JPH06199571A - Wear resistant ceramic material and its production - Google Patents

Wear resistant ceramic material and its production

Info

Publication number
JPH06199571A
JPH06199571A JP3174744A JP17474491A JPH06199571A JP H06199571 A JPH06199571 A JP H06199571A JP 3174744 A JP3174744 A JP 3174744A JP 17474491 A JP17474491 A JP 17474491A JP H06199571 A JPH06199571 A JP H06199571A
Authority
JP
Japan
Prior art keywords
carbon source
diamond
silicon carbide
wear
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3174744A
Other languages
Japanese (ja)
Inventor
Noriyuki Nishio
典幸 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SERATETSUKU KK
Nihon Cement Co Ltd
Original Assignee
NIPPON SERATETSUKU KK
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SERATETSUKU KK, Nihon Cement Co Ltd filed Critical NIPPON SERATETSUKU KK
Priority to JP3174744A priority Critical patent/JPH06199571A/en
Publication of JPH06199571A publication Critical patent/JPH06199571A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic material very excellent in wear resistance without using a high temp. and high pressure device by adding diamond powder or granules to part or all of a carbon source blended with reaction-sinterable silicon carbide. CONSTITUTION:A carbon source such as graphite, carbon black or a carbonizable org. compd. is blended with silicon carbide powder or granules to prepare starting material. Diamond powder or granules are then added to part or all of the carbon source and the starting material is heated in vacuum or in a nonoxidizing atmosphere without using a high temp. and high pressure device. Molten silicon is allowed to penetrate into the starting material and brought into a reaction with the carbon source in the starting material and bonding is carried out with newly formed silicon carbide to obtain the objective wear resistant ceramic material having <=1x10<-8>mm<2>/kg specific wear loss measured by a pin-on-disk method using a resin bonded diamond disk.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ブロックゲージ・各種
測定器の測定部分・磁気ディスクの読みとり部分やプリ
ンター駆動部などの乾式摺動部材・軸受けやメカニカル
シールなどの比較的高負荷がかかる摺動部材などの寸法
安定性、耐摩耗性が要求される部材に使用される耐摩耗
性セラミックス材料と、その製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a block gauge, a measuring portion of various measuring instruments, a magnetic disk reading portion, a dry sliding member such as a printer driving portion, a bearing to which a relatively high load is applied such as a bearing and a mechanical seal. The present invention relates to a wear-resistant ceramic material used for a member such as a dynamic member that requires dimensional stability and wear resistance, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】耐摩耗性、寸法安定性が要求される構造
部材にはアルミナ・炭化珪素・窒化珪素・ジルコニアな
どのいわゆるエンジニアリングセラミックス材料が用い
られている。
2. Description of the Related Art So-called engineering ceramic materials such as alumina, silicon carbide, silicon nitride and zirconia are used for structural members which are required to have wear resistance and dimensional stability.

【0003】また代表的な超硬質耐摩耗性材料の例とし
て、ダイヤモンド粉体にコバルトなどの鉄族金属や、耐
熱性を出す場合は珪素などを配合し、良く知られた高温
高圧発生装置(通常5〜6GPa、1400〜1550
℃)によりダイヤモンドの安定領域で、ダイヤモンド同
士の結合を形成することによりダイヤモンド焼結体とし
て製造されるダイヤモンドバイトの切削用切刃や、ダイ
ヤモンドビットなどに使用されるダイヤモンドコンパッ
クスなどがある。
As a typical example of an ultra-hard wear-resistant material, an iron-group metal such as cobalt is mixed with diamond powder, and silicon is used when heat resistance is required. Usually 5-6 GPa, 1400-1550
(° C.) In the stable region of diamonds, there is a cutting edge for cutting a diamond tool manufactured as a diamond sintered body by forming bonds between diamonds, and diamond compax used for diamond bits.

【0004】[0004]

【発明が解決しようとする課題】こういった耐摩耗部材
の中で、最も耐摩耗性の優れた材質はダイヤモンド焼結
体のようなダイヤモンドを配合した部材ということがで
きる。しかしながらこういったダイヤモンド焼結体は、
ダイヤモンドが黒鉛化しないようにダイヤモンドの安定
条件(通常5〜6GPa、1400〜1550℃)を保
持するため高温高圧装置を用いる必要があり、従来のダ
イヤモンド焼結体より大きな数十mmから100mmを
越えるような製品を製作する場合は、製造設備をさらに
大きくする必要があり、技術上、コスト上の問題があっ
た。
Among these wear resistant members, the material having the best wear resistance can be a member containing diamond such as a diamond sintered body. However, these diamond sintered bodies are
It is necessary to use a high temperature and high pressure device in order to maintain the stable condition of diamond (usually 5 to 6 GPa, 1400 to 1550 ° C.) so that the diamond does not become graphitized. When manufacturing such a product, it is necessary to further increase the manufacturing equipment, and there is a technical and cost problem.

【0005】また、アルミナ・炭化珪素・窒化珪素・ジ
ルコニアなどの従来のセラミックス材質は、金属材料に
比べれば優れた耐摩耗性を示すが、ダイヤモンド焼結体
に比較すると一般に耐摩耗性が劣っている。
Further, conventional ceramic materials such as alumina, silicon carbide, silicon nitride and zirconia have excellent wear resistance as compared with metal materials, but generally have poor wear resistance as compared with diamond sintered bodies. There is.

【0006】本発明は、従来のエンジニアリングセラミ
ックス材料と比較してきわめて優れた、ダイヤモンド焼
結体に近い耐摩耗性を有しながら、その製造工程ではダ
イヤモンド焼結体のような高温高圧装置を必要とせず、
また比較的大きな部材も製造可能な耐摩耗性セラミック
ス材料、およびその製造方法を提供するものである。
The present invention requires a high temperature and high pressure device such as a diamond sintered body in its manufacturing process while having a wear resistance close to that of a diamond sintered body, which is extremely superior to conventional engineering ceramic materials. Without
Further, the present invention provides a wear-resistant ceramic material capable of manufacturing a relatively large member, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は上記課題を解
決するために、反応焼結炭化珪素材質が配合された炭素
源の一部または全部にダイヤモンド粉粒体を配合するこ
とにより、きわめて耐摩耗性に優れたセラミックス材質
を高圧条件を必要とせずに製作することに成功し、本発
明を完成させた。
In order to solve the above-mentioned problems, the present inventor has made a diamond powder granule extremely partly or wholly added to a part or all of a carbon source containing a reaction-sintered silicon carbide material. The present invention has been completed by succeeding in producing a ceramic material having excellent wear resistance without requiring high pressure conditions.

【0008】以下、本発明を詳説に説明する。The present invention will be described in detail below.

【0009】反応焼結炭化珪素材質とは、黒鉛・カーボ
ンブラック・加熱により炭素源となる例えばフェノール
樹脂、メラミン樹脂、ユリア樹脂等の炭化性有機化合物
に必要に応じて炭化珪素粉粒体(他の原料と均一に混合
するため20ミクロン以下が望ましい。)を配合し、真
空中または非酸化性雰囲気中で加熱し、溶融させた珪素
を浸透させ、炭素源と反応させて新たに炭化珪素を生成
させることにより結合させた材質である。
The reaction-bonded silicon carbide material means graphite, carbon black, carbonaceous organic compounds such as phenol resin, melamine resin, urea resin, etc., which serve as a carbon source when heated, and silicon carbide powder particles (others). 20 micron or less is desirable for uniform mixing with the raw material of 1.), and the mixture is heated in a vacuum or in a non-oxidizing atmosphere to infiltrate the molten silicon and react with the carbon source to newly generate silicon carbide. It is a material that is bound by being generated.

【0010】この反応焼結炭化珪素材質を生成させるこ
とができる原料層の炭素源の一部または全部をダイヤモ
ンド粉粒体とすることにより、後述するように反応焼結
後の乾式摺動試験における比摩耗量を従来のセラミック
ス材料に比較してけた違いに少なくすることが可能とな
る。
By making a part or all of the carbon source of the raw material layer capable of producing this reaction-sintered silicon carbide material into a diamond powder, in a dry sliding test after the reaction sintering as described later. It is possible to reduce the specific wear amount by an order of magnitude as compared with conventional ceramic materials.

【0011】原料層に配合したダイヤモンド粒子が粒子
の中心部まで反応して炭化珪素化してしまったのではダ
イヤモンド粒子を配合する意味がないため、反応焼結後
もダイヤモンドとして残存する条件を選定する必要があ
る。
If the diamond particles blended in the raw material layer have reacted to the center of the particles and turned into silicon carbide, there is no point in blending the diamond particles. Therefore, the conditions for remaining as diamond after the reaction sintering are selected. There is a need.

【0012】一般に黒鉛・カーボンブラック等の炭素源
粒子が溶融珪素と接触して炭化珪素が表面に生成する場
合、表面から5〜10ミクロン程度が反応する。従っ
て、中心部まで炭化珪素化しないようにするため、数十
ミクロン以上の粒径のダイヤモンド粒子を配合する必要
がある。望ましくは、ダイヤモンド粒子の充填密度をで
きるだけ高めるため、20ミクロン以上の粒径で粒度分
布にふたつのピークがでるように粒度配合するのがよ
く、また300ミクロン以上になると成形しにくく、表
面が粗となるため、300ミクロン以下がよい。
Generally, when carbon source particles such as graphite and carbon black come into contact with molten silicon to form silicon carbide on the surface, about 5 to 10 microns react from the surface. Therefore, it is necessary to mix diamond particles having a particle size of several tens of microns or more in order to prevent silicon carbide from reaching the central portion. Desirably, in order to increase the packing density of diamond particles as much as possible, the particle size should be blended so that two peaks appear in the particle size distribution at a particle size of 20 microns or more, and if it becomes 300 microns or more, it is difficult to form and the surface is rough. Therefore, 300 μm or less is preferable.

【0013】原料層は粉末層であっても成形体であって
も良い。成形体の場合はあらかじめ製品形状に加工して
おくことによりニアネットシェイプの製品を製造するこ
とができる。いずれの場合においても表面の材質が窒化
ほう素で内側に製品をぴったりとはめ込むことができる
型枠を用いることが、反応焼結後の過剰珪素の除去工程
か簡単になるという点から望ましい。
The raw material layer may be a powder layer or a molded body. In the case of a molded product, a near net shape product can be manufactured by processing it into a product shape in advance. In any case, it is preferable to use a mold whose surface material is boron nitride and which allows the product to be fitted tightly inside, because the step of removing excess silicon after reaction sintering becomes simple.

【0014】この原料層に接するように金属珪素粉を配
する。この金属珪素粉は、次工程の加熱によって溶融し
た際外部に流れ出さないよう、表面の材質が窒化ほう素
の型枠で囲うことが望ましい。
Metallic silicon powder is placed in contact with this raw material layer. It is desirable that the metallic silicon powder be surrounded by a mold whose surface material is boron nitride so as not to flow out when it is melted by heating in the next step.

【0015】そのまま真空中または非酸化性雰囲気中で
加熱し(1450〜1500℃が望ましい。)、金属珪
素粉を溶融させ、炭素との直接反応、すなわちC+Si
→SiCの反応により、炭化珪素を生成させる。
It is heated as it is in a vacuum or in a non-oxidizing atmosphere (preferably 1450 to 1500 ° C.) to melt the metallic silicon powder and directly react with carbon, that is, C + Si.
→ Silicon carbide is generated by the reaction of SiC.

【0016】冷却、炉出し後、表面に残存した金属珪素
を除去するとともに、必要に応じて表面を研削して、所
定の寸法に整えることにより製品とする。
After cooling and removing from the furnace, the metal silicon remaining on the surface is removed, and the surface is ground as required to prepare the product into a predetermined size.

【0017】本発明によるダイヤモンド粒子を含んだ反
応焼結炭化珪素材料の耐摩耗性の評価基準として、乾式
摺動摩耗試験のピンオンディスク法による比摩耗量を用
いる。比摩耗量とは摺動時の単位荷重あたり、単位摺動
距離あたりの摩耗部分の体積を意味し、乾式摺動摩耗で
あれば摺動速度(周速)および試験荷重に関係なく摺動
材質の組み合わせで決まる性質のものである。
The specific wear amount by the pin-on-disc method in the dry sliding wear test is used as the evaluation standard for the wear resistance of the reaction-sintered silicon carbide material containing diamond particles according to the present invention. The specific wear amount means the volume of the worn part per unit load during sliding and per unit sliding distance. For dry type sliding wear, the sliding material is independent of the sliding speed (peripheral speed) and test load. It is of a nature determined by the combination of.

【0018】比摩耗量は図1に示す装置で一定時間毎に
ピンの重量を測定し、初期摩耗の不安定な部分を除いて
安定な摩耗を示すようになった後の、摺動距離に対する
摩耗量の傾きから計算される。ディスク側材質に砥石材
料に使用されているレジンボンドの#600ダイヤモン
ドを用いることにより、従来のエンジニアリングセラミ
ックスとの耐摩耗性の差を明確に評価することができ
る。
The specific wear amount was measured by the device shown in FIG. 1 at a constant time, and the weight of the pin was measured to show the stable wear except the unstable part of the initial wear. It is calculated from the slope of the amount of wear. By using resin-bonded # 600 diamond used as a grindstone material for the disk side material, it is possible to clearly evaluate the difference in wear resistance from the conventional engineering ceramics.

【0019】ピンオンディスク法による比摩耗量の測定
の結果、従来のエンジニアリングセラミックスの中でも
耐摩耗性がいいとされている常圧焼結炭化珪素材料でも
10-6〜10-5mm2 /kg台であるのにたいし、本発
明によるダイヤモンド粒子を含んだ炭化珪素材料では1
-9mm2 /kgの比摩耗量とけた違いに優れた耐摩耗
性が確認された。
As a result of the measurement of the specific wear amount by the pin-on-disk method, even the pressureless sintered silicon carbide material, which is said to have good wear resistance among conventional engineering ceramics, is 10 -6 to 10 -5 mm 2 / kg. In contrast to the table, the silicon carbide material containing diamond particles according to the present invention is 1
It was confirmed that the specific wear amount was 0 -9 mm 2 / kg and the wear resistance was excellent in terms of order.

【0020】以下、本発明の実施例を示すが、本発明
は、下記の実施例に限定されるものではなく、本発明の
技術的思想に基づいて各種の変形および変更が可能であ
ることは当然である。
Examples of the present invention will be shown below, but the present invention is not limited to the following examples, and various modifications and changes can be made based on the technical idea of the present invention. Of course.

【0021】[0021]

【実施例】88〜105ミクロンの粒度、12〜15ミ
クロンの粒度の2種類のグレードの市販の人工ダイヤモ
ンドパウダーを、それぞれ75重量部、25重量部ずつ
粒度配合し、さらに炭素源および成形バインダーとして
炭化率40%のノボラック型フェノール樹脂を25重量
部配合した。乳鉢で混合した後、1000kg/cm2
の成形圧力で12×5×60mmに金型成形した。75
0℃で60分間、真空脱脂および炭化を行い、3×4×
20mmに開口して基材とした。内寸法3×4×20m
mの窒化ほう素製の型枠にぴったりと基材をはめ込み、
基材に接して上法に金属珪素粉を1.5g充填した。そ
のまま真空炉で1500℃で30分間加熱し、金属珪素
粉を溶融させ基材に浸透反応させて、ダイヤモンド粉粒
体を含んだ反応焼結炭化珪素材料を生成させた。冷却・
脱型後、付着した過剰の金属珪素を研削除去し、3×4
×20mmのテフトピースを製作した。このテストピー
スを図1に示したピンオンディスク法の試験装置にセッ
トし、試験荷重1.3kg、60rpmで乾式で、しか
し周囲に水を流して摺動発熱を逃がしながら摩耗試験を
行ったところ、表1の結果を得た。3本のテストピース
の平均値は1.5×10-9mm2 /kgの比摩耗量であ
った。
EXAMPLE Two kinds of commercially available artificial diamond powders having a particle size of 88 to 105 microns and a particle size of 12 to 15 microns were blended in a particle size of 75 parts by weight and 25 parts by weight, respectively, and further used as a carbon source and a forming binder. 25 parts by weight of a novolac type phenol resin having a carbonization rate of 40% was blended. After mixing in a mortar, 1000 kg / cm 2
Molding was carried out at a molding pressure of 12 × 5 × 60 mm. 75
Vacuum degreasing and carbonization at 0 ° C for 60 minutes, 3 × 4 ×
The substrate was opened at 20 mm. Inner dimension 3 × 4 × 20m
Fit the base material exactly into the m boron nitride formwork,
In contact with the base material, 1.5 g of metal silicon powder was filled by the above method. As it was, it was heated in a vacuum furnace at 1500 ° C. for 30 minutes to melt the metallic silicon powder and cause a permeation reaction into the base material to produce a reaction sintered silicon carbide material containing diamond powder particles. cooling·
After demolding, remove excess adhered metallic silicon by grinding and remove 3 × 4
A × 20 mm theft piece was manufactured. This test piece was set in the test device of the pin-on-disk method shown in FIG. 1, and a wear test was conducted while the test load was 1.3 kg and was dry at 60 rpm, but water was flowed around to allow sliding heat to escape. The results shown in Table 1 were obtained. The average value of the three test pieces was a specific wear amount of 1.5 × 10 −9 mm 2 / kg.

【0022】〔比較例〕一方、同寸法のテストピースを
常圧焼結炭化珪素で作製し、同条件でピンオンディスク
法で摩耗試験したところ、表1に示したように3本のテ
ストピースの平均値は7.2×10-6mm2 /kgと、
本発明のダイヤモンド粉粒体を含んだ反応焼結炭化珪素
材料に比較して非常に大きな比摩耗量であった。
[Comparative Example] On the other hand, a test piece having the same size was made of pressure-bonded sintered silicon carbide and subjected to a wear test by the pin-on-disk method under the same conditions. As shown in Table 1, three test pieces were obtained. Has an average value of 7.2 × 10 −6 mm 2 / kg,
The specific wear amount was very large as compared with the reaction sintered silicon carbide material containing the diamond powder of the present invention.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明のダイヤモンド粉粒体を含んだ耐
摩耗製セラミックス材料およびその製造方法によれば、
従来のエンジニアリングセラミックスでは耐えられなか
った高負荷条件下での使用にも十分に耐えられる耐摩耗
性セラミックス材料を、あるいは潤滑剤を使用しない条
件下での固体接触下の摺動に対する耐摩耗製セラミック
ス材料を従来のダイヤモンド焼結体を製造する場合のよ
うな高温高圧装置を必要とせず通常の真空炉または非酸
化性雰囲気炉で製造し、提供することができる。
EFFECT OF THE INVENTION According to the wear-resistant ceramic material containing diamond powder and the method for producing the same of the present invention,
Wear-resistant ceramic materials that can withstand use under high load conditions that conventional engineering ceramics cannot withstand, or wear-resistant ceramics against sliding under solid contact under the condition that no lubricant is used. The material can be manufactured and provided in a normal vacuum furnace or a non-oxidizing atmosphere furnace without requiring a high temperature and high pressure apparatus as in the case of manufacturing a conventional diamond sintered body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐摩耗性セラミックスの乾式摺動摩耗
試験を行うピンオンディスク法を行なう装置を示した概
念図である。
FIG. 1 is a conceptual diagram showing an apparatus for performing a pin-on-disk method for performing a dry sliding wear test of wear resistant ceramics of the present invention.

【符号の説明】[Explanation of symbols]

1 ピン(3×4×20mm) 2 ディスク(φ60mmレジンボンド#600ダイヤ
モンドディスク) 3 ピンホルダー 4 試験荷重 5 回転テーブル
1 pin (3 x 4 x 20 mm) 2 disc (φ60 mm resin bond # 600 diamond disc) 3 pin holder 4 test load 5 rotary table

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛・カーボンブラック・加熱により炭
素源となる炭化性有機化合物などの炭素源に必要に応じ
て炭化珪素粉粒体を配合した原料層において、炭素源の
一部または全部をダイヤモンド粉粒体とし、真空中また
は非酸化性雰囲気中で加熱し、溶融させた珪素を上記原
料層に浸透させ、原料層中の炭素源と反応させて新たに
生成した炭化珪素により結合させたダイヤモンド粉粒体
を含む反応焼結炭化珪素材料であって、レジンボンドの
ダイヤモンドディスク(#600、集中度100)を用
いたピンオンディスク法(荷重1kg、乾式摺動条件)
による比摩耗量が、1×10-8mm2 /kgより少ない
耐摩耗性セラミックス材料。
1. In a raw material layer in which a carbon source such as graphite, carbon black, or a carbonizing organic compound that becomes a carbon source by heating is optionally mixed with silicon carbide powder, a part or all of the carbon source is diamond. Diamond that is made into powder and granules, heated in vacuum or in a non-oxidizing atmosphere, melted silicon is infiltrated into the raw material layer, and is reacted with the carbon source in the raw material layer to be bonded by newly generated silicon carbide. Pin-on-disk method (load 1 kg, dry sliding condition) using a resin-bonded diamond disk (# 600, concentration 100), which is a reaction-bonded silicon carbide material containing powder particles.
A wear-resistant ceramic material having a specific wear amount of less than 1 × 10 −8 mm 2 / kg.
【請求項2】 黒鉛・カーボンブラック・加熱により炭
素源となる炭化性有機化合物などの炭素源に必要に応じ
て炭化珪素粉粒体を配合した原料層において、炭素源の
一部または全部をダイヤモンド粉粒体とし、高温高圧装
置を用いることなく(5〜6GPa、1400〜155
0℃というダイヤモンドの安定条件下ではなく)、真空
中または非酸化性雰囲気中で加熱し、溶融させた珪素を
上記原料層に浸透させ、原料層中の炭素源と反応させて
新たに生成した炭化珪素により結合させることを特徴と
する耐摩耗性セラミックス材料の製造方法。
2. In a raw material layer in which a carbon source such as graphite, carbon black, or a carbonizing organic compound which becomes a carbon source by heating is optionally mixed with silicon carbide powder particles, part or all of the carbon source is diamond. As powder and granules, without using high temperature and high pressure equipment (5-6 GPa, 1400-155
It was heated in a vacuum or in a non-oxidizing atmosphere (not under the stable condition of diamond of 0 ° C.) to infiltrate the melted silicon into the raw material layer and react with the carbon source in the raw material layer to newly generate. A method for producing a wear-resistant ceramic material, which comprises bonding with silicon carbide.
JP3174744A 1991-06-20 1991-06-20 Wear resistant ceramic material and its production Pending JPH06199571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174744A JPH06199571A (en) 1991-06-20 1991-06-20 Wear resistant ceramic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174744A JPH06199571A (en) 1991-06-20 1991-06-20 Wear resistant ceramic material and its production

Publications (1)

Publication Number Publication Date
JPH06199571A true JPH06199571A (en) 1994-07-19

Family

ID=15983926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174744A Pending JPH06199571A (en) 1991-06-20 1991-06-20 Wear resistant ceramic material and its production

Country Status (1)

Country Link
JP (1) JPH06199571A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012866A1 (en) * 1997-09-05 1999-03-18 Frenton Limited Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
WO2002042240A2 (en) 2000-11-21 2002-05-30 Skeleton Technologies Ag A heat conductive material
US6447852B1 (en) 1999-03-04 2002-09-10 Ambler Technologies, Inc. Method of manufacturing a diamond composite and a composite produced by same
WO2004007401A1 (en) 2002-06-18 2004-01-22 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
EP1499572A1 (en) * 2002-04-12 2005-01-26 John Crane Inc. A composite body of silicon carbide and binderless carbon and process for producing
US7008672B2 (en) 1998-09-28 2006-03-07 Skeleton Technologies Ag Method of manufacturing a diamond composite and a composite produced by same
KR100657798B1 (en) * 1997-09-05 2006-12-14 스켈레톤 테크놀로지스 에이지 Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
JP2008239477A (en) * 1998-09-28 2008-10-09 Element Six Ltd Diamond composite
US8757472B2 (en) 2007-07-17 2014-06-24 David Patrick Egan Method for joining SiC-diamond
JP2019006662A (en) * 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239476A (en) * 1997-09-05 2008-10-09 Element Six Ltd Diamond-silicon carbide-silicon composite
US6179886B1 (en) 1997-09-05 2001-01-30 Ambler Technologies, Inc. Method for producing abrasive grains and the composite abrasive grains produced by same
KR100657798B1 (en) * 1997-09-05 2006-12-14 스켈레톤 테크놀로지스 에이지 Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
EP1253123A1 (en) * 1997-09-05 2002-10-30 Frenton Limited Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
EA003437B1 (en) * 1997-09-05 2003-04-24 Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Материалов" Method of manufacturing a diamond-silicon carbide-silicon composite and composite produced by this method
WO1999012866A1 (en) * 1997-09-05 1999-03-18 Frenton Limited Method of manufacturing a diamond-silicon carbide-silicon composite and a composite produced by this method
US7008672B2 (en) 1998-09-28 2006-03-07 Skeleton Technologies Ag Method of manufacturing a diamond composite and a composite produced by same
JP2008239477A (en) * 1998-09-28 2008-10-09 Element Six Ltd Diamond composite
US6447852B1 (en) 1999-03-04 2002-09-10 Ambler Technologies, Inc. Method of manufacturing a diamond composite and a composite produced by same
WO2002042240A2 (en) 2000-11-21 2002-05-30 Skeleton Technologies Ag A heat conductive material
EP1499572A1 (en) * 2002-04-12 2005-01-26 John Crane Inc. A composite body of silicon carbide and binderless carbon and process for producing
EP1499572A4 (en) * 2002-04-12 2009-12-30 Crane John Inc A composite body of silicon carbide and binderless carbon and process for producing
WO2004007401A1 (en) 2002-06-18 2004-01-22 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
EP2336098A1 (en) * 2002-06-18 2011-06-22 Kabushiki Kaisha Toshiba Process for producing part of silicon carbide matrix composite material
US8568650B2 (en) 2002-06-18 2013-10-29 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US7235506B2 (en) 2002-06-18 2007-06-26 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US8757472B2 (en) 2007-07-17 2014-06-24 David Patrick Egan Method for joining SiC-diamond
JP2019006662A (en) * 2017-06-28 2019-01-17 博 石塚 Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same

Similar Documents

Publication Publication Date Title
JP5096195B2 (en) Diamond composite
JP5047016B2 (en) Diamond-silicon carbide-silicon composite material
US6709747B1 (en) Method of manufacturing a diamond composite and a composite produced by same
EP1019338B1 (en) A method for producing abrasive grains and the abrasive grains produced by this method
IE48815B1 (en) Polycrystalline body of diamond and/or cubic boron nitride and method for producing same
JP2005523225A (en) Composite and production method of silicon carbide and binderless carbon
JPS6143310B2 (en)
EP0698447B1 (en) Abrasive body
US4019913A (en) Process for fabricating silicon carbide articles
JPH06199571A (en) Wear resistant ceramic material and its production
JPS5823459B2 (en) High-density phase boron nitride-containing sintered body for cutting tools
JPS6158862A (en) Silicon carbide/carbon composite ceramic body and manufacture
US2495257A (en) Diamond abrasive article
Moriguchi et al. Diamond dispersed cemented carbide produced without using ultra high pressure equipment
JPS58120505A (en) Cubic system boron nitride particle
JPS60232873A (en) Polishing/cutting tool and manufacture
JP2020099981A (en) Method for evaluating grindability of grinding wheel containing abrasive grain
JPH09324236A (en) Production of diamond sintered body and its production
JPH0967164A (en) Diamond sintered compact and its production
EP0334415A1 (en) Improved process for the production of ceramic components
CS195153B1 (en) Mixture for active grinding layer of instruments