JPS6323155B2 - - Google Patents

Info

Publication number
JPS6323155B2
JPS6323155B2 JP54130215A JP13021579A JPS6323155B2 JP S6323155 B2 JPS6323155 B2 JP S6323155B2 JP 54130215 A JP54130215 A JP 54130215A JP 13021579 A JP13021579 A JP 13021579A JP S6323155 B2 JPS6323155 B2 JP S6323155B2
Authority
JP
Japan
Prior art keywords
cbn
bonding layer
intermediate bonding
cemented carbide
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130215A
Other languages
Japanese (ja)
Other versions
JPS5654278A (en
Inventor
Akio Hara
Shuji Yatsu
Tetsuo Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13021579A priority Critical patent/JPS5654278A/en
Priority to US06/227,787 priority patent/US4403015A/en
Publication of JPS5654278A publication Critical patent/JPS5654278A/en
Publication of JPS6323155B2 publication Critical patent/JPS6323155B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた接着強度を有する工具用複合焼
結体およびその製造方法に関するものである。 立方晶型窒化硼素(Cubic Boron以下CBNと
略称する。)ダイヤモンドに次いで硬く、熱伝導
率も大で且つ高温での化学的安定性にも優れてい
るため、金属加工用耐摩物質として注目され、研
削用砥粒や切削工具として使用されている。 近年、超高圧焼結の技術を用いて微細なCBN
粒子をCoを主体とした金属で結合した焼結体や
種々のセラミツクで結合した焼結体が市販されて
いる。これらの市販CBN焼結体を機械加工用工
具として用いる場合、切刃となる部分のみに
CBNを含有する硬質層を設け、これを剛性の高
い母材に接合した複合材とすることは工具として
の強度を高めるよい方法である。 このような複合工具の例としてはTiCやTiNを
WC基超硬合金母材に被覆した切削工具が一般に
使用されている。 WC基超硬合金は、高剛性で靭性に優れ熱伝導
率も良いことからそれ自体切削工具として広く使
用されているのであり、従つて上記のような複合
工具用焼結体の母材として特に適していることも
当然である。 複合焼結体の製造法としては、CBN含有硬質
焼結体を直接超硬合金に接合する方法とCBN含
有硬質焼結体と超硬合金との間に中間接合層を挿
入して付着せしめる方法の2つが考えられる。 前者の場合、CBN含有硬質焼結体中のCBNの
結合材がAl2O3等のような超硬合金との親和性が
悪いときは、CBN含有硬質焼結体は超硬合金母
材に殆んど付着しない。 またCBN含有量の多い硬質焼結体を直接超硬
合金母材に接合すれば、接合界面にCBNとWC−
Coの反応によりCoxWyBzが多量に生成されるが、
このボライドは脆いため付着強度は低い。 従つてCBN含有の硬質焼結体を強固に超硬合
金母材に付着させるには後者の中間接合層を用い
る方法が好ましい。 而してCBN含有の硬質焼結体の接合に中間接
合層を用いることは特開昭51−64693号に接合層
として高温金属ロウを使用することが開示されて
いる。 即ち、CBN硬質焼結体と超硬合金母材は高温
金属ロウを介して強固に付着するとしているので
ある。 しかしながら、CBNの結合材としてAl2O3を含
有する場合などは金属ロウとも付着し難い。 さらに超高圧焼結では低温で緻密化が生じ、焼
結が進行するため、粒成長を抑制できるのが最大
の利点の一つであるが、低温においては高温金属
ロウとCBN含有硬質焼結体とは殆んど反応せず
付着強度が低い。 また金属ロウとして低温で溶融するものを用い
れば、焼結体中に金属ロウ成分が侵入し、焼結体
の性能を低下させたり、あるいは切削時に高温に
なると接合面での付着強度が低下して使用に耐え
ないのである。 本発明者等は上記のような欠点を解決すべく鋭
意検討を加えた結果、CBN含有焼結体と超硬合
金との接合において使用する中間接合層として要
求される特性は、超高圧焼結時に低温でCBN含
有硬質焼結体および超硬合金母材と強固に接合し
うること、また焼結体に過大な残留応力を生じさ
せないために熱膨張係数がCBN含有硬質焼結体
および超硬合金母材のそれとほぼ一致しているこ
とが必要であること、また切削工具として使用し
た場合、刃先に加わる応力と熱により塑性変形し
ないよう高温で変形し難い物質であり、さらに刃
先に発生した熱を逃がすため熱伝導度の良い方が
望ましく、強度面からもあまり脆いものは使えな
いこと。 以上の観点から該中間接合層としてCBNの含
有率が70容量%未満で残部が元素周期律表第4a、
5a、6a族の遷移金属の炭化物、窒化物、炭窒化
物、硼化物もしくはこれらの混合物または相互固
溶体化合物あるいは周期律表第4a族の炭化物、
窒化物、炭窒化物、硼化物もしくはこれらの混合
物または相互固溶体化合物にAlもしくはSiを含
有した材料が適しているとの結論に達した。 これらの中間接合層はCBNと周期律表第4a、
5a、6a族の炭化物、窒化物、炭窒化物、硼化物
の1種またはそれらの混合物を含有しているため
剛性が高く高温強度も優れているのであつて、本
発明者等の実験によると1000〜1100℃の低温で
CBNを60容量%含有し、残部がAlを含むTiNよ
りなる中間接合層を用いてCBNの結合材がAl2O3
である焼結体を作成したところ、CBN含有硬質
焼結体は中間接合層を介して超硬合金母材に強固
に接合していた。 さらに1500〜1600℃の高温でCBNを20容量%
含有し、残部がTiN、TaCの混合粉末よりなる
中間層を用い、CBNの含有率が80容量%、残部
がAl2O3とTiCよりなる粉末の超高圧焼結を行つ
た。 この結果、超硬合金母材の結合金属であるCo
は中間層には侵入していたが、CBN含有硬質焼
結体の部分までは侵入せず、Coの侵入による
CBN含有硬質焼結体の性能低下を防止すること
ができた。 以上のようにCBNの含有率が70容量%未満で
残部が周期律表第4a、5a、6a族遷移金属の炭化
物、窒化物、炭窒化物、硼化物もしくはこれらの
混合物または相互固溶体化合物あるいは周期律表
第4a族の炭化物、窒化物、炭窒化物、硼化物も
しくはこれらの混合物または相互固溶体化合物に
AlもしくはSiを含有した材料が中間接合層とし
ている理由は次のように推測される。 まずCBN含有硬質物質の層と中間接合層との
接着強度が高いのは焼結前に硬質層と中間接合層
とも粉末状態で接しているため、この領域におい
ては双方の層が数粒子の幅で両物質の混合領域が
できて焼結するからである。 また中間接合層にCBN粒子が含有されている
ため、硬質層の接合面で硬質層の結合材と中間層
のCBNが反応するとともに中間接合層のCBNの
残部として含有される周期律表第4a、5a、6a族
の遷移金属の炭化物、窒化物、炭窒化物、硼化物
等も硬質層中に存在するCBNと反応し、強固に
付着するものと考えられる。 また中間接合層と超硬合金母材の接着が良好で
あるのは次の如く考えられる。 即ち、超硬合金母材の主成分であるWCと中間
接合層に含有される周期律表第4a、5a、6a族の
遷移金属の炭化物、窒化物、炭窒化物、硼化物等
とは相互固溶体を形成するとともに、これらの化
合物は超硬合金母材中のCoとも親和性が良好な
ため中間接合層は強固に超硬合金母材に接着す
る。 さらに中間接合層中のCBNが超硬合金母材の
Coと反応することも強く付着する要因の一つで
あろう。 中間接合層形成粉末にAlやSiが含有された場
合その中間接合層としての性能はさらに向上す
る。 すなわち、この中間接合層は広範囲の温度領域
で使用できるとともに接着性もさらによくなる。
特に周期律表第4a族の金属の炭化物、窒化物、
炭窒化物、硼化物の中でもTiNを使用したとき
の効果は大である。 この理由はTiNにAlを添加すると800〜900℃
の低温からでも焼結可能であり、1500〜1600℃の
高温でも溶融せずに使用可能であり、さらに硬質
焼結体中のCBNや超硬合金母材中のWCとの親和
性が非常に良好なためと考えられる。 本発明における中間接合層にはCBNを含有し
ているが、このため中間接合層の強度は高く、さ
らに熱伝導率も非常に優れており、CBN硬質焼
結体層の性能を十分発揮することが可能である。
中間接合層としてのCBNの含有量は70容量%以
上となると残部である周期律表第4a、5a、6a族
の炭化物、窒化物、炭窒化物、硼化物等の含有量
は30容量%未満となり、超硬合金との界面でWC
と相互固溶体が形成される割合が少なくなると共
にWC−COとCBNが反応して生じるボライドが
増加しすぎ、中間接合層は脆くなる。 従つて、中間接合層のCBNの含有量は70容量
%未満が好ましい。 またCBN含有硬質焼結体のCBNの含有量は20
容量%未満であると、工具としての性能は良好で
なく、従つて20容量%以上が好ましい。 本発明による複合焼結体の硬質層の厚みは使用
目的によつて変るが、一般的には0.5mmから2mm
の範囲が好適である。 切削加工用のバイト刃先として使用する場合
は、工具が摩耗により寿命となるときの工具刃先
逃げ面の摩耗幅は通常約0.5mm以下であるから、
それ以上の厚み、即ち0.5mm以上の硬質層があれ
ば良く、また2mmを超える厚みは実際上必要でな
い。 本発明の特徴である中間接合層の厚みは2mm以
下のものである。この中間接合層を用いて接合す
る母材としては超硬合金を用いる。 特にWC基超硬合金母材は剛性が高く、熱伝導
性も優れており、また金属結合材を含むことから
靭性も優れており、母材として適している。 本発明による工具用複合焼結体の構造を第1図
に示す。1は工具刃先として使用されるCBN含
有硬質焼結体層で、2は母材のWC基超硬合金、
3が本発明の中間接合層である。 本発明による複合焼結体の製造方法としては、
CBNと炭化物、窒化物、炭窒化物、硼化物もし
くはこれらの混合物または相互固溶体化合物を主
体としたものの中間接合層を得る場合、これらの
混合粉末を超硬合金母材とCBN含有硬質層形成
粉末の間に必要な量を粉末状でまたは型押体とし
てあるいはまた中間接合層形成粉末に適当な溶媒
を加え、スラリー状にして超硬合金母材に塗布す
ることによつて中間接合層を形成する粉末層を設
け、これを超高圧、高温下でホツトプレスするこ
とによりCBN含有硬質層の焼結と同時にCBN、
炭化物、窒化物、炭窒化物、硼化物よりなる中間
接合層を焼結し、同時に母材と接合せしめる。 本発明で用いる周期律表第4a、5a、6a族の金
属の炭化物、窒化物、炭窒化物、硼化物等は高強
度の化合物であるが、CBN含有硬質層の焼結を
行なう超高圧条件下(一般には20〜90Kb)では
これらの化合物粉末粒子は変形、破砕し、容易に
緻密な状態に充填され、引続いて加熱されること
によつて中間接合層は緻密な焼結体となる。 中間接合層を形成する周期律表第4a、5a、6a
族金属化合物の中で、特に好ましいのはTi、Zr、
Hfの周期律表第4a族金属の炭化物、窒化物、炭
窒化物である。 これらの化合物は金属をMとすると、MCx、
MNx、M(C、N)xの形で表わされ、化学量論
的組成(x=1)外のxの値の広い範囲で存在し
得る。 本発明では特にこのxの値が0.98以下、好まし
くは0.9〜0.5の範囲にある非化学量論的な化合物
を用いた場合に強固な接合が達成される。 その理由は原子空孔を有することにより、低温
で焼結し易く、またCBNを含有する場合には
CBNと反応して強固に結合すると共に硬質層中
のCBN粒子および母材のWCとも反応して両者に
強固に接合するためと思われる。 なお本願の後述する実施例においてはこれら化
合物のxの値は全て0.98以下のものを用いた。 特にTiNxはx=0.8の粉末を使用した。 本発明の複合焼結体は機械加工用のバイト等に
使用されるが、特に断続切削が行なわれる個所に
使用した場合、CBN含有硬質層は中間接合層を
介して超硬合金母材に強固に付着しているため複
合工具としての性能を十分発揮することができ
る。 特にCBN含有硬質層の結合材がAl2O3、Si3N4
またはSiCの如く超硬合金母材との親和性が良く
ない場合あるいは硬質層のCBN含有量が80容量
%以上の場合、本発明による中間接合層の効果は
さらに顕著となるのである。 以下実施例によつてさらに本発明を詳細に説明
する。 実施例 1 内径10mm、外径14mmのNi製の容器に60容量%
のCBNと残部がAlを5重量%含有するTiNの粉
末を有機溶剤でスラリー状にして厚さ1.0mmに塗
布したWC−6%Co組成の超硬合金(外径10mm、
高さ3mm)をおき、これに接して35容量%CBN
−Al2O3混合粉末を0.30g充填した。更にこの上
に厚さ3mmの超硬合金と0.2mmの銅板を置いた。
次いでNi製の栓をしてこの容器全体をダイヤモ
ンド合成に用いる超高圧装置に入れた。圧力媒体
にはパイロフエライトを用い、ヒーターとしては
黒鉛円筒を使用した。まず圧力を55kbまで上げ、
次いで温度を1100℃まであげ20分間保持した。 超高圧装置よりNi容器を取出し、Niを切削除
去した。得られた焼結体は外径約10mmで厚さ1mm
であつた。この焼結体は約0.1mmのCBN−TiN−
Alの中間接合層がある超硬合金母材には強固に
接着していたが、中間接合層の存在しない超硬合
金には付着しておらず、焼結体は超硬合金母材よ
り容易に剥離させることができた。 実施例 2 平均粒度3μのCBN粉末とTiNを容量で9:1
に混合した。WC−6%Coからなる超硬合金母材
に実施例1と同様にして40容量%CBNと残部が
TiN、TiC、TiAlよりなり、その割合が重量で
5:4:1の混合粉末を塗布した。この粉末を塗
布した面に接して60容量%のCBNと40容量%の
TiNの混合粉末をMo製の容器に充填した。 これを50Kbの超高圧下1300℃で焼結した。得
られた焼結体はCBNをTiNのみからなる50μの中
間接合層を介して超硬合金母材に強固に接合して
いた。 この複合焼結体をダイヤモンド切断砥石を用い
て切断し、鋼のバイトシヤンクに通常の超硬合金
用銀ロウ材を用いて約800℃でロウ付けした。ロ
ウ付け後刃先をダイヤモンド砥石で研磨し、接合
状態を調べたところ、ダイヤモンド焼結体層と超
硬合金母材とは中間接合層を介して強固に接合し
ていた。 また刃先部での不純物の侵入をX線マイクロア
ナライザーを用いて調べた結果、超硬合金の結合
金属の侵入は認められなかつた。 さらにCBN含有硬質層の接合強度を円周方向
に2ケ所180゜間隔にV溝を有する被削材
(SCM21)を切削することにより調べた。なお切
削条件は切削速度100m/min、切込み1mm、送
り0.35/revであつた。 比較のため、市販のCBN含有硬質層を直接超
硬合金母材にCoで結合した焼結体についても同
様の実験を行つた。その結果、本発明焼結体は
10000回溝を通過しても焼結体は超硬合金母材に
強固に付着していたのに対し、市販のCo結合さ
れた焼結体は7000回溝を通過してCBN硬質層は
超硬合金母材果面より剥離した。 実施例 3 内径10mm、外径14mmのMo製の容器にWC−10
%Coの超硬合金を置き、その上に20容量%CBN
と残部がTiN、TaCよりなる混合粉末の円板の
型押体(直径10mm、厚さ0.5mm)を置いた。さら
に粒度3μのCBNを80容量%含有し、残部が
Al2O3とTiCよりなる混合粉末を充填してMo製
の栓をした。 これを超高圧装置に入れ、70Kbで1600℃に加
熱し、20分間保持した。 得られた焼結体はCBN含有硬質層が中間接合
層を介して超硬合金に強固に付着していた。 中間接合層の部分をX線マイクロアナライザー
により調べたところ超硬合金母材のCoは中間接
合層の部分には存在したが、CBN含有硬質層に
は侵入せず中間接合層で完全に防止されているこ
とが証明された。 実施例 4 第1表に示す混合粉末を作製した。この粉末を
スラリー状にしてWC−6%Coから成る超硬合金
母材に塗布して、Mo製の容器に入れ、この上に
粒度3μmのCBNが80容量%と残部がTiC−20重
量%Alより成る粉末を充填した後Moの栓をして
50Kb、1400℃で15分間焼結した。これらの焼結
体を切断し中間接合層の厚さと硬質焼結体への
Coの侵入を調査した。
The present invention relates to a composite sintered body for tools having excellent adhesive strength and a method for manufacturing the same. Cubic boron nitride (hereinafter abbreviated as CBN) is the second hardest material after diamond, has high thermal conductivity, and has excellent chemical stability at high temperatures, so it has attracted attention as a wear-resistant material for metal processing. Used as grinding abrasive grains and cutting tools. In recent years, ultra-high pressure sintering technology has been used to produce fine CBN.
Sintered bodies in which particles are bonded with a metal mainly composed of Co and sintered bodies in which particles are bonded with various ceramics are commercially available. When using these commercially available CBN sintered bodies as machining tools, only the part that will become the cutting edge is
Providing a hard layer containing CBN and bonding this to a highly rigid base material to create a composite material is a good way to increase the strength of the tool. Examples of such compound tools include TiC and TiN.
Cutting tools coated with a WC-based cemented carbide base material are commonly used. WC-based cemented carbide is widely used as a cutting tool because it has high rigidity, excellent toughness, and good thermal conductivity, and is therefore particularly suitable as a base material for sintered bodies for composite tools such as the above. Of course it is suitable. Methods for manufacturing composite sintered bodies include a method in which a CBN-containing hard sintered body is directly bonded to a cemented carbide, and a method in which an intermediate bonding layer is inserted between the CBN-containing hard sintered body and the cemented carbide. There are two possibilities. In the former case, if the CBN binder in the CBN-containing hard sintered body has poor affinity with cemented carbide such as Al 2 O 3 , the CBN-containing hard sintered body will not bond to the cemented carbide base material. Almost no adhesion. Furthermore, if a hard sintered body with a high CBN content is directly joined to a cemented carbide base material, CBN and WC-
A large amount of Co x W y B z is produced by the reaction of Co, but
This boride is brittle and has low adhesion strength. Therefore, in order to firmly adhere the CBN-containing hard sintered body to the cemented carbide base material, the latter method using an intermediate bonding layer is preferable. The use of an intermediate bonding layer for bonding CBN-containing hard sintered bodies is disclosed in Japanese Patent Application Laid-open No. 64693/1983, in which high-temperature metal solder is used as the bonding layer. In other words, the CBN hard sintered body and the cemented carbide base material are firmly attached to each other through the high-temperature metal solder. However, when CBN contains Al 2 O 3 as a binder, it is difficult to adhere to metal solder. Furthermore, in ultra-high pressure sintering, densification occurs at low temperatures and sintering progresses, so one of the biggest advantages is that grain growth can be suppressed. There is almost no reaction with the adhesive, and the adhesion strength is low. Furthermore, if a metal solder that melts at a low temperature is used, the metal solder component may enter the sintered body, reducing the performance of the sintered body, or the adhesion strength at the joint surface will decrease if the temperature reaches high temperatures during cutting. It cannot withstand use. The inventors of the present invention conducted extensive studies to solve the above-mentioned drawbacks, and found that the characteristics required for an intermediate bonding layer used in bonding a CBN-containing sintered body and a cemented carbide are those obtained by ultra-high pressure sintering. Sometimes, it is possible to firmly bond with CBN-containing hard sintered bodies and cemented carbide base materials at low temperatures, and to prevent excessive residual stress from occurring in the sintered bodies, the thermal expansion coefficient is lower than that of CBN-containing hard sintered bodies and cemented carbide. It is necessary that the material roughly corresponds to that of the alloy base material, and that when used as a cutting tool, it is a material that is difficult to deform at high temperatures so that it will not undergo plastic deformation due to the stress and heat applied to the cutting edge. In order to dissipate heat, it is desirable to use a material with good thermal conductivity, and from the viewpoint of strength, it is not possible to use something that is too brittle. From the above point of view, the content of CBN in the intermediate bonding layer is less than 70% by volume, and the remainder is the element 4a of the periodic table,
carbides, nitrides, carbonitrides, borides or mixtures thereof or mutual solid solution compounds of transition metals of groups 5a and 6a or carbides of group 4a of the periodic table;
It was concluded that materials containing Al or Si in nitrides, carbonitrides, borides, mixtures thereof, or mutual solid solution compounds are suitable. These intermediate bonding layers are CBN and periodic table 4a,
Since it contains one or a mixture of carbides, nitrides, carbonitrides, and borides of Groups 5a and 6a, it has high rigidity and excellent high-temperature strength, and according to the experiments of the present inventors. At low temperatures of 1000-1100℃
Using an intermediate bonding layer made of TiN containing 60% by volume of CBN and the remainder containing Al, the CBN bonding material is Al 2 O 3
When a sintered body was created, the CBN-containing hard sintered body was firmly bonded to the cemented carbide base material via the intermediate bonding layer. Furthermore, 20% by volume of CBN at a high temperature of 1500-1600℃
Ultra-high-pressure sintering of a powder containing 80% by volume of CBN and the balance consisting of Al 2 O 3 and TiC was performed using an intermediate layer consisting of a mixed powder containing TiN and TaC with the remainder being TiN and TaC. As a result, Co, the bonding metal of the cemented carbide matrix,
Although it penetrated into the intermediate layer, it did not penetrate into the part of the CBN-containing hard sintered body, which is due to the invasion of Co.
It was possible to prevent the performance deterioration of the CBN-containing hard sintered body. As mentioned above, the CBN content is less than 70% by volume, and the remainder is carbides, nitrides, carbonitrides, borides, or mixtures thereof, mutual solid solution compounds, or periodic compounds of group 4a, 5a, and 6a transition metals of the periodic table. Carbides, nitrides, carbonitrides, borides or mixtures thereof or mutual solid solution compounds of Group 4a of the Table of Contents
The reason why a material containing Al or Si is used as the intermediate bonding layer is presumed to be as follows. First of all, the reason why the adhesive strength between the CBN-containing hard material layer and the intermediate bonding layer is high is because the hard layer and the intermediate bonding layer are in contact with each other in a powder state before sintering. This is because a mixed region of both materials is created and sintered. In addition, since CBN particles are contained in the intermediate bonding layer, the binding material of the hard layer and CBN of the intermediate layer react at the bonding surface of the hard layer, and the CBN particles contained as the remainder of the CBN in the intermediate bonding layer are , 5a, 6a group transition metal carbides, nitrides, carbonitrides, borides, etc. are also thought to react with CBN present in the hard layer and adhere firmly. The reason why the intermediate bonding layer and the cemented carbide base material have good adhesion is considered to be as follows. In other words, WC, which is the main component of the cemented carbide base material, and carbides, nitrides, carbonitrides, borides, etc. of transition metals of Groups 4a, 5a, and 6a of the periodic table contained in the intermediate bonding layer are mutually exclusive. In addition to forming a solid solution, these compounds also have good affinity with Co in the cemented carbide base material, so the intermediate bonding layer firmly adheres to the cemented carbide base material. Furthermore, CBN in the intermediate bonding layer
Reaction with Co may also be one of the reasons for strong adhesion. When the intermediate bonding layer forming powder contains Al or Si, its performance as an intermediate bonding layer is further improved. That is, this intermediate bonding layer can be used in a wide temperature range and has even better adhesion.
Especially carbides and nitrides of metals in group 4a of the periodic table,
Among carbonitrides and borides, the effect of using TiN is great. The reason for this is that when Al is added to TiN, the temperature
It can be sintered even at low temperatures of 1,500 to 1,600 degrees Celsius, and can be used without melting even at high temperatures of 1,500 to 1,600 degrees Celsius. Furthermore, it has excellent compatibility with CBN in hard sintered bodies and WC in cemented carbide base materials. This is thought to be because it is in good condition. The intermediate bonding layer in the present invention contains CBN, and as a result, the intermediate bonding layer has high strength and excellent thermal conductivity, and can fully demonstrate the performance of the CBN hard sintered layer. is possible.
When the content of CBN in the intermediate bonding layer is 70% by volume or more, the content of the remaining carbides, nitrides, carbonitrides, borides, etc. of Groups 4a, 5a, and 6a of the periodic table is less than 30% by volume. Therefore, WC at the interface with the cemented carbide
As the ratio of mutual solid solution formation with CBN decreases, boride generated by the reaction between WC-CO and CBN increases too much, and the intermediate bonding layer becomes brittle. Therefore, the content of CBN in the intermediate bonding layer is preferably less than 70% by volume. In addition, the CBN content of the CBN-containing hard sintered body is 20
If it is less than 20% by volume, the performance as a tool will not be good, so 20% by volume or more is preferable. The thickness of the hard layer of the composite sintered body according to the present invention varies depending on the purpose of use, but is generally 0.5 mm to 2 mm.
A range of is suitable. When used as a tool cutting edge for cutting, the width of wear on the tool edge flank when the tool reaches the end of its life due to wear is usually approximately 0.5 mm or less.
It is sufficient to have a hard layer with a thickness greater than that, that is, 0.5 mm or more, and a thickness exceeding 2 mm is not actually necessary. The thickness of the intermediate bonding layer, which is a feature of the present invention, is 2 mm or less. A cemented carbide is used as the base material to be bonded using this intermediate bonding layer. In particular, the WC-based cemented carbide base material has high rigidity and excellent thermal conductivity, and since it contains a metal binder, it also has excellent toughness, making it suitable as a base material. The structure of the composite sintered body for tools according to the present invention is shown in FIG. 1 is a CBN-containing hard sintered body layer used as a tool cutting edge, 2 is a WC-based cemented carbide as a base material,
3 is the intermediate bonding layer of the present invention. The method for manufacturing a composite sintered body according to the present invention includes:
When obtaining an intermediate bonding layer consisting mainly of CBN and carbides, nitrides, carbonitrides, borides, mixtures thereof, or mutual solid solution compounds, these mixed powders are mixed with the cemented carbide base material and the CBN-containing hard layer forming powder. The intermediate bonding layer is formed by applying the required amount in powder form or as a stamped body during the process, or by adding an appropriate solvent to the intermediate bonding layer forming powder and making it into a slurry and applying it to the cemented carbide base material. By hot-pressing this powder layer under ultra-high pressure and high temperature, the CBN-containing hard layer is simultaneously sintered.
An intermediate bonding layer made of carbide, nitride, carbonitride, or boride is sintered and bonded to the base material at the same time. The carbides, nitrides, carbonitrides, borides, etc. of metals in groups 4a, 5a, and 6a of the periodic table used in the present invention are high-strength compounds, but the ultra-high pressure conditions for sintering the CBN-containing hard layer At the bottom (generally 20-90Kb), these compound powder particles are deformed, crushed, and easily packed into a dense state, and by subsequent heating, the intermediate bonding layer becomes a dense sintered body. . 4a, 5a, 6a of the periodic table forming the intermediate bonding layer
Among the group metal compounds, Ti, Zr,
These are carbides, nitrides, and carbonitrides of Hf, a group 4a metal of the periodic table. These compounds, where M is the metal, MCx,
It is expressed in the form MNx, M(C,N)x and can exist in a wide range of values of x outside the stoichiometric composition (x=1). In the present invention, a strong bond is particularly achieved when a non-stoichiometric compound is used in which the value of x is 0.98 or less, preferably in the range of 0.9 to 0.5. The reason is that it has atomic vacancies, which makes it easier to sinter at low temperatures, and when it contains CBN,
This seems to be because it reacts with CBN to form a strong bond and also reacts with the CBN particles in the hard layer and the WC of the base material to form a strong bond to both. In the Examples described later in this application, the values of x of these compounds were all 0.98 or less. In particular, TiNx powder with x=0.8 was used. The composite sintered body of the present invention is used for machining tools, etc., but especially when used in places where interrupted cutting is performed, the CBN-containing hard layer firmly attaches to the cemented carbide base material through the intermediate bonding layer. Because it is attached to the surface, it can fully demonstrate its performance as a composite tool. In particular, the binder of the CBN-containing hard layer is Al 2 O 3 , Si 3 N 4
Alternatively, when the compatibility with the cemented carbide base material is poor, such as SiC, or when the CBN content of the hard layer is 80% by volume or more, the effect of the intermediate bonding layer according to the present invention becomes even more remarkable. The present invention will be explained in more detail below by way of Examples. Example 1 60% by volume in a Ni container with an inner diameter of 10 mm and an outer diameter of 14 mm
WC-6% Co cemented carbide (outer diameter 10 mm,
3mm in height) and 35% CBN in contact with this.
-0.30g of Al 2 O 3 mixed powder was filled. Furthermore, a 3 mm thick cemented carbide and a 0.2 mm thick copper plate were placed on top of this.
Next, a stopper made of Ni was placed and the entire container was placed in an ultra-high pressure apparatus used for diamond synthesis. Pyroferrite was used as the pressure medium, and a graphite cylinder was used as the heater. First increase the pressure to 55kb,
The temperature was then raised to 1100°C and held for 20 minutes. The Ni container was taken out from the ultra-high pressure equipment, and the Ni was cut off. The obtained sintered body has an outer diameter of approximately 10 mm and a thickness of 1 mm.
It was hot. This sintered body is approximately 0.1 mm CBN−TiN−
Although it adhered strongly to the cemented carbide base material with an intermediate bonding layer of Al, it did not adhere to the cemented carbide without an intermediate bonding layer, and the sintered body was easier to bond to the cemented carbide base material than the cemented carbide base material. I was able to peel it off. Example 2 CBN powder with an average particle size of 3μ and TiN in a 9:1 ratio by volume
mixed with. In the same manner as in Example 1, 40 volume% CBN and the balance were added to a cemented carbide base material consisting of WC-6%Co.
A mixed powder consisting of TiN, TiC, and TiAl in a weight ratio of 5:4:1 was applied. In contact with the surface coated with this powder, 60% by volume CBN and 40% by volume
The mixed powder of TiN was filled into a container made of Mo. This was sintered at 1300℃ under ultra-high pressure of 50Kb. The obtained sintered body had CBN firmly bonded to the cemented carbide base material through a 50 μm intermediate bonding layer consisting only of TiN. This composite sintered body was cut using a diamond cutting wheel and brazed to a steel bite shank at approximately 800°C using a regular silver solder for cemented carbide. After brazing, the cutting edge was polished with a diamond grindstone and the state of the bond was examined, and it was found that the diamond sintered body layer and the cemented carbide base material were firmly bonded via the intermediate bonding layer. Furthermore, as a result of examining the intrusion of impurities at the cutting edge using an X-ray microanalyzer, no intrusion of the bonding metal of the cemented carbide was observed. Furthermore, the bonding strength of the CBN-containing hard layer was investigated by cutting a workpiece material (SCM21) that had V grooves at two locations 180° apart in the circumferential direction. The cutting conditions were a cutting speed of 100 m/min, depth of cut of 1 mm, and feed rate of 0.35/rev. For comparison, similar experiments were conducted on a sintered body in which a commercially available CBN-containing hard layer was bonded directly to a cemented carbide base material with Co. As a result, the sintered body of the present invention
Even after passing through the grooves 10,000 times, the sintered body remained firmly attached to the cemented carbide base material, whereas the commercially available Co-bonded sintered body passed through the grooves 7,000 times and the CBN hard layer remained firmly attached. It peeled off from the fruit surface of the hard metal base material. Example 3 WC-10 in a Mo container with an inner diameter of 10 mm and an outer diameter of 14 mm.
Put %Co cemented carbide and 20% CBN by volume on top of it
A disk-embossed body (diameter 10 mm, thickness 0.5 mm) of mixed powder, the remainder of which was TiN and TaC, was placed. Furthermore, it contains 80% by volume of CBN with a particle size of 3μ, and the remainder is
It was filled with a mixed powder of Al 2 O 3 and TiC and capped with a Mo stopper. This was placed in an ultra-high pressure device, heated to 1600°C at 70Kb, and held for 20 minutes. In the obtained sintered body, the CBN-containing hard layer was firmly attached to the cemented carbide via the intermediate bonding layer. When the intermediate bonding layer was examined using an X-ray microanalyzer, Co from the cemented carbide base material was present in the intermediate bonding layer, but it did not penetrate into the CBN-containing hard layer and was completely prevented by the intermediate bonding layer. It has been proven that Example 4 A mixed powder shown in Table 1 was prepared. This powder is made into a slurry and applied to a cemented carbide base material consisting of WC-6% Co, placed in a container made of Mo, and on top of this is CBN with a particle size of 3 μm at 80% by volume and the balance is TiC-20% by weight. After filling the powder made of Al, plug it with Mo.
50Kb, sintered at 1400℃ for 15 minutes. These sintered bodies are cut to determine the thickness of the intermediate bonding layer and the hard sintered body.
We investigated the invasion of Co.

【表】 〓 *:比較例を示す

〓**:本発明の範囲外
その結果Fは硬質層へのCoの侵入が観察され
た。 次にこれらの焼結体の接合強度を測定した。結
果も第1表に示す。
[Table] 〓 *: Indicates a comparative example

〓**: Outside the scope of the present invention As a result, in F, intrusion of Co into the hard layer was observed. Next, the bonding strength of these sintered bodies was measured. The results are also shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の工具用複合焼結体の構造を示す
断面図である。
The drawing is a sectional view showing the structure of the composite sintered body for tools of the present invention.

Claims (1)

【特許請求の範囲】 1 超硬合金母材上に立方晶型窒化硼素の含有率
が70容量%未満20容量%以上で残部が周期律表第
4a、5a、6a族遷移金属の炭化物、窒化物、炭窒
化物あるいは硼化物の1種もしくはこれらの混合
物または相互固溶体化合物を主体としたものと、
これにAlおよび/またはSiの0.1重量%以上含有
する中間接合層としての粉末を型押成形してもし
くは粉末状で厚み2mm以下にして戴置するか、ま
たは該超硬合金母材上に予め塗布しておき、さら
にその粉末上に上記中間接合層と組成の異なる立
方晶型窒化硼素を20容量%以上含有する付着強度
の低い組成の硬質焼結体成形粉末を型押成形して
もしくは粉末状で戴置したのち、その全体を超高
圧、高温下でホツトプレスして立方晶型窒化硼素
を含有する硬質層および中間接合層の焼結さらに
は該硬質層と中間接合層と母材との接合を行なわ
せることを特徴とする工具用複合焼結体の製造方
法。 2 周期律表第4a族の炭化物、窒化物炭窒化物
を夫々MCx、MNx、M(C、N)xと表わした
ときにxの値が0.98以下好ましくは0.9〜0.5の範
囲にある非化学量論的な化合物を用いることを特
徴とする特許請求の範囲第1項記載の工具用複合
焼結体の製造方法。
[Scope of Claims] 1. The content of cubic boron nitride on the cemented carbide base material is less than 70% by volume and 20% by volume or more, and the remainder is from the periodic table.
4a, 5a, 6a group transition metal carbide, nitride, carbonitride or boride, or a mixture or mutual solid solution compound of these;
On this, a powder as an intermediate bonding layer containing 0.1% by weight or more of Al and/or Si is pressed or placed in powder form to a thickness of 2 mm or less, or it is preliminarily placed on the cemented carbide base material. A hard sintered compact powder having a composition with low adhesion strength containing 20% by volume or more of cubic boron nitride, which has a composition different from that of the intermediate bonding layer, is then molded onto the powder or powder. After that, the whole is hot-pressed under ultra-high pressure and high temperature to sinter the hard layer containing cubic boron nitride and the intermediate bonding layer, and to sinter the hard layer, the intermediate bonding layer, and the base material. A method for manufacturing a composite sintered body for tools, characterized by joining. 2. Non-chemical substances in which the value of x is 0.98 or less, preferably in the range of 0.9 to 0.5, when carbides, nitrides, and carbonitrides of Group 4a of the periodic table are expressed as MCx, MNx, and M(C,N)x, respectively. A method for manufacturing a composite sintered body for tools according to claim 1, characterized in that a stoichiometric compound is used.
JP13021579A 1979-10-06 1979-10-09 Compound sintered body for tool and its manufacture Granted JPS5654278A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13021579A JPS5654278A (en) 1979-10-09 1979-10-09 Compound sintered body for tool and its manufacture
US06/227,787 US4403015A (en) 1979-10-06 1981-01-21 Compound sintered compact for use in a tool and the method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13021579A JPS5654278A (en) 1979-10-09 1979-10-09 Compound sintered body for tool and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP32156387A Division JPS63274676A (en) 1987-12-21 1987-12-21 Composite sintered body for tool

Publications (2)

Publication Number Publication Date
JPS5654278A JPS5654278A (en) 1981-05-14
JPS6323155B2 true JPS6323155B2 (en) 1988-05-14

Family

ID=15028834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13021579A Granted JPS5654278A (en) 1979-10-06 1979-10-09 Compound sintered body for tool and its manufacture

Country Status (1)

Country Link
JP (1) JPS5654278A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156082A (en) * 1986-12-19 1988-06-29 日本油脂株式会社 High hardness sintered body
US6814775B2 (en) * 2002-06-26 2004-11-09 Diamond Innovations, Inc. Sintered compact for use in machining chemically reactive materials
ATE496148T1 (en) * 2008-05-21 2011-02-15 Sandvik Intellectual Property METHOD FOR PRODUCING A COMPOSITE DIAMOND BODY
CN104439248B (en) * 2014-12-05 2016-08-24 江西耀升钨业股份有限公司 A kind of preparation method of gradient-structure diamond hard alloy hard alloy composite ball tooth
CN110052973A (en) * 2019-05-09 2019-07-26 华侨大学 A kind of alusil alloy bonding agent skive and its manufacturing method

Also Published As

Publication number Publication date
JPS5654278A (en) 1981-05-14

Similar Documents

Publication Publication Date Title
US4403015A (en) Compound sintered compact for use in a tool and the method for producing the same
KR100853060B1 (en) Method of producing an abrasive product containing diamond
US6500557B1 (en) Composite and method for producing the same
US6919040B2 (en) Method of producing an abrasive product containing cubic boron nitride
US4647546A (en) Polycrystalline cubic boron nitride compact
RU2011649C1 (en) Method of manufacturing ceramics for cutting tools
US4334928A (en) Sintered compact for a machining tool and a method of producing the compact
US4343651A (en) Sintered compact for use in a tool
US4959929A (en) Tool insert
KR101190963B1 (en) Method of making a cbn compact
EP0731186B1 (en) Composite material and process for producing the same
JPS6323155B2 (en)
JPS6125761B2 (en)
GB2091763A (en) Laminated sintered compositions including boron nitride
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPS6257681B2 (en)
JPS6350401B2 (en)
JPH0317792B2 (en)
JPS6359381B2 (en)
JPS62260005A (en) High-hardness sintered body for tool and its production
JPS59107806A (en) Composite sintered unit for tool and preparation thereof
JPS6386804A (en) Production of composite diamond sintered body for tool
JPS6015595B2 (en) Cutting blade for cutting tools
ZA200300825B (en) Method of producing an abrasive product containing cubic boron nitride.
JP2003104775A (en) High pressure phase boron nitride sintered compact and its production method