JP3733613B2 - Diamond sintered body and manufacturing method thereof - Google Patents

Diamond sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP3733613B2
JP3733613B2 JP17209595A JP17209595A JP3733613B2 JP 3733613 B2 JP3733613 B2 JP 3733613B2 JP 17209595 A JP17209595 A JP 17209595A JP 17209595 A JP17209595 A JP 17209595A JP 3733613 B2 JP3733613 B2 JP 3733613B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
powder
sintering aid
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17209595A
Other languages
Japanese (ja)
Other versions
JPH0925163A (en
Inventor
均 角谷
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17209595A priority Critical patent/JP3733613B2/en
Priority to ZA965744A priority patent/ZA965744B/en
Priority to US08/675,932 priority patent/US5769176A/en
Priority to EP96305018A priority patent/EP0752267A3/en
Publication of JPH0925163A publication Critical patent/JPH0925163A/en
Application granted granted Critical
Publication of JP3733613B2 publication Critical patent/JP3733613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はダイヤモンド焼結体およびその製造方法に関するものである。本発明のダイヤモンド焼結体は非鉄金属やセラミックス等の切削、研削工具用素材および石油堀削用途等のドリルビットの刃先素材として有効に使用できるものである。
【0002】
【従来の技術】
従来のダイヤモンド焼結体としては、焼結助剤あるいは結合剤としてCo、Ni、Feなどの鉄族金属を用いたものや、SiCなどのセラミックスを用いたものが知られており、非鉄金属の切削工具や、堀削ビットなどに工業的に利用されている。
また、焼結助剤として炭酸塩を用いたものが知られている(特開平4−74766号公報、特開平4−114966号公報)。
その他、天然のダイヤモンド焼結体(カーボナード)があるが、材質のバラツキが大きく、また産出量も極少量であるため、ほとんど工業的には使用されていない。
【0003】
【発明が解決しようとする課題】
Coなどの鉄族金属を焼結助剤としたダイヤモンド焼結体は、Coなどの鉄族金属がダイヤモンドの黒鉛化を促す触媒として作用するため耐熱性に劣る。すなわち、不活性ガス雰囲気中で、700℃程度で黒鉛化してしまう。また、ダイヤモンド粒の粒界にCoなどの金属が連続相として存在するため焼結体の強度はあまり高くなく、欠損しやしい。そして、この金属とダイヤモンドの熱膨張差のため熱劣化が起こり易くなるという問題もある。
耐熱性を上げるために上記の粒界の金属を酸処理により除去されたものも知られている。これにより耐熱温度は約1200℃と向上するが、焼結体が多孔質となるため強度がさらに大幅(30%程度)に低下する。
SiCを結合剤としたダイヤモンド焼結体は耐熱性には優れているが、ダイヤモンド粒同士は結合がないため、強度は低い。
一方、焼結助剤として炭酸塩を用いたダイヤモンド焼結体は、Co結合剤による焼結体に比べると耐熱性に優れるが、1000℃程度よりで炭酸塩の分解がはじまり焼結体の強度が低下する。また、炭酸塩は酸に溶けるため、堀削ビットなどの用途で使用できない。
本発明は以上の問題点を解決して、耐欠損性、耐熱性、耐酸性を有するダイヤモンド焼結体とその製造方法を提供することを意図したものである。
【0004】
【課題を解決するための手段】
上記の課題を解決するための手段として、本発明は、鉄、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属のチタン酸塩を0.1〜30体積%含み、残部がダイヤモンドであることを特徴とするダイヤモンド焼結体を提供する。また、鉄、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属の酸化物と、酸化チタンと、からなる複合酸化物または固溶体を0.1〜30体積%含み、残部がダイヤモンドであることを特徴とするダイヤモンド焼結体を提供する
【0005】
また、このダイヤモンド焼結体の製造方法として、鉄、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属のチタン酸塩を焼結助剤として用い、該焼結助剤の粉末と、ダイヤモンド粉末もしくは非ダイヤモンド炭素粉末またはダイヤモンドと非ダイヤモンド炭素との混合粉末と、を混合し、これをダイヤモンドの熱力学的安定領域の圧力、温度条件で保持し、焼結する方法を提供する。
このダイヤモンド焼結体の別の製造方法として、鉄、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属のチタン酸塩を焼結助剤として用い、該焼結助剤の粉末の成形体と、ダイヤモンド粉末の成形体もしくは非ダイヤモンド炭素粉末の成形体またはダイヤモンドと非ダイヤモンド炭素との混合粉末の成形体と、を積層し、これをダイヤモンドの熱力学的安定領域の圧力、温度条件で保持し、焼結する方法を提供する
【0006】
【発明の実施の形態】
従来、鉄、コバルト、ニッケルおよびマンガンから選ばれる金属のチタン酸塩や、鉄、コバルト、ニッケルおよびマンガンから選ばれる金属の酸化物と酸化チタンの混合物がダイヤモンド焼結体の有効な焼結助剤として用いられた例はない。今回、本発明者らにより、これらの物質を焼結助剤とすることで、従来にない高強度で、かつ耐欠損性、耐熱性、耐食性に優れたダイヤモンド焼結体が得られることが見いだされ、本発明に至った。
本発明の特徴は、ダイヤモンド焼結体の焼結助剤として鉄、コバルト、ニッケルおよびマンガンから選ばれる金属のチタン酸塩あるいは、鉄、コバルト、ニッケルおよびマンガンから選ばれる金属の酸化物と酸化チタンの混合物を用いた点にある。
鉄、コバルト、ニッケルおよびマンガンから選ばれる金属のチタン酸塩としては、例えば、FeTiO3 、FeTi2 5 、CoTiO3 、MnTiO3 、NiTiO3 などが挙げられる。これらは、ダイヤモンドに対し、強い触媒作用を示し、これらを焼結助剤とするとダイヤモンド粒子が極めて強固に結合したマトリックスが形成される。また、異常粒成長が起こり難く、均質な組織の焼結体が得られる。その結果、従来にない高強度で耐欠損性や耐摩耗性に優れたダイヤモンド焼結体が得られる。このような焼結助剤は0.01〜10μmの粒径範囲のものが好ましい。
【0007】
こうして得られるダイヤモンド焼結体は、鉄やコバルトなどの金属とチタンおよび酸素を含有する化合物からなる物質を含むのが特徴で、このような物質としては、上記のような鉄やコバルトなどのチタン酸塩、あるいは酸化鉄や酸化コバルトなどの酸化物と酸化チタンの複合酸化物もしくは固溶体が挙げられる。これらの物質は1300℃程度の高温下でも安定で、また、酸やアルカリに対しても安定である。このため、本発明のダイヤモンド焼結体は耐熱性や耐食性にも非常に優れた特性を示す。
【0008】
本発明のダイヤモンド焼結体において、鉄、コバルト、ニッケルおよびマンガンから選ばれる金属とチタンおよび酸素を含有する化合物からなる物質の含有量は0.1〜30体積%が好ましいが、この理由は0.1体積%未満ではダイヤモンド粒子間の結合性、すなわち焼結性が低下し、30体積%を越えると過剰のチタン酸化物の影響で、強度、耐摩耗性が低下するからである。
原料としては合成ダイヤモンド粉末、天然ダイヤモンド粉末、多結晶ダイヤモンド粉末などを用いることができる。粉末の粒径は0.01〜200μmで、用途によって微粒または粗粒に粒径を揃えたもの、もしくは微粒、粗粒の混合物を用いる。
また、これらのダイヤモンドに代えて黒鉛やグラッシーカーボン、熱分解黒鉛などの非ダイヤモンドも原料とすることができる。また、ダイヤモンドとこれら非ダイヤモンド黒鉛の混合物を用いることもできる。
【0009】
本発明のダイヤモンド焼結体の製造方法としては、ダイヤモンド粉末や非ダイヤモンド粉末と、鉄やコバルトのチタン酸塩あるいは酸化鉄や酸化コバルトと酸化チタンの混合物とを、ダイヤモンドが熱力学的に安定な圧力、温度条件下で保持する方法と、ダイヤモンド粉末や非ダイヤモンド黒鉛の成形体と、鉄やコバルトのチタン酸塩あるいは酸化鉄や酸化コバルトと酸化チタンの混合物の成形体を積層したものを原料として、上記の圧力、温度条件下で保持する方法がある。 原料と焼結助剤を混合する方法においては、原料と焼結助剤を、機械的に乾式または湿式混合した粉末を圧縮成形したもの、もしくはMo等のカプセルに充填したものを高圧高温焼結する。原料粉末が微粒でも焼結助剤を均一に分散でき、また、厚い形状のダイヤモンド焼結体の製造が可能である。例えば、良好な仕上げ面が必要な切削工具(微粒焼結体)の製造や、ダイスなどの厚い形状を必要とする焼結体の製造に適する。ただし、粗粒の原料を用いた場合、均一に焼結助剤を混合するのに困難を要す。
一方、原料と焼結助剤を積層配置する方法は、原料と焼結助剤の板状の成形体をそれぞれ作製し、これらを積層して接触させ、高圧高温処理する。このとき、焼結助剤が原料層に拡散含浸し、ダイヤモンド粒子が焼結する。この方法は、粗粒の原料を用いても焼結助剤を均一に添加できるため、より高強度で耐摩耗性のあるダイヤモンド焼結体を安定して得ることができ、耐摩耗工具やドリルビットなどの焼結体の製造に適する。
【0010】
【実施例】
以下本発明を実施例により更に詳細に説明するが、本発明をこれによって限定するものではない。
(実施例1)
焼結助剤としてFeTiO3 を用いた。平均粒径3.5μmの合成ダイヤモンド粉末と、粒径1〜2μmのFeTiO3 の粉末をそれぞれ95体積%、5体積%の割合で十分に混合し、この混合物をMoカプセルに入れ、ベルト型の超高圧高温発生装置を用いて、7.5GPa2000℃の圧力温度条件で15分間保持し、焼結させた。得られたダイヤモンド焼結体について、X線回折により組成を固定したところ、ダイヤモンドの他、約5体積%のFeTiO3 が検出された。この焼結体の硬度をヌープ圧子により評価したところ7800kg/mm2 と高硬度であった。また、破壊靱性をインデンテーション法により従来の市販のCo結合剤焼結体に対し相対比較したところ、従来焼結体の約1.4倍の相対靱性であった。また、得られた焼結体を真空中で1200℃に加熱処理した後、硬度、靱性を測定したが、処理前とほとんど変化がなかった。また、酸処理による焼結体の劣化は認められなかった。
【0011】
(実施例2)
焼結助剤として、5体積%のCoTiO3 を用いた他は、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはCoTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0012】
(実施例3)
焼結助剤として、5体積%のNiTiO3 を用いた他は、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはNiTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0013】
(実施例4)
焼結助剤として、5体積%のMnTiO3 を用いた他は、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはMnTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0014】
(実施例5)
焼結助剤として、FeOとTiO2 の1:1(体積比)の混合物を用い、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはFeTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0015】
(実施例6)
焼結助剤として、CoOとTiO2 の1:1(体積比)の混合物を用い、実施例1と同様にしてダイヤモンド焼結体を作製した。得られた焼結体にはCoTiO3 が含まれており、硬度、靱性、耐熱性とも実施例1と同様であった。
【0016】
(実施例7)
焼結助剤としてFeTiO3 を用いた。平均粒径15μmの合成ダイヤモンド粉末と粒径1〜2μmのFeTiO3 粉末をそれぞれ厚み2mm、1mmに成形したものを交互に積層してMoカプセルに入れ、ベルト型の超高圧高温発生装置を用いて、7.5GPa、2000℃の圧力温度条件で15分間保持し焼結した。得られたダイヤモンド焼結体について、X線回折により組成を固定したところ、ダイヤモンドの他、約2体積%のFeTiO3 が検出された。この焼結体の硬度をヌープ圧子により評価したところ約8000kg/mm2 と高硬度であった。また、破壊靱性をインデンテーション法により従来の市販のCo結合剤焼結体に対し相対比較したところ、従来焼結体の約1.4倍の相対靱性であった。また、得られた焼結体を真空中で1200℃に加熱処理した後、硬度、靱性を測定したが、処理前とほとんど変化がなかった。また、酸処理による焼結体の劣化は認められなかった。
【0017】
(実施例8)
焼結助剤としてFeTiO3 を用いた。平均粒径3μmの高純度等方性黒鉛の厚み2mmの状焼結体と、粒径1〜2μmのFeTiO3 の粉末を厚み1mmに型押し成形したものを交互に積層してMoカプセルに入れ、ガードル型の超高圧高温発生装置を用いて、7.5GPa、2000℃の圧力温度条件で15分間保持し、焼結させた。得られたダイヤモンド焼結体について、X線回折により組成を同定したところ、ダイヤモンドの他、約3体積%のFeTiO3 が検出された。この焼結体の硬度をヌープ圧子により評価したところ約7800kg/mm2 と高硬度であった。また、破壊靱性をインデンテーション法により従来の市販のCo結合剤焼結体に対し相対比較したところ、従来焼結体の約1.3倍の相対靱性であった。また、得られた焼結体を真空中で1200℃に加熱処理した後、硬度、靱性を測定したが、処理前とほとんど変化がなかった。また、酸処理による焼結体の劣化は認められなかった。
【0018】
(比較例1)
焼結助剤としてFeTiO3 を用いた。平均粒径3.5μmの合成ダイヤモンド粉末に微量の粒径1〜2μmのFeTiO3 の粉末(約0.05体積%)添加し、十分に混合したものを原料にした他は、実施例1と同様にダイヤモンド焼結体の製造を試みた。しかし、得られた焼結体には、未焼結部が多く残留していた。
【0019】
(比較例2)
焼結助剤としてFeTiO3 を用いた。平均粒径3.5μmの合成ダイヤモンド粉末60体積%と、粒径1〜2μmのFeTiO3 の粉末40体積%を添加し、十分に混合したものを原料にした他は、実施例1と同様にダイヤモンド焼結体の製造を試みた。しかし、得られた焼結体は、粒子同士の結合が十分でなく、硬度は3500kg/mm2 程度と低かった。
【0020】
【発明の効果】
以上説明したように、本発明のダイヤモンド焼結体は、従来にない高強度で、耐熱性、耐欠損性、耐食性を有するので、非鉄金属やセラミックス等の切削、研削工具用素材の他、石油堀削用途等のドリルビットの刃先素材として有効に使用できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diamond sintered body and a method for producing the same. The diamond sintered body of the present invention can be effectively used as a cutting edge material for drill bits for cutting non-ferrous metals, ceramics, etc., grinding tool materials, and petroleum drilling applications.
[0002]
[Prior art]
As conventional diamond sintered bodies, those using iron group metals such as Co, Ni, and Fe as sintering aids or binders and those using ceramics such as SiC are known. It is used industrially for cutting tools and excavation bits.
In addition, those using carbonate as a sintering aid are known (Japanese Patent Laid-Open Nos. 4-74766 and 4-114966).
In addition, there is a natural diamond sintered body (carbonado), but due to the large variation in materials and the extremely small amount of production, it is hardly used industrially.
[0003]
[Problems to be solved by the invention]
A diamond sintered body using an iron group metal such as Co as a sintering aid is inferior in heat resistance because the iron group metal such as Co acts as a catalyst for promoting graphitization of diamond. That is, it graphitizes at about 700 ° C. in an inert gas atmosphere. In addition, since a metal such as Co is present as a continuous phase at the grain boundaries of the diamond grains, the strength of the sintered body is not so high and is easily damaged. And there also exists a problem that thermal deterioration becomes easy to occur because of the thermal expansion difference between this metal and diamond.
In order to increase the heat resistance, those obtained by removing the metal at the grain boundary by acid treatment are also known. As a result, the heat resistance temperature is improved to about 1200 ° C., but since the sintered body becomes porous, the strength is further greatly reduced (about 30%).
A diamond sintered body using SiC as a binder is excellent in heat resistance, but the diamond grains are not bonded to each other, so that the strength is low.
On the other hand, a diamond sintered body using carbonate as a sintering aid is superior in heat resistance compared to a sintered body using a Co binder, but the decomposition of the carbonate starts at about 1000 ° C and the strength of the sintered body. Decreases. Further, since carbonate is soluble in acid, it cannot be used for applications such as excavation bits.
The present invention intends to solve the above problems and provide a diamond sintered body having fracture resistance, heat resistance and acid resistance and a method for producing the same.
[0004]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention includes 0.1 to 30% by volume of a titanate of one or more metals selected from iron, cobalt, nickel and manganese , with the balance being diamond. A diamond sintered body is provided . Further, it contains 0.1 to 30% by volume of a composite oxide or solid solution composed of one or more metal oxides selected from iron, cobalt, nickel and manganese and titanium oxide, and the balance is diamond. A diamond sintered body is provided .
[0005]
Further, as a method for producing this diamond sintered body, a titanate of one or more metals selected from iron, cobalt, nickel and manganese is used as a sintering aid, and the powder of the sintering aid and diamond powder or Provided is a method of mixing non-diamond carbon powder or a mixed powder of diamond and non-diamond carbon, and holding and sintering this under pressure and temperature conditions in a thermodynamically stable region of diamond.
As another method for producing this diamond sintered body, a titanate of one or more metals selected from iron, cobalt, nickel and manganese is used as a sintering aid, and a powder compact of the sintering aid, A diamond powder molded body or a non-diamond carbon powder molded body or a diamond and non-diamond carbon mixed powder molded body is laminated, and this is held at the pressure and temperature conditions of the thermodynamic stability region of diamond, A method of sintering is provided .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Conventionally, a titanate of a metal selected from iron, cobalt, nickel, and manganese, and a mixture of a metal oxide selected from iron, cobalt, nickel, and manganese and titanium oxide are effective sintering aids for a diamond sintered body. There is no example used as. This time, the present inventors have found that by using these substances as sintering aids, a diamond sintered body having high strength and excellent fracture resistance, heat resistance, and corrosion resistance can be obtained. This led to the present invention.
A feature of the present invention is that a titanium titanate of a metal selected from iron, cobalt, nickel and manganese or a metal oxide selected from iron, cobalt, nickel and manganese and titanium oxide as a sintering aid for a diamond sintered body It is in the point using the mixture of.
Iron, cobalt, as the titanates of metal selected from nickel and manganese, for example, FeTiO 3, FeTi 2 O 5 , CoTiO 3, MnTiO 3, etc. NiTiO 3 and the like. These have a strong catalytic action on diamond, and when these are used as sintering aids, a matrix is formed in which diamond particles are extremely firmly bonded. Moreover, abnormal grain growth hardly occurs, and a sintered body having a homogeneous structure can be obtained. As a result, it is possible to obtain a diamond sintered body having a high strength and excellent fracture resistance and wear resistance, which has not been conventionally obtained. Such a sintering aid preferably has a particle size range of 0.01 to 10 μm.
[0007]
The diamond sintered body obtained in this way is characterized by containing a substance composed of a compound containing metal such as iron or cobalt and titanium and oxygen. Examples of such a substance include titanium such as iron and cobalt as described above. Examples thereof include acid salts, and composite oxides or solid solutions of oxides such as iron oxide and cobalt oxide and titanium oxide. These substances are stable even at a high temperature of about 1300 ° C., and are stable against acids and alkalis. For this reason, the diamond sintered body of the present invention exhibits very excellent characteristics in heat resistance and corrosion resistance.
[0008]
In the diamond sintered body of the present invention, the content of the substance composed of a metal selected from iron, cobalt, nickel and manganese and a compound containing titanium and oxygen is preferably 0.1 to 30% by volume. When the amount is less than 1% by volume, the bondability between diamond particles, that is, the sinterability is lowered, and when it exceeds 30% by volume, the strength and wear resistance are lowered due to the influence of excess titanium oxide.
As a raw material, synthetic diamond powder, natural diamond powder, polycrystalline diamond powder, or the like can be used. The powder has a particle size of 0.01 to 200 μm, and a fine or coarse particle having a uniform particle size or a mixture of fine and coarse particles is used depending on the application.
Further, in place of these diamonds, non-diamonds such as graphite, glassy carbon, and pyrolytic graphite can be used as a raw material. A mixture of diamond and these non-diamond graphites can also be used.
[0009]
The diamond sintered body of the present invention can be produced by using diamond powder or non-diamond powder and iron or cobalt titanate or a mixture of iron oxide or cobalt oxide and titanium oxide in which the diamond is thermodynamically stable. The raw material is a method of holding under pressure and temperature conditions, diamond powder and non-diamond graphite compacts, and iron or cobalt titanate or iron oxide or a mixture of cobalt oxide and titanium oxide. There is a method of holding under the above pressure and temperature conditions. In the method of mixing the raw material and the sintering aid, high-pressure and high-temperature sintering is performed by compressing and molding the raw material and the sintering aid into a mechanically dry or wet-mixed powder or filling a capsule such as Mo. To do. Even if the raw material powder is fine, the sintering aid can be uniformly dispersed, and a thick diamond sintered body can be produced. For example, it is suitable for manufacturing a cutting tool (fine sintered body) that requires a good finished surface and a sintered body that requires a thick shape such as a die. However, when using coarse raw materials, it is difficult to mix the sintering aid uniformly.
On the other hand, the raw material and the sintering aid are laminated and prepared by preparing plate-like molded bodies of the raw material and the sintering aid, laminating them and bringing them into contact with each other, followed by high-pressure and high-temperature treatment. At this time, the sintering aid diffuses and impregnates the raw material layer, and the diamond particles are sintered. In this method, since a sintering aid can be uniformly added even when coarse raw materials are used, a diamond sintered body with higher strength and wear resistance can be stably obtained, and wear resistant tools and drills can be obtained. Suitable for manufacturing sintered bodies such as bits.
[0010]
【Example】
The present invention will be described in more detail below by way of examples, but the present invention is not limited thereby.
Example 1
FeTiO 3 was used as a sintering aid. Synthetic diamond powder having an average particle size of 3.5 μm and FeTiO 3 powder having a particle size of 1 to 2 μm are sufficiently mixed at a ratio of 95% by volume and 5% by volume, respectively, and this mixture is put into a Mo capsule. Using an ultra-high pressure and high temperature generator, it was held for 15 minutes under a pressure temperature condition of 7.5 GPa 2000 ° C. and sintered. When the composition of the obtained diamond sintered body was fixed by X-ray diffraction, about 5% by volume of FeTiO 3 was detected in addition to diamond. When the hardness of this sintered body was evaluated using a Knoop indenter, it was a high hardness of 7800 kg / mm 2 . Further, when the fracture toughness was compared relative to a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.4 times that of the conventional sintered body. Moreover, after heat-processing the obtained sintered compact at 1200 degreeC in the vacuum, the hardness and toughness were measured, but there was almost no change with the process front. Moreover, deterioration of the sintered compact by acid treatment was not recognized.
[0011]
(Example 2)
A diamond sintered body was produced in the same manner as in Example 1 except that 5% by volume of CoTiO 3 was used as a sintering aid. The obtained sintered body contained CoTiO 3 , and the hardness, toughness, and heat resistance were the same as in Example 1.
[0012]
Example 3
A diamond sintered body was produced in the same manner as in Example 1 except that 5% by volume of NiTiO 3 was used as a sintering aid. The obtained sintered body contained NiTiO 3 and had the same hardness, toughness and heat resistance as in Example 1.
[0013]
(Example 4)
A diamond sintered body was produced in the same manner as in Example 1 except that 5% by volume of MnTiO 3 was used as a sintering aid. The obtained sintered body contained MnTiO 3 , and the hardness, toughness and heat resistance were the same as in Example 1.
[0014]
(Example 5)
A diamond sintered body was produced in the same manner as in Example 1 using a 1: 1 (volume ratio) mixture of FeO and TiO 2 as a sintering aid. The obtained sintered body contained FeTiO 3 , and the hardness, toughness and heat resistance were the same as in Example 1.
[0015]
(Example 6)
A diamond sintered body was produced in the same manner as in Example 1 using a 1: 1 (volume ratio) mixture of CoO and TiO 2 as a sintering aid. The obtained sintered body contained CoTiO 3 , and the hardness, toughness, and heat resistance were the same as in Example 1.
[0016]
(Example 7)
FeTiO 3 was used as a sintering aid. Synthetic diamond powder with an average particle size of 15 μm and FeTiO 3 powder with a particle size of 1 to 2 μm, each formed to a thickness of 2 mm and 1 mm, are alternately stacked and placed in a Mo capsule, using a belt-type ultra-high pressure and high temperature generator , 7.5 GPa, 2000 ° C. under pressure and temperature conditions for 15 minutes, and sintered. When the composition of the obtained sintered diamond was fixed by X-ray diffraction, about 2% by volume of FeTiO 3 was detected in addition to diamond. When the hardness of this sintered body was evaluated using a Knoop indenter, it was high as about 8000 kg / mm 2 . Further, when the fracture toughness was compared relative to a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.4 times that of the conventional sintered body. Moreover, after heat-processing the obtained sintered compact at 1200 degreeC in the vacuum, the hardness and toughness were measured, but there was almost no change with the process front. Moreover, deterioration of the sintered compact by acid treatment was not recognized.
[0017]
(Example 8)
FeTiO 3 was used as a sintering aid. A 2 mm thick sintered compact of high purity isotropic graphite with an average particle diameter of 3 μm and an FeTiO 3 powder with a particle diameter of 1 to 2 μm embossed to a thickness of 1 mm are alternately stacked and placed in a Mo capsule. Using a girdle type ultra-high pressure and high temperature generator, it was held for 15 minutes under pressure conditions of 7.5 GPa and 2000 ° C. and sintered. When the composition of the obtained sintered diamond was identified by X-ray diffraction, about 3% by volume of FeTiO 3 was detected in addition to diamond. When the hardness of this sintered body was evaluated with a Knoop indenter, it was as high as about 7800 kg / mm 2 . Further, when the fracture toughness was compared with a conventional commercially available Co binder sintered body by an indentation method, the relative toughness was about 1.3 times that of the conventional sintered body. Moreover, after heat-processing the obtained sintered compact at 1200 degreeC in the vacuum, the hardness and toughness were measured, but there was almost no change with the process front. Moreover, deterioration of the sintered compact by acid treatment was not recognized.
[0018]
(Comparative Example 1)
FeTiO 3 was used as a sintering aid. Example 1 except that a minute amount of FeTiO 3 powder (about 0.05% by volume) was added to synthetic diamond powder having an average particle size of 3.5 μm and thoroughly mixed to obtain a raw material. Similarly, production of a diamond sintered body was attempted. However, many unsintered parts remained in the obtained sintered body.
[0019]
(Comparative Example 2)
FeTiO 3 was used as a sintering aid. The same as in Example 1 except that 60% by volume of synthetic diamond powder having an average particle size of 3.5 μm and 40% by volume of FeTiO 3 powder having a particle size of 1 to 2 μm were added and mixed thoroughly. An attempt was made to produce a diamond sintered body. However, the obtained sintered body had insufficient bonding between particles, and the hardness was as low as about 3500 kg / mm 2 .
[0020]
【The invention's effect】
As described above, since the diamond sintered body of the present invention has unprecedented high strength, heat resistance, fracture resistance, and corrosion resistance, in addition to cutting materials such as non-ferrous metals and ceramics, materials for grinding tools, petroleum It can be used effectively as a cutting edge material for drill bits for excavation.

Claims (4)

、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属のチタン酸塩を0.1〜30体積%含み、残部がダイヤモンドであることを特徴とするダイヤモンド焼結体。 A diamond sintered body comprising 0.1 to 30% by volume of a titanate of one or more metals selected from iron , cobalt, nickel and manganese , the balance being diamond . 、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属の酸化物と、酸化チタンとからなる複合酸化物または固溶体を0.1〜30体積%含み、残部がダイヤモンドであることを特徴とするダイヤモンド焼結体。 Iron, cobalt, and an oxide of at least one metal selected from nickel and manganese, and titanium oxide includes 0.1 to 30% by volume a composite oxide or solid solution composed of, and the balance being diamond Diamond sintered body. 、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属のチタン酸塩を焼結助剤として用い、該焼結助剤の粉末と、ダイヤモンド粉末もしくは非ダイヤモンド炭素粉末またはダイヤモンドと非ダイヤモンド炭素の混合粉末とを混合し、これをダイヤモンドの熱力学的安定領域の圧力、温度条件で保持し、焼結することを特徴とする請求項1または2に記載のダイヤモンド焼結体の製造方法。 Iron, cobalt, of at least one metal selected from nickel and manganese with titanate as a sintering aid, of a powder of the sintering aid, a diamond powder or non-diamond carbon powder or a diamond and non-diamond carbon mixing a powder, it was mixed, which the pressure of the thermodynamic stability region of diamond, and held at a temperature, method for producing a diamond sintered body according to claim 1 or 2, characterized in that sintering. 、コバルト、ニッケルおよびマンガンから選ばれる一種以上の金属のチタン酸塩を焼結助剤として用い、該焼結助剤の粉末の成形体と、ダイヤモンド粉末の成形体もしくは非ダイヤモンド炭素粉末の成形体またはダイヤモンドと非ダイヤモンド炭素の混合粉末の成形体とを積層し、これをダイヤモンドの熱力学的安定領域の圧力、温度条件で保持し、焼結することを特徴とする請求項1または2に記載のダイヤモンド焼結体の製造方法。 Using a titanate of one or more metals selected from iron , cobalt, nickel and manganese as a sintering aid, a powder compact of the sintering aid and a diamond powder compact or non-diamond carbon powder compact and the molded body of the mixed powder of the body or diamond and non-diamond carbon, the stacking, which pressure thermodynamic stability region of diamond, and held at temperature conditions, according to claim 1 or, characterized in that sintering 2. A method for producing a diamond sintered body according to 2 .
JP17209595A 1995-07-07 1995-07-07 Diamond sintered body and manufacturing method thereof Expired - Fee Related JP3733613B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17209595A JP3733613B2 (en) 1995-07-07 1995-07-07 Diamond sintered body and manufacturing method thereof
ZA965744A ZA965744B (en) 1995-07-07 1996-07-05 A diamond sintered compact and a process for the production of the same
US08/675,932 US5769176A (en) 1995-07-07 1996-07-05 Diamond sintered compact and a process for the production of the same
EP96305018A EP0752267A3 (en) 1995-07-07 1996-07-08 A diamond sintered compact and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17209595A JP3733613B2 (en) 1995-07-07 1995-07-07 Diamond sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0925163A JPH0925163A (en) 1997-01-28
JP3733613B2 true JP3733613B2 (en) 2006-01-11

Family

ID=15935454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17209595A Expired - Fee Related JP3733613B2 (en) 1995-07-07 1995-07-07 Diamond sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3733613B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176959A (en) * 2012-01-31 2013-09-09 Mitsuboshi Diamond Industrial Co Ltd Scribing wheel, scribing device, and scribing method
EP4248824A3 (en) 2017-09-22 2023-11-29 SharkNinja Operating LLC Hand-held surface cleaning device

Also Published As

Publication number Publication date
JPH0925163A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
US5326380A (en) Synthesis of polycrystalline cubic boron nitride
JP5966218B2 (en) Carbide structures, tool elements, and methods of making them
US6913633B2 (en) Polycrystalline abrasive grit
US5769176A (en) Diamond sintered compact and a process for the production of the same
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof
JPS5823459B2 (en) High-density phase boron nitride-containing sintered body for cutting tools
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JPH09142932A (en) Diamond sintered compact and its production
JPH09142933A (en) Diamond sintered compact and its production
JP3622261B2 (en) Diamond sintered body and manufacturing method thereof
JP4110339B2 (en) Cubic boron nitride sintered body
JPS6213311B2 (en)
JP3978789B2 (en) Diamond sintered body and method for producing the same
JP4110338B2 (en) Cubic boron nitride sintered body
JP3642082B2 (en) Diamond sintered body and manufacturing method thereof
JPH08310865A (en) Diamond sintered compact and its production
JPH09324236A (en) Production of diamond sintered body and its production
JPS59563B2 (en) Manufacturing method of diamond sintered body
JPH0952766A (en) Diamond sintered compact and production thereof
JPH0967164A (en) Diamond sintered compact and its production
JPH1135375A (en) Sintered compact of drilling bit and its production
JPH10182231A (en) High strength sintered compact and its production
JPH1135374A (en) Sintered compact for drilling bit and its production
JPS5950075A (en) Manufacture of cubic boron nitride sintered body
Singhal et al. Sintering of cubic boron nitride under high pressures and temperatures in the presence of boron carbide as the binding material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees