JP4110339B2 - Cubic boron nitride sintered body - Google Patents

Cubic boron nitride sintered body Download PDF

Info

Publication number
JP4110339B2
JP4110339B2 JP14136598A JP14136598A JP4110339B2 JP 4110339 B2 JP4110339 B2 JP 4110339B2 JP 14136598 A JP14136598 A JP 14136598A JP 14136598 A JP14136598 A JP 14136598A JP 4110339 B2 JP4110339 B2 JP 4110339B2
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
cubic boron
cubic
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14136598A
Other languages
Japanese (ja)
Other versions
JPH11335175A (en
Inventor
均 角谷
伸哉 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14136598A priority Critical patent/JP4110339B2/en
Publication of JPH11335175A publication Critical patent/JPH11335175A/en
Application granted granted Critical
Publication of JP4110339B2 publication Critical patent/JP4110339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は立方晶窒化ホウ素焼結体に関するもので、特に鉄系材料の切削工具として用いた場合に、耐摩耗性、耐欠損性に優れた立方晶窒化ホウ素焼結体に関する。
【0002】
【従来の技術】
立方晶窒化ホウ素(以下、cBNという)は、ダイヤモンドに次ぐ硬度を有し、熱的化学的安定性の高い物質であり、従来より鉄系材料の切削工具として用いられている。現在、切削工具として一般に用いられているcBN焼結体は、cBNの粉末を、TiN、TiC、Coなどの結合材を用いて超高圧下で焼結されたもので、焼結体には10〜60体積%程度の結合材が含まれる。
通常、上記cBN焼結体の原料に用いられるcBN粉末は、六方晶窒化ホウ素(以下、hBNという)を、アルカリ金属やアルカリ土類金属の窒化物やホウ窒化物を触媒として、高温高圧下で変換して合成されたcBNの単結晶である。
【0003】
従来より知られている直接変換によるcBN多結晶体は、例えば特開昭47−34099号、特開平3−159964、特公昭63−394号、特開平8−47801号各公報に示されているように、結晶性のよいhBN(六方晶窒化ホウ素)やpBN(熱分解窒化ホウ素)を用いていたので、十分なhBN→cBN変換を行うのに2100℃以上の温度が必要で、その結果、多結晶体を構成するcBN粒子の粒径が3〜5μmと大きくなり、粒子間の結合力も弱く、高温での強度は低い。すなわち、従来の方法では、高温下で高い強度を有するcBN多結晶体は得られない。
【0004】
【発明が解決しようとする課題】
cBNはへき開しやすく、また、触媒をインクルージョンとして含むため、強度があまり高くなく、特に高温下で強度が大きく低下してまう。このため、このようなcBN結晶を原料として作製された従来のcBN焼結体を切削工具として用いた場合、cBN粒子の破壊、へき開によるマイクロチッピングなどにより工具刃先が摩耗したり、欠損(チッピング)しやすいという問題がある。 cBN焼結体の切削性能、寿命の向上のためには、原料のcBN粉末をより強靱なものとする必要がある。一部で研削用砥粒として用いられている多結晶体砥粒は、単結晶の砥粒より強度的にやや改善される。しかし、従来の多結晶砥粒は、構成する一次粒子の粒径が数μmから数十μmと粗く不揃いで、また、粒子結合が不十分であり、強度的に十分とはいえない。
本発明は、上記の問題を解決するために開発されたもので、高強度で、耐熱性に優れたcBN単相の多結晶体を作製し、それを粉砕して、cBN焼結体の原料とし、耐摩耗性、耐欠損性に優れたcBN焼結体を提供することを目的とする。
【0005】
【課題を解決するための手段】
すなわち、直接変換によるcBN多結晶体作製において、出発物質に高純度化が可能な微粒もしくは低結晶性の常圧型BNを用い、粒成長の起こらない温度範囲で変換焼結して、粒子同士の結合力、粒径及び未変換hBN(圧縮型hBNとして焼結体内に残留)の残留量を制御した。その結果、従来にない高強度で耐熱性に優れた焼結体が得られることを見い出した。そして、この焼結体を粉砕したcBN多結晶体粉末を原料として、結合材を用いて、cBN焼結体を作製し、切削工具として性能を評価したところ、耐摩耗性、耐欠損性とも従来のcBN焼結体に比べ、格段に優れた切削性能を有することがわかり、本発明に至った。本発明のcBN焼結体と従来のcBN焼結体のそれぞれの概念図を図1に示す。
【0006】
すなわち、本発明は、(1)立方晶窒化ホウ素と、分散した結合材とからなる立方晶窒化ホウ素焼結体であって、該焼結体を構成する立方晶窒化ホウ素が、平均結晶粒径1μm以下、好ましくは0.5μm以下の微細な立方晶窒化ホウ素の結晶からなる多結晶体であり、
(2)前記立方晶窒化ホウ素の結晶からなる多結晶体は、圧縮型六方晶窒化ホウ素を0.01〜0.5体積%、好ましくは0.01〜0.3体積%含むことを特徴とする立方晶窒化ホウ素焼結体、
【0007】
(3)前記立方晶窒化ホウ素の結晶からなる多結晶体は、ホウ素と酸素を含む化合物を、炭素と窒素の存在下で還元窒化することにより合成された低圧相窒化ホウ素を出発物質として、高温高圧下で立方晶窒素ホウ素に直接変換させると同時に焼結させることで作製した立方晶窒素ホウ素単相の焼結体を粉砕することにより得られる多結晶体であることを特徴とする上記(1)又は(2)に記載の立方晶窒化ホウ素焼結体、
(4)前記立方晶窒化ホウ素への直接変換は、ホウ素と酸素とを含む化合物の沸点以上の温度で、前記低圧相窒素ホウ素を非酸化性雰囲気で加熱したのち行われることを特徴とする上記(3)に記載の立方晶窒化ホウ素焼結体、
【0008】
(5)前記立方晶窒化ホウ素の結晶からなる多結晶体が結合し、その連続した多結晶体の粒界に結合相が分散していることを特徴とする上記(1)〜(4)のいずれかに記載の立方晶窒化ホウ素焼結体、
(6)前記立方晶窒化ホウ素の結晶からなる多結晶体の含有量が、80〜95体積%、好ましくは85〜95体積%である上記(1)〜(5)のいずれかに記載の立方晶窒化ホウ素焼結体、
【0009】
(7)前記結合相がW又は/及びCoを主成分とする化合物からなることを特徴とする上記(1)〜(6)のいずれかに記載の立方晶窒化ホウ素焼結体、
(8)前記結合相がAlを、好ましくは18〜30重量%含むことを特徴とする上記(1)〜(7)のいずれかに記載の立方晶窒化ホウ素焼結体、
(9)前記結合相がAlを主成分とする化合物を含むことを特徴とする上記(1)〜(6)のいずれかに記載の立方晶窒化ホウ素焼結体、
【0010】
(10)ホウ素と酸素を含む化合物を炭素と窒素の存在下で還元窒化して低圧相窒化ホウ素を合成し、得られた低圧相窒化ホウ素を出発物質として高温高圧下で立方晶窒化ホウ素に直接変換させると同時に焼結し、得られた立方晶窒化ホウ素単相の焼結体を粉砕し、これを結合材と混合して超高圧・高温条件下で焼結することを特徴とする立方晶窒化ホウ素焼結体の製造方法、
(11)前記立方晶窒化ホウ素への直接変換は、ホウ素と酸素とを含む化合物の沸点以上の温度で前記低圧相窒化ホウ素を非酸化性雰囲気で加熱した後に行うことを特徴とする上記(10)に記載の立方晶窒化ホウ素の結晶からなる多結晶体の製造方法を提供するものである。
上記(4)及び(11)における非酸化性雰囲気としては通常、窒素、アルゴン、真空等を用いるのが好ましい。また、上記(9)におけるAlを主成分とする化合物としてはAlN、AlB2 、Al2 3 、AlSi、NiAl等が挙げられる。
【0011】
【発明の実施の形態】
本発明のcBN焼結体の原料となるcBN多結晶体粉末は、hBN→cBN直接変換法で、粒子同士の結合力、粒径及び未変換hBN(圧縮型hBNとして焼結体内に残留)の残留量を制御することにより作製された高強度、耐熱性cBN多結晶体を粉砕することにより得られる。
この高強度、耐熱性cBN多結晶体の作製は具体的には、出発原料に高純度で微粒もしくは低結晶性の常圧相BNを用い、粒成長の起こらない温度範囲でcBNに直接変換焼結することにより行う。
【0012】
ここで出発原料に用いる高純度で微粒もしくは低結晶性の常圧型BNは、酸化ホウ素やホウ酸を、炭素や有機物で還元し、窒化させて作製されたものが好ましい。通常、常圧型BNの合成方法として、酸化ホウ素やホウ酸をアンモニアと反応させる方法が一般に工業的に行われている。しかし、このようにして得られたBNは、高温で熱処理するとhBNへ結晶化、もしくは粒成長する。このため、この方法により微細で低結晶性の常圧型BNを合成しても、不純物の酸化ホウ素を除去するための高温精製処理(窒素ガス中2050℃以上、真空中1650℃以上など)を行うと、hBNに結晶化、粒成長してしまう。これに対し、酸化ホウ素やホウ酸を炭素と窒素の存在下で還元窒化させた常圧型BNは、高温で熱処理しても結晶化しない特徴があり、したがって、この方法で微粒で低結晶性の常圧型BNを合成し、窒素ガス中2050℃以上又は真空中1650℃以上などの高純度精製処理を行うことで、酸化ホウ素や吸着ガスのない直接変換焼結に非常に適した常圧型BNが得られる。上記の還元窒化はメラミンのような窒素と炭素を含む化合物を用いて行うこともできる。
【0013】
このcBN多結晶体の合成(焼結)条件は、圧力6〜7GPa、温度1550℃〜2100℃が好ましい。特に焼結温度が重要で、低いとcBNへの変換が十分でなく、高すぎるとcBNの粒成長が進行し、cBN同士の結合力が小さくなる。cBNの粒成長の起こらない焼結温度は、出発原料の結晶性、粒径により変化する。
【0014】
上記の適切な焼結温度範囲で焼結したcBN多結晶体は、平均粒径1μm以下、好ましくは0.5μm以下のcBNからなる緻密な組織を有し、曲げ強度が高い。この多結晶体の破面を見ると、粒内破壊が支配的で、粒子同士の結合力が強いことを示している。1000℃の高温でも強度が低下せず、むしろ室温より向上する傾向がある。高温下で、粒子内の転位の移動による塑性変形が起こり、それにより亀裂先端での応力集中が緩和され、破壊強度が向上すると考えられる。
【0015】
一方、これにより高い温度で焼結した多結晶体は、平均粒径が1μmを越え、破面を見ると主に粒界で破壊し、粒間結合が弱いことを示した。高温下ではさらに強度が低下、1000℃では室温の約半分程度の強度となる。高温下では弱い粒界が更に弱化し、粒界で不均一な変形がおこるため、高温での強度が低下すると考えられる。
ここで、cBN粒径のコントロールは直接変換焼結時の温度で行う。すなわち、1μm以下、特に0.5μm以下の微粒状態をコントロールするために、出発原料として微粒で低結晶性の常圧型のBNを用いそして低温域で直接変換焼結する必要がある。通常のhBNやpBNでは2100℃以上にしなければcBNに変換しないので1μm以下にコントロールできない。
【0016】
また、このcBN多結晶体は0.01〜0.5体積%の圧縮型hBNを含むのが特徴である。この程度の圧縮型hBNは多結晶体の強度に影響を及ぼさない。むしろ亀裂の進展を阻止し、靱性を向上させる効果がある。圧縮型hBNが0.01体積より少ない多結晶体は靱性が低下し、0.5体積%を越えると、圧縮型hBNでの応力集中が大きくなり、強度が低下する。
こうして得られたcBN多結晶体は、微粒で、cBN粒子同士が強固に結合して緻密な組織を有するため、高強度で、高温下でもその強度が低下することがない。1000℃を越える温度では強度が向上するという従来のcBN焼結体にみられない特徴を有す。1000℃以上の強度は、従来のcBN焼結体の強度の2倍以上となる。
この多結晶体を粉砕することで、従来のcBN結晶粒にない高強度で耐熱性の高いcBN多結晶粒が得られる。このcBN多結晶粒を切削工具用cBN焼結体の原料とすることで、本発明の耐摩耗性、耐欠損性に優れたcBN焼結体が得られる。
本発明の焼結体組織はcBN多結晶体粉末の粒度、結合材の粒度及びそれ等の混合比率に応じて図1(a)に示されるように多結晶体の粒界に結合材が分散した相を形成している。このような焼結体を切削工具として用いると耐摩耗性、耐欠損性に優れた切削性能が得られる。
【0017】
【実施例】
以下、本発明の具体的な実施例をあげ、本発明の効果を一層明らかにする。
(実施例1)
窒素雰囲気中で、酸化ホウ素(B2 3 )とメラミン(C3 6 6 )を反応させて微細なhBNの粉末を合成し、さらに、窒素雰囲気中、2100℃で2時間処理した。得られたhBN粉末は、平均粒度0.1μmで酸素含有量は0.1重量%であった。このhBN粉末を6ton/cm2 で型押し成形、この成形体を再度、高周波炉で、N2 ガス中、2100℃で2時間処理した。
次にこの高純度化処理した試料をMoカプセルに入れ、ベルト型高圧発生装置で圧力6.5GPaで1700℃〜2100℃の温度条件で15分処理し、cBNに変換焼結した。
得られたcBN焼結体は表1に示す結晶粒子の大きさと圧縮型hBNを含む緻密な焼結体で、粒子同士が強固に結合した構造を有している。これらの焼結体を振動ミルで粉砕し、分級して、粒径2〜4μmのcBN多結晶体粉末を得た。
次にW粉末を32重量%、Co粉末を50重量%、Al粉末を18重量%を混合し、これを超硬合金製ポット及びボールを用いて平均粒度1μm以下の結合材粉末を作製した。
【0018】
これらのcBN多結晶体粉末と結合材粉末を体積比で90対10となるように混合し、混合粉末を作製した。次に、Mo製の容器にWC−10重量%Co組成の超硬合金からなる円盤を挿入した後、これらの混合粉末を充填し、真空炉にて10-4Torr、1000℃で10分間加熱して脱気した。次にこの容器を超高圧・高温装置に入れ、圧力53kb、温度1400℃で30分間保持して焼結体を得た。
次に、これらの焼結体の組織を走査型電子顕微鏡で観察したところ、cBN多結晶粒子が相互に結合し、その粒界に結合材が分散していることが認められた。
【0019】
上記各焼結体を切削加工用チップに加工した。これらの切削加工用チップを用いて、直径が120mm長さ300mmであり、外周面に軸方向に垂直な6本の溝が等間隔に形成された、HB200のFC300種からなる丸棒を切削した。切削条件は、切削速度1000m/min、切り込み0.3mm、送り0.1mm/rev.、湿式である。溝で分割された外周面を1パスとし、刃先が欠損するまでの切削時間を表1に示す。
【0020】
【表1】

Figure 0004110339
【0021】
(実施例2)
実施例1の焼結体で粒径0.5μm以下の結晶からなる焼結体を振動ミルで粉砕、分級して、粒径0.5〜2μmのcBN多結晶体粉末を得た。
次にW、Coを主成分とした粉末に、Al粉末、WC粉末等を混合し、これを超硬合金製ポット及ボールを用いて、表2に示される組成を有する結合材粉末を作製した。
これらのcBN多結晶粉末と結合材粉末を表2に示す体積比で混合し、混合粉末を作製した。Mo製の容器にWC−10重量%Co組成の超硬合金からなる円盤を挿入した後、これらの混合粉末を充填し、真空炉にて10-4Torr、1000℃で10分間加熱して脱気した。次にこの容器を超高圧・高温装置に入れ、圧力53kb、温度1400℃で30分間保持して焼結体を得た。
上記各焼結体を切削加工用チップに加工した。これらの切削加工用チップを用いて、直径が120mm、長さ200mmであり、HRC58の耐熱合金インコネル718の丸棒を切削した。切削条件は、切削速度150m/min、切り込み0.15mm、送り0.08mm/rev.、湿式である。工具が欠損又は逃げ面摩耗が0.2mmを超えるまでの切削可能な時間を表2に示す。
【0022】
【表2】
Figure 0004110339
【0023】
(実施例3)
実施例1の焼結体で粒径0.5μm以下の結晶からなる焼結体を振動ミルで粉砕、分級して、粒径2〜6μmのcBN多結晶体粉末を得た。
次にAlを主成分とする表3に示される組成を有する結合材粉末を作製した。Ta製の容器に上記の多結晶cBN粉末を充填した後、表3の組成比になる量の結合材粉末をcBN粉末の上に積層して充填した後、この容器を超高圧・高温装置に入れ、圧力53kb、温度1400℃で30分間保持して焼結体を得た。上記各焼結体を切削加工用チップに加工した。これらの切削加工用チップを用いて、直径が100mm、長さ300mmであり、HRC62のSKH51種の丸棒を切削した。切削条件は、切削速度60m/min、切り込み0.3mm、送り0.12mm/rev.、湿式である。工具が欠損するまでの時間を表3に示す。
【0024】
【表3】
Figure 0004110339
【0025】
【発明の効果】
本発明によると多結晶体を粉砕することで、従来のcBN結晶粒にない高強度で耐熱性の高いcBN多結晶粒が得られ、このcBN結晶粒を切削工具用cBN焼結体の原料とすることにより、本発明の耐摩耗性、耐欠損性に優れたcBN焼結体が得られる。本焼結体は、特に鉄系材料の切削工具として用いる場合に、耐摩耗性、耐欠損性について優れた効果を発揮する。
【図面の簡単な説明】
【図1】図1(a)、(b)は、それぞれ本発明のcBN焼結体と従来のcBN焼結体の組織を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cubic boron nitride sintered body, and more particularly to a cubic boron nitride sintered body excellent in wear resistance and fracture resistance when used as a cutting tool for an iron-based material.
[0002]
[Prior art]
Cubic boron nitride (hereinafter referred to as cBN) has a hardness second to diamond and has high thermal and chemical stability, and has been conventionally used as a cutting tool for iron-based materials. Currently, a cBN sintered body generally used as a cutting tool is obtained by sintering cBN powder under a super-high pressure using a binder such as TiN, TiC, or Co. About ~ 60% by volume of binder is included.
Usually, the cBN powder used as a raw material for the cBN sintered body is hexagonal boron nitride (hereinafter referred to as hBN), a high-temperature and high-pressure catalyst using an alkali metal or alkaline earth metal nitride or boronitride as a catalyst. It is a single crystal of cBN synthesized by conversion.
[0003]
Conventionally known cBN polycrystals by direct conversion are disclosed in, for example, JP-A-47-34099, JP-A-3-159964, JP-B-63-394, and JP-A-8-47801. As described above, since hBN (hexagonal boron nitride) and pBN (pyrolytic boron nitride) having good crystallinity were used, a temperature of 2100 ° C. or higher is necessary to perform sufficient hBN → cBN conversion. The particle size of the cBN particles constituting the polycrystal is as large as 3 to 5 μm, the bonding force between the particles is weak, and the strength at high temperature is low. That is, the conventional method cannot obtain a cBN polycrystal having high strength at high temperatures.
[0004]
[Problems to be solved by the invention]
Since cBN is easy to cleave and contains a catalyst as an inclusion, the strength is not so high, and the strength is greatly reduced particularly at high temperatures. For this reason, when a conventional cBN sintered body produced using such a cBN crystal as a raw material is used as a cutting tool, the cutting edge of the tool is worn due to cBN particle destruction, cleaving, or chipping. There is a problem that it is easy to do. In order to improve the cutting performance and life of the cBN sintered body, it is necessary to make the cBN powder of the raw material tougher. Polycrystalline abrasive grains, which are partially used as abrasive grains for grinding, are slightly improved in strength than single crystal abrasive grains. However, the conventional polycrystalline abrasive grains are not sufficiently strong in strength because the primary particles constituting them are roughly irregular in particle size of several μm to several tens of μm, and the particle bonding is insufficient.
The present invention was developed in order to solve the above-described problems. A cBN single-phase polycrystal having high strength and excellent heat resistance was produced, and pulverized to obtain a raw material for a cBN sintered body. An object of the present invention is to provide a cBN sintered body having excellent wear resistance and fracture resistance.
[0005]
[Means for Solving the Problems]
That is, in the preparation of cBN polycrystals by direct conversion, the starting material is made of fine particles that can be highly purified or low-pressure normal pressure BN, and converted and sintered in a temperature range in which no grain growth occurs. The binding strength, particle size, and residual amount of unconverted hBN (residual in the sintered body as compressed hBN) were controlled. As a result, it has been found that a sintered body having a high strength and excellent heat resistance, which has never been obtained, can be obtained. The cBN polycrystalline body powder obtained by pulverizing the sintered body was used as a raw material to produce a cBN sintered body using a binder, and the performance was evaluated as a cutting tool. Conventionally, both wear resistance and fracture resistance were obtained. Compared to the cBN sintered body, it was found that the cutting performance was remarkably superior, and the present invention was achieved. The conceptual diagram of each of the cBN sintered body of the present invention and the conventional cBN sintered body is shown in FIG.
[0006]
That is, the present invention provides (1) a cubic boron nitride sintered body comprising cubic boron nitride and a dispersed binder, and the cubic boron nitride constituting the sintered body has an average crystal grain size. A polycrystalline body composed of fine cubic boron nitride crystals of 1 μm or less, preferably 0.5 μm or less ,
(2) The polycrystalline body composed of cubic boron nitride crystals contains 0.01 to 0.5% by volume, preferably 0.01 to 0.3% by volume, of compressed hexagonal boron nitride. stand-cubic boron nitride sintered body which,
[0007]
(3) The polycrystalline body composed of the cubic boron nitride crystal has a low temperature phase boron nitride synthesized by reducing and nitriding a compound containing boron and oxygen in the presence of carbon and nitrogen as a starting material. The above-mentioned (1) characterized in that it is a polycrystal obtained by pulverizing a cubic nitrogen-boron single-phase sintered body produced by direct conversion to cubic nitrogen-boron at the same time under high pressure and sintering. ) Or the cubic boron nitride sintered body according to (2),
(4) The direct conversion to cubic boron nitride is performed after heating the low-pressure phase nitrogen boron in a non-oxidizing atmosphere at a temperature equal to or higher than the boiling point of the compound containing boron and oxygen. The cubic boron nitride sintered body according to (3),
[0008]
(5) The above-mentioned (1) to (4), wherein the polycrystals composed of the cubic boron nitride crystals are bonded, and the binder phase is dispersed at the grain boundaries of the continuous polycrystals. Cubic boron nitride sintered body according to any one of the above,
(6) The cubic according to any one of the above (1) to (5), wherein the content of the polycrystalline body composed of cubic boron nitride crystals is 80 to 95% by volume, preferably 85 to 95% by volume. Sintered boron nitride sintered body,
[0009]
(7) The cubic boron nitride sintered body according to any one of (1) to (6) above, wherein the binder phase is composed of a compound containing W or / and Co as a main component.
(8) The cubic boron nitride sintered body according to any one of (1) to (7), wherein the binder phase contains Al, preferably 18 to 30 % by weight,
(9) The cubic boron nitride sintered body according to any one of (1) to (6), wherein the binder phase includes a compound containing Al as a main component,
[0010]
(10) A low pressure phase boron nitride is synthesized by reducing and nitriding a compound containing boron and oxygen in the presence of carbon and nitrogen, and the obtained low pressure phase boron nitride is directly used as a starting material for cubic boron nitride under high temperature and high pressure. Cubic crystals characterized by being sintered at the same time as being converted, pulverizing the obtained cubic boron nitride single-phase sintered body, mixing this with a binder, and sintering under ultrahigh pressure and high temperature conditions Manufacturing method of boron nitride sintered body,
(11) The direct conversion to cubic boron nitride is performed after the low-pressure phase boron nitride is heated in a non-oxidizing atmosphere at a temperature equal to or higher than the boiling point of the compound containing boron and oxygen (10). And 3) a method for producing a polycrystalline body comprising cubic boron nitride crystals.
As the non-oxidizing atmosphere in the above (4) and (11), it is usually preferable to use nitrogen, argon, vacuum or the like. Examples of the compound mainly composed of Al in the above (9) include AlN, AlB 2 , Al 2 O 3 , AlSi, NiAl, and the like.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The cBN polycrystalline powder used as a raw material for the cBN sintered body of the present invention is obtained by the hBN → cBN direct conversion method. It can be obtained by pulverizing a high-strength, heat-resistant cBN polycrystal produced by controlling the residual amount.
Specifically, this high-strength, heat-resistant cBN polycrystal is prepared by using high-purity, fine-grained or low-crystalline normal pressure phase BN as a starting material, and direct conversion firing to cBN in a temperature range where grain growth does not occur. This is done by tying.
[0012]
Here, the high-purity fine-grained or low-crystalline atmospheric BN used as a starting material is preferably prepared by reducing and nitriding boron oxide or boric acid with carbon or an organic substance. Usually, as a method for synthesizing normal pressure BN, a method of reacting boron oxide or boric acid with ammonia is generally carried out industrially. However, the BN thus obtained crystallizes or grows into hBN when heat-treated at a high temperature. For this reason, even if fine and low crystalline atmospheric BN is synthesized by this method, a high-temperature purification treatment (2050 ° C. or higher in nitrogen gas, 1650 ° C. or higher in vacuum, etc.) is performed to remove boron oxide as an impurity. Then, crystallization and grain growth occur in hBN. On the other hand, atmospheric pressure type BN obtained by reducing and nitriding boron oxide or boric acid in the presence of carbon and nitrogen has a characteristic that it does not crystallize even when heat-treated at a high temperature. By synthesizing normal pressure type BN and performing high-purity purification treatment such as 2050 ° C. or higher in nitrogen gas or 1650 ° C. or higher in vacuum, normal pressure type BN very suitable for direct conversion sintering without boron oxide or adsorption gas is obtained. can get. The above reductive nitriding can also be performed using a compound containing nitrogen and carbon such as melamine.
[0013]
The synthesis (sintering) conditions of this cBN polycrystal are preferably a pressure of 6 to 7 GPa and a temperature of 1550 ° C. to 2100 ° C. In particular, the sintering temperature is important. If the sintering temperature is low, the conversion to cBN is not sufficient, and if it is too high, the grain growth of cBN proceeds and the bonding strength between the cBNs decreases. The sintering temperature at which no grain growth of cBN occurs varies depending on the crystallinity and grain size of the starting material.
[0014]
The cBN polycrystal sintered in the above suitable sintering temperature range has a dense structure composed of cBN having an average particle size of 1 μm or less, preferably 0.5 μm or less, and has high bending strength. Looking at the fracture surface of this polycrystal, it is shown that intragranular fracture is dominant and the bonding force between the particles is strong. Even at a high temperature of 1000 ° C., the strength does not decrease, but rather tends to improve from room temperature. It is considered that plastic deformation occurs due to the movement of dislocations within the particles at high temperatures, thereby relaxing the stress concentration at the crack tip and improving the fracture strength.
[0015]
On the other hand, the polycrystalline body sintered at a high temperature thereby exceeded the average grain size of more than 1 μm, and when the fracture surface was observed, it was mainly broken at the grain boundary, indicating that the intergranular bond was weak. At a high temperature, the strength further decreases, and at 1000 ° C., the strength is about half that of room temperature. It is considered that the strength at high temperatures decreases because weak grain boundaries are further weakened at high temperatures and uneven deformation occurs at the grain boundaries.
Here, the control of the cBN particle size is performed at the temperature during direct conversion sintering. That is, in order to control the fine particle state of 1 μm or less, particularly 0.5 μm or less, it is necessary to use a fine-grained, low-crystalline normal pressure type BN as a starting material and perform direct conversion sintering in a low temperature range. Ordinary hBN and pBN cannot be controlled to 1 μm or less because they are not converted to cBN unless the temperature is 2100 ° C. or higher.
[0016]
The cBN polycrystal is characterized by containing 0.01 to 0.5% by volume of compressed hBN. This level of compressed hBN does not affect the strength of the polycrystal. Rather, it has the effect of preventing the growth of cracks and improving toughness. A polycrystal having a compression type hBN of less than 0.01 volume has low toughness, and if it exceeds 0.5 volume%, the stress concentration in the compression type hBN increases and the strength decreases.
The cBN polycrystal obtained in this way is fine and has a dense structure in which the cBN particles are firmly bonded to each other, so that the strength is high and the strength does not decrease even at high temperatures. It has a characteristic not seen in the conventional cBN sintered body that the strength is improved at a temperature exceeding 1000 ° C. The strength of 1000 ° C. or higher is twice or more the strength of the conventional cBN sintered body.
By crushing this polycrystal, cBN polycrystal grains having high strength and high heat resistance not found in conventional cBN crystal grains can be obtained. By using this cBN polycrystalline grain as a raw material for a cBN sintered body for a cutting tool, the cBN sintered body having excellent wear resistance and fracture resistance according to the present invention can be obtained.
In the sintered body structure of the present invention, as shown in FIG. 1 (a), the binder is dispersed at the grain boundaries of the polycrystal according to the particle size of the cBN polycrystal powder, the particle size of the binder and the mixing ratio thereof. Phase is formed. When such a sintered body is used as a cutting tool, cutting performance excellent in wear resistance and fracture resistance can be obtained.
[0017]
【Example】
Hereinafter, specific examples of the present invention will be given to further clarify the effects of the present invention.
(Example 1)
Boron oxide (B 2 O 3 ) and melamine (C 3 N 6 H 6 ) were reacted in a nitrogen atmosphere to synthesize fine hBN powder, and further treated at 2100 ° C. for 2 hours in a nitrogen atmosphere. The obtained hBN powder had an average particle size of 0.1 μm and an oxygen content of 0.1% by weight. This hBN powder was stamped and molded at 6 ton / cm 2 , and this molded body was again treated at 2100 ° C. for 2 hours in N 2 gas in a high frequency furnace.
Next, this highly purified sample was put in a Mo capsule, treated with a belt type high pressure generator at a pressure of 6.5 GPa under a temperature condition of 1700 ° C. to 2100 ° C. for 15 minutes, and converted to cBN and sintered.
The obtained cBN sintered body is a dense sintered body containing the size of crystal grains and compression type hBN shown in Table 1, and has a structure in which the particles are firmly bonded. These sintered bodies were pulverized with a vibration mill and classified to obtain cBN polycrystalline powder having a particle size of 2 to 4 μm.
Next, 32 wt% of W powder, 50 wt% of Co powder, and 18 wt% of Al powder were mixed, and a binder powder having an average particle size of 1 μm or less was prepared using a cemented carbide pot and balls.
[0018]
These cBN polycrystal powder and binder powder were mixed so that the volume ratio was 90:10 to produce a mixed powder. Next, after inserting a disc made of a cemented carbide of WC-10 wt% Co into a Mo container, these mixed powders were filled and heated at 10 −4 Torr and 1000 ° C. for 10 minutes in a vacuum furnace. Then degassed. Next, this container was put into an ultrahigh pressure / high temperature apparatus and held at a pressure of 53 kb and a temperature of 1400 ° C. for 30 minutes to obtain a sintered body.
Next, when the structure of these sintered bodies was observed with a scanning electron microscope, it was found that the cBN polycrystalline particles were bonded to each other and the binder was dispersed at the grain boundaries.
[0019]
Each of the sintered bodies was processed into cutting chips. Using these cutting tips, a round bar made of FC300 of HB200 having a diameter of 120 mm and a length of 300 mm, and six grooves perpendicular to the axial direction formed on the outer peripheral surface at equal intervals was cut. . Cutting conditions were a cutting speed of 1000 m / min, a cutting depth of 0.3 mm, and a feed of 0.1 mm / rev. It is wet. Table 1 shows the cutting time until the outer peripheral surface divided by the groove is one pass and the cutting edge is lost.
[0020]
[Table 1]
Figure 0004110339
[0021]
(Example 2)
The sintered body of the sintered body of Example 1 made of crystals having a particle size of 0.5 μm or less was pulverized and classified by a vibration mill to obtain a cBN polycrystalline powder having a particle size of 0.5 to 2 μm.
Next, Al powder, WC powder, and the like were mixed with the powder mainly composed of W and Co, and a binder powder having the composition shown in Table 2 was prepared using a cemented carbide pot and ball. .
These cBN polycrystalline powder and binder powder were mixed at a volume ratio shown in Table 2 to prepare a mixed powder. After inserting a disc made of a cemented carbide of WC-10 wt% Co into a container made of Mo, these mixed powders were filled and removed by heating at 10 −4 Torr and 1000 ° C. for 10 minutes in a vacuum furnace. I worried. Next, this container was put into an ultrahigh pressure / high temperature apparatus and held at a pressure of 53 kb and a temperature of 1400 ° C. for 30 minutes to obtain a sintered body.
Each of the sintered bodies was processed into cutting chips. Using these cutting tips, a round bar of HRC58 heat-resistant alloy Inconel 718 having a diameter of 120 mm and a length of 200 mm was cut. Cutting conditions were a cutting speed of 150 m / min, a cutting depth of 0.15 mm, and a feed of 0.08 mm / rev. It is wet. Table 2 shows the possible cutting time until the tool is broken or the flank wear exceeds 0.2 mm.
[0022]
[Table 2]
Figure 0004110339
[0023]
(Example 3)
The sintered body comprising the crystals having a particle size of 0.5 μm or less was pulverized and classified with the sintered body of Example 1 to obtain cBN polycrystalline powder having a particle size of 2 to 6 μm.
Next, a binder powder having a composition shown in Table 3 containing Al as a main component was produced. After filling the above-mentioned polycrystalline cBN powder in a Ta-made container, the binder powder in an amount corresponding to the composition ratio shown in Table 3 is stacked on top of the cBN powder, and this container is then placed in an ultrahigh pressure / high temperature apparatus. And a pressure of 53 kb and a temperature of 1400 ° C. for 30 minutes to obtain a sintered body. Each of the sintered bodies was processed into cutting chips. Using these cutting tips, a SKH51 type round bar of HRC62 having a diameter of 100 mm and a length of 300 mm was cut. Cutting conditions were a cutting speed of 60 m / min, a cutting depth of 0.3 mm, and a feed of 0.12 mm / rev. It is wet. Table 3 shows the time until the tool is lost.
[0024]
[Table 3]
Figure 0004110339
[0025]
【The invention's effect】
According to the present invention, by crushing the polycrystalline body, cBN polycrystalline grains having high strength and high heat resistance, which are not found in conventional cBN crystalline grains, are obtained, and the cBN crystalline grains are used as a raw material for cBN sintered bodies for cutting tools. By doing so, the cBN sintered body excellent in wear resistance and fracture resistance of the present invention is obtained. The sintered body exhibits excellent effects on wear resistance and fracture resistance, particularly when used as a cutting tool for iron-based materials.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic views showing the structures of a cBN sintered body of the present invention and a conventional cBN sintered body, respectively.

Claims (8)

立方晶窒化ホウ素と、分散した結合材とからなる立方晶窒化ホウ素焼結体であって、該焼結体を構成する立方晶窒化ホウ素が、立方晶窒化ホウ素の結晶からなる多結晶体であり、
この多結晶体は、平均結晶粒径1μm以下の微細な立方晶窒化ホウ素の結晶からなると共に、圧縮型六方晶窒化ホウ素を0.01〜0.5体積%含むことを特徴とする立方晶窒化ホウ素焼結体。
And cubic boron nitride, a cubic boron nitride sintered body consisting of a dispersed binder, cubic boron nitride constituting the sintered body is a polycrystalline body comprising a crystal of standing-cubic boron nitride Yes,
This polycrystal is composed of fine cubic boron nitride crystals having an average crystal grain size of 1 μm or less and contains 0.01 to 0.5% by volume of compressed hexagonal boron nitride. Boron sintered body.
前記立方晶窒化ホウ素の結晶からなる多結晶体は、ホウ素と酸素を含む化合物を、炭素と窒素の存在下で還元窒化することにより合成された低圧相窒化ホウ素を出発物質として、高温高圧下で立方晶窒素ホウ素に直接変換させると同時に焼結させることで作製した立方晶窒素ホウ素単相の焼結体を粉砕することにより得られる多結晶体であることを特徴とする請求項に記載の立方晶窒化ホウ素焼結体。The polycrystalline body composed of cubic boron nitride crystals is a low-pressure phase boron nitride synthesized by reductive nitriding a compound containing boron and oxygen in the presence of carbon and nitrogen. according to claim 1, characterized in that a polycrystalline material obtained by grinding the sintered body of cubic boron nitride single phase prepared by causing sintered simultaneously when the directly converted into cubic boron nitride Cubic boron nitride sintered body. 前記立方晶窒化ホウ素への直接変換は、ホウ素と酸素とを含む化合物の沸点以上の温度で、前記低圧相窒素ホウ素を非酸化性雰囲気で加熱したのち行われることを特徴とする請求項1又は2に記載の立方晶窒化ホウ素焼結体。Direct conversion to the cubic boron nitride at a temperature higher than the boiling point of the compound containing boron and oxygen, according to claim 1, characterized in that takes place later heated the low-pressure phase boron nitride in a non-oxidizing atmosphere or 3. A cubic boron nitride sintered body according to 2. 前記立方晶窒化ホウ素の結晶からなる多結晶体が結合し、その連続した多結晶体の粒界に前記結合が分散していることを特徴とする請求項1〜のいずれか一項に記載の立方晶窒化ホウ素焼結体。The cubic polycrystal is attached consisting of crystalline boron nitride, to any one of claims 1 to 3, the said binder in the grain boundary of the continuous polycrystalline material wherein the dispersed The cubic boron nitride sintered body described. 前記立方晶窒化ホウ素の結晶からなる多結晶体の含有量が、80〜95体積%(80体積%を除く)であることを特徴とする請求項1〜のいずれか一項に記載の立方晶窒化ホウ素焼結体。The content of the polycrystalline body comprising a crystal of the cubic boron nitride, cubic according to any one of claims 1 to 4, characterized in that 80 to 95 vol% (excluding 80% by volume) Crystalline boron nitride sintered body. 前記結合がW又は/及びCoを主成分とする化合物からなることを特徴とする請求項1〜のいずれか一項に記載の立方晶窒化ホウ素焼結体。The cubic boron nitride sintered body according to any one of claims 1 to 5 , wherein the binder is made of a compound containing W or / and Co as a main component. 前記結合がAlを含むことを特徴とする請求項1〜のいずれか一項に記載の立方晶窒化ホウ素焼結体。Cubic boron nitride sintered body according to any one of claims 1 to 6, wherein the binder is characterized in that it comprises a Al. 前記結合がAlを主成分とする化合物を含むことを特徴とする請求項1〜のいずれか一項に記載の立方晶窒化ホウ素焼結体。Cubic boron nitride sintered body according to any one of claims 1 to 5, characterized in that it comprises a compound wherein the binding material is mainly composed of Al.
JP14136598A 1998-05-22 1998-05-22 Cubic boron nitride sintered body Expired - Fee Related JP4110339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14136598A JP4110339B2 (en) 1998-05-22 1998-05-22 Cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14136598A JP4110339B2 (en) 1998-05-22 1998-05-22 Cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JPH11335175A JPH11335175A (en) 1999-12-07
JP4110339B2 true JP4110339B2 (en) 2008-07-02

Family

ID=15290298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14136598A Expired - Fee Related JP4110339B2 (en) 1998-05-22 1998-05-22 Cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP4110339B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002886B2 (en) * 2004-07-09 2012-08-15 住友電気工業株式会社 Method for producing cubic boron nitride polycrystal
CN107207365A (en) * 2014-12-31 2017-09-26 戴蒙得创新股份有限公司 Polycrystal cubic boron nitride (PCBN) comprising micro-crystal cubic boron nitride (CBN) and preparation method thereof
EP3808715A4 (en) * 2018-06-18 2022-03-09 Sumitomo Electric Hardmetal Corp. Polycrystalline cubic boron nitride and production method therefor
JP7269967B2 (en) * 2018-06-28 2023-05-09 ダイヤモンド イノヴェーションズ インコーポレイテッド PCBN sintered compact
WO2024005058A1 (en) * 2022-06-28 2024-01-04 京セラ株式会社 Insert and cutting tool

Also Published As

Publication number Publication date
JPH11335175A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
JP2005514300A (en) Low oxygen cubic boron nitride and its products
JP4684599B2 (en) Method for producing cubic boron nitride
JPH07242466A (en) Production of polycrystalline cubic boron nitride
JP4110339B2 (en) Cubic boron nitride sintered body
JP4110338B2 (en) Cubic boron nitride sintered body
EP0762997B1 (en) Ceramic production process
EP0407946B2 (en) Cubic boron nitride sintered compact and method of preparing the same
JP4106590B2 (en) Cubic boron nitride sintered body and manufacturing method thereof
JP2002284511A (en) Method for manufacturing cubic boron nitride
JPWO2004069399A1 (en) Cubic boron nitride, cubic boron nitride synthesis catalyst, and method for producing cubic boron nitride
JPH0510282B2 (en)
US6461990B1 (en) Cubic boron nitride composite particle
JPH09142932A (en) Diamond sintered compact and its production
JPH11322310A (en) Cubic boron nitride polycrystalline abrasive grain and its production
JP5002886B2 (en) Method for producing cubic boron nitride polycrystal
JPH09142933A (en) Diamond sintered compact and its production
JP4183317B2 (en) Method for producing cubic boron nitride
JP2000042807A (en) Precision cutting tool
JP3255750B2 (en) Method for producing diamond-like sintered body
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof
JP3472802B2 (en) Manufacturing method of Sialon sintered body
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JPH0451512B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees