JP2003011019A - Sintered super abrasive grain tip material and method of manufacture - Google Patents

Sintered super abrasive grain tip material and method of manufacture

Info

Publication number
JP2003011019A
JP2003011019A JP2001201545A JP2001201545A JP2003011019A JP 2003011019 A JP2003011019 A JP 2003011019A JP 2001201545 A JP2001201545 A JP 2001201545A JP 2001201545 A JP2001201545 A JP 2001201545A JP 2003011019 A JP2003011019 A JP 2003011019A
Authority
JP
Japan
Prior art keywords
sintered
steel
superabrasive
layer
super abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201545A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Original Assignee
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA KENKYUSHO, Ishizuka Research Institute Ltd filed Critical ISHIZUKA KENKYUSHO
Priority to JP2001201545A priority Critical patent/JP2003011019A/en
Publication of JP2003011019A publication Critical patent/JP2003011019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide tip material whose joining strength to tool base material is improved and an effective method of manufacturing it. SOLUTION: 1. Sintered super abrasive grain tip material comprises a sintered super abrasive grain layer comprising its super abrasive grains adjacent to each other joined to each other through a metal layer and/or a ceramic layer or directly and a steel material layer containing carbon of 0.90% or less integrated due to sintering. 2. Sintered super abrasive grain tip material is manufactured in such a way that mixture of super abrasive grain particles and metallic and/or ceramic binder, a cemented carbide alloy disk having the same outer diameter as the inner diameter of a cylindrical body made of metal of high melting point, and a disk made of steel containing carbon of 0.90% or less are layered in the cylindrical body in this order and sealed, and then, a sintered super abrasive grain layer is formed by sintering super abrasive grain particles with each other by putting it into a super high pressure and temperature process. At the same time, this sintered super abrasive grain layer, the cemented carbide alloy disk and steel disk are jointed to each other, and a layered structural body made of sintered super abrasive grains, cemented carbide alloy and steel is recovered from the super high pressure and temperature process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明はダイヤモンドやc
−BN(立方晶窒化硼素)のような超砥粒を焼結してなる
焼結超砥粒チップやチップ素材等の構造物、特に基材
(台金)への接合強度が改善されて不規則な衝撃荷重に耐
えるようにしたチップ構造物に関する。本発明はまた、
このようなチップ構造物の効果的な製造法にも関する。
TECHNICAL FIELD The present invention relates to diamond and c.
-Sintered superabrasive grains formed by sintering superabrasive grains such as BN (cubic boron nitride), and structures such as chip materials, especially base materials
The present invention relates to a chip structure having improved strength of joining to (base metal) and withstanding an irregular impact load. The present invention also provides
It also relates to an effective method of manufacturing such a chip structure.

【0002】[0002]

【従来の技術】 各種の複合材や新素材の切断に、円板
状の基材(台金)の円周上に複数個の研磨材チップを配設
したチップソーが使用されている。かかるチップは従
来、超硬合金、或いはダイヤモンドやc−BNのような
いわゆる超砥粒の粒子を基板としての超硬合金層と一体
化焼結した焼結超砥粒チップとして構成され、これらの
チップをロウ接などの公知の手法により、台金に接合し
て使用されている。
2. Description of the Related Art A tip saw having a plurality of abrasive tips arranged on the circumference of a disc-shaped substrate (base metal) is used for cutting various composite materials and new materials. Conventionally, such a chip is constructed as a sintered superabrasive grain chip in which cemented carbide or so-called superabrasive grains such as diamond and c-BN are integrally sintered with a cemented carbide layer as a substrate. The chip is used by being joined to the base metal by a known method such as brazing.

【0003】周知のように超硬合金チップは比較的廉価
であるが、多様化してきている昨今の新素材や複合材に
は必ずしも対応しきれない。一方、焼結超砥粒チップの
鋼材製基材への接合は一般にロウ接によって行われる
が、この工程には、自体の硬度が高い超砥粒であっても
ロウ接作業時の熱影響を受けて劣化する一方、この接合
強度は高温において著しく低下するという問題がある。
この結果、高負荷加工、特に負荷変動が大きくかつ乾式
の作業が多いハンドソーの場合には、チップの工具基材
からの脱落が生じやすく、充分な工具寿命が得られてい
なかった。
As is well known, cemented carbide chips are relatively inexpensive, but they cannot always cope with the recent diversified new materials and composite materials. On the other hand, the joining of the sintered superabrasive grain tip to the steel base material is generally performed by brazing, but in this step, even if the superabrasive grains having high hardness themselves are used, the thermal effect during brazing is not affected. While receiving and deteriorating, there is a problem that this bonding strength is significantly reduced at high temperatures.
As a result, in the case of high-load machining, especially in the case of a hand saw with a large load fluctuation and a lot of dry work, the chips are likely to fall off the tool base material, and a sufficient tool life cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】 本発明はこのような
公知技術の問題点を解決すべくなされたものであり、特
に工具基材への接合強度の改善されたチップ素材、及び
その効果的な製造法を提供することを主な目的とする。
The present invention has been made to solve the above problems of the known art, and particularly, a chip material having an improved bonding strength to a tool base material and its effective effect. Its main purpose is to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】 本発明に従えば、第一
に次のチップ素材が提供される。即ち、隣接した超砥粒
粒子同士が金属相及び/またはセラミック相を介して、
或いはこれらの相を介せずに超砥粒粒子同士が直接接合
された焼結超砥粒層及び炭素含有量が0.90%以下の鋼材
層が、焼結により一体化構成されている焼結超砥粒チッ
プ素材である。
According to the present invention, firstly, the following chip material is provided. That is, the adjacent superabrasive particles have a metal phase and / or a ceramic phase,
Alternatively, a sintered superabrasive grain layer in which superabrasive grain particles are directly joined without passing through these phases and a steel material layer having a carbon content of 0.90% or less are integrally formed by sintering. Abrasive chip material.

【0006】本発明によればまた、上記の焼結超砥粒チ
ップ素材の典型的かつ効率的な製法として、次の手法が
提供される。即ち、高融点金属製の有底筒状体に、超砥
粒粒子と金属質及び/またはセラミック質結合材との混
合物、上記筒状体の内径とほぼ同一の外径を有する超硬
合金材円板、及び炭素含有量が0.9%以下の鋼材製の円
板をこの順序で積層して封鎖した後、超高圧高温工程、
即ちダイヤモンドやc−BN等、使用する超砥粒が熱力
学的に安定な相となる圧力温度条件下に数分間供して処
理する。
According to the present invention, the following method is also provided as a typical and efficient method for producing the above sintered superabrasive grain tip material. That is, a mixture of superabrasive particles and a metallic and / or ceramic binder in a bottomed cylindrical body made of a high melting point metal, and a cemented carbide material having an outer diameter substantially the same as the inner diameter of the cylindrical body. After stacking and sealing the disk and the disk made of steel with a carbon content of 0.9% or less in this order, an ultra-high pressure and high temperature process,
That is, the superabrasive grains used such as diamond and c-BN are subjected to pressure and temperature conditions for a thermodynamically stable phase for several minutes for processing.

【0007】この処理操作において超砥粒粒子相互間の
焼結が進行し焼結超砥粒層が形成されると同時に、この
焼結超砥粒層、超硬合金円板、鋼材製円板相互間の接合
も進行する。処理終了後、温度・圧力を低下させ、焼結
超砥粒、超硬合金、及び鋼材からなる積層構造体を回収
する。
In this processing operation, sintering between the superabrasive particles progresses to form a sintered superabrasive layer, and at the same time, the sintered superabrasive layer, the cemented carbide disc, and the steel disc. Bonding between them also progresses. After the treatment is completed, the temperature and pressure are lowered, and the laminated structure made of sintered superabrasive grains, cemented carbide and steel is collected.

【0008】上記焼結超砥粒層において、金属質または
セラミック質結合材の使用は焼結超砥粒層の硬度を幾分
低下させるが、この場合焼結工程において液相が供給さ
れることにより、積層構造のチップ素材全体の接合をよ
り確実なものにできるので、適切な種類及び混合量を決
定して混合する。
In the above-mentioned sintered superabrasive layer, the use of a metallic or ceramic binder slightly reduces the hardness of the sintered superabrasive layer, but in this case the liquid phase is supplied in the sintering process. As a result, the bonding of the entire chip material having the laminated structure can be made more reliable, so that an appropriate type and mixing amount are determined and mixed.

【0009】セラミック質結合材としては、炭化タング
ステンとコバルトの混合粉末が最適であるが、炭化タン
グステンは他の炭化物、例えば炭化チタンや炭化タンタ
ルで、またコバルトはニッケルで部分的に代替して使用
することが可能である。
As the ceramic binder, a mixed powder of tungsten carbide and cobalt is most suitable, but tungsten carbide is partially replaced by other carbides such as titanium carbide and tantalum carbide, and cobalt is partially replaced by nickel. It is possible to

【0010】一方、金属質結合材としてはコバルトやニ
ッケル等の単体金属、またはこれらの金属を主成分とす
る合金のうち、特に、融液相が超砥粒粒子をよく濡らす
ニクロム、アンバー等が適切である。
On the other hand, as the metallic binder, simple metals such as cobalt and nickel, or alloys containing these metals as main components, in particular, nichrome, amber, etc., in which the melt phase wets the superabrasive grains well. Appropriate.

【0011】本発明においては、台金を構成する各種鋼
材に溶接接合可能とするために、チップ構造において台
金との接合に供される外層部分を鋼材で構成する。鋼材
種としては、炭素含有量が0.90%以下、好ましくは0.40
以下のものを利用する。特にクロム・モリブデン鋼や、
オーステナイト系またはマルテンサイト系ステンレス鋼
が有効である。典型的にはJIS(日本工業規格)におけるS
US 304及び410種を挙げることができる。
In the present invention, the outer layer portion used for joining with the base metal in the chip structure is made of steel so that it can be welded to various steel materials constituting the base metal. As a steel grade, carbon content is 0.90% or less, preferably 0.40
Use the following: Especially chrome / molybdenum steel,
Austenitic or martensitic stainless steels are effective. Typically S in JIS (Japanese Industrial Standard)
Mention may be made of US 304 and 410 species.

【0012】このような構成を採ることによって、本発
明のチップ構造物はTIG、MIG、レーザー、ビーム
溶接その他公知の各種溶接乃至溶着法により、鋼材製の
台金に強固に接合できるものである。
By adopting such a constitution, the chip structure of the present invention can be firmly bonded to the steel base metal by various known welding or welding methods such as TIG, MIG, laser, beam welding. .

【0013】いずれの構成においても、焼結超砥粒層は
全体として鋼材の層に溶着接合される。この場合、焼結
超砥粒層と鋼材とは直接隣接させることも可能である
が、両層間に、超硬合金層、及び/或いはチタン、タン
タル、モリブデン等の高融点金属またはこれらを主成分
とする高融点合金から成る中間層を介在させると、残留
応力の緩和による剥がれの防止等に有効である。高融点
とは、本発明においては1400℃以上の融点のことをい
う。
In either structure, the sintered superabrasive grain layer is welded to the steel layer as a whole. In this case, the sintered superabrasive grain layer and the steel material can be directly adjacent to each other, but between the two layers, a cemented carbide layer and / or a refractory metal such as titanium, tantalum, molybdenum or the like is a main component. If an intermediate layer made of a high melting point alloy is interposed, it is effective for preventing peeling due to relaxation of residual stress. The high melting point refers to a melting point of 1400 ° C. or higher in the present invention.

【0014】上記高融点金属や合金は、中間層として使
用するほかに、粉末として超砥粒粒子に予め混合してお
けば、応力緩和においてさらに有効である。
The refractory metals and alloys described above are more effective in stress relaxation if they are used as an intermediate layer and mixed in advance with the superabrasive grains as powder.

【0015】上記超高圧高温工程には、特公昭62-29387
号公報に記載の装置のほか、各種の公知の装置が利用で
きる。
In the above-mentioned ultra-high pressure and high temperature process, Japanese Patent Publication No.
In addition to the device described in the publication, various known devices can be used.

【0016】上記超高圧高温方に代わる代替法として、
燃焼合成反応に基づくケミカルオーブン等も、本発明の
焼結超砥粒チップ素材の製造に利用可能である。即ち燃
焼合成反応の際に超砥粒は熱力学的に準安定な圧力・温
度条件に供されるが、加熱時間が極端に短いため含有さ
れている超砥粒への悪影響が無視できるので、反応系を
適切に選択することにより、焼結のための熱源として利
用可能である。
As an alternative to the above-mentioned ultra-high pressure and high temperature method,
A chemical oven or the like based on the combustion synthesis reaction can also be used for producing the sintered superabrasive chip material of the present invention. That is, during the combustion synthesis reaction, the superabrasive grains are subjected to thermodynamically metastable pressure and temperature conditions, but since the heating time is extremely short, the adverse effect on the superabrasive grains contained can be ignored, By appropriately selecting the reaction system, it can be used as a heat source for sintering.

【0017】本発明において、超硬合金や高融点金属又
は合金層の厚さは、超砥粒層の構成にも依るが、一般に
約0.5mm以上であれば有効である。一方、鋼材層の厚さ
は、任意に設定することができる。
In the present invention, the thickness of the cemented carbide, the refractory metal or the alloy layer depends on the constitution of the superabrasive grain layer, but is generally effective if it is about 0.5 mm or more. On the other hand, the thickness of the steel material layer can be set arbitrarily.

【0018】本発明において、超高圧高温工程から回収
された超砥粒、鋼材層等からなる積層構造物は、所定の
研磨工程を経たあと、ワイヤカットなどの公知手法によ
り所定の形状に切出してチップ素材とする。この素材に
必要に応じて更なる研磨処理を施してチップに仕上げた
後、レーザー溶接等の手法を用いて、例えば台金の外周
部分に固着する。
In the present invention, the laminated structure composed of the superabrasive grains and the steel material layer recovered from the ultrahigh pressure and high temperature step is cut into a predetermined shape by a known method such as wire cutting after a predetermined polishing step. Use chip material. If necessary, this material is further polished to be finished into chips, which are then fixed to, for example, the outer peripheral portion of the base metal using a technique such as laser welding.

【0019】[0019]

【発明の実施の形態】 次に本発明の実施形態を、添付
の説明図を参照して具体的に示す。図1は超高圧高温工
程に供するための試料構成の模式図である。図2は本発
明のチップを適用可能なチップソーの一例を示す正面
図、図3は、台金に溶着されたチップの詳細(図2で"
A"として示す部分)を示す模式図、図4及び図5は、本
発明に従って作製されたチップの特に溶着部を示す組織
図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be concretely described with reference to the attached explanatory drawings. FIG. 1 is a schematic diagram of a sample configuration for use in an ultrahigh pressure and high temperature process. 2 is a front view showing an example of a tip saw to which the tip of the present invention can be applied, and FIG. 3 is a detail of the tip welded to a base metal (see FIG. 2).
FIGS. 4 and 5 are schematic views showing a portion indicated as A ″), and FIGS. 4 and 5 are structural diagrams showing particularly a welded portion of a chip manufactured according to the present invention.

【0020】[0020]

【実施例1】 図1に示すように、内径14.37mmの金属
タンタル製のカプセル1に公称値8-16μmのダイヤモン
ド粉末(東名ダイヤモンド工業株式会社製)100部とWC
とCoの予混合粉末40部との混合物2を入れた。次いで
外径14.3mm、厚さ1mmの超硬合金(WC-8%Co)円板
3、及びSUS 304ステンレス鋼円板4(外径14.3mm、厚さ
1mm)をこの順序で入れ、カプセルの端部を内側に曲げて
封鎖した。このように調製した試料構成物を間接加熱法
構成で公知の一軸型超高圧高温装置(例えば特公昭60-59
008号公報参照)の反応室に装填し、6GPa、1550℃の圧
力・温度条件に5分間供した。
Example 1 As shown in FIG. 1, 100 parts of diamond powder (manufactured by Tomei Diamond Industry Co., Ltd.) having a nominal value of 8-16 μm and WC were used in a metal tantalum capsule 1 having an inner diameter of 14.37 mm.
And 40 parts of a premixed powder of Co. Next, a hard metal (WC-8% Co) disk 3 with an outer diameter of 14.3 mm and a thickness of 1 mm, and a SUS 304 stainless steel disk 4 (outer diameter 14.3 mm, thickness)
1 mm) was placed in this order, and the end of the capsule was bent inward to close it. The sample composition prepared in this manner is used for the indirect heating method and is known as a uniaxial type ultra-high pressure high temperature apparatus (for example, Japanese Patent Publication No. 60-59).
(See Japanese Patent Publication No. 008), and loaded in a reaction chamber of 6 GPa and 1550 ° C. for 5 minutes.

【0021】温度・圧力を低下させた後、試料構成物を
回収し、反応室構成材料及びタンタルカプセル材料を除
去した後、表面を研磨してチップ素材とした。さらにワ
イヤカットで4×2×2.2mmの短冊状に切断し、またステ
ンレス鋼の背面を研磨してチップを得た。
After the temperature and pressure were lowered, the sample constituents were recovered, the reaction chamber constituent materials and the tantalum capsule material were removed, and then the surface was polished to obtain a chip material. Further, it was cut into 4 × 2 × 2.2 mm strips by wire cutting, and the back surface of stainless steel was polished to obtain chips.

【0022】かかる短冊状チップ5を8個用意し、図2
に示すタイプの工具鋼製台金6にレーザー溶接により溶
接した。図3に示すように、焼結ダイヤモンド層5a、
超硬合金層5b、及びステンレス鋼層5cからなる各チッ
プ5は、既述のようにステンレス鋼5c面を、台金6と
溶着される。溶着部7を30倍のマイクロスコープで観察
したが、図4に示すとおり、チップにおける層間剥離
や、台金・チップ境界面の熱損傷や焼き割れなど全く認
められず、良好な密着状態で台金に強固に接合されてい
た。
8 pieces of such strip-shaped chips 5 are prepared and shown in FIG.
It welded to the tool steel base metal 6 of the type shown in FIG. As shown in FIG. 3, the sintered diamond layer 5a,
As described above, each chip 5 including the cemented carbide layer 5b and the stainless steel layer 5c has the surface of the stainless steel 5c welded to the base metal 6. The welded part 7 was observed with a microscope with a magnification of 30 times. As shown in Fig. 4, no delamination of the chip, heat damage or burn cracking of the base metal / chip boundary surface was observed at all, and the table was in a good adhesion state. It was firmly bonded to gold.

【0023】[0023]

【実施例2】 上記実施例1と同一サイズの金属タンタ
ル製のカプセルに同様のダイヤモンド粉末及びSUS410種
ステンレス鋼円板(外径14.3mm、厚さ1.5mm)をこの順序
で入れてカプセルの端部を内側に曲げて封鎖した。この
ように調製した試料構成物を上記実施例1と同様に超高
圧高温条件下に供した。
Example 2 The same diamond powder and the same SUS410 type stainless steel disc (outer diameter 14.3 mm, thickness 1.5 mm) were placed in this order in a metal tantalum capsule of the same size as in Example 1 above, and the end of the capsule was inserted. The part was bent inward and closed. The sample composition thus prepared was subjected to ultrahigh pressure and high temperature conditions in the same manner as in Example 1 above.

【0024】回収された試料構成物は、実施例1と同様
に、表面を研磨した後ワイヤカットで4×2×2.2mmの短
冊状に切断し、さらにステンレス鋼の背面を研磨してチ
ップとした。
Similar to Example 1, the collected sample composition was polished on the surface and then cut into strips of 4 × 2 × 2.2 mm by wire cutting, and the back surface of stainless steel was polished to form chips. did.

【0025】かかる短冊状チップ素材を8個用意し、レ
ーザー溶接により図2に示した工具鋼製のチップソー台
金に溶接した。これらのチップも、図5に組織図を示す
ように、良好な密着状態で台金に接合されていた。
Eight strip-shaped chip materials were prepared and laser-welded to the tool steel chip saw base metal shown in FIG. These chips were also joined to the base metal in good adhesion as shown in the structure chart of FIG.

【0026】[0026]

【発明の効果】 本発明の焼結超砥粒チップ構造物は、
特に基材(台金)への接合強度が改善されて不規則な衝撃
荷重に対する強度が大幅に向上したことにより、荷重の
変動幅の大きな特に手作業用工具への使用に適する。
The sintered superabrasive chip structure of the present invention is
In particular, since the bonding strength to the base material (base metal) is improved and the strength against irregular impact load is significantly improved, it is particularly suitable for use in a tool for manual work in which the load fluctuation range is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】 超高圧高温工程に供するための試料構成の模
式図。
FIG. 1 is a schematic diagram of a sample configuration for use in an ultrahigh pressure and high temperature process.

【図2】 実施例で作製したチップソーの正面図。FIG. 2 is a front view of a tip saw manufactured in an example.

【図3】 溶着されたチップの詳細模式図(図2で"A"
として示す部分)。
FIG. 3 is a detailed schematic diagram of a welded chip (“A” in FIG. 2)
Part shown as).

【図4】 本発明実施例で作製されたチップの溶着部組
織図。
FIG. 4 is a structural diagram of a welded portion of a chip manufactured in an example of the present invention.

【図5】 別の実施例で作製されたチップの溶着部組織
図。
FIG. 5 is a structural diagram of a welded portion of a chip manufactured in another example.

【符号の説明】[Explanation of symbols]

1 タンタル製カプセル 2 ダイヤモンドとWCとCoの混合物 3 超硬合金円板 4 ステンレス鋼円板 5 短冊状チップ 6 工具鋼製台金 7 溶着部 1 tantalum capsule 2 A mixture of diamond, WC and Co 3 Cemented Carbide Disc 4 stainless steel disc 5 strip-shaped chips 6 Tool Steel Base Metal 7 Welded part

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 隣接した超砥粒粒子同士が金属相及び/
またはセラミック相を介して、或いはこれらの相を介せ
ずに超砥粒粒子同士が直接接合された焼結超砥粒層及び
炭素含有量が0.90%以下の鋼材層が直接、或いは上記焼
結超砥粒層及び鋼材層との間に挟装された中間層を介し
て、焼結により一体化構成されていることを特徴とする
焼結超砥粒チップ素材。
1. Adjacent superabrasive particles are metallic phase and / or
Alternatively, a sintered superabrasive grain layer in which superabrasive grain particles are directly bonded to each other via a ceramic phase or without these phases, and a steel material layer having a carbon content of 0.90% or less directly or the above sintered A sintered superabrasive grain tip material, characterized by being integrally configured by sintering through an intermediate layer sandwiched between a superabrasive grain layer and a steel material layer.
【請求項2】 上記中間層が超硬合金材である、請求項
1に記載の焼結超砥粒チップ素材。
2. The sintered superabrasive chip material according to claim 1, wherein the intermediate layer is a cemented carbide material.
【請求項3】 上記中間層が、チタン、タンタル、及び
モリブデン単体金属、並びにこれらの金属種のいずれか
を主成分とし、かつ1400℃以上の融点を有する金属材か
ら選ばれる1種または組み合せである、請求項1に記載
の焼結超砥粒チップ素材。
3. The intermediate layer is made of one or a combination of titanium, tantalum, and molybdenum elemental metals, and a metal material containing any of these metal species as a main component and having a melting point of 1400 ° C. or higher. The sintered superabrasive chip material according to claim 1, which is present.
【請求項4】上記鋼材の炭素含有量が0.4%以下であ
る、請求項1に記載した焼結超砥粒チップ素材。
4. The sintered superabrasive chip material according to claim 1, wherein the carbon content of the steel material is 0.4% or less.
【請求項5】上記鋼材がオーステナイトまたはマルテン
サイト(Cr又はNi-Cr)系列のステンレス鋼材種であ
る、請求項1に記載した焼結超砥粒チップ素材。
5. The sintered superabrasive grain tip material according to claim 1, wherein the steel material is an austenite or martensite (Cr or Ni-Cr) series stainless steel material type.
【請求項6】 上記超硬合金材が炭化タングステン及び
コバルトを主成分とする、請求項2に記載の焼結超砥粒
チップ素材。
6. The sintered superabrasive chip material according to claim 2, wherein the cemented carbide material is mainly composed of tungsten carbide and cobalt.
【請求項7】 上記超砥粒がダイヤモンド及び立方晶窒
化硼素から選ばれる、請求項1に記載の焼結超砥粒チッ
プ素材。
7. The sintered superabrasive grain tip stock according to claim 1, wherein the superabrasive grains are selected from diamond and cubic boron nitride.
【請求項8】 高融点金属製の筒状体に、超砥粒粒子と
金属質及び/またはセラミック質結合材との混合物、上
記筒状体の内径とほぼ同一の外径を有する超硬合金材円
板、及び炭素含有量が0.9%以下の鋼材製の円板をこの
順序で積層して封鎖した後、超高圧高温工程に供するこ
とにより超砥粒粒子相互間の焼結を行って焼結超砥粒層
を形成すると同時に、この焼結超砥粒層、超硬合金円
板、鋼材製円板相互間の接合を行い、上記超高圧高温工
程から焼結超砥粒、超硬合金、及び鋼材からなる積層構
造体を回収することを特徴とする、焼結超砥粒チップ素
材の製造法。
8. A mixture of superabrasive grains and a metallic and / or ceramic binder in a cylindrical body made of a refractory metal, and a cemented carbide having an outer diameter substantially the same as the inner diameter of the cylindrical body. Material discs and steel discs with a carbon content of 0.9% or less are stacked and sealed in this order, and then subjected to the ultrahigh pressure and high temperature process to sinter and burn the superabrasive grains. At the same time as forming the bonded superabrasive grain layer, the sintered superabrasive grain layer, the cemented carbide disc, and the steel disc are joined together. A method for manufacturing a sintered superabrasive grain chip material, comprising: collecting a laminated structure made of steel and a steel material.
【請求項9】 上記結合材がWC、TiC及びTaCから
選ばれる少なくとも1種の炭化物、およびCo、Niまた
はこれらを主成分とする合金から選ばれる少なくとも1
種の金属を含有する、請求項8に記載の焼結超砥粒チッ
プ素材の製造法。
9. The binder is at least one carbide selected from WC, TiC and TaC, and at least one selected from Co, Ni or an alloy containing them as a main component.
9. The method for producing a sintered superabrasive chip material according to claim 8, which contains a metal of a kind.
【請求項10】 高融点金属製の筒状体に超砥粒粒子、
上記筒状体の内径とほぼ同一の外径を有する炭素含有量
が0.9%以下の鋼材製の円板をこの順序で積層して封鎖
した後、超高圧高温工程に供することにより超砥粒粒子
相互間の焼結を行って焼結超砥粒層を形成すると同時
に、この焼結超砥粒層、鋼材製円板相互間の接合を行
い、上記超高圧高温工程から焼結超砥粒、及び鋼材から
なる積層構造体を回収することを特徴とする、焼結超砥
粒チップ素材の製造法。
10. A cylindrical body made of a refractory metal and superabrasive particles,
The carbon content having an outer diameter substantially the same as the inner diameter of the cylindrical body is 0.9% or less, and the discs made of steel are stacked and sealed in this order, and then subjected to an ultrahigh pressure and high temperature step to produce superabrasive particles. At the same time as forming a sintered superabrasive grain layer by performing mutual sintering, this sintered superabrasive grain layer, the joining between the steel discs, sintered superabrasive grains from the above ultra high pressure and high temperature step, And a method of manufacturing a sintered superabrasive grain tip material, comprising recovering a laminated structure made of steel.
JP2001201545A 2001-07-03 2001-07-03 Sintered super abrasive grain tip material and method of manufacture Pending JP2003011019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201545A JP2003011019A (en) 2001-07-03 2001-07-03 Sintered super abrasive grain tip material and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201545A JP2003011019A (en) 2001-07-03 2001-07-03 Sintered super abrasive grain tip material and method of manufacture

Publications (1)

Publication Number Publication Date
JP2003011019A true JP2003011019A (en) 2003-01-15

Family

ID=19038484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201545A Pending JP2003011019A (en) 2001-07-03 2001-07-03 Sintered super abrasive grain tip material and method of manufacture

Country Status (1)

Country Link
JP (1) JP2003011019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632296A (en) * 2012-03-27 2012-08-15 中国有色桂林矿产地质研究院有限公司 Cutting head of diamond saw blade for cutting metal
JP2019006662A (en) * 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same
CN110653385A (en) * 2019-10-08 2020-01-07 郑州工程技术学院 Metal ceramic welding tool and preparation method thereof
KR102112770B1 (en) * 2018-12-26 2020-05-19 이화다이아몬드공업 주식회사 Milling cutter attached grinding tip forming hybrid contact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632296A (en) * 2012-03-27 2012-08-15 中国有色桂林矿产地质研究院有限公司 Cutting head of diamond saw blade for cutting metal
JP2019006662A (en) * 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same
JP7188726B2 (en) 2017-06-28 2022-12-13 トーメイダイヤ株式会社 Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
KR102112770B1 (en) * 2018-12-26 2020-05-19 이화다이아몬드공업 주식회사 Milling cutter attached grinding tip forming hybrid contact
CN110653385A (en) * 2019-10-08 2020-01-07 郑州工程技术学院 Metal ceramic welding tool and preparation method thereof

Similar Documents

Publication Publication Date Title
US8061454B2 (en) Ultra-hard and metallic constructions comprising improved braze joint
US7435377B2 (en) Weldable ultrahard materials and associated methods of manufacture
EP0079243B1 (en) A composite compact component comprising a diamond or boron nitride compact
US5641921A (en) Low temperature, low pressure, ductile, bonded cermet for enhanced abrasion and erosion performance
US7757791B2 (en) Cutting elements formed from ultra hard materials having an enhanced construction
AU634804B2 (en) Composite abrasive compacts
US8672061B2 (en) Polycrystalline ultra-hard compact constructions
US10364614B2 (en) Polycrystalline ultra-hard constructions with multiple support members
JP6038652B2 (en) Metal-free supported polycrystalline diamond (PCD) and formation method
US6779951B1 (en) Drill insert using a sandwiched polycrystalline diamond compact and method of making the same
US20040155096A1 (en) Diamond tool inserts pre-fixed with braze alloys and methods to manufacture thereof
UA80420C2 (en) Composite material with compact abrasive layer
JP5603954B2 (en) Carbide element, method of using the same and method of manufacturing the same
JP2003011019A (en) Sintered super abrasive grain tip material and method of manufacture
JP4851029B2 (en) Super abrasive tool with sintered super abrasive tip
CN108430681B (en) Cutting tool
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
JP2001288977A (en) Axisymmetric cutting element
US10363624B2 (en) Active metal braze joint with stress relieving layer
JP6716408B2 (en) Laminated structure sintered superabrasive composite material and manufacturing method thereof
US20200023442A1 (en) Method for coating solid diamond materials
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
ZA200504125B (en) Diamond tool inserts pre-fixed with braze alloys and methods to manufacture thereof.
JP2007237248A (en) Method for manufacturing dissimilar material joined body
JPS5938491A (en) Composite sintered tool and production thereof