JPH06199571A - Wear resistant ceramic material and its production - Google Patents

Wear resistant ceramic material and its production

Info

Publication number
JPH06199571A
JPH06199571A JP17474491A JP17474491A JPH06199571A JP H06199571 A JPH06199571 A JP H06199571A JP 17474491 A JP17474491 A JP 17474491A JP 17474491 A JP17474491 A JP 17474491A JP H06199571 A JPH06199571 A JP H06199571A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
material
carbon
wear
starting
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17474491A
Other languages
Japanese (ja)
Inventor
Noriyuki Nishio
典幸 西尾
Original Assignee
Nippon Cement Co Ltd
Nippon Seratetsuku:Kk
日本セメント株式会社
株式会社日本セラテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE:To obtain a ceramic material very excellent in wear resistance without using a high temp. and high pressure device by adding diamond powder or granules to part or all of a carbon source blended with reaction-sinterable silicon carbide. CONSTITUTION:A carbon source such as graphite, carbon black or a carbonizable org. compd. is blended with silicon carbide powder or granules to prepare starting material. Diamond powder or granules are then added to part or all of the carbon source and the starting material is heated in vacuum or in a nonoxidizing atmosphere without using a high temp. and high pressure device. Molten silicon is allowed to penetrate into the starting material and brought into a reaction with the carbon source in the starting material and bonding is carried out with newly formed silicon carbide to obtain the objective wear resistant ceramic material having <=1x10<-8>mm<2>/kg specific wear loss measured by a pin-on-disk method using a resin bonded diamond disk.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、ブロックゲージ・各種測定器の測定部分・磁気ディスクの読みとり部分やプリンター駆動部などの乾式摺動部材・軸受けやメカニカルシールなどの比較的高負荷がかかる摺動部材などの寸法安定性、耐摩耗性が要求される部材に使用される耐摩耗性セラミックス材料と、その製造方法に関するものである。 The present invention relates to a sliding take relatively high load, such as a dry sliding member, bearings and mechanical seals such as partial or printer driver is read measurement portion, the magnetic disk of the block gauge various measuring instrument dimensional stability, such as rotary members, and abrasion resistance ceramic material used for the member where wear resistance is required, a manufacturing method thereof.

【0002】 [0002]

【従来の技術】耐摩耗性、寸法安定性が要求される構造部材にはアルミナ・炭化珪素・窒化珪素・ジルコニアなどのいわゆるエンジニアリングセラミックス材料が用いられている。 BACKGROUND ART abrasion resistance, the structural members dimensional stability is required that the so-called engineering ceramic material is used such as alumina, silicon carbide, silicon nitride-zirconia.

【0003】また代表的な超硬質耐摩耗性材料の例として、ダイヤモンド粉体にコバルトなどの鉄族金属や、耐熱性を出す場合は珪素などを配合し、良く知られた高温高圧発生装置(通常5〜6GPa、1400〜1550 [0003] Examples of typical superhard wear-resistant material, and the iron group metal such as cobalt to the diamond powder, high-temperature high-pressure generator blended such as silicon, which is well known when issuing the heat resistance ( normal 5~6GPa, 1400~1550
℃)によりダイヤモンドの安定領域で、ダイヤモンド同士の結合を形成することによりダイヤモンド焼結体として製造されるダイヤモンドバイトの切削用切刃や、ダイヤモンドビットなどに使用されるダイヤモンドコンパックスなどがある。 ° C.) by the diamond stable region, there cutting or cutting edge of the diamond tool which is produced as a diamond sintered body, such as a diamond Compax used such as diamond bits by forming a bond diamond together.

【0004】 [0004]

【発明が解決しようとする課題】こういった耐摩耗部材の中で、最も耐摩耗性の優れた材質はダイヤモンド焼結体のようなダイヤモンドを配合した部材ということができる。 Among INVENTION Problems to be Solved] These wear members, best material for wear resistance can be said diamond compounded member such as the diamond sintered body. しかしながらこういったダイヤモンド焼結体は、 However, these diamond sintered body,
ダイヤモンドが黒鉛化しないようにダイヤモンドの安定条件(通常5〜6GPa、1400〜1550℃)を保持するため高温高圧装置を用いる必要があり、従来のダイヤモンド焼結体より大きな数十mmから100mmを越えるような製品を製作する場合は、製造設備をさらに大きくする必要があり、技術上、コスト上の問題があった。 Stability condition of the diamond so the diamond is not graphitized (usually 5~6GPa, 1400~1550 ℃) it is necessary to use a high-temperature high-pressure device for holding, exceeding 100mm from large tens mm than a conventional diamond sintered body when fabricating products like, it is necessary to further increase the manufacturing equipment, technical, there is the cost problem.

【0005】また、アルミナ・炭化珪素・窒化珪素・ジルコニアなどの従来のセラミックス材質は、金属材料に比べれば優れた耐摩耗性を示すが、ダイヤモンド焼結体に比較すると一般に耐摩耗性が劣っている。 Moreover, conventional ceramic materials such as alumina, silicon carbide, silicon nitride-zirconia, exhibit excellent wear resistance compared to metallic materials, generally wear resistance inferior when compared to the diamond sintered body there.

【0006】本発明は、従来のエンジニアリングセラミックス材料と比較してきわめて優れた、ダイヤモンド焼結体に近い耐摩耗性を有しながら、その製造工程ではダイヤモンド焼結体のような高温高圧装置を必要とせず、 [0006] The present invention is extremely excellent as compared with conventional engineering ceramic materials, while having abrasion resistance near the diamond sintered body, in the manufacturing process requires high temperature and high pressure apparatus, such as a diamond sintered body without,
また比較的大きな部材も製造可能な耐摩耗性セラミックス材料、およびその製造方法を提供するものである。 Further there is provided a relatively large member also producible wear-resistant ceramic material, and a manufacturing method thereof.

【0007】 [0007]

【課題を解決するための手段】本発明者は上記課題を解決するために、反応焼結炭化珪素材質が配合された炭素源の一部または全部にダイヤモンド粉粒体を配合することにより、きわめて耐摩耗性に優れたセラミックス材質を高圧条件を必要とせずに製作することに成功し、本発明を完成させた。 The present inventors Means for Solving the Problems] To solve the above problems, by incorporating a diamond powder or granular material for some or all of the reaction sintering silicon carbide material carbon source formulated is extremely excellent ceramic material wear resistance successfully fabricated without the need for high pressure conditions, and completed the present invention.

【0008】以下、本発明を詳説に説明する。 [0008] will be described below to illustrate the invention.

【0009】反応焼結炭化珪素材質とは、黒鉛・カーボンブラック・加熱により炭素源となる例えばフェノール樹脂、メラミン樹脂、ユリア樹脂等の炭化性有機化合物に必要に応じて炭化珪素粉粒体(他の原料と均一に混合するため20ミクロン以下が望ましい。)を配合し、真空中または非酸化性雰囲気中で加熱し、溶融させた珪素を浸透させ、炭素源と反応させて新たに炭化珪素を生成させることにより結合させた材質である。 [0009] The reaction sintering silicon carbide material, a carbon source by graphite, carbon black and heating such as phenolic resins, melamine resins, carbonizable organic compound optionally silicon carbide powder or granular material urea resin (other the raw material and homogeneously mixed for 20 microns or less.) were blended and heated in a vacuum or non-oxidizing atmosphere, infiltrated with silicon was melted, a new silicon carbide by reaction with carbon source a material obtained by binding by generating.

【0010】この反応焼結炭化珪素材質を生成させることができる原料層の炭素源の一部または全部をダイヤモンド粉粒体とすることにより、後述するように反応焼結後の乾式摺動試験における比摩耗量を従来のセラミックス材料に比較してけた違いに少なくすることが可能となる。 [0010] By some or all of the carbon source material layer capable of generating a reaction-sintered silicon carbide material as diamond powder or granular material, in the dry sliding test after reaction sintering as described below it is possible to reduce the difference of the specific wear amount should be compared with conventional ceramic materials.

【0011】原料層に配合したダイヤモンド粒子が粒子の中心部まで反応して炭化珪素化してしまったのではダイヤモンド粒子を配合する意味がないため、反応焼結後もダイヤモンドとして残存する条件を選定する必要がある。 [0011] Since diamond particles blended in the raw material layer is no meaning than had been silicon carbide of reacting to the center of the particles to be blended diamond particles, selected conditions remaining after reaction sintering as a diamond There is a need.

【0012】一般に黒鉛・カーボンブラック等の炭素源粒子が溶融珪素と接触して炭化珪素が表面に生成する場合、表面から5〜10ミクロン程度が反応する。 [0012] Generally carbon source particles such as graphite, carbon black may be generated in contact with the silicon carbide surface and the molten silicon, about 5 to 10 microns from the surface to react. 従って、中心部まで炭化珪素化しないようにするため、数十ミクロン以上の粒径のダイヤモンド粒子を配合する必要がある。 Therefore, in order not to carbide reduction to the center, it is necessary to blend the diamond particles having a particle diameter of several tens of microns. 望ましくは、ダイヤモンド粒子の充填密度をできるだけ高めるため、20ミクロン以上の粒径で粒度分布にふたつのピークがでるように粒度配合するのがよく、また300ミクロン以上になると成形しにくく、表面が粗となるため、300ミクロン以下がよい。 Desirably, to increase as much as possible the packing density of the diamond particles, with a particle size of more than 20 microns particle size distribution well to granularity formulated as two peaks out in, also difficult to mold to become more than 300 microns, the surface roughness , and therefore, it is 300 microns or less.

【0013】原料層は粉末層であっても成形体であっても良い。 [0013] raw material layer may be a molded body be in powder layer. 成形体の場合はあらかじめ製品形状に加工しておくことによりニアネットシェイプの製品を製造することができる。 For the molded body can be manufactured product near net shape by previously processed in advance in the product shape. いずれの場合においても表面の材質が窒化ほう素で内側に製品をぴったりとはめ込むことができる型枠を用いることが、反応焼結後の過剰珪素の除去工程か簡単になるという点から望ましい。 Using a mold that the material of the surface can be fitted snugly products inwardly boron nitride in any case is desirable from the point of becoming a simple or removal step of the excess silicon after reaction sintering.

【0014】この原料層に接するように金属珪素粉を配する。 [0014] The distribution of metallic silicon powder in contact with the material layer. この金属珪素粉は、次工程の加熱によって溶融した際外部に流れ出さないよう、表面の材質が窒化ほう素の型枠で囲うことが望ましい。 The metallic silicon powder, so as not to flow out to the outside when melted by heating in the subsequent step, the material of the surface it is desired be enclosed in a mold of boron nitride.

【0015】そのまま真空中または非酸化性雰囲気中で加熱し(1450〜1500℃が望ましい。)、金属珪素粉を溶融させ、炭素との直接反応、すなわちC+Si [0015] as it is heated in vacuum or non-oxidizing atmosphere (from 1,450 to 1,500 ° C. it is preferable.), Melting the metal silicon powder, direct reaction of carbon, i.e. C + Si
→SiCの反応により、炭化珪素を生成させる。 → the reaction of SiC, to produce silicon carbide.

【0016】冷却、炉出し後、表面に残存した金属珪素を除去するとともに、必要に応じて表面を研削して、所定の寸法に整えることにより製品とする。 [0016] After cooling and furnace out, to remove the remaining metallic silicon to the surface, and grinding the surface if necessary, a product by arranging a predetermined size.

【0017】本発明によるダイヤモンド粒子を含んだ反応焼結炭化珪素材料の耐摩耗性の評価基準として、乾式摺動摩耗試験のピンオンディスク法による比摩耗量を用いる。 [0017] As evaluation criteria for the wear resistance of the reaction-sintered silicon carbide material containing diamond particles according to the present invention, a specific wear amount by pin-on-disk method of dry sliding wear test. 比摩耗量とは摺動時の単位荷重あたり、単位摺動距離あたりの摩耗部分の体積を意味し、乾式摺動摩耗であれば摺動速度(周速)および試験荷重に関係なく摺動材質の組み合わせで決まる性質のものである。 Specific wear amount and per unit load during sliding means the volume of the worn portion per unit sliding distance, sliding material regardless sliding speed (peripheral speed) and the test load if dry sliding wear it is of a nature which is determined by the combination of.

【0018】比摩耗量は図1に示す装置で一定時間毎にピンの重量を測定し、初期摩耗の不安定な部分を除いて安定な摩耗を示すようになった後の、摺動距離に対する摩耗量の傾きから計算される。 The ratio wear amount was measured pins weight at regular intervals in the apparatus shown in FIG. 1, after which began to show a stable wear except for instability of initial wear, with respect to the sliding distance It is calculated from the slope of the wear amount. ディスク側材質に砥石材料に使用されているレジンボンドの#600ダイヤモンドを用いることにより、従来のエンジニアリングセラミックスとの耐摩耗性の差を明確に評価することができる。 By using # 600 diamond resin bond used in the grinding material on the disk side material, it is possible to clearly assess differences wear resistance of the conventional engineering ceramics.

【0019】ピンオンディスク法による比摩耗量の測定の結果、従来のエンジニアリングセラミックスの中でも耐摩耗性がいいとされている常圧焼結炭化珪素材料でも10 -6 〜10 -5 mm 2 /kg台であるのにたいし、本発明によるダイヤモンド粒子を含んだ炭化珪素材料では1 The pin-on results of the specific wear rate of the measurement by the disk method, conventional engineering 10 -6 to 10 -5 in pressureless sintering of silicon carbide material being a good abrasion resistance among ceramics mm 2 / kg base a is whereas, 1 is a silicon carbide material containing diamond particles according to the present invention
-9 mm 2 /kgの比摩耗量とけた違いに優れた耐摩耗性が確認された。 0 -9 mm 2 / wear resistance with excellent difference which melted the specific wear rate of kg was observed.

【0020】以下、本発明の実施例を示すが、本発明は、下記の実施例に限定されるものではなく、本発明の技術的思想に基づいて各種の変形および変更が可能であることは当然である。 [0020] Hereinafter, Examples of the present invention, the present invention is not intended to be limited to the following examples, it is possible various changes and modifications based on the technical concept of the present invention as a matter of course.

【0021】 [0021]

【実施例】88〜105ミクロンの粒度、12〜15ミクロンの粒度の2種類のグレードの市販の人工ダイヤモンドパウダーを、それぞれ75重量部、25重量部ずつ粒度配合し、さらに炭素源および成形バインダーとして炭化率40%のノボラック型フェノール樹脂を25重量部配合した。 EXAMPLES of 88 to 105 microns particle size, the two kinds of commercially available synthetic diamond powder grade size of 12 to 15 microns, 75 parts by weight, respectively, and the particle size compounded by 25 parts by weight, as further carbon source and forming binder carbide of 40% of the novolak type phenolic resin was blended 25 parts by weight. 乳鉢で混合した後、1000kg/cm 2 After mixing in a mortar, 1000 kg / cm 2
の成形圧力で12×5×60mmに金型成形した。 And molding the 12 × 5 × 60 mm with a molding pressure. 75 75
0℃で60分間、真空脱脂および炭化を行い、3×4× 0 ℃ for 60 minutes, and vacuum degreasing and carbonization, 3 × 4 ×
20mmに開口して基材とした。 Opening to as a base material 20 mm. 内寸法3×4×20m The inner dimensions 3 × 4 × 20m
mの窒化ほう素製の型枠にぴったりと基材をはめ込み、 Snugly fitting the substrate into a mold of m boron nitride Motosei,
基材に接して上法に金属珪素粉を1.5g充填した。 Of metallic silicon powder above method was 1.5g filled in contact with the substrate. そのまま真空炉で1500℃で30分間加熱し、金属珪素粉を溶融させ基材に浸透反応させて、ダイヤモンド粉粒体を含んだ反応焼結炭化珪素材料を生成させた。 It was heated for 30 minutes at 1500 ° C. in a vacuum oven, allowed to penetrate reacting the substrate to melt the metallic silicon powder, to produce a reaction sintering silicon carbide material including diamond powder or granular material. 冷却・ cooling·
脱型後、付着した過剰の金属珪素を研削除去し、3×4 After demolding, excess metallic silicon adhering to the ground and removed, 3 × 4
×20mmのテフトピースを製作した。 × was fabricated Tefutopisu of 20mm. このテストピースを図1に示したピンオンディスク法の試験装置にセットし、試験荷重1.3kg、60rpmで乾式で、しかし周囲に水を流して摺動発熱を逃がしながら摩耗試験を行ったところ、表1の結果を得た。 Where this test piece was set in the test apparatus of the pin-on-disk method shown in FIG. 1, test load 1.3 kg, dry at 60 rpm, but subjected to the wear test while escape slide heat generation by flowing water around , the results shown in Table 1 were obtained. 3本のテストピースの平均値は1.5×10 -9 mm 2 /kgの比摩耗量であった。 The average value of this test piece 3 was specific wear rate of 1.5 × 10 -9 mm 2 / kg .

【0022】〔比較例〕一方、同寸法のテストピースを常圧焼結炭化珪素で作製し、同条件でピンオンディスク法で摩耗試験したところ、表1に示したように3本のテストピースの平均値は7.2×10 -6 mm 2 /kgと、 [0022] [Comparative Example] On the other hand, to prepare a test piece having the same dimensions in pressureless sintering of silicon carbide, were abrasion test by pin-on-disk method under the same conditions, three test pieces as shown in Table 1 the average value and 7.2 × 10 -6 mm 2 / kg ,
本発明のダイヤモンド粉粒体を含んだ反応焼結炭化珪素材料に比較して非常に大きな比摩耗量であった。 It was very large specific abrasion loss as compared to reaction sintering silicon carbide material including diamond powder and granular material of the present invention.

【0023】 [0023]

【表1】 [Table 1]

【0024】 [0024]

【発明の効果】本発明のダイヤモンド粉粒体を含んだ耐摩耗製セラミックス材料およびその製造方法によれば、 According to containing diamond powder and granular material wear ceramics materials and manufacturing method thereof of the present invention,
従来のエンジニアリングセラミックスでは耐えられなかった高負荷条件下での使用にも十分に耐えられる耐摩耗性セラミックス材料を、あるいは潤滑剤を使用しない条件下での固体接触下の摺動に対する耐摩耗製セラミックス材料を従来のダイヤモンド焼結体を製造する場合のような高温高圧装置を必要とせず通常の真空炉または非酸化性雰囲気炉で製造し、提供することができる。 The wear-resistant ceramic material is sufficiently withstand the use in high load conditions which could not bear the conventional engineering ceramic or wear a ceramic for sliding solid contact under under conditions that do not use lubricant, prepared in a conventional vacuum furnace or a non-oxidizing atmosphere furnace without the need for high-temperature high-pressure device, such as in the case of producing a conventional diamond sintered body material, it can be provided.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の耐摩耗性セラミックスの乾式摺動摩耗試験を行うピンオンディスク法を行なう装置を示した概念図である。 1 is a conceptual diagram illustrating an apparatus for performing the pin-on-disc method in which a dry sliding wear test the wear resistance ceramic of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 ピン(3×4×20mm) 2 ディスク(φ60mmレジンボンド#600ダイヤモンドディスク) 3 ピンホルダー 4 試験荷重 5 回転テーブル 1 pin (3 × 4 × 20 mm) 2 disc (60 mm Resin Bond # 600 diamond disc) 3-pin holder 4 test load 5 turntable

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 黒鉛・カーボンブラック・加熱により炭素源となる炭化性有機化合物などの炭素源に必要に応じて炭化珪素粉粒体を配合した原料層において、炭素源の一部または全部をダイヤモンド粉粒体とし、真空中または非酸化性雰囲気中で加熱し、溶融させた珪素を上記原料層に浸透させ、原料層中の炭素源と反応させて新たに生成した炭化珪素により結合させたダイヤモンド粉粒体を含む反応焼結炭化珪素材料であって、レジンボンドのダイヤモンドディスク(#600、集中度100)を用いたピンオンディスク法(荷重1kg、乾式摺動条件) 1. A raw material layer containing a combination of silicon carbide if necessary a carbon source powder and granular material such as carbonizable organic compound as a carbon source by graphite, carbon black and heating, the diamond part or all of carbon sources a granular material, heated in a vacuum or in a non-oxidizing atmosphere, the silicon is melted to penetrate the said material layer, is bonded by silicon carbide newly generated is reacted with a carbon source material layer in the diamond a reaction sintering silicon carbide material comprising granules, diamond disc resin-bonded (# 600, degree of concentration 100) pin-on-disk method using (load 1 kg, dry sliding conditions)
    による比摩耗量が、1×10 -8 mm 2 /kgより少ない耐摩耗性セラミックス材料。 Specific wear amount of the, 1 × 10 -8 mm 2 / kg less wear-resistant ceramic material.
  2. 【請求項2】 黒鉛・カーボンブラック・加熱により炭素源となる炭化性有機化合物などの炭素源に必要に応じて炭化珪素粉粒体を配合した原料層において、炭素源の一部または全部をダイヤモンド粉粒体とし、高温高圧装置を用いることなく(5〜6GPa、1400〜155 2. A raw material layer containing a combination of silicon carbide if necessary a carbon source powder and granular material such as carbonizable organic compound as a carbon source by graphite, carbon black and heating, the diamond part or all of carbon sources a granular material, without using a high temperature high pressure apparatus (5~6GPa, 1400~155
    0℃というダイヤモンドの安定条件下ではなく)、真空中または非酸化性雰囲気中で加熱し、溶融させた珪素を上記原料層に浸透させ、原料層中の炭素源と反応させて新たに生成した炭化珪素により結合させることを特徴とする耐摩耗性セラミックス材料の製造方法。 0 ℃ rather than stable under the conditions of diamond called), was heated in a vacuum or in a non-oxidizing atmosphere, the silicon is melted to penetrate the said material layer, newly generated by reacting the carbon source of raw material layer method for producing a wear-resistant ceramic material, characterized in that to bind the silicon carbide.
JP17474491A 1991-06-20 1991-06-20 Wear resistant ceramic material and its production Pending JPH06199571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17474491A JPH06199571A (en) 1991-06-20 1991-06-20 Wear resistant ceramic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17474491A JPH06199571A (en) 1991-06-20 1991-06-20 Wear resistant ceramic material and its production

Publications (1)

Publication Number Publication Date
JPH06199571A true true JPH06199571A (en) 1994-07-19

Family

ID=15983926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17474491A Pending JPH06199571A (en) 1991-06-20 1991-06-20 Wear resistant ceramic material and its production

Country Status (1)

Country Link
JP (1) JPH06199571A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012866A1 (en) * 1997-09-05 1999-03-18 Frenton Limited Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
WO2002042240A2 (en) 2000-11-21 2002-05-30 Skeleton Technologies Ag A heat conductive material
US6447852B1 (en) 1999-03-04 2002-09-10 Ambler Technologies, Inc. Method of manufacturing a diamond composite and a composite produced by same
WO2004007401A1 (en) 2002-06-18 2004-01-22 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
EP1499572A1 (en) * 2002-04-12 2005-01-26 John Crane Inc. A composite body of silicon carbide and binderless carbon and process for producing
US7008672B2 (en) 1998-09-28 2006-03-07 Skeleton Technologies Ag Method of manufacturing a diamond composite and a composite produced by same
JP2008239477A (en) * 1998-09-28 2008-10-09 Element Six Ltd Diamond composite
US8757472B2 (en) 2007-07-17 2014-06-24 David Patrick Egan Method for joining SiC-diamond

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012866A1 (en) * 1997-09-05 1999-03-18 Frenton Limited Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
US6179886B1 (en) 1997-09-05 2001-01-30 Ambler Technologies, Inc. Method for producing abrasive grains and the composite abrasive grains produced by same
JP2008239476A (en) * 1997-09-05 2008-10-09 Element Six Ltd Diamond-silicon carbide-silicon composite
EP1253123A1 (en) * 1997-09-05 2002-10-30 Frenton Limited Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
JP2008239477A (en) * 1998-09-28 2008-10-09 Element Six Ltd Diamond composite
US7008672B2 (en) 1998-09-28 2006-03-07 Skeleton Technologies Ag Method of manufacturing a diamond composite and a composite produced by same
US6447852B1 (en) 1999-03-04 2002-09-10 Ambler Technologies, Inc. Method of manufacturing a diamond composite and a composite produced by same
WO2002042240A2 (en) 2000-11-21 2002-05-30 Skeleton Technologies Ag A heat conductive material
EP1499572A1 (en) * 2002-04-12 2005-01-26 John Crane Inc. A composite body of silicon carbide and binderless carbon and process for producing
EP1499572A4 (en) * 2002-04-12 2009-12-30 Crane John Inc A composite body of silicon carbide and binderless carbon and process for producing
WO2004007401A1 (en) 2002-06-18 2004-01-22 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US7235506B2 (en) 2002-06-18 2007-06-26 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
EP2336098A1 (en) * 2002-06-18 2011-06-22 Kabushiki Kaisha Toshiba Process for producing part of silicon carbide matrix composite material
US8568650B2 (en) 2002-06-18 2013-10-29 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US8757472B2 (en) 2007-07-17 2014-06-24 David Patrick Egan Method for joining SiC-diamond

Similar Documents

Publication Publication Date Title
US3653851A (en) High-strength metal-silicon carbide article
US3293012A (en) Process of infiltrating diamond particles with metallic binders
US3258817A (en) Method of preparing composite hard metal material with metallic binder
US3246950A (en) Method of preparing fibrous silicon carbide
Zollfrank et al. Microstructure and phase morphology of wood derived biomorphous SiSiC-ceramics
Wang et al. The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC
US3725015A (en) Process for forming high density refractory shapes and the products resulting therefrom
US3385684A (en) Multicrystalline diamond abrasive composition and article
US4220455A (en) Polycrystalline diamond and/or cubic boron nitride body and process for making said body
US4945073A (en) High hardness, wear resistant materials
US4515746A (en) Microcomposite of metal carbide and ceramic particles
US3859399A (en) Dense composite ceramic bodies and method for their production
US3758662A (en) In carbonaceous mold forming dense carbide articles from molten refractory metal contained
US5215945A (en) High hardness, wear resistant materials
US5123935A (en) Al2 o3 composites, process for producing them and throw-away tip made of al2 o3 composites
US20110008604A1 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
US6485533B1 (en) Porous grinding stone and method of production thereof
US2216728A (en) Abrasive article and method of making the same
US4294788A (en) Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US3852078A (en) Mass of polycrystalline cubic system boron nitride and composites of polycrystalline cubic system boron nitride and other hard materials, and processes for manufacturing the same
US4158687A (en) Method for producing heat-resistant composite materials reinforced with continuous silicon carbide fibers
US4230497A (en) Dense sintered shaped articles of polycrystalline α-silicon carbide and process for their manufacture
US6090343A (en) Triphasic composite and method for making same
US20100307067A1 (en) Abrasive compact
US3386840A (en) Article containing silicon carbon fibers