JPH10182231A - High strength sintered compact and its production - Google Patents

High strength sintered compact and its production

Info

Publication number
JPH10182231A
JPH10182231A JP8343485A JP34348596A JPH10182231A JP H10182231 A JPH10182231 A JP H10182231A JP 8343485 A JP8343485 A JP 8343485A JP 34348596 A JP34348596 A JP 34348596A JP H10182231 A JPH10182231 A JP H10182231A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
powder
oxide
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8343485A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kawate
克之 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8343485A priority Critical patent/JPH10182231A/en
Publication of JPH10182231A publication Critical patent/JPH10182231A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength sintered compact excellent in wear, chipping and heat resistances and effectively utilizable as stock for a cutting or grinding tool for a nonferrous metal, ceramics, etc., by sintering diamond powder having a specified average particle diameter and a compd. contg. an iron family metal and oxygen. SOLUTION: This sintered compact consists of 0.1-30vol.% material made of a compd. contg. an iron family metal and oxygen and the balance diamond grains having <=10μm average grain diameter. The compd. is oxide of an iron family metal such as FeO, Fe2 O3 , CoO, Co3 O4 or NiO or a multiple oxide such as CoFe2 O4 . This sintered compact is obtd. by sintering diamond powder and the oxide or multiple oxide or a compact of them under conditions of temp. and pressure in a range in which diamond is thermodynamically stable. The compact may be formed on diamond powder by a thermal plasma method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はダイヤモンド焼結体
およびその製造方法に関するものである。本発明のダイ
ヤモンド焼結体は非鉄金属やセラミックス等の切削、研
削工具用素材として有効に使用できるものである。
The present invention relates to a diamond sintered body and a method for producing the same. The diamond sintered body of the present invention can be effectively used as a material for cutting and grinding tools for non-ferrous metals and ceramics.

【0002】[0002]

【従来の技術】従来のダイヤモンド焼結体としては、焼
結助剤あるいは結合剤としてCo、Ni、Feなどの鉄
族金属を用いたものや、SiCなどのセラミックスを用
いたものが知られており、切削工具などに使用されてい
る。また、焼結助剤として炭酸塩を用いたものが知られ
ている(特開平4−74766号公報、特開平4−11
4966号公報)。その他、天然のダイヤモンド焼結体
(カーボナード)かあるが、材質のバラツキが大きく、
また産出量も極少量であるため、ほとんど工業的には使
用されていない。
2. Description of the Related Art As a conventional diamond sintered body, there are known those using iron group metals such as Co, Ni and Fe as sintering aids or binders, and those using ceramics such as SiC. It is used for cutting tools. Further, those using a carbonate as a sintering aid are also known (JP-A-4-74766, JP-A-4-11).
No. 4966). In addition, there is a natural diamond sintered body (carbonade), but the material varies greatly,
Also, since the amount of production is very small, it is hardly used industrially.

【0003】[0003]

【発明が解決しようとする課題】Coなどの鉄族金属を
焼結助剤としたダイヤ焼結体は、Coなどの鉄族金属が
ダイヤモンドの黒鉛化を促す触媒として作用するため耐
熱性に劣る。すなわち、不活性ガス雰囲気中で、700
℃程度で黒鉛化してしまう。また、ダイヤモンド粒の粒
界にCoなどの金属が連続相として存在するため焼結体
の強度はあまり高くなく、切削工具として用いた場合に
刃先が欠損しやすい。そして、この金属とダイヤモンド
の熱膨張差のため、切削工具として用いた場合、刃先が
熱劣化して、欠けや摩耗が起こり易くなるという問題も
ある。耐熱性を上げるために上記の粒界の金属を酸処理
により除去されたものも知られている。これにより耐熱
温度は約1200℃と向上するが、焼結体が多孔質とな
るため強度が大幅(30%程度)に低下する。
A diamond sintered body using an iron group metal such as Co as a sintering aid has poor heat resistance because the iron group metal such as Co acts as a catalyst for promoting the graphitization of diamond. . That is, in an inert gas atmosphere, 700
It graphitizes at about ° C. In addition, since a metal such as Co exists as a continuous phase at the grain boundaries of diamond grains, the strength of the sintered body is not very high, and when used as a cutting tool, the cutting edge is likely to be broken. And, when used as a cutting tool due to the difference in thermal expansion between the metal and the diamond, there is also a problem that the cutting edge is thermally deteriorated and chipping or wear is likely to occur. It is also known that the above-mentioned metal at the grain boundary is removed by an acid treatment in order to increase heat resistance. As a result, the heat resistance temperature is increased to about 1200 ° C., but the strength is greatly reduced (about 30%) because the sintered body becomes porous.

【0004】さらに、Coなどの金属触媒を焼結助剤と
した場合は、微粒のダイヤモンド粉末を焼結する際にダ
イヤモンド粒子が異常成長しやすく、微細で均質な組織
を必要とする切削工具用途としては大きな問題となって
いた。また、SiCを結合剤としたダイヤモンド焼結体
は耐熱性には優れるが、ダイヤモンド粒同士は結合がな
いため、強度は低い。一方、焼結助剤として炭酸塩を用
いたダイヤモンド焼結体は、Co結合剤による焼結体に
比べると耐熱性に優れるが、1000℃程度より炭酸塩
の分解がはじまり焼結体の強度が低下する。また、焼結
助剤として炭酸塩を用いる方法ではダイヤモンド焼結体
の製造に7.7GPa、2000℃以上と大変厳しい圧
力、温度条件を要するため、コストがかなり高くなり、
工業生産は難しい。本発明は以上の問題点を解決して、
切削工具として有効な、耐欠損性、耐摩耗性、耐熱性を
有する微細で均質なダイヤモンド焼結体を、並びに該ダ
イヤモンド焼結体を、工業生産可能な条件で、低コスト
で製造する方法を提供することを目的とする。
Further, when a metal catalyst such as Co is used as a sintering aid, diamond particles are liable to grow abnormally when sintering fine diamond powder, and are required for cutting tools requiring a fine and homogeneous structure. As a big problem. Further, although a diamond sintered body using SiC as a binder is excellent in heat resistance, the strength is low because diamond particles do not bond with each other. On the other hand, a diamond sintered body using a carbonate as a sintering aid has better heat resistance than a sintered body made of a Co binder, but the decomposition of the carbonate starts at about 1000 ° C. and the strength of the sintered body is reduced. descend. Further, in the method using a carbonate as a sintering aid, the production of a diamond sintered body requires extremely severe pressure and temperature conditions of 7.7 GPa and 2000 ° C. or higher, so that the cost becomes considerably high,
Industrial production is difficult. The present invention solves the above problems,
A method for producing a fine and homogeneous diamond sintered body having chipping resistance, wear resistance and heat resistance effective as a cutting tool, and a method of manufacturing the diamond sintered body at low cost under conditions that can be industrially produced. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、本発明は、 (1)鉄族金属と酸素を含有する化合物からなる物質を
0.1〜30体積%含み残部が平均粒径10μm以下の
ダイヤモンド粒子からなる高強度焼結体、
Means for Solving the Problems As means for solving the above-mentioned problems, the present invention provides: (1) 0.1 to 30% by volume of a substance comprising a compound containing an iron group metal and oxygen; A high-strength sintered body composed of diamond particles having an average particle size of 10 μm or less,

【0006】(2)鉄族金属と酸素を含有する化合物が、
鉄族金属の酸化物または複合酸化物または固溶体である
上記(1) に記載の高強度焼結体、
(2) The compound containing an iron group metal and oxygen is
The high-strength sintered body according to the above (1), which is an oxide or a composite oxide or a solid solution of an iron group metal,

【0007】(3)焼結助剤として鉄族金属の酸化物また
は複合酸化物を用い、この粉末と、平均粒径10μm以
下のダイヤモンド粉末を、または、平均粒径10μm以
下のダイヤモンド粉末と非ダイヤモンド炭素の混合粉末
とを混合し、これをダイヤモンドの熱力学的安定領域の
圧力、温度条件で保持し、焼結することを特徴とする上
記(1) 又は(2) に記載の高強度焼結体の製造方法、
(3) An oxide or a composite oxide of an iron group metal is used as a sintering aid, and this powder and a diamond powder having an average particle size of 10 μm or less, or a diamond powder having an average particle size of 10 μm or less are used. The high-strength sintering described in (1) or (2), wherein the powder is mixed with a mixed powder of diamond carbon, and the mixture is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered. A method of manufacturing the aggregate,

【0008】(4)焼結助剤として鉄族金属の酸化物また
は複合酸化物を用い、この粉末の成形体と、平均粒径1
0μm以下のダイヤモンド粉末の成形体または平均粒径
10μm以下のダイヤモンド粉末と非ダイヤモンド炭素
の混合粉末の成形体とを積層し、これをダイヤモンドの
熱力学的安定領域の圧力、温度条件で保持し、焼結する
ことを特徴とする上記(1) 又は(2) に記載の高強度焼結
体の製造方法及び
(4) An oxide or composite oxide of an iron group metal is used as a sintering aid.
A molded body of diamond powder of 0 μm or less or a molded body of mixed powder of non-diamond carbon and diamond powder having an average particle diameter of 10 μm or less is laminated, and this is held under pressure and temperature conditions in a thermodynamically stable region of diamond, The method for producing a high-strength sintered body according to the above (1) or (2), which is characterized by sintering and

【0009】(5)平均粒径10μm以下のダイヤモンド
粉末の表面に鉄族金属の酸化物または複合酸化物を形成
し、これをダイヤモンドの熱力学的安定領域の圧力、温
度条件で保持し、焼結することを特徴とする上記(1) 又
は(2) に記載の高強度焼結体の製造方法を提供する。
(5) An oxide or composite oxide of an iron group metal is formed on the surface of diamond powder having an average particle diameter of 10 μm or less, and this is held under the pressure and temperature conditions of the thermodynamically stable region of diamond. The present invention provides a method for producing a high-strength sintered body according to the above (1) or (2), wherein

【0010】[0010]

【発明の実施の形態】従来、鉄族金属の酸化物や複合酸
化物がダイヤモンド焼結体の有効な焼結助剤となること
は知られていなかった。この度、本発明者らにより、こ
れらの酸化物や複合酸化物を焼結助剤とし、平均粒径1
0μm以下のダイヤモンド粉末を焼結することで、従来
にない高強度で、かつ耐摩耗性、耐欠損性、耐熱性に優
れた切削工具用のダイヤモンド焼結体が、従来の非金属
触媒を焼結助剤とした場合より低い圧力温度条件で得ら
れることが新たに見いだされ、本発明に至った。すなわ
ち、本発明の特徴は、ダイヤモンド焼結体の焼結助剤と
して鉄族金属の酸化物(FeO、Fe2 3 、CoO、
NiOなど)やその複合酸化物(CoFe2 4 など)
を用い、原料に平均粒径10μm以下のダイヤモンドを
用いた点にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It has not been known that iron group metal oxides or composite oxides are effective sintering aids for diamond sintered bodies. Now, the present inventors have determined that these oxides and composite oxides are used as sintering aids and have an average particle size of 1: 1.
By sintering diamond powder of 0 μm or less, a diamond sintered body for cutting tools with unprecedented high strength and excellent abrasion resistance, chipping resistance, and heat resistance can burn conventional nonmetallic catalysts. It has been newly found that the binder can be obtained under a lower pressure and temperature condition than when the binder is used, and the present invention has been achieved. That is, the feature of the present invention is that an oxide of iron group metal (FeO, Fe 2 O 3 , CoO,
NiO) and its composite oxide (CoFe 2 O 4 etc.)
And using diamond having an average particle diameter of 10 μm or less as a raw material.

【0011】これらの鉄族金属の酸化物や複合酸化物
は、ダイヤモンドに対し、強い触媒作用を示し、これら
を焼結助剤とするとダイヤモンド粒子が極めて強固に結
合したマトリックスが形成される。また、原料に1μm
前後のかなり微粒のダイヤモンド粉末を用いても異常粒
成長が起こり難く、均質な組織の焼結体が得られる。こ
のような焼結助剤は0.01〜10μmの粒径範囲のも
のが好ましい。さらに、これらの酸化物や複合酸化物の
触媒作用は、炭酸塩触媒に比べ約600℃低い温度で起
こる。このため、これらの複合酸化物や混合物を焼結助
剤とした場合、その低温での触媒作用(焼結可能)によ
り6GPa、1500℃といったマイルドな条件で上記
のような強固でかつ耐熱性に優れた焼結体を得ることが
できる。すなわち、従来にない高強度で耐摩耗性や耐熱
性に優れた切削工具用のダイヤモンド焼結体が、工業生
産が容易な条件で得られる。
These iron group metal oxides and composite oxides exhibit a strong catalytic action on diamond, and when they are used as a sintering aid, a matrix is formed in which diamond particles are very strongly bonded. In addition, 1 μm
Even if very fine diamond powder before and after is used, abnormal grain growth hardly occurs, and a sintered body having a uniform structure can be obtained. Such a sintering aid preferably has a particle size range of 0.01 to 10 μm. Further, the catalytic action of these oxides and composite oxides occurs at a temperature about 600 ° C. lower than that of the carbonate catalyst. For this reason, when these composite oxides and mixtures are used as sintering aids, the catalysts (sinterable) at low temperatures have the above-mentioned robustness and heat resistance under mild conditions such as 6 GPa and 1500 ° C. An excellent sintered body can be obtained. That is, an unprecedented high-strength diamond sintered compact for cutting tools having excellent wear resistance and heat resistance can be obtained under conditions that facilitate industrial production.

【0012】こうして得られるダイヤモンド焼結体は、
鉄族金属および酸素を含有する化合物からなる物質を含
み、微細で均質な組織を有するのが特徴である。鉄族金
属および酸素を含有する化合物としては、たとえば、F
eO、Fe2 3 、CoO、Co3 4 、NiOなどの
鉄族金属酸化物や、CoFe2 4 などの複合酸化物が
挙げられる。このような物質は1000℃程度の高温下
でも安定である。このため本発明のダイヤモンド焼結体
は耐熱性に優れた特性を示す。また、微細で均質な組織
の焼結体であるため、極めてシャープな刃先が得られ、
特に切削工具として有効である。
The diamond sintered body thus obtained is
It is characterized by having a fine and homogeneous structure, including a substance comprising a compound containing an iron group metal and oxygen. Compounds containing an iron group metal and oxygen include, for example, F
eO, Fe 2 O 3, CoO , and the iron group metal oxides such as Co 3 O 4, NiO, include composite oxides such as CoFe 2 O 4. Such a substance is stable even at a high temperature of about 1000 ° C. For this reason, the diamond sintered body of the present invention exhibits excellent heat resistance. In addition, since it is a sintered body with a fine and homogeneous structure, an extremely sharp cutting edge is obtained,
It is particularly effective as a cutting tool.

【0013】本発明のダイヤモンド焼結体において、鉄
族金属および酸素を含有する化合物からなる物質の含有
量は0.1〜30体積%、特に1〜20体積%が好まし
いが、この理由は0.1体積%未満ではダイヤモンド粒
子間の結合性、すなわち焼結性が低下し、30体積%を
越えると過剰の化合物の影響で、強度、耐摩耗性が低下
するからである。また、焼結体を構成するダイヤモンド
は、平均粒径10μm以下が好ましい。平均粒径が10
μmを越えると、シャープな刃先が得られなくなり、ま
た、刃先が欠損しやすくなるなど切削工具として用いた
場合に不具合が生じやすい。
In the diamond sintered body of the present invention, the content of a substance comprising a compound containing an iron group metal and oxygen is preferably 0.1 to 30% by volume, particularly preferably 1 to 20% by volume. If the content is less than 0.1% by volume, the bondability between diamond particles, that is, the sinterability, is reduced. If the content is more than 30% by volume, the strength and wear resistance are reduced due to the influence of an excessive compound. Further, the diamond constituting the sintered body preferably has an average particle diameter of 10 μm or less. Average particle size is 10
If the thickness exceeds μm, a sharp edge cannot be obtained, and the edge tends to be broken, so that a problem is likely to occur when used as a cutting tool.

【0014】ダイヤモンドの原料として合成ダイヤモン
ド粉末、天然ダイヤモンド粉末、多結晶ダイヤモンド粉
末などを用いることができる。粉末の粒径は0.01〜
20μmで、用途によって微粒または粗粒に粒径を揃え
たもの、もしくは微粒、粗粒の混合物を用いる。また、
これらのダイヤモンドに黒鉛やグラッシーカーボン、熱
分解黒鉛などの非ダイヤモンドを適量添加したものも原
料とすることができる。また、ダイヤモンドとこれら非
ダイヤモンド黒鉛の混合物を用いることもできる。本発
明のダイヤモンド焼結体の製造方法としては、ダイヤモ
ンド粉末と、鉄族金属の酸化物や複合酸化物を、ダイヤ
モンドが熱力学的に安定な圧力、温度条件下で保持する
方法と、ダイヤモンド粉末の成形体と、鉄族金属の酸化
物や複合酸化物の成形体を積層したものを原料として、
上記の圧力、温度条件下で保持する方法がある。また、
鉄族金属の酸化物や複合酸化物あるいは混合物をあらか
じめ熱プラズマ法 などにより原料のダイヤモンド粉末
の表面に形成させておき、これを上記の圧力、温度条件
下で焼結することにより、より均質な焼結体が得られ
る。
As a raw material of diamond, synthetic diamond powder, natural diamond powder, polycrystalline diamond powder and the like can be used. Particle size of powder is 0.01 ~
A particle having a particle size of 20 μm and having a fine or coarse particle size depending on the intended use, or a mixture of fine and coarse particles is used. Also,
Raw materials obtained by adding non-diamonds such as graphite, glassy carbon, and pyrolytic graphite to these diamonds in an appropriate amount can also be used. Also, a mixture of diamond and these non-diamond graphites can be used. The method for producing a diamond sintered body of the present invention includes a method of holding diamond powder, an oxide or a composite oxide of an iron group metal under pressure and temperature conditions at which diamond is thermodynamically stable; And a laminate of a compact of iron-group metal oxide and a complex oxide as a raw material,
There is a method of holding under the above pressure and temperature conditions. Also,
An oxide, composite oxide, or mixture of iron group metal is formed on the surface of the raw material diamond powder in advance by a thermal plasma method or the like, and this is sintered under the above-described pressure and temperature conditions to obtain a more homogeneous material. A sintered body is obtained.

【0015】[0015]

【実施例】【Example】

(実施例1)焼結助剤として粒径1μmのFeO粉末を
用いた。粒径3〜8μm(平均5μm)の天然ダイヤモ
ンド粉末と、該FeO粉末をそれぞれ95体積%、5体
積%の割合で十分に混合し、この混合物をMoカプセル
に入れ、ベルト型の超高圧高温発生装置を用いて、6.
5GPa、1650℃の圧力温度条件で15分間保持
し、焼結させた。得られたダイヤモンド焼結体につい
て、X線回折により組成を同定したところ、ダイヤモン
ドの他、約5体積%の鉄の酸化物が検出された。また、
走査型顕微鏡で組織を観察すると、粒径が平均5μmで
揃ったダイヤモンド粒子が結合した緻密な組織を有する
ことがわかり、異常粒成長は認められなかった。この焼
結体の硬度をヌープ圧子により評価したところ8100
Kg/mm2と高硬度であった。また、この焼結体を真
空中で1000℃に加熱処理した後、硬度を測定した
が、処理前とほとんど変化がなかった。このダイヤモン
ド焼結体から切削工具用の刃先チップを作製したとこ
ろ、極めてシャープな刃先が得られた。これを活性鑞材
を用いて超硬合金に真空鑞付けし切削工具を作製し、A
l−Si合金を断続切削した。比較材として従来のCo
バインダーによる平均粒径5μmのダイヤモンド焼結体
を用い、同一条件で切削性能を比較した。逃げ面の摩耗
量は、従来のCoバインダーによるダイヤ焼結体の1/
5、刃先の欠損もほとんど見られず、優れた切削性能を
有することがわかった。
(Example 1) FeO powder having a particle size of 1 µm was used as a sintering aid. A natural diamond powder having a particle size of 3 to 8 μm (average 5 μm) and the FeO powder are sufficiently mixed at a ratio of 95% by volume and 5% by volume, respectively, and the mixture is placed in a Mo capsule to generate a belt-type ultra-high pressure and high temperature 5. Using the device,
It was kept at 5 GPa and a pressure and temperature condition of 1650 ° C. for 15 minutes and sintered. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 5% by volume of iron oxide was detected in addition to diamond. Also,
Observation of the structure with a scanning microscope revealed that the structure had a dense structure in which diamond particles having an average particle size of 5 μm were combined, and no abnormal grain growth was observed. When the hardness of this sintered body was evaluated using a Knoop indenter, the hardness was 8100.
The hardness was as high as Kg / mm 2 . Further, the hardness of the sintered body was measured after heating at 1000 ° C. in a vacuum, but there was almost no change from that before the treatment. When a cutting edge for a cutting tool was prepared from this diamond sintered body, an extremely sharp cutting edge was obtained. This was vacuum brazed to a cemented carbide using an active brazing material to produce a cutting tool.
The l-Si alloy was intermittently cut. Conventional Co
The cutting performance was compared under the same conditions using a diamond sintered body having an average particle diameter of 5 μm by a binder. The amount of wear of the flank is 1/1 of that of the diamond sintered body using the conventional Co binder.
5. There was hardly any chipping of the cutting edge, indicating excellent cutting performance.

【0016】(実施例2)焼結助剤に粒径1μmのFe
2 3 粉末を用いた他は、実施例1と同様にしてダイヤ
モンド焼結体を作製した。得られた焼結体には鉄の酸化
物が含まれており、硬度、耐熱性、切削性能とも実施例
1と同様であった。
Example 2 Fe having a particle size of 1 μm was used as a sintering aid.
A diamond sintered body was produced in the same manner as in Example 1 except that 2 O 3 powder was used. The obtained sintered body contained an iron oxide, and the hardness, heat resistance, and cutting performance were the same as those in Example 1.

【0017】(実施例3)焼結助剤として粒径1μmの
CoFe2 4 粉末を焼結助剤とした他は、実施例1と
同様にしてダイヤモンド焼結体を作製した。得られた焼
結体にはコバルトと鉄の複合酸化物が含まれており、硬
度、耐熱性、切削性能とも実施例1と同様であった。
Example 3 A diamond sintered body was produced in the same manner as in Example 1 except that CoFe 2 O 4 powder having a particle size of 1 μm was used as a sintering aid. The obtained sintered body contained a composite oxide of cobalt and iron, and the hardness, heat resistance, and cutting performance were the same as in Example 1.

【0018】(実施例4)焼結助剤として粒径1μmの
CoO粉末を焼結助剤とした他は、実施例1と同様にし
てダイヤモンド焼結体を作製した。得られた焼結体には
コバルトの酸化物が含まれており、硬度、耐熱性、切削
性能とも実施例1と同様であった。
(Example 4) A diamond sintered body was produced in the same manner as in Example 1 except that CoO powder having a particle size of 1 µm was used as a sintering aid. The obtained sintered body contained an oxide of cobalt, and the hardness, heat resistance, and cutting performance were the same as in Example 1.

【0019】(実施例5)焼結助剤として粒径1μmの
FeO粉末を用いた。粒径1μm以下の微粒の合成ダイ
ヤモンド粉末と、上記粉末をそれぞれ厚み2mm、1m
mに成形したものを交互に積層してMoカプセルに入
れ、ベルト型の超高圧高温発生装置を用いて、6.5G
Pa、1600℃の圧力温度条件で15分間保持し焼結
した。得られたダイヤモンド焼結体についてX線回折に
より組成を同定したところ、ダイヤモンドの他、約3体
積%の鉄の酸化物が検出された。また、走査型顕微鏡で
組織を観察すると、粒径の揃った微細なダイヤモンド粒
子(平均粒径0.5μm)が結合した緻密な組織を有す
ることがわかり、異常粒成長は認められなかった。この
焼結体の硬度をヌープ圧子により評価したところ約72
00Kg/mm2 と高硬度であり、真空中で1000℃
に加熱処理した後も硬度にほとんど変化がなかった。こ
のダイヤモンド焼結体から切削工具用の刃先チップを作
製したところ、極めてシャープな刃先が得られた。これ
を活性鑞材を用いて超硬合金に真空鑞付けし切削工具を
作製し、Al−Si合金を断続切削した。比較材として
従来のCoバインダーによる平均粒径0.5μmのダイ
ヤモンド焼結体を用い、同一条件で切削性能を比較し
た。逃げ面の摩耗量は、従来のCoバインダーによるダ
イヤ焼結体の1/3以下で、刃先の欠損もほとんど見ら
れず、優れた切削性能を有することがわかった。
Example 5 As a sintering aid, FeO powder having a particle size of 1 μm was used. A fine synthetic diamond powder having a particle size of 1 μm or less and the powder are each 2 mm thick and 1 m thick.
m are alternately laminated and placed in a Mo capsule, and 6.5G is applied using a belt-type ultra-high pressure and high temperature generator.
It was kept for 15 minutes under the pressure and temperature conditions of Pa and 1600 ° C. and sintered. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 3% by volume of iron oxide was detected in addition to diamond. Further, when the structure was observed with a scanning microscope, it was found that the structure had a dense structure in which fine diamond particles having a uniform particle size (average particle size: 0.5 μm) were bonded, and no abnormal grain growth was observed. When the hardness of this sintered body was evaluated using a Knoop indenter,
High hardness of 00Kg / mm 2 and 1000 ° C in vacuum
After the heat treatment, the hardness hardly changed. When a cutting edge for a cutting tool was prepared from this diamond sintered body, an extremely sharp cutting edge was obtained. This was vacuum brazed to a cemented carbide using an active brazing material to produce a cutting tool, and the Al-Si alloy was intermittently cut. As a comparative material, a cutting performance was compared under the same conditions using a diamond sintered body having a mean particle size of 0.5 μm using a conventional Co binder. The amount of wear on the flank was 1/3 or less of that of the diamond sintered body using the conventional Co binder, and there was almost no chipping of the cutting edge, indicating excellent cutting performance.

【0020】(実施例6)焼結助剤として、実施例3で
用いたものと同じCoFe2 4 粉末を焼結助剤とした
他は実施例5と同様にしてダイヤモンド焼結体を作製し
た。得られた焼結体にはコバルトと鉄の複合酸化物が含
まれており、硬度、耐熱性、切削性能とも実施例5と同
様であった。
Example 6 A diamond sintered body was produced in the same manner as in Example 5, except that the same CoFe 2 O 4 powder as used in Example 3 was used as the sintering aid. did. The obtained sintered body contained a composite oxide of cobalt and iron, and the hardness, heat resistance, and cutting performance were the same as in Example 5.

【0021】(実施例7)粒径1〜3ミクロンのダイヤ
モンド粉末の表面に約10体積%のFeOを熱プラズマ
法でコーティングし、これをMoカプセルに入れ、ベル
ト型の超高圧高温発生装置を用いて、6GPa、155
0℃の圧力温度条件で15分間保持し、焼結させた。得
られたダイヤモンド焼結体について、X線回折により組
成を同定したところ、ダイヤモンドの他、約10体積%
の鉄の酸化物が検出された。組織を観察すると異常粒成
長が全く見られず、均質で緻密な組織を有することがわ
かった。この焼結体の硬度をヌープ圧子により評価した
ところ約7300Kg/mm 2 と高硬度で、真空中で1
000℃に加熱処理した後もほとんど変化がなかった。
このダイヤモンド焼結体から切削工具の刃先チップを作
製したところ、極めてシャープな刃先が得られた。これ
を活性鑞材を用いて超硬合金に真空鑞付けし切削工具を
作製し、Al−Si合金を断続切削した。比較材として
従来のCoバインダーによる粒径1〜3μmのダイヤモ
ンド焼結体を用い、同一条件で切削性能を比較した。逃
げ面の摩耗量は、従来のCoバインダーによるダイヤ焼
結体の1/5で、刃先の欠損もほとんど見られず、優れ
た切削性能を有することがわかった。
Example 7 Diamond having a particle size of 1 to 3 microns
About 10% by volume of FeO on the surface of Mondo powder
Coating with Mo method, put this in Mo capsule, bell
6 GPa, 155
It was kept at a pressure and temperature condition of 0 ° C. for 15 minutes and sintered. Profit
X-ray diffraction of the diamond sintered body
When the composition was identified, in addition to diamond, about 10% by volume
Iron oxide was detected. Abnormal grain formation when observing the structure
No length is observed, indicating that it has a homogeneous and dense structure.
won. The hardness of this sintered body was evaluated using a Knoop indenter
However, about 7300Kg / mm TwoAnd high hardness, 1 in vacuum
There was almost no change even after heat treatment at 000 ° C.
The cutting edge of the cutting tool is made from this diamond sintered body.
As a result, an extremely sharp cutting edge was obtained. this
Is vacuum brazed to cemented carbide using activated brazing material
It was manufactured and the Al-Si alloy was intermittently cut. As a comparison material
Diamond with a particle size of 1 to 3 μm using a conventional Co binder
Using a sintered compact, the cutting performance was compared under the same conditions. Escape
The wear amount of the grinding surface is determined by diamond firing using a conventional Co binder.
Excellent in almost 1/5 of the consolidated body, with almost no cutting edge defects
It was found that it had good cutting performance.

【0022】(比較例1)焼結助剤として実施例1と同
じFeOを用いた。粒径3〜8μmの天然ダイヤモンド
粉末に、微量のFeOの粉末(約0.05体積%)を添
加し、十分に混合したものを原料にした他は、実施例1
と同様にダイヤモンド焼結体の製造を試みた。しかし、
得られた焼結体には、未焼結部が多く残留していた。
Comparative Example 1 The same FeO as in Example 1 was used as a sintering aid. Example 1 except that a small amount of FeO powder (about 0.05% by volume) was added to a natural diamond powder having a particle size of 3 to 8 μm, and a sufficiently mixed mixture was used as a raw material.
Production of a diamond sintered body was attempted in the same manner as described above. But,
Many unsintered portions remained in the obtained sintered body.

【0023】(比較例2)焼結助剤として実施例1と同
じFeO粉末を用いた。粒径3〜8μmの合成ダイヤモ
ンド粉末60体積%と、上記の粉末40体積%を添加
し、十分に混合したものを原料にした他は、実施例1と
同様にダイヤモンド焼結体の製造を試みた。しかし、得
られた焼結体は、粒子同士の結合が十分でなく、硬度は
3000Kg/mm2 程度と低かった。
Comparative Example 2 The same FeO powder as in Example 1 was used as a sintering aid. Production of a diamond sintered body was attempted in the same manner as in Example 1 except that 60 vol% of synthetic diamond powder having a particle size of 3 to 8 μm and 40 vol% of the above powder were added and mixed sufficiently as a raw material. Was. However, the obtained sintered body had insufficient bonding between particles, and had a low hardness of about 3000 kg / mm 2 .

【0024】(比較例3)焼結助剤として実施例1と同
じFeO粉末を用いた。平均粒径30μmの合成ダイヤ
モンド粉末に、この焼結助剤を10体積%を添加し、十
分に混合したものを原料にした他は、実施例1と同様に
ダイヤモンド焼結体の製造を試みた。得られた焼結体で
切削工具を作製したが、シャープな刃先が得難く、切削
試験においても刃先の欠損が目立った。
Comparative Example 3 The same FeO powder as in Example 1 was used as a sintering aid. An attempt was made to produce a diamond sintered body in the same manner as in Example 1, except that 10% by volume of this sintering aid was added to a synthetic diamond powder having an average particle diameter of 30 μm, and the resulting mixture was sufficiently mixed. . A cutting tool was prepared from the obtained sintered body, but it was difficult to obtain a sharp cutting edge, and the cutting edge was noticeable in a cutting test.

【0025】[0025]

【発明の効果】以上説明したように、本発明のダイヤモ
ンド焼結体は、従来にない高強度で、耐熱性、耐摩耗性
を有し、かつ微細で均質な組織であるため、非鉄金属や
セラミックス等の切削、研削工具用素材として非常に有
効である。
As described above, the diamond sintered body of the present invention has an unprecedented high strength, heat resistance and abrasion resistance, and has a fine and homogeneous structure. It is very effective as a material for cutting and grinding tools such as ceramics.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄族金属と酸素を含有する化合物からな
る物質を0.1〜30体積%含み残部が平均粒径10μ
m以下のダイヤモンド粒子からなる高強度焼結体。
1. A material comprising an iron group metal and a compound containing oxygen in an amount of 0.1 to 30% by volume, and the balance having an average particle size of 10 μm.
A high-strength sintered body composed of diamond particles of m or less.
【請求項2】 鉄族金属と酸素を含有する化合物が、鉄
族金属の酸化物または複合酸化物または固溶体である請
求項1に記載の高強度焼結体。
2. The high-strength sintered body according to claim 1, wherein the compound containing an iron group metal and oxygen is an oxide or a composite oxide or a solid solution of the iron group metal.
【請求項3】 焼結助剤として鉄族金属の酸化物または
複合酸化物を用い、この粉末と、平均粒径10μm以下
のダイヤモンド粉末を、または、平均粒径10μm以下
のダイヤモンド粉末と非ダイヤモンド炭素の混合粉末と
を混合し、これをダイヤモンドの熱力学的安定領域の圧
力、温度条件で保持し、焼結することを特徴とする請求
項1または2に記載の高強度焼結体の製造方法。
3. An iron-group metal oxide or composite oxide as a sintering aid, comprising a powder and a diamond powder having an average particle diameter of 10 μm or less, or a diamond powder having an average particle diameter of 10 μm or less and a non-diamond The high-strength sintered body according to claim 1 or 2, wherein the powder is mixed with a mixed powder of carbon, and the mixture is sintered under pressure and temperature conditions in a thermodynamically stable region of diamond. Method.
【請求項4】 焼結助剤として鉄族金属の酸化物または
複合酸化物を用い、この粉末の成形体と、平均粒径10
μm以下のダイヤモンド粉末の成形体または平均粒径1
0μm以下のダイヤモンド粉末と非ダイヤモンド炭素の
混合粉末の成形体とを積層し、これをダイヤモンドの熱
力学的安定領域の圧力、温度条件で保持し、焼結するこ
とを特徴とする請求項1または2に記載の高強度焼結体
の製造方法。
4. An oxide or a composite oxide of an iron group metal is used as a sintering aid.
Molded diamond powder of μm or less or average particle size 1
2. A method comprising laminating a compact of a mixed powder of diamond powder and non-diamond carbon having a particle size of 0 μm or less, holding the compact under a pressure and temperature condition in a thermodynamically stable region of diamond, and sintering. 3. The method for producing a high-strength sintered body according to item 2.
【請求項5】 平均粒径10μm以下のダイヤモンド粉
末の表面に鉄族金属の酸化物または複合酸化物または混
合物を形成し、これをダイヤモンドの熱力学的安定領域
の圧力、温度条件で保持し、焼結することを特徴とする
請求項1または2に記載の高強度焼結体の製造方法。
5. An oxide or composite oxide or mixture of an iron group metal is formed on the surface of a diamond powder having an average particle diameter of 10 μm or less, and this is maintained under the pressure and temperature conditions of the thermodynamically stable region of diamond. The method for producing a high-strength sintered body according to claim 1, wherein the method comprises sintering.
JP8343485A 1996-12-24 1996-12-24 High strength sintered compact and its production Pending JPH10182231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8343485A JPH10182231A (en) 1996-12-24 1996-12-24 High strength sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8343485A JPH10182231A (en) 1996-12-24 1996-12-24 High strength sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH10182231A true JPH10182231A (en) 1998-07-07

Family

ID=18361894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8343485A Pending JPH10182231A (en) 1996-12-24 1996-12-24 High strength sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH10182231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098073B1 (en) * 2020-12-22 2022-07-08 住友電工ハードメタル株式会社 How to manufacture cutting tools

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098073B1 (en) * 2020-12-22 2022-07-08 住友電工ハードメタル株式会社 How to manufacture cutting tools

Similar Documents

Publication Publication Date Title
JP5966218B2 (en) Carbide structures, tool elements, and methods of making them
WO2010128492A1 (en) Ultra-hard diamond composites
JP2008539155A (en) Cubic boron nitride compact
US4342595A (en) Cubic boron nitride and metal carbide tool bit
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JPS5823459B2 (en) High-density phase boron nitride-containing sintered body for cutting tools
JPH09142933A (en) Diamond sintered compact and its production
JPH10182231A (en) High strength sintered compact and its production
JPH09142932A (en) Diamond sintered compact and its production
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof
JPH0368938B2 (en)
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JPH10182230A (en) High strength sintered compact and its production
JP3622261B2 (en) Diamond sintered body and manufacturing method thereof
JP3642082B2 (en) Diamond sintered body and manufacturing method thereof
JPH1135375A (en) Sintered compact of drilling bit and its production
JPH09324236A (en) Production of diamond sintered body and its production
JPH1135374A (en) Sintered compact for drilling bit and its production
JPH0952766A (en) Diamond sintered compact and production thereof
JPH0967164A (en) Diamond sintered compact and its production
JP3978789B2 (en) Diamond sintered body and method for producing the same
JPH02167666A (en) Manufacture of fine grain diamond sintering body
JPH08310865A (en) Diamond sintered compact and its production
JPS59232985A (en) Surface coated sialon base ceramic tool member
JPH0127022B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107