JPH0967164A - Diamond sintered compact and its production - Google Patents

Diamond sintered compact and its production

Info

Publication number
JPH0967164A
JPH0967164A JP7218758A JP21875895A JPH0967164A JP H0967164 A JPH0967164 A JP H0967164A JP 7218758 A JP7218758 A JP 7218758A JP 21875895 A JP21875895 A JP 21875895A JP H0967164 A JPH0967164 A JP H0967164A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
powder
oxide
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7218758A
Other languages
Japanese (ja)
Inventor
Hitoshi Sumiya
均 角谷
Shuichi Sato
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7218758A priority Critical patent/JPH0967164A/en
Priority to US08/675,932 priority patent/US5769176A/en
Priority to EP96305018A priority patent/EP0752267A3/en
Publication of JPH0967164A publication Critical patent/JPH0967164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a diamond sintered compact having chipping, heat and acid resistances under conditions capable of industrial production. SOLUTION: This diamond sintered compact consists of 0.1-30vol.% material made of a compd. contg. Si, Ti and O and the balance diamond, and a silicon oxide-titanium oxide mixture is used as a sintering aid. This powder is mixed with diamond powder, non-diamond powder or a mixture of them and the resultant mixture is sintered by holding under conditions of pressure and temp. in a region in which diamond is thermodynamically stable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はダイヤモンド焼結体
およびその製造方法に関するものである。本発明のダイ
ヤモンド焼結体は非鉄金属やセラミックス等の切削、研
削工具用素材および石油堀削用途等のドリルビットの刃
先素材として有効に使用できるものである。
The present invention relates to a diamond sintered body and a method for producing the same. INDUSTRIAL APPLICABILITY The diamond sintered body of the present invention can be effectively used as a material for cutting non-ferrous metals, ceramics and the like, as a material for grinding tools and as a blade edge material for drill bits for petroleum excavation applications.

【0002】[0002]

【従来の技術】従来のダイヤモンド焼結体としては、焼
結助剤あるいは結合剤としてCo、Ni、Feなどの鉄
族金属を用いたものや、SiCなどのセラミックスを用
いたものが知られており、非鉄金属の切削工具や、堀削
ビットなどに工業的に利用されている。また、焼結助剤
として炭酸塩を用いたものが知られている(特開平4−
74766号公報、特開平4−114966号公報)。
その他、天然のダイヤモンド焼結体(カーボナード)が
あるが、材質のバラツキが大きく、また産出量も極少量
であるため、ほとんど工業的には使用されていない。
2. Description of the Related Art As a conventional diamond sintered body, one using an iron group metal such as Co, Ni or Fe as a sintering aid or a binder and one using a ceramic such as SiC is known. And is industrially used for non-ferrous metal cutting tools and excavation bits. In addition, there is known one using a carbonate as a sintering aid (Japanese Patent Laid-Open No. Hei 4-
No. 74766, JP-A-4-114966).
In addition, there is a natural diamond sintered body (carbonate), but it is rarely used industrially because of the large variation in the material and the extremely small production amount.

【0003】[0003]

【発明が解決しようとする課題】Coなどの鉄族金属を
焼結助剤としたダイヤモンド焼結体は、Coなどの鉄族
金属がダイヤモンドの黒鉛化を促す触媒として作用する
ため耐熱性に劣る。すなわち、不活性ガス雰囲気中で、
700℃程度で黒鉛化してしまう。また、ダイヤモンド
粒の粒界にCoなどの金属が連続相として存在するため
焼結体の強度はあまり高くなく、欠損しやしい。そし
て、この金属とダイヤモンドの熱膨張差のため熱劣化が
起こり易くなるという問題もある。耐熱性を上げるため
に上記の粒界の金属を酸処理により除去されたものも知
られている。これにより耐熱温度は約1200℃と向上
するが、焼結体が多孔質となるため強度がさらに大幅
(30%程度)に低下する。SiCを結合剤としたダイ
ヤモンド焼結体は耐熱性には優れているが、ダイヤモン
ド粒同士は結合がないため、強度は低い。一方、焼結助
剤として炭酸塩を用いたダイヤモンド焼結体は、Co結
合剤による焼結体に比べると耐熱性に優れているが、1
000℃程度より炭酸塩の分解がはじまり焼結体の強度
が低下する。また、炭酸塩は酸に溶けるため、堀削ビッ
トなどの用途で使用できない。本発明は以上の問題点を
解決して、耐欠損性、耐熱性、耐酸性を有するダイヤモ
ンド焼結体とその製造方法を提供することを意図したも
のである。
A diamond sintered body using an iron group metal such as Co as a sintering aid has poor heat resistance because the iron group metal such as Co acts as a catalyst for promoting the graphitization of diamond. . That is, in an inert gas atmosphere,
It is graphitized at about 700 ° C. Further, since a metal such as Co exists as a continuous phase in the grain boundary of the diamond grain, the strength of the sintered body is not so high and chipping easily occurs. There is also a problem that thermal deterioration easily occurs due to the difference in thermal expansion between the metal and diamond. It is also known that the above-mentioned metal at the grain boundary is removed by an acid treatment in order to increase heat resistance. As a result, the heat-resistant temperature is improved to about 1200 ° C., but the sintered body becomes porous, so that the strength is further significantly reduced (about 30%). The diamond sintered body using SiC as a binder has excellent heat resistance, but the diamond grains do not bond to each other and thus have low strength. On the other hand, a diamond sintered body using carbonate as a sintering aid is superior in heat resistance to a sintered body using a Co binder, but 1
From around 000 ° C., decomposition of carbonate starts and the strength of the sintered body decreases. In addition, since carbonate dissolves in acid, it cannot be used for applications such as excavating bits. The present invention intends to solve the above problems and provide a diamond sintered body having fracture resistance, heat resistance and acid resistance, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、本発明はケイ素とチタンと酸素を含有
する化合物からなる物質を0.1〜30体積%含み残部
がダイヤモンドであるダイヤモンド焼結体を提供する。
また、上記、ケイ素とチタンと酸素を含有する化合物
が、ケイ素の酸化物とチタンの酸化物からなる複合酸化
物または固溶体であるダイヤモンド焼結体を提供する。
As a means for solving the above problems, the present invention is a diamond in which 0.1 to 30% by volume of a substance consisting of a compound containing silicon, titanium and oxygen and the balance is diamond. Provide a sintered body.
Further, there is provided a diamond sintered body, wherein the compound containing silicon, titanium and oxygen is a complex oxide or a solid solution composed of an oxide of silicon and an oxide of titanium.

【0005】また、本発明は、このダイヤモンド焼結体
の製造方法として、焼結助剤として酸化ケイ素と酸化チ
タンの混合物を用い、この粉末と、ダイヤモンド粉末も
しくは非ダイヤモンド炭素粉末またはダイヤモンドと非
ダイヤモンド炭素の混合粉末を混合し、これをダイヤモ
ンドの熱力学的安定領域の圧力、温度条件で保持し、焼
結する方法を提供する。このダイヤモンド焼結体の別の
製造方法として、焼結助剤として酸化ケイ素と酸化チタ
ンの混合物を用い、この粉末の成形体と、ダイヤモンド
粉末の成形体または非ダイヤモンド炭素粉末の成形体ま
たはダイヤモンドと非ダイヤモンド炭素の混合粉末の成
形体とを積層し、これをダイヤモンドの熱力学的安定領
域の圧力、温度条件で保持し、焼結する方法を提供す
る。また、焼結助剤として、酸化ケイ素と酸化チタンの
混合物における酸化チタンの割合が体積%で0.1〜5
0である混合物を用いる方法を提供する。さらに、焼結
助剤として、上記の酸化ケイ素のかわりにケイ酸または
酸化ケイ素の水和物を用いる方法を提供する。
Further, the present invention uses a mixture of silicon oxide and titanium oxide as a sintering aid in the method for producing this diamond sintered body, and this powder, diamond powder or non-diamond carbon powder, or diamond and non-diamond. Provided is a method of mixing a mixed powder of carbon, holding the mixed powder under the pressure and temperature conditions in the thermodynamically stable region of diamond, and sintering the mixture. As another method for producing this diamond sintered body, a mixture of silicon oxide and titanium oxide is used as a sintering aid, and a compact of this powder, a compact of diamond powder or a compact of non-diamond carbon powder, or diamond. Provided is a method of laminating a compact of a mixed powder of non-diamond carbon, holding it under the pressure and temperature conditions of the thermodynamically stable region of diamond, and sintering it. Further, as a sintering aid, the proportion of titanium oxide in the mixture of silicon oxide and titanium oxide is 0.1 to 5% by volume.
A method using a mixture that is 0 is provided. Furthermore, a method of using silicic acid or a hydrate of silicon oxide instead of the above-mentioned silicon oxide as a sintering aid is provided.

【0006】[0006]

【発明の実施の形態】従来、酸化ケイ素またはケイ酸と
酸化チタンの混合物がダイヤモンド焼結体の有効な焼結
助剤として用いられた例はない。この度、本発明者らに
より、酸化ケイ素またはケイ酸と酸化チタンの混合物を
焼結助剤とすることで、従来にない高強度で、かつ耐欠
損性、耐熱性、耐食性に優れたダイヤモンド焼結体が得
られることが見いだされ、本発明に至った。すなわち、
本発明の特徴は、ダイヤモンド焼結体の焼結助剤として
酸化ケイ素(SiO2 )と酸化チタン(TiO2 )の混
合物を用いた点にある。酸化ケイ素のかわりにH4 Si
4 、H2 SiO3 、H2 Si2 2 などのケイ酸や、
SiO2 、nH2 Oなどの水和物を用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Heretofore, there has been no example in which a mixture of silicon oxide or silicic acid and titanium oxide is used as an effective sintering aid for a diamond sintered body. Now, the inventors of the present invention, by using a mixture of silicon oxide or silicic acid and titanium oxide as a sintering aid, have diamond sintering with unprecedented high strength and excellent in fracture resistance, heat resistance, and corrosion resistance. It has been found that a body can be obtained, which led to the present invention. That is,
A feature of the present invention is that a mixture of silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ) is used as a sintering aid for a diamond sintered body. H 4 Si instead of silicon oxide
Silicic acid such as O 4 , H 2 SiO 3 , and H 2 Si 2 O 2 ;
A hydrate such as SiO 2 or nH 2 O may be used.

【0007】これらの酸化ケイ素やケイ酸と酸化チタン
の混合物は、ダイヤモンドに対し、強い触媒作用を示
し、これらを焼結助剤とするとダイヤモンド粒子が極め
て強固に結合したマトリックスが形成される。また、異
常粒成長が起こり難く、均質な組織の焼結体が得られ
る。その結果、従来にない高強度で耐欠損性や耐摩耗性
に優れたダイヤモンド焼結体が得られる。
The mixture of silicon oxide or silicic acid and titanium oxide has a strong catalytic action on diamond, and when these are used as a sintering aid, a matrix in which diamond particles are extremely strongly bonded is formed. Further, abnormal grain growth is unlikely to occur, and a sintered body having a uniform structure can be obtained. As a result, it is possible to obtain a diamond sintered body having a high strength, which is unprecedented, and excellent in fracture resistance and abrasion resistance.

【0008】こうして得られるダイヤモンド焼結体は、
ケイ素とチタンおよび酸素を含有する化合物からなる物
質を含むのが特徴で、このような物質としては、酸化ケ
イ素と酸化チタンの複合酸化物もしくは固溶体が挙げら
れる。このような物質は1500℃程度の高温下でも安
定で、また、酸やアルカリに対しても安定である。この
ため、本発明のダイヤモンド焼結体は耐熱性や耐食性に
も非常に優れた特性を示す。
The diamond sintered body thus obtained is
It is characterized in that it includes a substance composed of a compound containing silicon, titanium and oxygen, and examples of such a substance include a complex oxide or a solid solution of silicon oxide and titanium oxide. Such a substance is stable even at a high temperature of about 1500 ° C., and is also stable to acids and alkalis. Therefore, the diamond sintered body of the present invention has excellent heat resistance and corrosion resistance.

【0009】本発明のダイヤモンド焼結体において、ケ
イ素、チタンおよび酸素を含有する化合物からなる物質
の含有量は0.1〜30体積%が好ましいが、この理由
は0.1体積%未満ではダイヤモンド粒子間の結合性、
すなわち焼結性が低下し、30体積%を越えると過剰の
化合物の影響で、強度、耐摩耗性が低下するからであ
る。原料としては合成ダイヤモンド粉末、天然ダイヤモ
ンド粉末、多結晶ダイヤモンド粉末などを用いることが
できる。粉末の粒径は0.01〜200μmで、用途に
よって微粒または粗粒に粒径を揃えたもの、もしくは微
粒、粗粒の混合物を用いる。また、これらのダイヤモン
ドに代えて黒鉛やグラッシーカーボン、熱分解黒鉛など
の非ダイヤモンドも原料とすることができる。また、ダ
イヤモンドとこれら非ダイヤモンド黒鉛の混合物を用い
ることもできる。焼結助剤として用いられる酸化ケイ素
や酸化チタン粉末の粒径は0.01〜30μmで、焼結
助剤と原料のダイヤモンド粉末を混合して焼結する場合
は原料として用いるダイヤモンド粉末と比べて、これら
の粒径は小さい方が好ましい。
In the diamond sintered body of the present invention, the content of the substance composed of the compound containing silicon, titanium and oxygen is preferably 0.1 to 30% by volume, and the reason is that if the content is less than 0.1% by volume, diamond is contained. Connectivity between particles,
That is, the sinterability decreases, and if it exceeds 30% by volume, the strength and the wear resistance decrease due to the influence of the excess compound. As the raw material, synthetic diamond powder, natural diamond powder, polycrystalline diamond powder and the like can be used. The particle size of the powder is 0.01 to 200 μm, and a particle having a uniform particle size or a coarse particle or a mixture of fine particles and coarse particles is used depending on the application. Further, instead of these diamonds, non-diamond such as graphite, glassy carbon, and pyrolytic graphite can be used as a raw material. Also, a mixture of diamond and these non-diamond graphites can be used. The particle size of the silicon oxide or titanium oxide powder used as a sintering aid is 0.01 to 30 μm, and when the sintering aid and the diamond powder of the raw material are mixed and sintered, compared with the diamond powder used as the raw material. However, it is preferable that these particle sizes are small.

【0010】本発明のダイヤモンド焼結体の製造方法と
しては、ダイヤモンド粉末や非ダイヤモンド粉末と、酸
化ケイ素と酸化チタンの混合物とを、ダイヤモンドが熱
力学的に安定な圧力、温度条件下で保持する方法と、ダ
イヤモンド粉末や非ダイヤモンド黒鉛の成形体と、酸化
ケイ素と酸化チタンの混合物の成形体を積層したものを
原料として、上記の圧力、温度条件下で保持する方法が
ある。ここで、酸化ケイ素と酸化チタンの混合物として
は、酸化チタンの割合が体積%で、0.1〜50%であ
ることが好ましい。酸化チタンの割合が、0.1%より
少ない場合や50%より多い場合は焼結が不十分とな
り、強固な焼結体とするためには、2500℃以上、8
GPa以上の非常に高い焼結温度、圧力条件が必要で、
工業生産が困難である。なお、酸化ケイ素単体、酸化チ
タン単体を焼結助剤とした場合はさらに厳しい圧力温度
条件が必要である。また、酸化ケイ素のかわりにケイ酸
や酸化ケイ素の水和物を用いることができる。この場
合、焼結温度がやや低くても強固な焼結体が得られる。
原料と焼結助剤を混合する方法においては、原料と焼結
助剤を、機械的に乾式または湿式混合した粉末を圧縮成
形したもの、もしくはMo等のカプセルに充填したもの
を高圧高温焼結する。原料粉末が微粒でも焼結助剤を均
一に分散でき、また、厚い形状のダイヤモンド焼結体の
製造が可能である。例えば、良好な仕上げ面が必要な切
削工具(微粒焼結体)の製造や、ダイスなどの厚い形状
を必要とする焼結体の製造に適する。ただし、粗粒の原
料を用いた場合、均一に焼結助剤を混合するのに困難を
要す。一方、原料と焼結助剤を積層配置する方法は、原
料と焼結助剤の板状の成形体をそれぞれ作製し、これら
を積層して接触させ、高圧高温処理する。このとき、焼
結助剤が原料層に拡散含浸し、ダイヤモンド粒子が焼結
する。この方法は、粗粒の原料を用いても焼結助剤を均
一に添加できるため、より高強度で耐摩耗性のあるダイ
ヤモンド焼結体を安定して得ることができ、耐摩耗工具
やドリルビットなどの焼結体の製造に適する。
As a method for producing a diamond sintered body of the present invention, diamond powder or non-diamond powder and a mixture of silicon oxide and titanium oxide are held under a pressure and temperature condition at which diamond is thermodynamically stable. There is a method and a method of holding a molded body of diamond powder or non-diamond graphite and a molded body of a mixture of silicon oxide and titanium oxide as a raw material, and holding the material under the above-mentioned pressure and temperature conditions. Here, as the mixture of silicon oxide and titanium oxide, the proportion of titanium oxide is preferably 0.1 to 50% by volume. If the proportion of titanium oxide is less than 0.1% or more than 50%, sintering will be insufficient, and in order to obtain a strong sintered body, 2500 ° C. or higher, 8
Very high sintering temperature and pressure conditions of GPa or higher are required,
Industrial production is difficult. When silicon oxide simple substance or titanium oxide simple substance is used as a sintering aid, more severe pressure temperature conditions are required. Further, silicic acid or a hydrate of silicon oxide can be used instead of silicon oxide. In this case, a strong sintered body can be obtained even if the sintering temperature is slightly low.
In the method of mixing the raw material and the sintering aid, the raw material and the sintering aid are subjected to high-pressure high-temperature sintering by mechanically dry- or wet-mixing powder compression-molded or filled in a capsule such as Mo. To do. Even if the raw material powder is fine, the sintering aid can be uniformly dispersed, and a thick diamond sintered body can be manufactured. For example, it is suitable for manufacturing a cutting tool (fine-grained sintered body) that requires a good finished surface and a sintered body that requires a thick shape such as a die. However, when a coarse-grain raw material is used, it is difficult to uniformly mix the sintering aid. On the other hand, in the method of stacking and placing the raw material and the sintering aid, plate-shaped compacts of the raw material and the sintering aid are prepared, and these are stacked and brought into contact with each other, and subjected to high-pressure and high-temperature treatment. At this time, the raw material layer is diffused and impregnated with the sintering aid, and the diamond particles are sintered. With this method, even if a coarse-grained raw material is used, the sintering aid can be added uniformly, so that a diamond sintered body with higher strength and wear resistance can be stably obtained. Suitable for manufacturing sintered bodies such as bits.

【0011】[0011]

【実施例】以下本発明により更に詳細に説明するが、本
発明をこれによって限定するものではない。 (実施例1)焼結助剤として粒径1〜2μmのSiO2
とTiO2 の混合物を用いた。SiO2 とTiO2 の配
合は体積比で3:2(TiO2 、40体積%)とした混
合物を用いた。平均粒径3.5μmの合成ダイヤモンド
粉末と、上記混合物の粉末をそれぞれ95体積%、5体
積%の割合で十分に混合し、この混合物をMoカプセル
に入れ、ベルト型の超高圧高温発生装置を用いて、7.
5GPa、2000℃の圧力温度条件で15分間保持
し、焼結させた。得られたダイヤモンド焼結体につい
て、X線回折により組成を同定したところ、ダイヤモン
ドの他、約5体積%の酸化ケイ素と酸化チタンの複合酸
化物が検出された。この焼結体の硬度をヌープ圧子によ
り評価したところ6800kg/mm2 と高硬度であっ
た。また、破壊靱性をインデンテーション法により従来
の市販のCoバインダー焼結体に対し相対比較したとこ
ろ、従来焼結体の約1.3倍の相対靱性であった。ま
た、得られた焼結体を真空中で1200℃に加熱処理し
た後、硬度、靱性を測定したが、処理前とほとんど変化
がなかった。また、酸処理による焼結体の劣化は認めら
れなかった。
EXAMPLES The present invention will be described in more detail below, but the present invention is not limited thereto. (Example 1) SiO 2 having a particle size of 1 to 2 μm as a sintering aid
And a mixture of TiO 2 was used. A mixture of SiO 2 and TiO 2 was used in a volume ratio of 3: 2 (TiO 2 , 40% by volume). A synthetic diamond powder having an average particle size of 3.5 μm and powder of the above mixture were sufficiently mixed at a ratio of 95% by volume and 5% by volume, respectively, and the mixture was put into a Mo capsule, and a belt type ultrahigh pressure and high temperature generator was installed. Use 7.
The pressure and temperature conditions of 5 GPa and 2000 ° C. were maintained for 15 minutes for sintering. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 5% by volume of a composite oxide of silicon oxide and titanium oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated by a Knoop indenter, it was 6800 kg / mm 2 , which was a high hardness. Further, when the fracture toughness was compared with the conventional commercially available Co binder sintered body by the indentation method, the relative toughness was about 1.3 times that of the conventional sintered body. Further, the obtained sintered body was heat-treated at 1200 ° C. in vacuum and then the hardness and toughness were measured, but there was almost no change from that before the treatment. No deterioration of the sintered body due to the acid treatment was observed.

【0012】(実施例2)焼結助剤の、SiO2 とTi
2 の混合比を体積比5:1とした他は、実施例1と同
様にしてダイヤモンド焼結体を作製した。得られた焼結
体には酸化ケイ素と酸化チタンの複合酸化物が含まれて
おり、硬度、靱性、耐熱性とも実施例1と同様であっ
た。
(Example 2) SiO 2 and Ti as sintering aids
A diamond sintered body was produced in the same manner as in Example 1 except that the volume ratio of O 2 was 5: 1. The obtained sintered body contained a composite oxide of silicon oxide and titanium oxide, and had the same hardness, toughness, and heat resistance as in Example 1.

【0013】(実施例3)焼結助剤として、無水ケイ酸
(H3 SiO3 )とTiO2 の体積比2:1の混合物を
用いた他は、実施例1と同様にしてダイヤモンド焼結体
を作製した。得られた焼結体には酸化ケイ素と酸化チタ
ンの複合酸化物が含まれており、硬度、靱性、耐熱性と
も実施例1と同様であった。
(Example 3) Diamond sintering was carried out in the same manner as in Example 1 except that a mixture of silicic acid anhydride (H 3 SiO 3 ) and TiO 2 in a volume ratio of 2: 1 was used as a sintering aid. The body was made. The obtained sintered body contained a composite oxide of silicon oxide and titanium oxide, and had the same hardness, toughness, and heat resistance as in Example 1.

【0014】(実施例4)焼結助剤として、オルトケイ
酸(H4 SiO4 )とTiO2 の体積比3:1の混合物
を用いた他は、実施例1と同様にしてダイヤモンド焼結
体を作製した。得られた焼結体には酸化ケイ素と酸化チ
タンの複合酸化物が含まれており、硬度、靱性、耐熱性
とも実施例1と同様であった。
Example 4 A diamond sintered body was prepared in the same manner as in Example 1 except that a mixture of orthosilicic acid (H 4 SiO 4 ) and TiO 2 in a volume ratio of 3: 1 was used as a sintering aid. Was produced. The obtained sintered body contained a composite oxide of silicon oxide and titanium oxide, and had the same hardness, toughness, and heat resistance as in Example 1.

【0015】(実施例5)焼結助剤として粒径1〜2μ
mのSiO2 とTiO2 の体積比で3:2の混合物を用
いた。平均粒径15μmの合成ダイヤモンド粉末と、上
記混合粉末をそれぞれ厚み2mm、1mmに成形したも
のを交互に積層してMoカプセルに入れ、ベルト型の超
高圧高温発生装置を用いて、7.5GPa、2000℃
の圧力温度条件で15分間保持し焼結した。得られたダ
イヤモンド焼結体についてX線回折により組成を同定し
たところ、ダイヤモンドの他、約2体積%の酸化ケイ素
と酸化チタンの複合酸化物が検出された。この焼結体の
硬度をヌープ圧子により評価したところ約7200kg
/mm2 と高硬度であった。また、破壊靱性をインデン
テーション法により従来の市販のCoバインダー焼結体
に対し相対比較したところ、従来焼結体の約1.4倍の
相対靱性であった。また、得られた焼結体を真空中で1
200℃に加熱処理した後、硬度、靱性を測定したが、
処理前とほとんど変化がなかった。また、酸処理による
焼結体の劣化は認められなかった。
(Example 5) Particle size of 1 to 2 μm as a sintering aid
A mixture of SiO 2 and TiO 2 of m in a volume ratio of 3: 2 was used. A synthetic diamond powder having an average particle diameter of 15 μm and a mixture of the above-mentioned mixed powders each having a thickness of 2 mm and 1 mm were alternately laminated and placed in a Mo capsule. 2000 ° C
The pressure and temperature conditions were maintained for 15 minutes for sintering. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 2% by volume of a composite oxide of silicon oxide and titanium oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated with a Knoop indenter, it was about 7200 kg.
The hardness was as high as / mm 2 . Further, when the fracture toughness was compared with the conventional commercially available Co binder sintered body by the indentation method, the relative toughness was about 1.4 times that of the conventional sintered body. In addition, the obtained sintered body is
After heat treatment at 200 ° C, the hardness and toughness were measured.
There was almost no change from before treatment. No deterioration of the sintered body due to the acid treatment was observed.

【0016】(実施例6)焼結助剤として、無水ケイ酸
(H3 SiO3 )とTiO2 の体積比2:1の混合物を
用いた他は実施例5と同様にしてダイヤモンド焼結体を
作製した。得られた焼結体には酸化ケイ素と酸化チタン
の複合酸化物が含まれており、硬度、靱性、耐熱性とも
実施例5と同様であった。
Example 6 A diamond sintered body was prepared in the same manner as in Example 5 except that a mixture of silicic acid anhydride (H 3 SiO 3 ) and TiO 2 in a volume ratio of 2: 1 was used as a sintering aid. Was produced. The obtained sintered body contained a composite oxide of silicon oxide and titanium oxide, and had the same hardness, toughness, and heat resistance as in Example 5.

【0017】(実施例7)焼結助剤としてSiO2 とT
iO2 の体積比3:2の混合物を用いた。平均粒径3μ
mの高純度等方性黒鉛の厚み2mmの板状成形体と、上
記混合粉末を厚み1mmに型押し成形したものを交互に
積層してMoカプセルに入れ、ベルト型の超高圧高温発
生装置を用いて、7.5GPa、2000℃の圧力温度
条件で15分間保持し、焼結させた。得られたダイヤモ
ンド焼結体について、X線回折により組成を同定したと
ころ、ダイヤモンドの他、約3体積%の酸化ケイ素と酸
化チタンの複合酸化物が検出された。この焼結体の硬度
をヌープ圧子により評価したところ約7000kg/m
2 と高硬度であった。また、破壊靱性をインデンテー
ション法により従来の市販のCoバインダー焼結体に対
し相対比較したところ、従来焼結体の約1.2倍の相対
靱性であった。また、得られた焼結体を真空中で120
0℃に加熱処理した後、硬度、靱性を測定したが、処理
前とほとんど変化がなかった。また、酸処理による焼結
体の劣化は認められなかった。
Example 7 SiO 2 and T as sintering aids
A mixture of iO 2 in a volume ratio of 3: 2 was used. Average particle size 3μ
A plate-shaped compact of high-purity isotropic graphite having a thickness of 2 mm and a mixture of the above-mentioned mixed powders having a thickness of 1 mm and embossed were alternately laminated and put in a Mo capsule, and a belt-type ultrahigh-pressure high-temperature generator was prepared. It was used for 15 minutes under a pressure temperature condition of 7.5 GPa and 2000 ° C. to be sintered. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 3% by volume of a composite oxide of silicon oxide and titanium oxide was detected in addition to diamond. When the hardness of this sintered body was evaluated by a Knoop indenter, it was about 7,000 kg / m.
It had a high hardness of m 2 . Further, when the fracture toughness was compared with that of the conventional commercially available Co binder sintered body by the indentation method, the relative toughness was about 1.2 times that of the conventional sintered body. In addition, the obtained sintered body is vacuumed to 120
After heat treatment at 0 ° C., hardness and toughness were measured, but there was almost no change from that before treatment. No deterioration of the sintered body due to the acid treatment was observed.

【0018】(比較例1)焼結助剤としてSiO2 とT
iO2 の体積比3:2の混合物を用いた。平均粒径3.
5μmの合成ダイヤモンド粉末に、微量の上記混合物の
粉末(約0.05体積%)を添加し、十分に混合したも
のを原料にした他は、実施例1と同様にダイヤモンド焼
結体の製造を試みた。しかし、得られた焼結体には、未
焼結部が多く残留していた。
(Comparative Example 1) SiO 2 and T as sintering aids
A mixture of iO 2 in a volume ratio of 3: 2 was used. Average particle size 3.
A diamond sintered body was manufactured in the same manner as in Example 1 except that a small amount of the above-mentioned mixture powder (about 0.05% by volume) was added to 5 μm synthetic diamond powder and the mixture was sufficiently mixed. I tried. However, many unsintered parts remained in the obtained sintered body.

【0019】(比較例2)焼結助剤としてSiO2 とT
iO2 の体積比3:2の混合物を用いた。平均粒径3.
5μmの合成ダイヤモンド粉末60体積%と、上記混合
物の粉末40体積%を添加し、十分に混合したものを原
料にした他は、実施例1と同様にダイヤモンド焼結体の
製造を試みた。しかし、得られた焼結体は、粒子同士の
結合が十分でなく、硬度は3500kg/mm2 程度と
低かった。
(Comparative Example 2) SiO 2 and T as sintering aids
A mixture of iO 2 in a volume ratio of 3: 2 was used. Average particle size 3.
An attempt was made to manufacture a diamond sintered body in the same manner as in Example 1, except that 60% by volume of 5 μm synthetic diamond powder and 40% by volume of the powder of the above mixture were added and sufficiently mixed. However, in the obtained sintered body, the particles were not sufficiently bonded to each other, and the hardness was as low as 3500 kg / mm 2 .

【0020】(比較例3)焼結助剤としてSiO2 のみ
を用いた他は実施例1と同様にダイヤモンド焼結体の製
造を試みた。しかし、得られた焼結体には、未焼結部が
多く残留していた。
(Comparative Example 3) An attempt was made to manufacture a diamond sintered body in the same manner as in Example 1 except that only SiO 2 was used as a sintering aid. However, many unsintered parts remained in the obtained sintered body.

【0021】(比較例4)焼結助剤としてTiO2 のみ
を用いた他は実施例1と同様にダイヤモンド焼結体の製
造を試みた。しかし、得られた焼結体には、未焼結部が
多く残留していた。
(Comparative Example 4) An attempt was made to manufacture a diamond sintered body in the same manner as in Example 1 except that only TiO 2 was used as a sintering aid. However, many unsintered parts remained in the obtained sintered body.

【0022】(比較例5)焼結助剤として無水ケイ酸の
みを用いた他は実施例1と同様にダイヤモンド焼結体の
製造を試みた。しかし、得られた焼結体には、未焼結部
が多く残留していた。
Comparative Example 5 An attempt was made to manufacture a diamond sintered body in the same manner as in Example 1 except that only silicic acid anhydride was used as a sintering aid. However, many unsintered parts remained in the obtained sintered body.

【0023】[0023]

【発明の効果】以上説明したように、本発明のダイヤモ
ンド焼結体は、従来にない高強度で、耐熱性、耐欠損
性、耐食性を有するので、非鉄金属やセラミックス等の
切削、研削工具用素材の他、石油堀削用途等のドリルビ
ットの刃先素材として有効に使用できる。
As described above, since the diamond sintered body of the present invention has unprecedented high strength, heat resistance, fracture resistance and corrosion resistance, it can be used for cutting and grinding tools such as non-ferrous metals and ceramics. In addition to the material, it can be effectively used as a blade edge material for drill bits for oil excavation.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素とチタンと酸素を含有する化合物
からなる物質を0.1〜30体積%含み残部がダイヤモ
ンドであることを特徴とするダイヤモンド焼結体。
1. A diamond sintered body characterized by containing 0.1 to 30% by volume of a substance consisting of a compound containing silicon, titanium and oxygen, and the balance being diamond.
【請求項2】 ケイ素とチタンと酸素を含有する化合物
が、ケイ素の酸化物とチタンの酸化物からなる複合酸化
物または固溶体であることを特徴とする請求項1に記載
のダイヤモンド焼結体。
2. The diamond sintered body according to claim 1, wherein the compound containing silicon, titanium and oxygen is a complex oxide or a solid solution containing an oxide of silicon and an oxide of titanium.
【請求項3】 焼結助剤として酸化ケイ素と酸化チタン
の混合物を用い、この粉末と、ダイヤモンド粉末もしく
は非ダイヤモンド炭素粉末またはダイヤモンドと非ダイ
ヤモンド炭素の混合粉末を混合し、これをダイヤモンド
の熱力学的安定領域の圧力、温度条件で保持し、焼結す
ることを特徴とする請求項1または2に記載のダイヤモ
ンド焼結体の製造方法。
3. A mixture of silicon oxide and titanium oxide is used as a sintering aid, and this powder is mixed with a diamond powder or a non-diamond carbon powder or a mixed powder of diamond and non-diamond carbon, which is then subjected to thermodynamics of diamond. The method for producing a diamond sintered body according to claim 1 or 2, characterized in that the diamond sintered body is held under the pressure and temperature conditions of a mechanically stable region and then sintered.
【請求項4】 焼結助剤として酸化ケイ素と酸化チタン
の混合物を用い、この粉末の成形体と、ダイヤモンド粉
末の成形体または非ダイヤモンド炭素粉末の成形体また
はダイヤモンドと非ダイヤモンド炭素の混合粉末の成形
体とを積層し、これをダイヤモンドの熱力学的安定領域
の圧力、温度条件で保持し、焼結することを特徴とする
請求項1または2に記載のダイヤモンド焼結体の製造方
法。
4. A mixture of silicon oxide and titanium oxide is used as a sintering aid, and a compact of this powder, a compact of diamond powder or a compact of non-diamond carbon powder, or a mixed powder of diamond and non-diamond carbon. The method for producing a diamond sintered body according to claim 1 or 2, which comprises laminating a compact with a compact, holding the compact under a pressure and temperature conditions in a thermodynamically stable region of diamond, and sintering the compact.
【請求項5】 焼結助剤の酸化ケイ素と酸化チタンの混
合物における酸化チタンの割合が体積%で0.1〜50
%であることを特徴とする請求項3または4に記載のダ
イヤモンド焼結体の製造方法。
5. The proportion of titanium oxide in the mixture of silicon oxide and titanium oxide as a sintering aid is 0.1 to 50% by volume.
%, The method for producing a diamond sintered body according to claim 3 or 4, wherein
【請求項6】 焼結助剤の酸化ケイ素がケイ酸または酸
化ケイ素の水和物であることを特徴とする請求項3から
5に記載のダイヤモンド焼結体の製造方法。
6. The method for producing a diamond sintered body according to claim 3, wherein the sintering aid silicon oxide is silicic acid or a hydrate of silicon oxide.
JP7218758A 1995-07-07 1995-08-28 Diamond sintered compact and its production Pending JPH0967164A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7218758A JPH0967164A (en) 1995-08-28 1995-08-28 Diamond sintered compact and its production
US08/675,932 US5769176A (en) 1995-07-07 1996-07-05 Diamond sintered compact and a process for the production of the same
EP96305018A EP0752267A3 (en) 1995-07-07 1996-07-08 A diamond sintered compact and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7218758A JPH0967164A (en) 1995-08-28 1995-08-28 Diamond sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH0967164A true JPH0967164A (en) 1997-03-11

Family

ID=16724950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7218758A Pending JPH0967164A (en) 1995-07-07 1995-08-28 Diamond sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH0967164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288946A (en) * 2022-01-27 2022-04-08 吉林大学 Preparation method of diamond micro powder composite polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288946A (en) * 2022-01-27 2022-04-08 吉林大学 Preparation method of diamond micro powder composite polymer
CN114288946B (en) * 2022-01-27 2023-09-22 吉林大学 Preparation method of diamond micropowder composite polymer

Similar Documents

Publication Publication Date Title
JPH07242466A (en) Production of polycrystalline cubic boron nitride
JPH02212362A (en) Preparation of polycrystalline cubic system boron nitride/ceramic composite massive material and product therefrom
JPWO2005065809A1 (en) High hardness conductive diamond polycrystal and method for producing the same
JPH11246271A (en) Cubic boron nitride sintered body and its production
EP0698447B1 (en) Abrasive body
KR20080111546A (en) Method of making a cbn compact
HUT63131A (en) Process for producing self-carrying ceramic body of composite material and ceramic body of composite material
JP2013530914A (en) High-strength diamond-SiC compact and manufacturing method thereof
KR102011586B1 (en) Polycrystalline abrasive structure
JPH09142933A (en) Diamond sintered compact and its production
JPH09142932A (en) Diamond sintered compact and its production
JPH0967164A (en) Diamond sintered compact and its production
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof
JPH0952766A (en) Diamond sintered compact and production thereof
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JP4110339B2 (en) Cubic boron nitride sintered body
JP3622261B2 (en) Diamond sintered body and manufacturing method thereof
JPH09324236A (en) Production of diamond sintered body and its production
JP4110338B2 (en) Cubic boron nitride sintered body
WO2003057625A1 (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JPS62105911A (en) Hard diamond mass and production thereof
JP3642082B2 (en) Diamond sintered body and manufacturing method thereof