JPH0127022B2 - - Google Patents
Info
- Publication number
- JPH0127022B2 JPH0127022B2 JP60270473A JP27047385A JPH0127022B2 JP H0127022 B2 JPH0127022 B2 JP H0127022B2 JP 60270473 A JP60270473 A JP 60270473A JP 27047385 A JP27047385 A JP 27047385A JP H0127022 B2 JPH0127022 B2 JP H0127022B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- wurtzite
- boron nitride
- type
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 63
- 229910052582 BN Inorganic materials 0.000 claims description 61
- 239000000843 powder Substances 0.000 claims description 29
- 150000001875 compounds Chemical class 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 11
- 239000006104 solid solution Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 230000000737 periodic effect Effects 0.000 claims description 9
- 239000011812 mixed powder Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims 1
- 238000005520 cutting process Methods 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 150000002739 metals Chemical class 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000007872 degassing Methods 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000010587 phase diagram Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Ceramic Products (AREA)
Description
高圧相型窒化硼素(BN)には立方晶とウルツ
鉱晶と2種あるが、いずれもダイヤモンドに次ぐ
高い硬度を有し、研削や切削加工用材料として、
極めて有望とされている。既に切削用途には、か
なり多く用いられている。切削用途には立方晶型
BNをCoなどの金属で結合した焼結体が一部試験
的に発売されている。
この金属で結合したBN焼結体は一種のサーメ
ツトであり、耐熱性という点で問題がある。即ち
高速切削する場合のような刃先温度のあがる用途
には不適である。本発明は結合体として耐熱性、
耐摩耗性に優れた金属化合物を用い、しかも高い
強度を与えんとするものである。
発明者等は先に立方晶型窒化硼素(略して
CBN)を耐熱性に優れ熱伝導率の高い金属化合
物で結合した高硬度の工具用焼結体を発明し特許
出願している(特願昭51−154570、特願昭52−
54666)。発明者等はCBNの場合と同様な考えを
窒化硼素の別の高圧相であるウルツ鉱型BNに適
用して種々検討した結果、本発明に到達した。
ウルツ鉱型BNは六方晶型BNを原料として衝
撃波を用いる動的超高圧発生方法を用いて合成す
ることができる。この方法では静的な超高圧装置
を用いて合成されるCBNに比較して安価に製造
できるという利点がある。この衝撃波法を用いた
合成法では合成時の圧力、温度の持続時間が短い
為結晶成長の時間が限られ、この方法によつて合
成されたウルツ型BN結晶の粒度は一般に10μ以
下のものが多い。発明者等の一人等が出願した特
公昭50−39444号では、このウルツ鉱型BNを原
料として、これを高温高圧下で焼結して得られる
焼結体が開示されており、このウルツ鉱型BNの
みの焼結体はCBN単結晶より高硬度であり、耐
熱性も秀れていることが示されている。
発明者等はこのウルツ鉱型BNの焼結体につい
て特性、性能を詳細に調べた結果、焼結体毎のバ
ラツキが多く、また工具としての性能面でも靭
性、耐摩耗性共に改良の余地があることを見出し
た。
衝撃波を使用して合成されたウルツ鉱型BNは
前述した如く、極めて微細な粉末であり、また粒
子の形状も複雑で表面に凹凸が多いために表面積
が大きい。この為粒子表面にガスが吸着され易く
粒子表面には酸化物や水酸化物が形成される。こ
のような微粉末を用いて焼結する場合焼結される
物質が密封されていない時には、このガスを系外
に出すのは困難ではない。しかし本発明の如く、
超高圧下で焼結する場合には、発生したガスは、
加熱系外に脱出することは殆ど不可能である。一
般にかかる場合には、予め脱ガス処理をする事が
粉末冶金業界では、常識であるが、脱ガス処理温
度が十分高く出来ない場合には問題である。本件
はまさにそれに当る。即ちウルツ鉱型BNの低圧
相への変態を考えると加熱温度に上限がある。
微粉末の脱ガス過程としては、温度と共に次の
各段階がある。まず低温では物理吸着しているも
のと吸湿水分が除去される。次いで化学吸着して
いるもの及び水酸化物の分解が起きる。最後に酸
化物が残る。ウルツ鉱型BNの場合800℃位まで
は安定であるので、この温度位には予め加熱出来
る。従つて予め脱ガス加熱すれば、残留ガス成分
は酸化物の形で残つていると考えてよい。逆に言
えばガス成分は、なるべく焼結体中に残したくな
いのだから、水および水素を全て除去することは
予備処理として行うのが好ましい。
しかしこの加熱脱ガス処理では粒子表面の酸化
物は除去できない、ウルツ鉱型BN粒子の場合多
分酸化硼素(B2O3)の形で酸化物が残る。酸化
硼素は融点が低く(450℃)高温ではガラス状と
なる。また大気中の水分を吸収して水酸化物にな
り易い。従来のウルツ鉱型BNの焼結体は結晶粒
子表面にこのB2O3が残存したまま焼結されてお
り、その量によつて特性のバラツキが生じ、また
これが切削工具等に使用した場合、耐摩耗性や靭
性を低下せしめる一つの原因となつていた。本発
明はこの点を解決した高性能の安定した工具用焼
結体を提供するものである。発明者等はウルツ鉱
型BNと各種の耐熱性化合物粉末の混合粉末を焼
結して特性、性能を検討した結果、周期律表の第
4a,5a族金属の炭化物を使用した場合、特性の
安定した高性能の焼結体が得られることを見出し
た。
周期律表の第4a,5a族金属の炭化物を使用し
た場合、何故このように良好な焼結体が得られる
かは次の如くと考えられる。
即ち、周期律表の第4a,5a族金属のこれ等化
合物はMC1±xの形で示され(Mは周期律第4a族
のTi、Zr、Hfまたは第5a族のV、Nb、Taの金
属を示し、xはCの原子空孔または相対的に過剰
の原子の存在を意味する。)M−C相図上である
巾の組成範囲を有する。特に第4a族金属のTi、
Zr、Hfは広い存在範囲を有している。
例えばこの中でMC1±xの形で表わされる炭化
物を例にとると、MC1±xを加えた時、何故焼結
体として良好なものが得られるかは次の如くと考
えられる。即ち、ウルツ鉱型BN粉末表面には例
えば真空中での加熱脱ガス処理では除去できなか
つた酸化物、多分B2O3の形のものが存在する。
このB2O3とMC1±xの(遊離M)に相当するMが
反応した場合には、
B2O3+4M→MB2+3MO (1)
となりガスを発生しない。そしてMOとMCとは
相互固溶体を形成する。ここにMC1±xで表わさ
れる周期律表第4a,5a族金属の炭化物を加えた
時に良好な焼結体が得られる理由があると考えら
れる。
また周期律表第4a,5a族金属のこれ等化合物
は周期律表第6a族金属であるCr、Mo、Wの炭化
物、窒化物との固溶体を形成し得る。このような
複合炭化物、窒化物、炭窒化物についても例えば
(M、M′)C1±xの形で表わされる存在範囲を有
する限り、本発明の焼結体に適用し得る。発明者
等はウルツ鉱型BNとこれ等の化合物粉末で(1
±x)の種々の組成範囲のものを混合して焼結体
を試作し、特性、性能を調べた結果(1±x)の値
が炭化物の安定状態の上限の0.95以下のC原子の
空孔を有する化合物粉末を使用した時に強靭で良
好な焼結体が安定して得られることを確認した。
本発明による焼結体をウルツ鉱型BNにTiC1±
xを混合して焼結体を作成する場合について、更
に詳しく説明する。
TiCの添加量60%、10%の場合について検討し
てみると、ウルツ鉱型BNの予備加熱後ももつて
いる酸素量は最大1%であろうから、この極端な
場合でTiC1-xのxの最低必要量を計算してみる
と
TiC ウルツ鉱型BN
60% 40%の場合 x=0.056
10% 90%の場合 x=0.757となる。
即ち、TiCの量が多い場合にはTiC1-xのxの値
の小さいものを使えば良く、少ない場合にはxの
値の大きなものを使う必要がある。第1図に示し
たようにTiCの存在領域は広い。下限は大体
TiC0.5である。
上限についてTiC0.98である。従つて90%BN−
10%TiCの場合で酸素量の多い場合にはTiCとTi
の混合物を加える必要がある。しかし、こうなる
と結合材としてTiCの量が少なくなるので好まし
くなく、むしろ使用するBNの酸素を減らすべき
であろう。好ましい(1−X)の値は使用する金
属元素により異なるが、TiC1-xの場合は焼結中
にB2O3を分解させ、焼結体中でTi(C、O)相と
して存在する範囲であり、大体(1−X)0.6
である。焼結体中に残存するTi−C−Oの固溶
体相はB2O3に比較して、はるかに耐熱性があり
また硬度も高い安定な化合物である。また前述し
た(1)式で示したようにB2O3が分解した場合は
TiB2が生じるが、これも高硬度の耐熱性化合物
である為焼結体の性能を低下せしめることはな
い。
第2図はTi−C−B系の状態図であるが
TiC1-x中にも若干のBが固溶することが示され
ており、B2O3とTiC1-xの反応で生じる化合物と
してはTiB2、TiB、Ti−C−O固溶体の他にTi
−C−O−B系固溶体も生じ得ると考えられる。
さて本発明の焼結体でウルツ鉱型BNに加える
上記化合物粉の量は原料BN粉末中の酸素含有量
添加する化合物粉末の組成によつて選定する必要
があるが、更に焼結体を工具として使用した場合
の性能面から限定される。
ウルツ鉱型BNの含有量が焼結体中の体積%で
10%未満では焼結体の硬度も低く、BNを含有し
ない焼結体と性能上の差が顕著でない。また添加
する化合物が焼結体中に体積%で10%未満ではウ
ルツ鉱型BN粉末の有する酸化物の大部分を分解
せしめて、本発明の効果を充分に発揮するには不
足している。特に好適な組成範囲はウルツ鉱型
BNの含有量が焼結体中の体積%で30〜70%の範
囲である。
この限定された組成範囲では、後述する如く原
料BN粉末と添加化合物粉末の粒度を選定するこ
とにより、本発明による添加化合物が焼結体中で
連続した結合相を形成し、BN粒子の表面を包囲
した状態となるため、原料BN粉末表面の酸化物
は焼結中に完全に結合相化合物中に分解固溶して
強靭な焼結体を得ることができる。
本発明の焼結体を製造するにあたつては使用す
るウルツ鉱型BN粉末の粒度は、特に限定されな
いが一般に衝撃波法で得られるBNの粒度は10μ
以下の微細粉である。このBN粉末と周期律表第
4a,5a族金属の炭化物を主体とした化合物粉末
を混合する。この化合物粉末の粒度はBN粉末粒
子間に細かく分散する事が本発明の効果を発揮さ
せる為には必要である。従つて、BN粉末の粒度
より細かいものを使用した方が良く、本発明では
全て10μ以下、望ましくは1μ以下の粉末として使
用している。この混合粉末もしくは型押体を真空
度10-4mmHg以上の真空下で800℃以下の温度に加
熱脱ガスし、これを超高圧装置を用いて高圧、高
温下で焼結する。
用いる超高圧装置はダイヤモンド合成に使用さ
れるガードル型、ベルト型等の装置である。発熱
体には黒鉛円筒を用い、その中にタルク、NaCl
等の絶縁物をつめてCBNの混合粉末型押体を包
む。黒鉛発熱体の周囲にはパイロフエライト等の
圧力媒体を置く。焼結する圧力、温度条件は第3
図に示した高圧相型窒化硼素の安定領域内(即ち
第3図A−A′線上側の温度、圧力条件)で行う
ことが望ましいが、この平衡線は必ずしも正確に
は分かつておらず、1つの目安にすぎない。
第3図のB−B′線はウルツ鉱型BNの準安定領
域を示したもので、B−B′線とA−A′線で囲ま
れた領域内の圧力温度条件下では、ウルツ鉱型か
ら立方晶型BNに変換することが知られている。
本発明の焼結体の製造に当つては、この領域内
で焼結してウルツ鉱型BNの一部または全部を立
方晶型窒化硼素に変換せしめても良い。
本発明の焼結体を例えば切削工具として使用す
るときには、高圧相型窒化硼素を含有する硬質焼
結体層が工具の刃先部分を形成しておれば良く、
これを支持する部分は切削加工時に工具に加わる
応力や熱に耐える高強度の別の材料を用いて良
い。このような支持体として用いる材料は、硬質
焼結体層と同様な剛性を有し、高強度の超硬合金
が適している。特にWC基超硬合金は熱伝導性が
良く、硬質焼結体層の支持体として最適である。
この支持体と高圧相型窒化硼素を含有する本発
明焼結体との接合は高圧、高温下における焼結時
にこの硬質焼結体層を形成する混合粉末の型押体
に接して支持体となる超硬合金を置き焼結と同時
に接合せしめることができる。この硬質焼結体形
成部がウルツ鉱型窒化硼素粉末のみからなる場合
は高圧、高温下においても超硬合金支持体と強固
に接合された焼結体を得ることは困難であるが、
本発明の焼結体では、窒化硼素粒子間に周期律表
第4a,5a族金属の炭化物を主体とした化合物相
が微細に分散しており、接合界面においてもこれ
等化合物と超硬合金は窒化硼素よりも化学的に親
和性に富むことから強固な接合が得られる。
本発明の焼結体は耐摩耗性に優れ、高硬度で強
靭なものが得られ、焼入れ鋼等の高硬度の鋼や高
硬度の鋳鉄を切削加工する工具材や線引きダイス
等に使用される。
以下実施例を述べる。
実施例 1
粒度2ミクロン以下の衝撃波法で作成したウル
ツ鉱型BNに体積で40%の炭素含有量14.9%
(TiC0.7)で粒度1ミクロンのTiC粉末を加え、
アセトンを溶剤として50時間湿式ボールミル混合
した。尚原料のウルツ鉱型BN粉末の酸素含有量
は分析の結果0.7%であつた。
この混合粉末を外径10mm、厚み1.5mmに型押成
型した。この型押体を鉄製の底付き中空円筒の容
器中に置いた。これを真空炉中に入れ700℃×20
分10-5mmHgの条件で脱ガス処理した。
この脱ガス処理した物をダイヤモンドの合成に
主として用いられる超高圧装置の一つであるベル
ト装置内に装入した。圧力媒体としてはパイロフ
エライトを、ヒーターとしては黒鉛を用いた。
圧力を55Kbにあげてのち温度を1250℃に上げ
15分間保持した。温度を下げてのちに減圧して焼
結体を取出した。
焼結体をダイヤモンド砥石を用いて研削后、ダ
イヤモンドペーストでラツピングした。ラツピン
グした面でビツカース硬度を測定したところ約
3800Kg/mm2であつた。又同一面をX線回折により
調べたところ、ウルツ鉱型BNと、Ti(C、O)
固溶体に相当する回折線の他にTiB2の弱い回折
線が観察された。
実施例 2
実施例1と同様のウルツ鉱型BN粉末とTiC0.8
の混合粉からなる型押体を作成した。実施例1と
同様の鉄製底付き容器中に予め焼結されたWC−
6%Co組成の超硬合金からなる外径10mm、厚さ
3mmの円盤を置き、これに接して前記型押体を置
いた。以下実施例1と同様にして焼結体を得た。
ウルツ鉱型BNを含む硬質焼結体の厚さ1mmの層
が超硬合金円板に強固に接合した焼結体となつて
いた。ダイヤモンド切断刃を用いて焼結体に切欠
きをつけ、これを割つて焼結体の断面を観察し
た。
X線マイクロアナライザーを用いてウルツ鉱型
BNを含む硬質焼結体層と超硬合金の界面を観察
したところ、超硬合金中のCoの硬質焼結体層中
への拡散は見られなかつ。
この超硬合金に接合された焼結体を鋼の支持体
にロウ付けして切削用のバイトを作成した。この
切削用バイトを用いてロツクウエルCスケール硬
度60のSKD11の熱処理材を切削した。切削速度
毎分100m、切込み0.2mm、送り1回転当り0.1mm水
溶性切削油使用の条件で20分間切削しても逃げ面
摩耗幅は0.18mmであり、更に長時間の切削が可能
であつた。一方最も硬い超硬合金であるJIS分類
KO1を用いて削つたところ、僅か30秒で0.20mm以
上の逃げ面摩耗を示し、これ以上の切削は不能で
あつた。
実施例 3
実施例2で用いたウルツ鉱型窒化硼素に第1表
に示した各種の化合物を配合した。
There are two types of high-pressure phase boron nitride (BN), cubic crystal and wurtzite crystal, both of which have a hardness second only to diamond, and are used as materials for grinding and cutting.
It is considered extremely promising. It is already widely used for cutting purposes. Cubic type for cutting applications
Some sintered bodies made of BN bonded with metals such as Co are on the market on a trial basis. This metal-bonded BN sintered body is a type of cermet, and has a problem in terms of heat resistance. That is, it is unsuitable for applications where the temperature of the cutting edge increases, such as when cutting at high speed. The present invention has heat resistance as a bond,
It uses a metal compound with excellent wear resistance and is intended to provide high strength. The inventors first discovered cubic boron nitride (abbreviated as
Invented a highly hard sintered body for tools made by bonding CBN) with a metal compound with excellent heat resistance and high thermal conductivity, and filed a patent application (Japanese Patent Application No. 154570, No. 1983).
54666). The inventors applied the same idea to CBN to wurtzite BN, which is another high-pressure phase of boron nitride, and as a result of various studies, they arrived at the present invention. Wurtzite-type BN can be synthesized using a dynamic ultra-high pressure generation method using shock waves using hexagonal BN as a raw material. This method has the advantage that it can be produced at a lower cost than CBN, which is synthesized using a static ultra-high pressure device. In this synthesis method using the shock wave method, the duration of pressure and temperature during synthesis is short, so the time for crystal growth is limited, and the grain size of Wurtz-type BN crystals synthesized by this method is generally less than 10μ. many. Japanese Patent Publication No. 50-39444, filed by one of the inventors, discloses a sintered body obtained by using this wurtzite type BN as a raw material and sintering it under high temperature and high pressure. It has been shown that a sintered body made only of type BN has higher hardness than CBN single crystal and also has superior heat resistance. The inventors investigated the characteristics and performance of this wurtzite-type BN sintered body in detail, and found that there were many variations from one sintered body to another, and that there was room for improvement in both toughness and wear resistance in terms of performance as a tool. I discovered something. As mentioned above, wurtzite-type BN synthesized using shock waves is an extremely fine powder, and its particle shape is complex and its surface has many irregularities, so it has a large surface area. Therefore, gas is easily adsorbed on the particle surface, and oxides and hydroxides are formed on the particle surface. When sintering using such fine powder, it is not difficult to release this gas from the system if the material to be sintered is not sealed. However, as in the present invention,
When sintering under ultra-high pressure, the gas generated is
It is almost impossible to escape from the heating system. In such cases, it is common knowledge in the powder metallurgy industry to perform a degassing treatment in advance, but this poses a problem if the degassing temperature cannot be raised sufficiently. This is exactly the case in this case. That is, considering the transformation of wurtzite-type BN to a low-pressure phase, there is an upper limit to the heating temperature. The degassing process of fine powder involves the following stages depending on the temperature. First, at low temperatures, physically adsorbed substances and hygroscopic water are removed. Decomposition of chemisorbed substances and hydroxides then occurs. At the end, oxide remains. In the case of wurtzite-type BN, it is stable up to about 800°C, so it can be heated to this temperature in advance. Therefore, it can be considered that if the gas is degassed and heated in advance, the residual gas components remain in the form of oxides. Conversely, since it is desired that gas components remain in the sintered body as little as possible, it is preferable to remove all water and hydrogen as a preliminary treatment. However, this thermal degassing treatment cannot remove oxides on the particle surface; in the case of wurtzite-type BN particles, oxides remain, probably in the form of boron oxide (B 2 O 3 ). Boron oxide has a low melting point (450°C) and becomes glassy at high temperatures. It also easily absorbs moisture from the atmosphere and becomes hydroxide. Conventional wurtzite-type BN sintered bodies are sintered with this B 2 O 3 remaining on the surface of the crystal grains, resulting in variations in properties depending on the amount, and when used in cutting tools etc. This was one of the causes of reduced wear resistance and toughness. The present invention solves this problem and provides a high-performance, stable sintered body for tools. The inventors sintered a mixed powder of wurtzite-type BN and various heat-resistant compound powders and examined the characteristics and performance.
We have found that when carbides of group 4a and 5a metals are used, high-performance sintered bodies with stable properties can be obtained. The reason why such a good sintered body can be obtained when carbides of metals from groups 4a and 5a of the periodic table are used is considered to be as follows. That is, these compounds of metals of groups 4a and 5a of the periodic table are expressed in the form MC 1 ± x , where M is Ti, Zr, Hf of group 4a of the periodic table or V, Nb, Ta of group 5a (where x means the presence of atomic vacancies or relatively excess atoms of C) having a composition range with a certain width on the M-C phase diagram. Especially the group 4a metal Ti,
Zr and Hf have a wide range of existence. For example, taking the carbide expressed in the form of MC 1 ± x as an example, the reason why a good sintered body is obtained when MC 1 ± x is added is considered to be as follows. That is, on the surface of the wurtzite-type BN powder, there is an oxide, probably in the form of B 2 O 3 , that cannot be removed by heating and degassing in a vacuum, for example.
When this B 2 O 3 and M corresponding to (free M) of MC 1 ± x react, B 2 O 3 +4M→MB 2 +3MO (1) and no gas is generated. MO and MC form a mutual solid solution. This is thought to be the reason why a good sintered body can be obtained when carbides of metals from groups 4a and 5a of the periodic table, represented by MC 1 ± x , are added. Further, these compounds of metals of groups 4a and 5a of the periodic table can form solid solutions with carbides and nitrides of Cr, Mo, and W, which are metals of group 6a of the periodic table. Such composite carbides, nitrides, and carbonitrides can also be applied to the sintered body of the present invention as long as they have an existence range expressed in the form (M, M') C 1 ± x . The inventors used wurtzite-type BN and these compound powders ( 1
As a result of prototyping sintered bodies by mixing various composition ranges of (1 ± x ) and investigating the properties and performance, the value of ( 1 ± It was confirmed that a strong and good quality sintered body can be stably obtained when a compound powder with holes is used. TiC 1 ±
The case where a sintered body is created by mixing x will be explained in more detail. Considering the case of TiC addition of 60% and 10%, the amount of oxygen that wurtzite-type BN retains even after preheating is probably 1% at most, so in these extreme cases, TiC 1-x Calculating the minimum required amount of x for TiC Wurtzite BN 60% 40% x = 0.056 10% 90% x = 0.757. That is, when the amount of TiC is large, it is sufficient to use TiC 1-x with a small x value, and when it is small, it is necessary to use a TiC with a large x value. As shown in Figure 1, TiC exists in a wide range of areas. The lower limit is approximately
TiC is 0.5 . The upper limit is TiC 0.98 . Therefore 90% BN−
In the case of 10% TiC, if the amount of oxygen is large, TiC and Ti
It is necessary to add a mixture of However, this is not preferable because the amount of TiC used as a binder decreases, and rather the amount of oxygen in the BN used should be reduced. The preferred value of (1-X) varies depending on the metal element used, but in the case of TiC 1-x , B 2 O 3 is decomposed during sintering and exists as a Ti (C, O) phase in the sintered body. The range is approximately (1-X)0.6
It is. The Ti--C--O solid solution phase remaining in the sintered body is a stable compound that has much higher heat resistance and hardness than B2O3 . Also, when B 2 O 3 decomposes as shown in equation (1) above,
Although TiB 2 is produced, it does not deteriorate the performance of the sintered body because it is also a highly hard and heat-resistant compound. Figure 2 is a phase diagram of the Ti-C-B system.
It has been shown that some B is dissolved as a solid solution in TiC 1-x , and the compounds produced by the reaction between B 2 O 3 and TiC 1-x include TiB 2 , TiB, and Ti-C-O solid solution. niTi
It is believed that a -C-O-B solid solution may also be formed. Now, the amount of the compound powder added to the wurtzite type BN in the sintered body of the present invention needs to be selected depending on the oxygen content in the raw BN powder and the composition of the compound powder to be added. Limited in terms of performance when used as The content of wurtzite-type BN is expressed as volume % in the sintered body.
If it is less than 10%, the hardness of the sintered body is low, and there is no noticeable difference in performance from a sintered body that does not contain BN. Further, if the amount of the added compound in the sintered body is less than 10% by volume, most of the oxides contained in the wurtzite-type BN powder are decomposed, which is insufficient to fully exhibit the effects of the present invention. A particularly suitable composition range is wurtzite type.
The content of BN is in the range of 30 to 70% by volume in the sintered body. In this limited composition range, by selecting the particle sizes of the raw BN powder and the additive compound powder as described later, the additive compound according to the present invention forms a continuous binder phase in the sintered body, and the surface of the BN particles is Since the BN powder is in an enclosed state, the oxides on the surface of the raw BN powder are completely decomposed and dissolved into the binder phase compound during sintering, making it possible to obtain a tough sintered body. In producing the sintered body of the present invention, the particle size of the wurtzite-type BN powder used is not particularly limited, but the particle size of BN obtained by the shock wave method is generally 10μ.
It is the following fine powder. This BN powder and periodic table number
Mix compound powder mainly consisting of carbides of group 4a and 5a metals. The particle size of this compound powder must be finely dispersed between the BN powder particles in order to exhibit the effects of the present invention. Therefore, it is better to use particles with a particle size finer than that of BN powder, and in the present invention, all powders with a particle size of 10 μm or less, preferably 1 μm or less are used. This mixed powder or stamped body is heated and degassed to a temperature of 800°C or less under a vacuum of 10 -4 mmHg or higher, and then sintered at high pressure and high temperature using an ultra-high pressure device. The ultra-high pressure equipment used is a girdle-type, belt-type, etc. equipment used for diamond synthesis. A graphite cylinder is used as the heating element, and talc and NaCl are placed inside it.
The CBN mixed powder molded body is wrapped with an insulating material such as. A pressure medium such as pyroferrite is placed around the graphite heating element. Sintering pressure and temperature conditions are the third
Although it is desirable to carry out the process within the stable region of the high-pressure phase type boron nitride shown in the figure (i.e., the temperature and pressure conditions above the line A-A' in Figure 3), this equilibrium line is not necessarily determined accurately. This is just one guideline. The B-B' line in Figure 3 shows the metastable region of wurtzite-type BN, and under the pressure and temperature conditions in the region surrounded by the B-B' line and the A-A' line, It is known that the BN type converts from the cubic type to the cubic type BN. In producing the sintered body of the present invention, part or all of the wurtzite type BN may be converted into cubic boron nitride by sintering within this region. When the sintered body of the present invention is used, for example, as a cutting tool, it is sufficient that the hard sintered body layer containing high-pressure phase boron nitride forms the cutting edge portion of the tool,
The supporting portion may be made of another high-strength material that can withstand stress and heat applied to the tool during cutting. A suitable material for use as such a support is a high-strength cemented carbide, which has the same rigidity as the hard sintered body layer. In particular, WC-based cemented carbide has good thermal conductivity and is ideal as a support for a hard sintered body layer. This support and the sintered body of the present invention containing high-pressure phase type boron nitride are bonded together during sintering under high pressure and high temperature, in contact with the stamped body of the mixed powder that forms this hard sintered body layer. Cemented carbide can be placed and sintered and joined at the same time. If this hard sintered body forming part is composed only of wurtzite boron nitride powder, it is difficult to obtain a sintered body that is firmly bonded to the cemented carbide support even under high pressure and high temperature.
In the sintered body of the present invention, a compound phase mainly composed of carbides of Group 4a and 5a metals of the periodic table is finely dispersed between the boron nitride particles, and these compounds and the cemented carbide are also present at the bonding interface. Stronger bonding can be obtained because it has greater chemical affinity than boron nitride. The sintered body of the present invention has excellent wear resistance, high hardness and toughness, and is used for tool materials and wire drawing dies for cutting high hardness steel such as hardened steel and high hardness cast iron. . Examples will be described below. Example 1 Wurtzite type BN made by the shock wave method with a particle size of 2 microns or less has a carbon content of 14.9% with a volume of 40%.
Add TiC powder with a particle size of 1 micron (TiC 0.7 ),
Wet ball mill mixing was performed for 50 hours using acetone as a solvent. As a result of analysis, the oxygen content of the wurtzite-type BN powder as a raw material was 0.7%. This mixed powder was pressed to have an outer diameter of 10 mm and a thickness of 1.5 mm. This embossed body was placed in a hollow cylindrical container with a bottom made of iron. Place this in a vacuum furnace at 700℃ x 20
Degassing was performed under the condition of 10 -5 mmHg for 10 min. This degassed product was placed in a belt device, which is one of the ultra-high pressure devices mainly used for diamond synthesis. Pyroferrite was used as the pressure medium and graphite as the heater. Increase the pressure to 55Kb and then increase the temperature to 1250℃.
Hold for 15 minutes. After lowering the temperature, the pressure was reduced and the sintered body was taken out. After grinding the sintered body using a diamond grindstone, it was wrapped with diamond paste. The Vickers hardness was measured on the wrapped surface and was approximately
It was 3800Kg/ mm2 . In addition, when the same surface was examined by X-ray diffraction, it was found that wurtzite-type BN and Ti(C,O)
In addition to the diffraction lines corresponding to the solid solution, a weak diffraction line of TiB 2 was observed. Example 2 Wurtzite-type BN powder and TiC 0.8 similar to Example 1
An embossed body was made from the mixed powder. WC- pre-sintered in a steel bottomed container similar to Example 1.
A disk made of cemented carbide having a composition of 6% Co and having an outer diameter of 10 mm and a thickness of 3 mm was placed, and the embossed body was placed in contact with the disk. Thereafter, a sintered body was obtained in the same manner as in Example 1.
The 1 mm thick layer of hard sintered body containing wurtzite-type BN was firmly bonded to the cemented carbide disk. A notch was made in the sintered body using a diamond cutting blade, and the cut was broken to observe the cross section of the sintered body. Wurtzite type using an X-ray microanalyzer
When the interface between the hard sintered body layer containing BN and the cemented carbide was observed, no diffusion of Co in the cemented carbide into the hard sintered body layer was observed. The sintered body joined to this cemented carbide was brazed to a steel support to create a cutting tool. This cutting tool was used to cut a heat-treated material of SKD11 with a Rockwell C scale hardness of 60. Even after cutting for 20 minutes at a cutting speed of 100 m/min, depth of cut of 0.2 mm, and feed rate of 0.1 mm per revolution using water-soluble cutting oil, the flank wear width was 0.18 mm, making it possible to cut for even longer periods of time. . On the other hand, JIS classification which is the hardest cemented carbide
When cutting with KO 1 , flank wear of more than 0.20 mm was observed in just 30 seconds, and further cutting was impossible. Example 3 Various compounds shown in Table 1 were blended with the wurtzite boron nitride used in Example 2.
【表】
以下実施例1と同様にして焼結体を作成した。
焼結時の圧力、温度条件は第1表に示した通り
で、全てこの条件で15分間保持して焼結した。い
ずれも良好な焼結体となつており、硬質測定の結
果は第1表に示した通りであつた。[Table] A sintered body was produced in the same manner as in Example 1.
The pressure and temperature conditions during sintering were as shown in Table 1, and all sintering was carried out under these conditions for 15 minutes. All of them were good sintered bodies, and the hardness measurement results were as shown in Table 1.
第1図は本発明の焼結体に使用するTiCについ
てTi−C相図上における存在範囲を説明するた
めのものである。第2図はTi−C−Bの三元系
状態図で、本発明の焼結体の添加化合物が焼結体
中に存在する状態を説明する為のものである。第
3図は本発明の焼結体の製造条件を説明する為の
もので高圧相型窒化硼素のP−T相図上における
存在領域を示すものである。
FIG. 1 is for explaining the range of TiC used in the sintered body of the present invention on the Ti-C phase diagram. FIG. 2 is a ternary system phase diagram of Ti-C-B, which is used to explain the state in which the additive compound of the sintered body of the present invention exists in the sintered body. FIG. 3 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the region where high-pressure phase type boron nitride exists on the P-T phase diagram.
Claims (1)
5a族金属をMとしたときにMC1±xの(1±x)の
値が、該金属炭化物の安定状態の上限の95%以下
60%以上である炭化物を主体とした化合物粉末の
混合粉末を高圧、高温下でホツトプレスして得ら
れる焼結体において、ウルツ鉱型窒化硼素または
焼結中にウルツ鉱型窒化硼素の一部乃至は全部が
立方晶型窒化硼素に変換せしめられた高圧相型窒
化硼素が焼結体の体積中に合計量で10%以上90%
以下含有され、残部が該金属炭化物と、ウルツ鉱
型窒化硼素中のほぼ全量の酸素を固溶してなるM
(C、O)の形の固溶体化合物相を主体としたも
のからなることを特徴とする高硬度の工具用焼結
体。 2 特許請求の範囲第1項記載の焼結体でM(C、
O)の固溶体相が焼結体中で連続した結合相をな
すことを特徴とする高硬度の工具用焼結体。[Claims] 1. Wurtzite boron nitride powder and periodic table 4a,
When the Group 5a metal is M, the value of MC 1 ± x ( 1 ± x ) is 95% or less of the upper limit of the stable state of the metal carbide.
In a sintered body obtained by hot-pressing a mixed powder of a compound powder mainly composed of 60% or more carbide under high pressure and high temperature, wurtzite-type boron nitride or a part of wurtzite-type boron nitride during sintering. The total amount of high-pressure phase boron nitride, which is all converted to cubic boron nitride, is 10% or more and 90% in the volume of the sintered body.
M contains the following, and the remainder is formed by solid solution of the metal carbide and almost the entire amount of oxygen in the wurtzite boron nitride.
A highly hard sintered body for a tool, characterized in that it mainly consists of a solid solution compound phase in the form of (C, O). 2 In the sintered body according to claim 1, M(C,
A sintered body for a tool with high hardness, characterized in that the solid solution phase of O) forms a continuous binder phase in the sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60270473A JPS61209958A (en) | 1985-11-30 | 1985-11-30 | Sintered body for high hardeness tool and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60270473A JPS61209958A (en) | 1985-11-30 | 1985-11-30 | Sintered body for high hardeness tool and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61209958A JPS61209958A (en) | 1986-09-18 |
JPH0127022B2 true JPH0127022B2 (en) | 1989-05-26 |
Family
ID=17486798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60270473A Granted JPS61209958A (en) | 1985-11-30 | 1985-11-30 | Sintered body for high hardeness tool and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61209958A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4944014A (en) * | 1972-09-01 | 1974-04-25 |
-
1985
- 1985-11-30 JP JP60270473A patent/JPS61209958A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4944014A (en) * | 1972-09-01 | 1974-04-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS61209958A (en) | 1986-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4334928A (en) | Sintered compact for a machining tool and a method of producing the compact | |
US5326380A (en) | Synthesis of polycrystalline cubic boron nitride | |
US5271749A (en) | Synthesis of polycrystalline cubic boron nitride | |
RU2011649C1 (en) | Method of manufacturing ceramics for cutting tools | |
US4403015A (en) | Compound sintered compact for use in a tool and the method for producing the same | |
US4647546A (en) | Polycrystalline cubic boron nitride compact | |
KR101190963B1 (en) | Method of making a cbn compact | |
EP0816304B1 (en) | Ceramic bonded cubic boron nitride compact | |
JP3472630B2 (en) | Cubic boron nitride sintered body for cutting tools and cutting tools | |
GB2091763A (en) | Laminated sintered compositions including boron nitride | |
JPH058153B2 (en) | ||
JPH0127022B2 (en) | ||
JPS6137221B2 (en) | ||
JPS6213311B2 (en) | ||
JPS6311414B2 (en) | ||
JPS6246510B2 (en) | ||
JPH0215515B2 (en) | ||
JPS6323155B2 (en) | ||
JPS6146540B2 (en) | ||
JPS627259B2 (en) | ||
JPS606306B2 (en) | High hardness sintered body for tools and its manufacturing method | |
KR820000877B1 (en) | Sintered compact composition for machining tool | |
JPS639009B2 (en) | ||
JPS6160851A (en) | High-hardness sintered body for tool and its production | |
IE940108A1 (en) | Synthesis of polycrystalline cubic boron nitride |