JPH0510282B2 - - Google Patents

Info

Publication number
JPH0510282B2
JPH0510282B2 JP59238550A JP23855084A JPH0510282B2 JP H0510282 B2 JPH0510282 B2 JP H0510282B2 JP 59238550 A JP59238550 A JP 59238550A JP 23855084 A JP23855084 A JP 23855084A JP H0510282 B2 JPH0510282 B2 JP H0510282B2
Authority
JP
Japan
Prior art keywords
powder
pressure
borazine
sintered body
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59238550A
Other languages
Japanese (ja)
Other versions
JPS61117107A (en
Inventor
Shinichi Hirano
Shigeharu Naka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP59238550A priority Critical patent/JPS61117107A/en
Publication of JPS61117107A publication Critical patent/JPS61117107A/en
Publication of JPH0510282B2 publication Critical patent/JPH0510282B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、粒子が微細、球状で、かつ水素を含
有している非晶質窒化ホウ素(以下、a−BNと
いう)粉末とその製造方法に関し、更に詳しく
は、この粉末を用いて焼結体を製造したとき、そ
の焼結体が空孔の少ない緻密構造体になり、組織
も均一になる球状a−BNとその製造方法に関す
る。 〔発明の技術的背景とその問題点〕 窒化ホウ素の焼結体は、フアインセラミツクス
の1つとして最近とみに注目を集めている。これ
らの焼結体としては、立方晶窒化ホウ素(以下、
c−BNという)焼結体、ウルツ型窒化ホウ素
(以下、w−BNという)の各焼結体があり、他
に六方晶窒化ホウ素(以下、h−BNという)焼
結体が知られている。これらのうちとくに、c−
BNの焼結体は高硬度、耐摩耗性に優れた素材と
して脚光を浴び工具用材料の用途分野への展望が
開けている。また、これは一方では極めて高い熱
伝導性と電気抵抗を兼ね備えているため、高密度
集積回路におけるヒートシンク材料として大きな
期待がもたれている。 このc−BN焼結体は大別して次の2つの方法
で製造されている。その第1の方法は、c−BN
の粉末を耐圧、耐熱性の型内に充填して超高圧・
高温下(例えば、5GPa以上、1200℃以上)で焼
結したり、又は、c−BNの粉末とTi、Si、Al、
AlNなどの触媒若しくはこの触媒とTiN、Al2O3
を主体とする結合材とを混合し、この混合粉末を
同じく耐圧、耐熱性の型内に充填して超高圧・高
温下で焼結したりする、いわゆるc−BN粉末を
原料とする方法である。第2の方法は、c−BN
以外の窒化ホウ素の粉末、すなわち前述したh−
BN又はa−BNの粉末を出発原料とし、これを
上記したような結合材と混合したのち、超高圧・
高温下で処理して、h−BN又はa−BNをc−
BNに転換すると同時に全体を焼結するという方
法である。 これら2つの方法のうち、後者の方法の場合に
は、h−BN又はa−BNからc−BNへの転換率
が100%ではなく、未転換のh−BN又はa−BN
が残留し、得られた焼結体の特性を著しく低下せ
しめるという問題が避けられない。 そのため、実際には前者の方法で主としてc−
BN焼結体は製造されている。 この前者の方法にあつては、出発原料はc−
BN粉末である。したがつて、前提問題としてc
−BN粉末の合成が重要なフアクターとなる。 現在のところ、c−BN粉末の合成に関して
は、主に、h−BNを超高圧・高温下で処理して
c−BNに転換するという方法が採られている。 しかしながら、その転換率は一般に低い。それ
は、h−BNに物理的・化学的に吸着している酸
素又は化学的に結合している酸素成分の影響に起
因するためであることが明らかとなつている。 h−BNからc−BNの転換率を高めるために、
種々の研究が重ねられているが、本発明者らは、
h−BNからc−BNを合成する際に合成触媒と
しての窒化アルミニウムを介在せしめるとその転
換率が向上するとの事実を見出しこれを既に発表
した(粉体粉末冶金協会、昭和57年度秋季大会講
演概要集、100〜101頁参照)。 更に研究を進め、h−BNの結晶性と転換率と
の関係につき研究を重ねた結果、h−BNの結晶
化度が小さいものほどc−BNへの転換率が高く
なることを確認し、それを既に発表した(粉体粉
末冶金協会、昭和58年度春季大会講演概要集、96
頁〜97頁参照)。 このようなことから、c−BNの合成に関して
は、結晶化度の小さいh−BNを出発原料として
用いてもよいが、そのこと以上に、出発原料がa
−BNである場合には、更に高い転換率でc−
BNを合成できることが明らかとなつた。 以上の知見の上に立つて、本発明者らはa−
BNの原料になり得る化合物を追究したところ、
ボラジン又はボラジン誘導体を加圧下熱分解する
とc−BNへの転換率の高いa−BNを得ること
ができるとの事実を見出し、その方法を既に特願
昭59−100682号(特開昭60−246208号公報参照)
として出願した。 ところで、a−BNをc−BNに転換し、得ら
れたc−BNを用いてその焼結体を製造する際に
は、このc−BN粉末を所定の型内に充填して焼
結する。このとき、得られる焼結体が空孔のない
緻密質のものになるか否か又は偏析がなく均一な
組織構造になるか否かという問題には、適用する
焼結条件と合わせてc−BN粉末の特性又は形状
も重要な因子として作用する。 また、a−BN粉末を直接型の中に充填し、高
圧・高温下において、a−BNをc−BNに転換
しながら焼結する場合にも、上記したと同様の理
由によつて、用いるa−BN粉末は個々の粒子が
微細な球状体であることが好ましい。 一方、h−BN焼結体は軟質ではあるが、しか
し軟質であるがゆえに機械加工性、潤滑性が優
れ、そしてまた化学安定性、高熱伝導性、高電気
絶縁性という特性を備えている3従来、h−BN
焼結体は、h−BN粉末を出発原料とし潤滑剤及
び焼結助剤と共に焼結して製造されているが、こ
のような焼結体は高密度ではなく、せいぜい理論
密度の80〜85%程度のものでしかない。 h−BN焼結体の製造時にあつても、上記した
c−BN焼結体の製造の場合と同様に、その原料
粉末は微細でかつ球状であることが好ましい。 しかしながら、現在までのところそのような微
細球状のa−BN粉末は開示されていないし、ま
た、その製造方法も知られていない。 〔発明の目的〕 本発明は、本発明者らが開発した前記特願昭59
−100682号の方法を基礎にして製造される窒化ホ
ウ素の粒子が微細な球状で、かつ水素を含有して
いるa−BN粉末とその製造方法の提供を目的と
する。 〔発明の概要〕 本発明のa−BN粉末は粉末粒子の形状が球状
でり、かつ水素を含有していることを特徴とし、
例えばその球状のa−BNは、ボラジン又はボラ
ジン誘導体の群から選ばれる少なくとも1種の化
合物を、圧力10〜100MPa、温度200〜350℃、時
間5〜30分の条件で加圧下熱分解することによつ
て得ることができる。 本発明のa−BN粉末は粒子形状が球状であ
る。その粒径は、通常1〜4μmと微細である。し
たがつて、流動性に富むため焼結体の製造時には
型内への充填性が優れ、他の添加物との混合性も
良好なので作業性も良好である。また焼結時にあ
つては、微細で水素を含有しているのでそれ自体
が焼結の促進効果を備えていて、緻密で均一な組
織の焼結体となり得る。 このa−BN粉末は次のようにして製造するこ
とができる。 まず、原料は、次式: で示されるボラジン若しくは後述のボラジン誘導
体の1種又はこれらを2種以上適宜に混合して成
る混合物である。これらのうち、 ボラジン誘導体としては、例えば、次式: で示されるボラゾナフタリン、次式: で示されるボラゾビフエニル、次式: で示される2,4−ジアミノボラジンをあげるこ
とができる。好ましい原料はボラジンである。 これらの原料は、酸素、炭素を含有していない
ことが重要である。なぜならば酸素は前述したよ
うにc−BNへの転換率を低下せしめる因子とし
て作用するからであり、また、炭素は後述の条件
下で熱分解処理を施したときにa−BN内に残留
するからである。このような炭素を含有するa−
BNを原料として高圧・高温下でc−BNを合成
した場合、この炭素が黒鉛に転換してc−BN内
に残留し、そしてc−BN焼結体の特性低下をも
たらすからである。 本発明方法にあつては、上記した原料を密閉式
の圧力容器の中にいれ、加圧下熱分解を施す。こ
のときの加圧下熱分解反応は、まずその初期段階
において原料のボラジン環の開裂縮合反応が気相
と液相の共存下で進行しつつ水素含有量の多い球
状のa−BNを生成する。その後、時間の経過と
ともに更に水素が放出されていき、水素含有量の
少ない球状のa−BNに転化していく。 このように本発明の加圧下熱分解反応は、熱分
解時の圧力、温度、時間が基本的な制御因子であ
り、これら因子によつて、得られるa−BN粉末
の状態が左右される。 まず、圧力は10〜100MPaの範囲に設定され
る。この圧力が10MPaより低い場合には、原料
が熱分解処理中に放出する水素を押え込む圧力と
しては不充分であり、a−BNの収率は低くな
る。また、圧力が100MPaより高い場合には、得
られたa−BNが相互に融合してしまい球状粒子
にはならず、この合体球が帯状に広がつた塊状の
白色固体となつてしまう。圧力の好ましい範囲は
25〜100MPaである。 温度は200〜350℃の範囲に設定される。一般
に、熱分解温度が高くなるにつれて得られたa−
BNの水素含有量は減少していくが、この残存水
素の多少がa−BNからc−BNへの転換率の大
小に顕著な影響を及ぼすことからして、c−BN
への転換率を高位に維持するためには熱分解温度
を350℃以下にする。しかし、熱分解温度が200℃
よりも低くなると、得られたa−BNの活性が高
くなりすぎて、全体の取扱いをN2又は不活性ガ
ス雰囲気中で行なうことが必要になるので200℃
未満とする。好ましくは、250〜350℃である。 時間は5〜30分の範囲に設定される。上記した
2因子の設定範囲内にあつては、加圧下熱分解の
時間が30分を超えると、a−BNにおける水素含
有量が非常に減少してしまい、c−BNへの転換
率も低下する。逆に時間が5分より短い場合に
は、残存する水素量が多すぎてa−BNの活性は
高くなりすぎ、加水分解を起しやすくなるという
ような不都合な問題を生ずる。 このようにして、粒径1〜4μmで球状のa−
BN粉末が得られる。この粉末を例えば真空中又
は非酸化性雰囲気中、高温下で処理すれば、高純
度のh−BN粉末を得ることができ、また、ホツ
トプレスすればh−BN焼結体が得られる。更に
例えば5.0〜6.5GPaの超高圧、1100〜1850℃の高
温下で処理すればc−BN焼結体を得ることがで
きる。 〔発明の実施例〕 実施例 1 (1) a−BNの調製 β−トリクロロボラジンを還元してボラジンを
製造した。このボラジン(液体)を金カプセルの
中に封入し、カプセルをコーン密閉式圧力容器内
にセツトした。 容器内圧力、温度、処理時間を表に示したよう
に変化させて加圧下熱分解処理を施した。いずれ
の場合も白色固体が得られた。これらの固体につ
き粉末X線回折法により結晶構造を観察したとこ
ろ、いずれも非晶質であることが確認された。 また、これら白色固体につき赤外吸収(IR)
スペクトル分析を行なつたところ、3400cm-1の位
置にN−H伸縮による吸収、2520cm-1の位置にB
−H伸縮による吸収、1400cm-1の位置にB−N伸
縮による吸収が認められた。 各場合につき、B−H及びB−Nの各伸縮振動
に基づく吸収強度の比を算出し、その値を表に併
記した。また、各白色固体を顕微鏡観察し、その
形状等も併記した。更に、得られた各a−BNの
粉末に窒化アルミニウム20モル%添加して混合
し、この混合粉末を、圧力6.5GPa、温度1200℃
の条件下で10分間処理して焼結した。 得られた各焼結体につき、X線回折法でそのc
−BNの存在割合を測定し、各a−BNの転換率
を算出した。その結果も表に併記した。
[Technical Field of the Invention] The present invention relates to an amorphous boron nitride (hereinafter referred to as a-BN) powder having fine, spherical particles and containing hydrogen, and a method for producing the same. The present invention relates to a spherical a-BN in which the sintered body becomes a dense structure with few pores and has a uniform structure when the sintered body is manufactured using the a-BN, and a method for manufacturing the same. [Technical background of the invention and its problems] Sintered bodies of boron nitride have recently attracted much attention as a type of fine ceramics. These sintered bodies include cubic boron nitride (hereinafter referred to as
c-BN) sintered bodies, Wurtz-type boron nitride (hereinafter referred to as w-BN) sintered bodies, and hexagonal boron nitride (hereinafter referred to as h-BN) sintered bodies. There is. Among these, especially c-
BN sintered bodies are attracting attention as a material with high hardness and excellent wear resistance, and are opening up prospects for application as materials for tools. Furthermore, since it has both extremely high thermal conductivity and electrical resistance, it holds great promise as a heat sink material for high-density integrated circuits. This c-BN sintered body is manufactured by the following two methods. The first method is c-BN
The powder is filled into a pressure-resistant and heat-resistant mold to produce ultra-high pressure and
Sintering at high temperatures (e.g. 5GPa or higher, 1200℃ or higher) or c-BN powder and Ti, Si, Al,
Catalyst such as AlN or this catalyst and TiN, Al 2 O 3
This is a method using so-called c-BN powder as a raw material, in which the mixed powder is mixed with a binder mainly consisting of be. The second method is c-BN
Boron nitride powder other than h-
BN or a-BN powder is used as a starting material, and after mixing it with the binder described above, it is heated under ultra-high pressure.
By processing at high temperature, h-BN or a-BN is converted to c-
This method involves converting the material to BN and sintering the entire material at the same time. Of these two methods, in the case of the latter method, the conversion rate from h-BN or a-BN to c-BN is not 100%, and unconverted h-BN or a-BN
There is an unavoidable problem that the sintered body remains and the properties of the obtained sintered body are significantly deteriorated. Therefore, in reality, the former method mainly uses c-
BN sintered bodies are manufactured. In the former method, the starting material is c-
It is BN powder. Therefore, as a prerequisite problem, c
-The synthesis of BN powder will be an important factor. At present, the main method used to synthesize c-BN powder is to convert h-BN to c-BN by treating it under ultra-high pressure and high temperature. However, the conversion rate is generally low. It has become clear that this is due to the influence of oxygen that is physically or chemically adsorbed to h-BN or oxygen components that are chemically bonded to h-BN. In order to increase the conversion rate from h-BN to c-BN,
Although various studies have been conducted, the present inventors have
When synthesizing c-BN from h-BN, we discovered that the conversion rate can be improved by intervening aluminum nitride as a synthesis catalyst. (See Abstracts, pages 100-101). As a result of further research on the relationship between h-BN crystallinity and conversion rate, we confirmed that the lower the crystallinity of h-BN, the higher the conversion rate to c-BN. It has already been announced (Powder Metallurgy Association, 1985 Spring Conference Lecture Abstracts, 96
(See pages 97-97). For this reason, h-BN with a low degree of crystallinity may be used as a starting material for the synthesis of c-BN;
-BN, the conversion rate is even higher.
It became clear that BN could be synthesized. Based on the above knowledge, the present inventors a-
When we investigated compounds that could be used as raw materials for BN, we discovered that
It has been discovered that a-BN with a high conversion rate to c-BN can be obtained by thermally decomposing borazine or borazine derivatives under pressure, and the method has already been published in Japanese Patent Application No. 100682/1982 (Japanese Unexamined Patent Publication No. 100682/1983). (Refer to Publication No. 246208)
The application was filed as By the way, when converting a-BN to c-BN and producing a sintered body using the obtained c-BN, this c-BN powder is filled into a predetermined mold and sintered. . At this time, the question of whether the obtained sintered body will be dense without pores or whether it will have a uniform structure without segregation is determined by the c- The properties or shape of the BN powder also act as an important factor. Also, when a-BN powder is directly filled into a mold and sintered under high pressure and high temperature while converting a-BN to c-BN, it is used for the same reason as above. It is preferable that each particle of the a-BN powder is a fine spherical body. On the other hand, the h-BN sintered body is soft, but because it is soft, it has excellent machinability and lubricity, and also has the characteristics of chemical stability, high thermal conductivity, and high electrical insulation3. Conventionally, h-BN
Sintered bodies are manufactured by using h-BN powder as a starting material and sintering it together with lubricants and sintering aids, but such sintered bodies do not have a high density and have a theoretical density of 80 to 85 at most. It is only about %. Even when producing an h-BN sintered body, it is preferable that the raw material powder is fine and spherical, as in the case of producing the c-BN sintered body described above. However, to date, such fine spherical a-BN powder has not been disclosed, and no method for producing the same is known. [Object of the Invention] The present invention is based on the aforementioned patent application filed in 1983, developed by the present inventors.
The present invention aims to provide a-BN powder in which boron nitride particles are finely spherical and contain hydrogen, which are produced based on the method of No. 100682, and a method for producing the same. [Summary of the invention] The a-BN powder of the present invention is characterized in that the powder particles have a spherical shape and contain hydrogen,
For example, the spherical a-BN can be obtained by thermally decomposing at least one compound selected from the group of borazine or borazine derivatives under pressure at a pressure of 10 to 100 MPa, a temperature of 200 to 350°C, and a time of 5 to 30 minutes. It can be obtained by The a-BN powder of the present invention has a spherical particle shape. The particle size is usually as fine as 1 to 4 μm. Therefore, since it has high fluidity, it can be easily filled into a mold during the production of a sintered body, and its mixability with other additives is also good, resulting in good workability. Further, during sintering, since it is fine and contains hydrogen, it itself has the effect of promoting sintering, and can become a sintered body with a dense and uniform structure. This a-BN powder can be produced as follows. First, the raw materials are calculated using the following formula: It is one type of borazine represented by the following or a borazine derivative described below, or a mixture formed by appropriately mixing two or more types of these. Among these, as a borazine derivative, for example, the following formula: Borazonaphthalene, represented by the following formula: Borazobiphenyl, represented by the following formula: Examples include 2,4-diaminoborazine represented by A preferred raw material is borazine. It is important that these raw materials do not contain oxygen or carbon. This is because, as mentioned above, oxygen acts as a factor that reduces the conversion rate to c-BN, and carbon remains in a-BN when thermally decomposed under the conditions described below. It is from. a- containing such carbon
This is because when c-BN is synthesized under high pressure and high temperature using BN as a raw material, this carbon converts to graphite and remains in c-BN, resulting in deterioration of the properties of the c-BN sintered body. In the method of the present invention, the above-mentioned raw materials are placed in a closed pressure vessel and subjected to thermal decomposition under pressure. In this thermal decomposition reaction under pressure, in the initial stage, the cleavage and condensation reaction of the borazine ring of the raw material proceeds in the coexistence of a gas phase and a liquid phase, producing spherical a-BN with a high hydrogen content. Thereafter, as time passes, more hydrogen is released, and the a-BN is converted into spherical a-BN with a low hydrogen content. As described above, in the pressure pyrolysis reaction of the present invention, the pressure, temperature, and time during pyrolysis are the basic control factors, and these factors influence the state of the a-BN powder obtained. First, the pressure is set in the range of 10 to 100 MPa. If this pressure is lower than 10 MPa, the pressure is insufficient to suppress the hydrogen released by the raw material during the thermal decomposition treatment, and the yield of a-BN will be low. Furthermore, if the pressure is higher than 100 MPa, the obtained a-BN will fuse with each other and will not form spherical particles, but the fused spheres will become a lumpy white solid that spreads out in a belt shape. The preferred range of pressure is
It is 25~100MPa. The temperature is set in the range of 200-350°C. Generally, as the pyrolysis temperature increases, the obtained a-
Although the hydrogen content of BN decreases, the amount of residual hydrogen has a significant effect on the conversion rate from a-BN to c-BN.
In order to maintain a high conversion rate to However, the thermal decomposition temperature is 200℃
If the temperature is lower than 200℃, the activity of the obtained a-BN will be too high and the entire handling will need to be carried out in an N 2 or inert gas atmosphere.
less than Preferably it is 250-350°C. The time is set in the range of 5 to 30 minutes. Within the setting range of the above two factors, if the time of pyrolysis under pressure exceeds 30 minutes, the hydrogen content in a-BN will decrease significantly and the conversion rate to c-BN will also decrease. do. On the other hand, if the time is shorter than 5 minutes, the amount of remaining hydrogen will be too large and the activity of a-BN will be too high, causing an inconvenient problem such as easy hydrolysis. In this way, spherical a-
BN powder is obtained. If this powder is treated, for example, in a vacuum or in a non-oxidizing atmosphere at high temperature, a highly pure h-BN powder can be obtained, and if it is hot pressed, an h-BN sintered body can be obtained. Furthermore, a c-BN sintered body can be obtained by processing at an ultra-high pressure of 5.0 to 6.5 GPa and a high temperature of 1100 to 1850°C. [Examples of the Invention] Example 1 (1) Preparation of a-BN Borazine was produced by reducing β-trichloroborazine. This borazine (liquid) was encapsulated in a gold capsule, and the capsule was placed in a cone-tight pressure vessel. Pyrolysis treatment under pressure was performed while changing the pressure, temperature, and treatment time in the container as shown in the table. A white solid was obtained in each case. When the crystal structures of these solids were observed by powder X-ray diffraction, it was confirmed that all of them were amorphous. In addition, these white solids have infrared absorption (IR)
Spectral analysis revealed that absorption due to N-H stretching occurred at the position of 3400 cm -1 and B at the position of 2520 cm -1 .
Absorption due to -H stretching and absorption due to BN stretching were observed at a position of 1400 cm -1 . For each case, the ratio of absorption intensities based on each stretching vibration of BH and BN was calculated, and the values are also listed in the table. In addition, each white solid was observed under a microscope, and its shape etc. were also recorded. Furthermore, 20 mol% of aluminum nitride was added to each obtained a-BN powder and mixed, and this mixed powder was heated at a pressure of 6.5 GPa and a temperature of 1200°C.
The material was sintered under the following conditions for 10 minutes. For each sintered body obtained, its c
The abundance ratio of -BN was measured, and the conversion rate of each a-BN was calculated. The results are also listed in the table.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の球状a
−BN粉末は微細で水素を含有し、しかもc−
BNへの転換率が高いことからc−BN焼結体の
原料として使用すると緻密で均一組織のc−BN
焼結体になり、高硬度、高熱伝導性、高電気絶縁
性が一層優れ、切削用工具、耐摩耗用工具、ヒー
トシンクをはじめとする電気部品として応用で
き、また、c−BN粉末にするとそれは砥石又は
砥粒として研削工具又は研摩材料として応用でき
る。 更に、本発明の球状のa−BN粉末は微細で活
性があるためにh−BN焼結体の原料として使用
すると、緻密で均一組織のh−BN焼結体にな
り、化学安定性、耐食性、機械加工性、高熱伝導
性、高電気絶縁性が一層優れ、機械加工性もよい
ので溶融金属若しくは薬品用の容器、高温域での
潤滑材料、電気部品材料として応用できる産業上
有用な材料である。
As is clear from the above explanation, the spherical a of the present invention
-BN powder is fine and contains hydrogen, and c-
Due to its high conversion rate to BN, c-BN with a dense and uniform structure can be used as a raw material for c-BN sintered bodies.
It becomes a sintered body and has even higher hardness, higher thermal conductivity, and higher electrical insulation properties, and can be used as cutting tools, wear-resistant tools, heat sinks, and other electrical parts. It can be applied as a grinding tool or abrasive material as a whetstone or abrasive grain. Furthermore, since the spherical a-BN powder of the present invention is fine and active, when used as a raw material for h-BN sintered bodies, it becomes h-BN sintered bodies with a dense and uniform structure, and has excellent chemical stability and corrosion resistance. It has excellent machinability, high thermal conductivity, high electrical insulation, and good machinability, making it an industrially useful material that can be used as containers for molten metals or chemicals, lubricating materials in high temperature ranges, and materials for electrical parts. be.

Claims (1)

【特許請求の範囲】 1 窒化ホウ素粉末が球状粒子からなり、かつ水
素を含有していることを特徴とする非晶質窒化ホ
ウ素(a−BN)粉末。 2 ボラジン又はボラジン誘導体よりなる群から
選ばれる少なくとも1種の化合物を、圧力10〜
100MPa、温度200〜350℃、時間5〜30分の条件
で加圧下熱分解することを特徴とする非晶質窒化
ホウ素(a−BN)粉末の製造方法。
[Scope of Claims] 1. An amorphous boron nitride (a-BN) powder characterized in that the boron nitride powder consists of spherical particles and contains hydrogen. 2. At least one compound selected from the group consisting of borazine or borazine derivatives is heated at a pressure of 10 to
A method for producing amorphous boron nitride (a-BN) powder, characterized by thermal decomposition under pressure at 100 MPa, a temperature of 200 to 350°C, and a time of 5 to 30 minutes.
JP59238550A 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation Granted JPS61117107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238550A JPS61117107A (en) 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238550A JPS61117107A (en) 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation

Publications (2)

Publication Number Publication Date
JPS61117107A JPS61117107A (en) 1986-06-04
JPH0510282B2 true JPH0510282B2 (en) 1993-02-09

Family

ID=17031907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238550A Granted JPS61117107A (en) 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation

Country Status (1)

Country Link
JP (1) JPS61117107A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345178A (en) * 1986-08-07 1988-02-26 株式会社 香蘭社 Boron nitride sintering raw material powder
JPS6345177A (en) * 1986-08-07 1988-02-26 株式会社 香蘭社 Manufacture of boron nitride base sintered body
US5308044A (en) * 1987-05-12 1994-05-03 Kabushiki Kaisha Kouransha Boron nitride ceramics and molten metal container provided with members made of the same ceramics
DE3830840C1 (en) * 1988-09-10 1989-11-16 Wildenburg, Joerg
FR2646663B1 (en) * 1989-05-02 1991-12-27 Rhone Poulenc Chimie AMORPHOUS OR TURBOSTRATIC BORON NITRIDE WITH SPHERICAL MORPHOLOGY AND PROCESS FOR PREPARING THE SAME
KR100567279B1 (en) 1998-05-22 2006-04-05 스미토모덴키고교가부시키가이샤 Cubic system boron nitride sintered body cutting tool
WO2011021366A1 (en) * 2009-08-20 2011-02-24 株式会社カネカ Process for production of spheroidized boron nitride
CN107161960B (en) * 2017-06-06 2019-05-31 哈尔滨工业大学深圳研究生院 A kind of high pressure vapor prepares the method and apparatus of boron nitride spherical powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181707A (en) * 1982-04-15 1983-10-24 Natl Inst For Res In Inorg Mater Manufacture of boron nitride
JPS60155508A (en) * 1984-08-02 1985-08-15 Res Dev Corp Of Japan Noncrystalline boron nitride having improved stability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181707A (en) * 1982-04-15 1983-10-24 Natl Inst For Res In Inorg Mater Manufacture of boron nitride
JPS60155508A (en) * 1984-08-02 1985-08-15 Res Dev Corp Of Japan Noncrystalline boron nitride having improved stability

Also Published As

Publication number Publication date
JPS61117107A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
US20190010053A1 (en) Method for synthesizing aluminum nitride and aluminum nitride-based composite material
JPH05105560A (en) Multigranular abrasive particle
JP2005514300A (en) Low oxygen cubic boron nitride and its products
JPH07242466A (en) Production of polycrystalline cubic boron nitride
WO2005065809A1 (en) High-hardness conductive diamond polycrystalline body and method for producing same
EP0698447B1 (en) Abrasive body
JPH0510282B2 (en)
CN107663092A (en) A kind of AlN raw powder's production technologies
JPS6255896B2 (en)
JPS6111886B2 (en)
US4528119A (en) Metal borides, carbides, nitrides, silicides, oxide materials and their method of preparation
JPH044966B2 (en)
JP4110338B2 (en) Cubic boron nitride sintered body
JP4110339B2 (en) Cubic boron nitride sintered body
JPH08198681A (en) Production of boron nitride composite
JP4183317B2 (en) Method for producing cubic boron nitride
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JP2628668B2 (en) Cubic boron nitride sintered body
JPH0455142B2 (en)
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles
JPS6111885B2 (en)
JP3472802B2 (en) Manufacturing method of Sialon sintered body
Kasai et al. Synthesis of Si3N4 powder by thermal decomposition of Si (NH) 2 and sintering properties
JPS6227004B2 (en)