉末粒子は変形、破砕し、容易に緻
密な状態に充填され、引続いて加熱されることに
よつて緻密な焼結体となる。 この他、超高圧、高温下でダイヤモンド粉末層
中にダイヤモンド生成触媒金属や他の結合金属の
融体を含浸せしめることもできる。前述した現在
市販されている超硬合金母材に直接接合したダイ
ヤモンド焼結体では超硬合金母材に含まれる結合
金属であるCoがダイヤモンド粉末層中に浸入し
てダイヤモンド焼結体の結合金属となる。本発明
の場合は母材超硬合金の結合金属と無関係に結合
金属を選択することができる。 以下実施例により具体的に説明する。 実施例 1 粒度0.5μの合成ダイヤモンド粉末とWC及びCo
粉末を、WC―Co超硬合金製のポツトとボールを
用いて粉砕混合した。得られた混合粉末の組成
は、平均粒度0.3μm微粒ダイヤモンド80容量%、
WC12容量%、Co8容量%であつた。この混合粉
末と粒度20〜30μmのダイヤモンド粉末を容積で
75:25に混合した。この粉末に0.15重量のB粉末
を添加した。 次にWC―6%Co組成の外径10mm高さ3mmの超
硬合金上面に60容量%の立方晶型窒化硼素
(CBN)と残部がAlを20重量%含有するTiNより
成る粉末をエチルセルロースを含む有機溶媒に混
入して、スラリー状にしたものを塗布した。この
超硬合金をMo製の容器に詰め立方晶型窒化硼素
を含有した中間層に接するようにダイヤモンドを
含有する硬質層粉末を充てんし、超硬圧装置を用
いて先ず圧力を55Kb加え、引続いて1500℃に加
熱して20分間保持した。 冷却後、焼結体を取り出して、観察したところ
20〜30μmのダイヤモンド粒子が超微粒のダイヤ
モンドを含有する結合材を介して接合されてい
た。また接合界面では、ダイヤモンド焼結体が立
方晶型窒化硼素を含有する中間層を介して超硬合
金に強固に接合されていた。 この複合焼結体を用いて、外径46mmの4枚歯よ
り成るコアビツトを作成し、圧縮強度1800Kg/cm2
の安山岩を250回転/分の速度で掘削した。なお
ビツト荷重は800Kgとした。比較のため市販のビ
ツト用ダイヤモンド焼結体及び上記ダイヤモンド
焼結体で中間層を用いず超硬合金に直接接合した
もののコアビツトも試作し、同様のテストを行つ
た。その結果、本発明の焼結体は20m掘削して
も、ダイヤモンド焼結体は欠損もせず使用可能で
あつたのに対し、市販のビツト用ダイヤモンド焼
結体を用いたコアビツトは5m掘削した時点で、
ダイヤモンド焼結体の欠損と剥離で寿命となつ
た。 また、硬質層は本発明の焼結体と同じ組成であ
るが中間接合層を有さない焼結体のコアビツトは
15m掘削した時点でダイヤモンド焼結体が超硬合
金より剥離した。 実施例 2 表1に示す結合材粉末を作成した。微粒ダイヤ
モンドとしては0.3μmのものを用いた。
Currently, sintered bodies with a diamond content of 70% or more by volume and diamond particles bonded to each other are on sale, and are used for cutting non-ferrous metals, plastics, and ceramics, dressers, drill bits, and wire drawing dies. In particular, when these diamond sintered bodies are used as dies for cutting non-ferrous metals or drawing relatively soft wire materials such as copper wire, their performance is extremely excellent. However, at present, there is no diamond sintered body that has satisfactory performance when used in drill bits and the like. The present invention relates to a diamond sintered body that can also be used in drill bits. First, in order to investigate the reason why commercially available diamond sintered bodies do not show satisfactory performance when used as drill bits, we investigated whether the particle size was 1 μm or less and the particle size was 30 to 60 μm.
Andesite was cut using three types of diamond sintered bodies with particle sizes of 80 to 100 μm. As a result, the particle size is 1μ
Although the cutting edge of the diamond sintered body with a diameter of less than m was not damaged, there was a large amount of wear. On the other hand, a sintered body with a diamond particle size of 30 to 60 μm and a diamond particle size of 80 to 100 μm
The cutting edge of both sintered bodies was damaged at the cutting stage. The reason for this can be inferred as follows. As shown in FIG. 1, the strength of the diamond sintered body decreases as the grain size increases. Fine-grained diamond sintered bodies have high transverse rupture strength and excellent toughness, so the cutting edge is less prone to breakage, but individual particles are held in place by small diamond skeletons.
The binding force between individual particles is weak. Therefore, individual particles tend to fall off during cutting, which is thought to result in poor wear resistance. On the other hand, the coarse diamond sintered body is held by a large skeleton,
Since the bonding force between the individual diamond particles is strong, it has excellent wear resistance, but since the skeleton is large, once a crack occurs, it is likely to propagate and cause the cutting edge to break. A diamond sintered body that can be used for these purposes must have excellent wear resistance and high toughness. The present inventors continued intensive research in order to develop a diamond sintered body with excellent wear resistance and toughness.
As a result, diamond particles with a particle size of 10 to 100 μm are mixed with ultrafine diamond particles of 1 μm or less and 1 μm in diameter.
A sintered body using the following WC or (Mo, W)C having the same crystal structure and an iron group metal, or a binder containing a trace amount of boron or boride is a coarse-grained diamond sintered body. It was found that this material has both good wear resistance and the high toughness of an ultrafine diamond sintered body. In order to find the optimal composition of the above-mentioned material, the present inventors prototyped diamond sintered bodies with different coarse diamond particle size and content, and the content of diamond particles of 1 μm or less included in the binder.
Evaluation was made by cutting andesite. The results are shown in FIGS. 2 and 3. In the figure, 1 indicates normal wear, and 2 indicates the area where the cutting edge is damaged. Coarse diamond grain size is 10μ
If it is less than m, wear resistance decreases. When the coarse diamond particle size exceeds 100 μm, cracks occur within the diamond particles during sintering, and the cutting edge is thought to be damaged through these cracks, increasing the amount of wear. The content of coarse diamond particles is preferably 50 to 85% by volume. If the content of coarse diamond particles is less than 50%, the amount of binder containing fine diamond particles increases, resulting in decreased wear resistance. On the other hand, if the content of coarse diamond exceeds 85%, the toughness decreases because the coarse diamonds bond together. The particle size of the fine diamond particles in the binder is
1μm or less is good. The particle size of the fine diamond particles is preferably 1 μm or less, preferably 0.5 μm or less. When the particle size of fine diamond particles exceeds 1 μm, toughness decreases. The content of fine diamond particles in the binder is preferably 60 to 90% by volume. If the content of fine diamond particles is less than 60%, the wear resistance of the binder phase decreases, the binder phase wears out early, and coarse diamond particles fall off. On the other hand, if the content of fine diamond particles exceeds 90%, the binder becomes brittle, or the content of WC or (Mo, W)C, which has the same crystal structure, decreases, resulting in diamond particles of 1 μm or less grow,
Toughness decreases. It is preferable that the ratio of WC used as a part of the binder or (Mo, W)C having the same crystal structure as this and iron group metal has a higher carbide content than that corresponding to its eutectic composition. For example, in WC-Co, the eutectic composition is 48% by weight WC-Co52% by weight.
If the carbide content is less than the amount equivalent to the eutectic composition, no carbide is precipitated and diamond growth cannot be suppressed. This is because carbide has the effect of suppressing the growth of diamond grains in the binder phase. Further, the upper limit of the carbide content is up to 95% by weight. If there is too little metal, a sintered body with sufficient strength cannot be obtained. In particular, the sintered body of the present invention has a weight of 0.005~
When containing 0.15% boron or boride, the performance is further improved. Usually, diamond particles are sintered under ultra-high pressure and high temperature by the phenomenon of diamond dissolution and precipitation using a catalyst such as an iron group metal. When boron or a boron compound is added, borides of iron group metals are produced, which lowers the melting point. At the same time, the melt deposition rate increases, which causes the bond between diamond particles (diamond skeleton) to grow, which reduces the holding power of the diamond particles. It can be assumed that this has improved. If the content of boron or boride is less than 0.005%, the formation of the diamond skeleton portion will be slow. On the other hand, if the boron or boride content exceeds 0.15%, a large amount of boron will enter the diamond skeleton, reducing the strength of the diamond skeleton. Next, the diamond sintered body of the present invention was directly WC
- A core bit was created by brazing a blank bonded to a Co plate onto the bit body, and an excavation test was conducted. As a result, when the excavation conditions were made more severe, the diamond sintered body did not break off, but a problem occurred in which the diamond sintered body peeled off from the WC-Co base material. In particular, as the brazing temperature increased, the frequency of peeling increased. To investigate the cause of this, we observed the structure near the joint and found that there was a Co-enriched layer at the interface between the diamond sintered body and the cemented carbide. Furthermore, free carbon was present in the cemented carbide near the interface. The brazing temperature is generally
Although the temperature is 750 to 800°C, there is a large amount of Co present at the interface, and it is thought that this Co causes the diamond to become graphitic, reducing its strength and causing it to peel off. Furthermore, the presence of free carbon in the cemented carbide reduces the strength of the cemented carbide, which is also considered to be a cause of peeling. In order to obtain a high-strength bond, the present inventors conducted various studies and found that high-pressure phase boron nitride was used in an amount of 70% by volume or less, and the remainder was carbides and nitrides from groups 4a and 5a of the periodic table.
We discovered that it is better to use the intermediate layer that remains from carbonitride. According to experiments conducted by the present inventors, the diamond sintered body and the cemented carbide base material were firmly bonded via this intermediate bonding layer under the ultra-high pressure and high temperature conditions for manufacturing the diamond sintered body. These composite sintered bodies with an intermediate bonding layer consisting of high-pressure phase boron nitride, carbides, and nitrides were leaked from the cemented carbide base material, etc. at the interface between the diamond sintered body layer and the intermediate bonding layer.
Diamond solvent metals such as Co are not present in large quantities,
The area where the diamond particles and the intermediate bonding layer are in direct contact is large. Therefore, no decrease in strength occurs due to reheating. Furthermore, since almost no free carbon exists in the cemented carbide near the interface, the bonding strength is high. As described above, according to the present invention, the diamond sintered layer can be firmly attached to the cemented carbide base material, which is very useful. Guessed. First, regarding the adhesion between the intermediate bonding layer and the cemented carbide base material, the carbides and nitrides of groups 4a and 5a of the periodic table contained in the intermediate bonding layer are the main components of the cemented carbide base material. The high-pressure phase boron nitride in the intermediate layer forms a mutual solid solution with WC, which is
Since it reacts with WC-Co to produce boride, the two are thought to adhere firmly. Next, regarding the adhesion between the intermediate bonding layer and the diamond sintered body, diamond powder, iron group metals, carbides, and nitrides that are usually used as a bonding phase for diamond, carbides of groups 4a and 5a of the periodic table in the intermediate bonding layer, It has excellent affinity with nitrides, and since the intermediate bonding layer and the diamond sintered body layer are in contact with each other in a powder state before sintering, after sintering, the intermediate bonding layer and the diamond sintered body layer form a mixed layer. exists,
It is thought that the bonding is strong. In addition, by adding 0.1% by weight or more of Al or Si to carbides and nitrides of groups 4a and 5a of the periodic table,
The sinterability of the intermediate bonding layer itself is improved, and the affinity between these carbides and nitrides and diamond particles is also improved. In particular, the effect will be greater if TiN, which is a nitride in Group 4a of the periodic table, contains 0.1% by weight or more of Al. Since the intermediate bonding layer according to the present invention contains high-pressure phase type boron nitride, it has high thermal conductivity, high high-temperature strength, and can have a coefficient of thermal expansion comparable to that of a diamond sintered body. When the content of high-pressure phase type boron nitride exceeds 70% by volume, the remaining periodic table
The amount of carbides and nitrides of groups 4a and 5a becomes less than 30% by volume, and the amount of mutual solid solution formed between these carbides and nitrides and WC, which is the main component of the cemented carbide matrix, decreases, and furthermore, the intermediate bonding High-pressure phase boron nitride in the layer and
Since the boride produced by the reaction of WC-Co is brittle,
The adhesive strength between the intermediate bonding layer and the cemented carbide base material tends to decrease. Therefore, the content of high-pressure phase boron nitride in the intermediate bonding layer is preferably less than 70% by volume. The base material to be bonded using this intermediate bonding layer is
A WC-Co cemented carbide or a cermet made by bonding (Mo, W)C type carbide crystals containing Mo as the main component with an iron group metal is good. WC―Coya (Mo, W)
The C-iron group metal base material has high rigidity and excellent thermal conductivity, and since it contains a metal binder, it also has good toughness, so it is suitable as a base material for a diamond sintered body for a drill bit. Examples of the carbides and nitrides in the intermediate bonding layer of the present invention include carbides such as TiC, ZrO, HfC, NbC, and TaC, nitrides such as TiN, ZrN, HfN, NbN, and TaN, and mixtures thereof and Ti. (C,
Carbonitrides such as N) and Zr(C,N) are used. In particular, when TiN is used, the performance as an intermediate bonding layer is the best. The diamond raw material powder used for the sintered body of the present invention includes diamond particles of 10 μm or more, diamond particles of 1 μm or less,
Preferably it is a micron powder of 0.5 μm or less. Either synthetic diamond or natural diamond may be used. This diamond powder and WC or (Mo,
W) C and powders of iron group metals such as Fe, Co, and Ni or powders obtained by adding boron or boride to these powders are uniformly mixed using a means such as a ball mill. This iron group metal may be infiltrated during sintering without being mixed in advance. In addition, the inventors' earlier application (Japanese Patent Application No. 52-51381)
Mix the pot and ball during ball milling as in
It is made of WC or (Mo, W)C carbide and a sintered body of iron group metal, and at the same time as the diamond powder is ground in a ball mill, WC is produced from the pot and ball.
Alternatively, there is also a method of mixing (Mo, W)C with fine powder of a sintered body of an iron group metal. A method for producing a sintered body of these mixed powders is to place the required amount of high-pressure phase boron nitride and carbide or nitride powder between the cemented carbide base material and the diamond-containing hard layer-forming powder in powder form or As a embossed body,
In addition, a powder layer that forms an intermediate bonding layer is provided by applying a powder made into a slurry by adding an appropriate solvent to the cemented carbide base material, and this is hot-pressed under ultra-high pressure and high temperature to form a diamond bonding layer. It is also possible to adopt a method in which an intermediate bonding layer made of carbide or nitride is sintered simultaneously with the sintering of the containing hard layer, and bonded to the base material at the same time. 4a of the periodic table in the intermediate bonding layer used in the present invention,
Carbides and nitrides of group 5a metals are high-strength compounds, but under the ultra-high pressure conditions (generally 20Kb to 90Kb) used to sinter the diamond-containing layer, pressure close to the ideal shear strength of these compounds is required. has been
These compound powder particles are deformed, crushed, easily packed into a dense state, and then heated to form a dense sintered body. In addition, it is also possible to impregnate a molten diamond-forming catalyst metal or other binding metal into the diamond powder layer under ultra-high pressure and high temperature. In the diamond sintered body directly bonded to the currently commercially available cemented carbide base material mentioned above, Co, which is the bonding metal contained in the cemented carbide base metal, penetrates into the diamond powder layer and the bonding metal of the diamond sintered body. becomes. In the case of the present invention, the bonding metal can be selected regardless of the bonding metal of the base cemented carbide. This will be explained in detail below using Examples. Example 1 Synthetic diamond powder with particle size of 0.5 μ and WC and Co
The powder was ground and mixed using a pot and ball made of WC—Co cemented carbide. The composition of the obtained mixed powder was as follows: 80% by volume of fine diamonds with an average particle size of 0.3 μm;
WC was 12% by volume and Co was 8% by volume. This mixed powder and diamond powder with a particle size of 20 to 30 μm are combined by volume.
Mixed at 75:25. To this powder was added 0.15 weight of B powder. Next, a powder consisting of TiN containing 60% by volume of cubic boron nitride (CBN) and the balance 20% by weight of Al was applied to the top surface of a cemented carbide with an outer diameter of 10 mm and a height of 3 mm having a WC-6% Co composition. The slurry was mixed into an organic solvent containing the liquid and applied. This cemented carbide was packed in a Mo container and filled with hard layer powder containing diamond so as to be in contact with the intermediate layer containing cubic boron nitride. Subsequently, it was heated to 1500°C and held for 20 minutes. After cooling, the sintered body was taken out and observed.
Diamond particles of 20 to 30 μm were bonded together via a binder containing ultrafine diamond particles. Furthermore, at the bonding interface, the diamond sintered body was firmly bonded to the cemented carbide via an intermediate layer containing cubic boron nitride. Using this composite sintered body, a core bit consisting of four teeth with an outer diameter of 46 mm was created, and the compressive strength was 1800 Kg/cm 2
andesite was excavated at a speed of 250 revolutions per minute. The bit load was 800 kg. For comparison, a commercially available diamond sintered body for bits and a core bit made of the above-mentioned diamond sintered body directly bonded to cemented carbide without using an intermediate layer were also prototyped, and similar tests were conducted. As a result, the diamond sintered body of the present invention could be used even after 20m excavation without any breakage, whereas the core bit using a commercially available diamond sintered body for bits could be used after 5m excavation. in,
The life of the diamond sintered body was reached due to chipping and peeling. In addition, the hard layer has the same composition as the sintered body of the present invention, but the core bit of the sintered body without the intermediate bonding layer is
After excavating 15m, the diamond sintered body separated from the cemented carbide. Example 2 A binder powder shown in Table 1 was prepared. The fine diamond particles used were those with a diameter of 0.3 μm.

【表】 この結合材と粒度5μm以上のダイヤモンド粒
子を表2に示す割合いで混合して完成粉末を作成
した。
[Table] Finished powders were prepared by mixing this binder and diamond particles with a particle size of 5 μm or more in the proportions shown in Table 2.

【表】 次に、表3に示す中間層粉末を作成した。【table】 Next, intermediate layer powders shown in Table 3 were created.

【表】 この中間層粉末をエチルセルロースを含む有機
溶媒に混入してスラリー状にし、WC―8%Co組
成の超硬合金に塗布した。この超硬合金をMo製
の容器に入れ、中間層粉末と接するように表2の
ダイヤモンドを含有する粉末を充てんした。これ
を実施例1と同様にして超高圧焼結してダイヤモ
ンド焼結体を作成し、3枚歯より成るコアビツト
を試作した。表4に試作したダイヤモンド焼結体
と中間層の組成を示す。このビツトを用いて一軸
圧縮強度2000Kg/cm2の安山岩を50m/分の速度で
10m掘削した。テスト結果を合わせて表4に示
す。
[Table] This intermediate layer powder was mixed into an organic solvent containing ethyl cellulose to form a slurry, and the slurry was applied to a cemented carbide with a WC-8% Co composition. This cemented carbide was placed in a Mo container, and filled with the diamond-containing powder shown in Table 2 so as to be in contact with the intermediate layer powder. This was subjected to ultra-high pressure sintering in the same manner as in Example 1 to create a diamond sintered body, and a core bit consisting of three teeth was prototyped. Table 4 shows the composition of the prototype diamond sintered body and the intermediate layer. Using this bit, andesite with an unconfined compressive strength of 2000Kg/cm 2 was processed at a speed of 50m/min.
Excavated 10m. The test results are shown in Table 4.

【表】【table】

【表】 実施例 3 WC―6%Co超硬合金を(Mo、W)C―10%
Ti、10%Coに変更した以外は実施例1と同様に
して、ダイヤモンド焼結体を試作し、4枚歯より
成るコアビツトを作成した。このビツトを用いて
一縮圧縮強度1700Kg/cm2の安山岩を100m/分の速
度で20m掘削したが、ダイヤモンド焼結体は欠損
や剥離は生じなかつた。 実施例 4 粒度0.5μmの合成ダイヤモンド粉末とWC及び
Co粉末を、WC―Co超硬合金製のポツトとボー
ルを用いて粉砕混合した。得られた混合粉末の組
成は、平均粒度0.3μmの微粒ダイヤモンド80容量
%、WC12%、Co8%であつた。 この混合粉末と粒度20〜30μmのダイヤモンド
粉末を容積で75:25に混合した。この粉末に表5
に示す量のB粉末を添加した。 表5 Bの添加量 逃げ面摩耗巾(mm) 1 0.001 0.15 2 0.01 0.09 3 0.05 0.08 4 0.10 0.07 5 0.20 0.13 6 0 0.16 以下実施例1と同様にして、ダイヤモンド焼結
体を得た。これらの焼結体を加工して外径8.2mm
の切削加工用のチツプを作製し、ビツカース硬度
1600のアルミナ丸棒を切削速度50m/分、切り込
み0.3mm、送り0.1mm/回転で10分間切削した。逃
げ面摩耗量を測定した結果を表5にあわせて示
す。
[Table] Example 3 WC-6%Co cemented carbide (Mo, W)C-10%
A diamond sintered body was produced as a prototype in the same manner as in Example 1 except that Ti and 10% Co were used, and a core bit consisting of four teeth was produced. Using this bit, andesite with a compressive strength of 1700 Kg/cm 2 was excavated for 20 m at a speed of 100 m/min, but the diamond sintered body did not break or peel. Example 4 Synthetic diamond powder with a particle size of 0.5 μm and WC and
Co powder was ground and mixed using a pot and ball made of WC—Co cemented carbide. The composition of the obtained mixed powder was 80% by volume of fine diamond with an average particle size of 0.3 μm, 12% WC, and 8% Co. This mixed powder and diamond powder having a particle size of 20 to 30 μm were mixed in a volume ratio of 75:25. Table 5
The amount of B powder shown in was added. Table 5 Addition amount of B Flank wear width (mm) 1 0.001 0.15 2 0.01 0.09 3 0.05 0.08 4 0.10 0.07 5 0.20 0.13 6 0 0.16 A diamond sintered body was obtained in the same manner as in Example 1. These sintered bodies are processed to have an outer diameter of 8.2 mm.
We made chips for cutting, and achieved a Vickers hardness of
A 1600 alumina round bar was cut for 10 minutes at a cutting speed of 50 m/min, depth of cut of 0.3 mm, and feed rate of 0.1 mm/rotation. Table 5 also shows the results of measuring the amount of flank wear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ダイヤモンド焼結体における強度
(抗折力)とダイヤモンド粒度の関係を表わした
ものである。第2図は本発明焼結体における粗粒
のダイヤモンド粒子の粒度と岩石切削性能を示し
たものである。第3図は本発明焼結体における粗
粒ダイヤモンドの含有量と岩石切削性能を示した
グラフである。
FIG. 1 shows the relationship between strength (transverse rupture strength) and diamond particle size in a diamond sintered body. FIG. 2 shows the particle size of coarse diamond particles and rock cutting performance in the sintered body of the present invention. FIG. 3 is a graph showing the content of coarse diamond and rock cutting performance in the sintered body of the present invention.

Claims (1)

【特許請求の範囲】 1 粒度10μm以上100μm以下の粗粒ダイヤモン
ド粒子が容量で50〜85%を占め、残部が1μm以
下の超微粒のダイヤモンド粒子を容量で60〜90%
と1μm以下のWCまたはこれと同一結晶構造を有
する(Mo、W)Cおよび鉄族金属から構成され
る結合材であつて、該結合材の一部として用いる
WCまたはこれと同一結晶構造を有する(Mo、
W)Cと鉄族金属の割合いがその共晶組成に相当
するものより炭化物含有量が多いものである結合
材より成る硬質焼結体が高圧相型窒化硼素を70容
量%以下と残部が周期律表第4a、5a族の炭化物、
窒化物、炭窒化物またはこれら2種以上の固溶体
もしくは混合物からなるか、あるいはこれらに
AlまたはSiあるいはこの双方を重量で0.1%以上
含有する厚み2mm以下の中間層を介してWC―Co
合金母材またはMoを主成分とする(Mo、W)
C型の炭化物結晶を鉄族金属で結合したサーメツ
ト母材に接合されてなることを特徴とする工具用
複合ダイヤモンド焼結体。 2 中間層の成分である周期律表第4a族の窒化
物がTiNである特許請求の範囲第1項記載の工
具用複合ダイヤモンド焼結体。 3 粒度10μm以上100μm以下の粗粒ダイヤモン
ド粒子が容量で50〜85%を占め、残部が1μm以
下の超微粒のダイヤモンド粒子を容量で60〜90%
と1μm以下のWCまたはこれと同一結晶構造を有
する(Mo、W)Cおよび鉄族金属と重量で0.005
〜0.15%の硼素または/および硼化物を含有し、
WCまたはこれと同一結晶構造を有する(Mo、
W)Cと鉄族金属の割合いがその共晶組成に相当
するものより炭化物含有量が多いものである硬質
焼結体が高圧相型窒化硼素を70容量%以下と残部
が周期律表第4a、5a族の炭化物、窒化物、炭窒
化物またはこれら2種以上の固溶体もしくは混合
物からなるか、あるいはこれらにAlまたはSiあ
るいはこの双方を重量で0.1%以上含有する厚み
2mm以下の中間層を介してWC―Co合金母材また
はMoを主成分とする(Mo、W)C型の炭化物
結晶を鉄族金属で結合したサーメツト母材に接合
されてなることを特徴とする工具用複合ダイヤモ
ンド焼結体。 4 中間層の成分である周期律表第4a族の窒化
物がTiNである特許請求の範囲第3項記載の工
具用複合ダイヤモンド焼結体。
[Claims] 1. Coarse diamond particles with a particle size of 10 μm or more and 100 μm or less account for 50 to 85% by volume, and the remainder is 60 to 90% by volume of ultrafine diamond particles with a particle size of 1 μm or less.
and WC of 1 μm or less, or a binding material composed of (Mo, W)C and iron group metals having the same crystal structure, and used as a part of the binding material.
WC or has the same crystal structure (Mo,
W) The hard sintered body made of a binder whose ratio of C and iron group metal is higher than that corresponding to its eutectic composition contains high-pressure phase boron nitride at 70% by volume or less and the remainder. Carbides of groups 4a and 5a of the periodic table,
Consisting of nitrides, carbonitrides, solid solutions or mixtures of two or more of these, or
WC-Co through an intermediate layer with a thickness of 2 mm or less containing 0.1% or more of Al or Si or both by weight.
Alloy base material or Mo-based main component (Mo, W)
A composite diamond sintered body for tools, characterized in that it is formed by joining a C-type carbide crystal to a cermet base material bonded with an iron group metal. 2. The composite diamond sintered body for tools according to claim 1, wherein the nitride of Group 4a of the periodic table, which is a component of the intermediate layer, is TiN. 3 Coarse diamond particles with a particle size of 10 μm or more and 100 μm or less account for 50 to 85% by volume, and the remainder is 60 to 90% by volume of ultrafine diamond particles with a particle size of 1 μm or less.
and WC of 1 μm or less or (Mo, W)C and iron group metals with the same crystal structure as 0.005 by weight
Contains ~0.15% boron or/and boride,
WC or has the same crystal structure (Mo,
W) The ratio of C and iron group metals is that the hard sintered body has a higher carbide content than that corresponding to its eutectic composition, and the hard sintered body contains high-pressure phase boron nitride at 70% by volume or less, and the remainder is from the periodic table. An intermediate layer with a thickness of 2 mm or less consisting of carbides, nitrides, carbonitrides of groups 4a and 5a, solid solutions or mixtures of two or more of these, or containing 0.1% or more of Al or Si or both by weight. A composite diamond sintered tool for tools is characterized by being bonded to a cermet base material in which a WC-Co alloy base material or a (Mo, W)C type carbide crystal mainly composed of Mo is bonded with an iron group metal. Body. 4. The composite diamond sintered body for tools according to claim 3, wherein the nitride of group 4a of the periodic table, which is a component of the intermediate layer, is TiN.
JP12451282A 1981-09-04 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture Granted JPS5916942A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12451282A JPS5916942A (en) 1982-07-19 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture
SE8204983A SE457537B (en) 1981-09-04 1982-09-01 DIAMOND PRESSURE BODY FOR A TOOL AND WAY TO MANUFACTURE IT
US06/414,821 US4505746A (en) 1981-09-04 1982-09-03 Diamond for a tool and a process for the production of the same
FR8215073A FR2512430B1 (en) 1981-09-04 1982-09-03 DIAMOND AGGLOMERATOR FOR A TOOL AND METHOD FOR MANUFACTURING THE AGGLOMERATOR
DE19823232869 DE3232869A1 (en) 1981-09-04 1982-09-03 DIAMOND PRESSLING FOR A TOOL AND METHOD FOR THE PRODUCTION THEREOF
GB08225302A GB2107298B (en) 1981-09-04 1982-09-06 A diamond compact for a tool and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12451282A JPS5916942A (en) 1982-07-19 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22517187A Division JPS6386804A (en) 1987-09-10 1987-09-10 Production of composite diamond sintered body for tool

Publications (2)

Publication Number Publication Date
JPS5916942A JPS5916942A (en) 1984-01-28
JPS6350401B2 true JPS6350401B2 (en) 1988-10-07

Family

ID=14887318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12451282A Granted JPS5916942A (en) 1981-09-04 1982-07-19 Composite diamond-sintered body useful as tool and its manufacture

Country Status (1)

Country Link
JP (1) JPS5916942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508164A (en) * 2006-10-31 2010-03-18 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond abrasive compact

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293705A (en) * 1985-06-19 1986-12-24 Mitsubishi Metal Corp Combined cutting tip
JPH0768570B2 (en) * 1986-07-16 1995-07-26 三菱マテリアル株式会社 Compound cutting chip
JPS63111105A (en) * 1986-10-30 1988-05-16 Ishizuka Kenkyusho:Kk Composite sintered body and its production
JPS63111104A (en) * 1986-10-30 1988-05-16 Ishizuka Kenkyusho:Kk Composite sintered body and its production
JPH08222669A (en) * 1995-02-10 1996-08-30 Fuji Dies Kk Heat sink and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508164A (en) * 2006-10-31 2010-03-18 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Polycrystalline diamond abrasive compact

Also Published As

Publication number Publication date
JPS5916942A (en) 1984-01-28

Similar Documents

Publication Publication Date Title
US4505746A (en) Diamond for a tool and a process for the production of the same
CA2426532C (en) A method of making a composite abrasive compact
US4959929A (en) Tool insert
EP0181258B1 (en) Improved cubic boron nitride compact and method of making
EP2101903B1 (en) Abrasive compacts with improved machinability
US20090000208A1 (en) Composite Material
AU2002212567A1 (en) A method of making a composite abrasive compact
GB2539746A (en) Superhard constructions & methods of making same
JP2004505786A (en) Manufacturing method of polishing products containing diamond
US8414229B2 (en) cBN composite material and tool
JP2594785B2 (en) Diamond crystal-sintered carbide composite polycrystal
JPH0333675B2 (en)
GB2519671A (en) Superhard constructions & methods of making same
JPH0530897B2 (en)
JPS6350401B2 (en)
JPS6125761B2 (en)
GB2559480A (en) Superhard constructions & methods of making same
JPH0312123B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6257681B2 (en)
JPS6022680B2 (en) Composite sintered body for tools and its manufacturing method
JPS6319585B2 (en)
JPS6323155B2 (en)
JPH0377151B2 (en)
JPS5891056A (en) Diamond sintered body for tools and manufacture