JPS6359381B2 - - Google Patents

Info

Publication number
JPS6359381B2
JPS6359381B2 JP56064896A JP6489681A JPS6359381B2 JP S6359381 B2 JPS6359381 B2 JP S6359381B2 JP 56064896 A JP56064896 A JP 56064896A JP 6489681 A JP6489681 A JP 6489681A JP S6359381 B2 JPS6359381 B2 JP S6359381B2
Authority
JP
Japan
Prior art keywords
sintered body
bonding layer
intermediate bonding
volume
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56064896A
Other languages
Japanese (ja)
Other versions
JPS57179083A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56064896A priority Critical patent/JPS57179083A/en
Publication of JPS57179083A publication Critical patent/JPS57179083A/en
Publication of JPS6359381B2 publication Critical patent/JPS6359381B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

現在高圧相型窒化硼素のうち立方晶型窒化硼素
(Cubic Boron Nitride以下CBNと称す)の焼結
体がWC−Co合金の片面に接合されているものが
市販されている。このCBN焼結体の代表的なも
のとして、焼結時にWC−CoからCoを主成分と
する溶融金属をCBN粒子間に侵入させCBN粒子
の結合材となると共に焼結体を超硬合金と接合し
たものがある。この技術は特公昭52−43846に開
示されている。 本発明者らは上記の特許公告公報に開示されて
いる実施例の追試をまず行つた。そして実施例に
示されているようなWC−Coの型押体を用いるこ
とは実際上なかなか難かしいことを知つた。その
難かしい点はWC−Coは極めて微粉であるから多
量のガス成分を含むが、その対策処理が難かしい
こと、型押体は強度が弱いので、ホツトプレス時
形状を保持することが難かしいことである。それ
故本発明者らは次にWC−Co焼結体を用いること
を検討した。焼結体を用いると上記2点は解決さ
れるが問題は亀裂が入ることであつた。これは
WC−Coの強度以上の応力がホツトプレス時、特
に最初に必要な圧力まで上げてから昇温するのが
通常であるため、この昇圧時にWC−Coがホツト
プレスされる部分の変形に追随出来ないためと結
論された。この変形に追随するためには破壊まで
の塑性変形能の大きなWC−Co合金を使えばよい
のであるが、このような合金はCo量が多いか、
WC結晶の粘度が大きいものである。ところがこ
のような塑性変形能の大きな合金は剛性が低く、
特に高温での剛性が低くなり、切削工具刃先の焼
結体として使う意義が低下する。 そこで本発明者らの一人が他の研究者と共に鋭
意研究している(MoW)Cを鉄族金属、特に
Ni,Coで結合した合金の利用に着目した。本発
明者らの一人は他の研究者と協同で(MoW)C
の製法、(MoW)C基サーメツトの製法、およ
びこのサーメツトの特性を種々検討している。そ
の結果として測定した特性を調べてみると、上述
のWC−Coでの欠点を、本サーメツトは大巾にカ
バーしていることを見出した。すなわち第1図に
示す如く(MoW)C基サーメツトは、WC基サ
ーメツトより常温では軟かいが、高温では硬度が
高い。このことは切削工具用途では特に重要であ
る。また第2図に示す如くに、(MoW)C−Co
はWC−Coに較べて破壊までの歪量が著しく大き
い。この第2図に示された(MoW)C基サーメ
ツトの特徴は前述の本発明の目的によく合致する
ものである。すなわち塑性変形能は大きく剛性の
大きな合金が見出されたものである。本発明のポ
イントは前述の超高圧下ホツトプレス時の要求性
能と新しい合金の示す新しい性能との結合にあ
る。 なおその他の性質、すなわち抗折力,熱伝導
率,熱膨脹係数,耐食性,耐酸化性などは、WC
−Coと(MoW)C−Coとには殆んど差が認め
られない。そこで本発明者等は、この(MoW)
C基サーメツトを母材として用い種々のCBN焼
結体を作成した。その結果(MoW)C基サーメ
ツト母材に亀裂が発生することは防止できたが、
次のような問題があることがわかつた。第1に
CBN焼結体中においてCBNの含有量が多い場
合、焼結時に高温高圧になるため、焼結体中に
(MoW)C基サーメツト母材の成分である鉄族
金属が流入し、焼結体の組成が変わり性能が低下
する。さらに、焼結体と(MoW)C基サーメツ
ト母材の界面で鉄族金属の富化された部分が存在
し、ここでCBNと鉄族金属が反応し多量のボラ
イドが生成されるが、このボライドは非常に脆い
ため界面における接合強度を低下させる。第2に
CBNの結合材がAl2O3等のような(MoW)C基
サーメツトとの親和性が悪いときはCBN焼結体
は(MoW)C基サーメツトに殆んど付着しな
い。以上のような問題点を解決するにはCBN焼
結体と(MoW)C基サーメツトの間に中間接合
層を入れ(MoW)C基サーメツトからの鉄族金
属の侵入を防止するとともにCBN焼結体−中間
接合層−(MoW)C基サーメツトの接合強度を
高めれば良い。中間接合層を用いることは特開昭
51−64693号に開示されているが、この中間接合
層は高温金属ロウとなつている。 即ち、CBN硬質焼結体と超硬合金母材は高温
金属ロウを介して強固に付着するとしているので
ある。 しかしながら、CBNの結合材としてAl2O3を含
有する場合などは金属ロウとも付着し難い。 さらに超高圧焼結では低温で緻密化が生じ、焼
結が進行するため、粒成長を抑制できるのが最大
の利点の一つであるが、低温においては高温金属
ロウとCBN含有硬質焼結体とは殆んど反応せず
付着強度が低い。 また金属ロウとして低温で溶融するものを用い
れば、焼結体中に金属ロウ成分が侵入し、焼結体
の性能を低下させたり、あるいは切削時に高温に
なると接合面での付着強度が低下して使用に耐え
ないのである。 本発明者等は上記のような欠点を解決すべく鋭
意検討を加えた結果、CBN含有焼結体と超硬合
金との接合において使用する中間接合層として要
求される特性は、超高圧焼結時に低温でCBN含
有硬質焼結体および超硬合金母材と強固に接合し
うること、また焼結体に過大な残留応力を生じさ
せないために熱膨脹係数がCBN含有硬質焼結体
および超硬合金母材のそれとほぼ一致しているこ
とが必要であること、また切削工具として使用し
た場合、刃先に加わる応力と熱により塑性変形し
ないよう高温で変形し難い物質であり、さらに刃
先に発生した熱を逃がすため熱伝導度の良い方が
望ましく、強度面からもあまり脆くないことが必
要である。 以上の観点から種々検討した結果、該中間接合
層としては周期律表第4a,5a族遷移金属の窒化
物もしくはこれらの混合物または相互固溶体化合
物、あるいはこれらの窒化物合物または相互固溶
体化合物に70容量%未満のCBNを含有した材料
または、周期律表第4a,5a族遷移金属の窒化物
もしくはこれらの混合物または相互固溶体化合物
とAlおよび/またはSiを含有したもの、あるい
はこれらの窒化物、混合物または相互固溶体化合
物に70容量%未満のCBNを含有した材料が適し
ているとの結論に達した。 これらの中間接合層は周期率表4a,5a族の窒
化物あるいはこれにCBNを含有したものである
ため剛性が高く高温強度も優れている。 CBNを20容量%含有し、残部がTiN粉末より
なる中間層を用いて、CBNの含有率が80容量%
で残部がAl2O3とTiCよりなる粉末の超高圧焼結
を行つた。この結果(MoW)C基母材の結合金
属であるNiとCoは中間層には侵入していたが、
CBN含有硬質焼結体の部分までは侵入せず、鉄
族金属の侵入によるCBN含有硬質焼結体の性能
低下を防止することができ、さらに硬質焼結体は
母材の(MoW)C基母材に強固に接合してい
た。また1000〜1100℃の低温でもCBNを60容量
%含有し残部がAlを含むTiNよりなる中間層を
用いてCBNの結合材がAl2O3である焼結体を作成
したところCBN含有硬質焼結体は、中間接合層
を介して(MoW)C基母材に強固に接合してい
た。以上の如く本発明の中間接合層を用いると、
1500〜1600℃の高温で超高圧焼結を行つた場合に
おいても(MoW)C基サーメツトからの鉄族金
属の侵入を防止するとともに母材に強固に接着さ
せることが可能であり、さらに低温焼結において
もCBN含有の硬質焼結体と(MoW)C基サーメ
ツトを強固に接合させることができる。この理由
としては次の如く推測される。 (MoW)C基サーメツトからの鉄族金属の侵
入が防止できる理由としては鉄族金属と周期律表
第4a,5a族の窒化物との親和性が悪いため
(MoW)C基サーメツト内に液相が出現しても
中間接合層への侵入速度が遅いからであろう。 次にCBN含有の硬質焼結体と中間接合層の接
合強度が高いのは中間接合層中の周期律表第4a,
5a族の窒化物と硬質焼結体層中のCBNが反応す
るとともに焼結前に中間接合層と硬質層が粉末状
態で接しているため、この領域においては双方の
層が数粒子の幅で両物質の混合領域ができて焼結
するからであろう。また、中間接合層と
(MoW)C基サーメツト母材の接着が良好であ
るのは次の如く考えられる。 (MoW)C基サーメツトの主成分である
(MoW)Cと中間接合層に含有される周期律表
第4a,5a族遷移金属の窒化物は相互固溶体を形
成するためであると考えられる。 中間接合層形成粉末にAlやSiが含有された場
合中間接合層としての性能はさらに向上する。す
なわち、この中間接合層は広範囲の温度領域で使
用できるとともに接着性も良くなる。特に周期律
表第4a族の窒化物であるTiNを使用したときの
効果は大である。この理由はTiNにAlを添加す
ると800〜900℃の低温からでも焼結可能であり
1500〜1600℃の高温でも溶融せずに使用可能であ
りさらに硬質焼結体中のCBNや(MoW)C基サ
ーメツト中の(MoW)Cとの親和性が良好であ
るためと考えられる。 本発明における中間接合層で高圧相型窒化硼素
を含有する場合、中間接合層の強度は高く、さら
に熱伝導率も非常に優れており、CBN硬質焼結
体層の性能を十分発揮することが可能である。中
間接合層としてのCBNの含有量は70容量%以上
となると残部である周期律表第4a,5aの窒化物
もしくはこれらの混合物または相互固溶体の含有
量は30容量%未満となり、母材合金との界面で
(MoW)Cと相互固溶体が形成される割合が少
なくなると共に(MoW)C基合金とCBNが反応
して生じるボライドが増加しすぎ、中間接合層は
脆くなる。 さらに、このボライドは低融点であるため特に
高温で焼結する場合は中間接合層中に多量の液相
が発生して硬質層中内に侵入し性能を低下させ
る。 従つて、中間接合層のCBNの含有量は70容量
%未満が好ましい。 またCBN含有硬質焼結体のCBNの含有量は20
容量%未満であると、工具としての性能は良好で
なく、従つて20容量%以上が好ましい。 本発明による複合焼結体の硬質層の厚みは使用
目的によつて変るが、一般的には0.5mmから2mm
の範囲が好適である。 切削加工用のバイト刃先として使用する場合
は、工具が摩耗により寿命となるときの工具刃先
逃げ面の摩耗幅は通常約0.5mm以下であるから、
それ以上の厚み、即ち0.5mm以上の硬質層があれ
ば良く、また2mmを超える厚みは実際上必要でな
い。 本発明の特徴である中間接合層の厚みは0.005
mm以上、2mm以下のものである。中間接合層の厚
みが0.005mm未満であると高温焼結の場合
(MoW)C基母材の結合金属の侵入を防止でき
ないことがある。また2mm以上の中間接合層は実
用上必要がない。 本発明による複合焼結体の製造方法としては、
周期律表第4a,5a族の窒化物、もしくはこれら
の混合物または相互固溶体化合物を主体としたも
のまたはこれら主体にCBNを含有したものの中
間接合層を得る場合、これらの混合粉末を
(MoW)C基サーメツト母材とCBN含有硬質層
形成粉末の間に必要な量を粉末状でまたは型押体
として、あるいは、中間接合層形成粉末に適当な
溶媒を加え、スラリー状にして(MoW)C基サ
ーメツト母材に塗布することによつて中間接合層
を形成する粉末層を設け、これを超高圧、高温下
でホツトプレスすることによりCBN含有硬質層
の焼結と同時に中間接合層を焼結し、母材と接合
せしめる。なお中間接合層として周期律表第4a,
5a族遷移金属をMとした場合MNxで表わされる
窒化物のxの値が0.5以上0.95以下の窒化物を用
いれば中間接合層の焼結性が増し、接合強度は良
好となる。この理由は原子空孔を有することによ
り低温で焼結しやすくまたCBNを含有する場合
は、CBNと反応して強固に結合するとともに硬
質層中のCBN粒子及び母材のWCとも反応して両
者に強固に接合するためと考えられる。Xの値が
0.5未満であると周期律表4a,5a属遷移金属の窒
化物の強度が低下するので好ましくない。またX
の値が0.95を越えると接合強度は低下する。 本発明で用いる周期律表第4a,5a、の金属の
窒化物は高強度の化合物であるが、CBN含有硬
質層の焼結を行なう超高圧条件下(一般には20〜
90kb)ではこれらの化合物粉末粒子は変形、破
砕し、容易に緻密な状態に充填され、引続いて加
熱されることによつて中間接合層は緻密な焼結体
となる。 本発明の複合焼結体は機械加工用のバイト等に
使用されるが、特に断続切削が行なわれる個所に
使用した場合、CBN含有硬質層は中間接合層を
介してサーメツト母材に強固に付着しているため
複合工具としての性能を十分発揮することができ
る。 特にCBN含有硬質層の結合材がAl2O3,Si3N4
またはSiCの如くサーメツト母材との親和性が良
くない場合あるいは硬質層のCBN含有量が80容
量%以上の場合、本発明による中間接合層の効果
はさらに顕著となるのである。 なお、本文中で使用しているCBNの一部ある
いは全部を高圧相型窒化硼素の一種であるウルツ
型窒化硼素に置き換えても同等の性能を得ること
ができる。 以下実施例によつて本発明を詳細に説明する。 実施例 1 内径10mm,外径14mmのMo製の容器に30容量%
のCBNと残部がAlを20容量%含有するTiN0.7の
粉末を有機溶剤でスラリー状にして厚さ0.2mmに
塗布した(Mo0.7W0.3)C−15.3%Co組成のサー
メツト(外径10mm、高さ3mm)を置き、これに接
して80容量%CBNとTiN−Al−Cu−Niの混合粉
末を0.3g充填した。さらにこの上にTa箔と厚さ
3mmの(MoW)Cサーメツトと0.2mmの銅板を置
いた。次いでNi製の栓をして、この容器全体を
ダイヤモンド合成に用いる超高圧装置に入れた。
圧力媒体にはパイロフエライトを用い、ヒーター
としては黒鉛円筒を使用した。まず圧力を55kb
まで上げ、次いで温度を1500℃まで上げて20分間
保持した。 超高圧装置よりNi容器を取り出し、Moを切削
除去して容器内を観察した。(Mo0.7W0.3)Cサー
メツト母材には亀裂はなく、CB含有の硬質焼結
体は中間接合層を介して強固に(Mo0.7W0.3)C
上に接合していた。この複合焼結体を切断し、接
合界面を観察した結果(Mo.W)Cサーメツト中
の結合材である鉄族金属は、中間接合層の一部に
存在していたがCBN含有硬質焼結体中には存在
せず焼結体は完粉の組成のままであつた。比較の
ため中間接合層を塗布した(MoW)C基サーメ
ツトの代わりに母材にWC−15.3v/oCo超硬合金
を用いた以外は上述した場合と同様にして、同じ
条件で超高圧焼結した。容器内を観察したとこ
ろ、WC基超硬合金母材には亀裂があつた。ま
た、接合界面を観察したところ、超硬合金母材の
結合金属であるCoが多量にCBN焼結体中に侵入
していた。 実施例 2 平均粒度3μmのCBN粉末とAl2O3粉末を容量
で1:1に混合した。(Mo0.9W0.1)C−5%Ni
−5%Coサーメツト母材に実施例1と同様にし
て60容量%CBNと残部がTiN0.8,ZrN0.7,Alよ
り成り、その割合が5:4:1の混合粉末を塗布
した。この粉末を塗布した面に接して50容量%
CBNとAl2O3より成る混合粉末をMo製の容器に
充填した。これを50kbの超高圧下1100℃で焼結
した。得られた焼結体は中間接合層を介して
(Mo.W)C基サーメツト母材に強固に接合して
おりまた(MoW)C基サーメツトには亀裂は存
在しなかつた。 実施例 3 内径10mm,外径14mmのNi製の容器に(Mo0.5
W0.5)C−19%Coサーメツト(外径10mm高さ3
mm)を入れ第1表に示す組成の中間接合層形成粉
末を外径10mm厚さ0.3mmに型押成型し、容器中に
入れた後、70容量%のCBNと残部がTiN,ZrN,
Alが重量で6:2:2である混合粉末を充填し
た。更にこの上にTa箔を置いた後(Mo0.7W0.3
C−19%Coサーメツトを置きNi栓をして、実
Currently, among the high-pressure phase boron nitrides, products in which a sintered body of cubic boron nitride (hereinafter referred to as CBN) is bonded to one side of a WC-Co alloy are commercially available. As a typical example of this CBN sintered body, during sintering, molten metal mainly composed of Co from WC-Co intrudes between CBN particles, serves as a binder for the CBN particles, and transforms the sintered body into a cemented carbide. There are some that are joined. This technique is disclosed in Japanese Patent Publication No. 52-43846. The present inventors first carried out additional tests on the embodiment disclosed in the above-mentioned patent publication. We also learned that it is actually quite difficult to use a embossed WC-Co body as shown in the examples. The difficult points are that WC-Co is an extremely fine powder, so it contains a large amount of gas components, which is difficult to deal with, and the embossed body has low strength, so it is difficult to maintain its shape during hot pressing. It is. Therefore, the present inventors next considered using a WC-Co sintered body. Using a sintered body solves the above two problems, but the problem is that it causes cracks. this is
During hot pressing, the stress that exceeds the strength of WC-Co is usually raised to the required pressure first and then the temperature is increased, so WC-Co cannot follow the deformation of the hot pressed part during this pressure increase. It was concluded that In order to follow this deformation, it would be better to use a WC-Co alloy that has a large plastic deformability until fracture, but such an alloy has a large amount of Co or
The viscosity of the WC crystal is high. However, alloys with high plastic deformability have low rigidity;
In particular, the rigidity at high temperatures decreases, reducing the significance of using it as a sintered body for cutting tool edges. Therefore, one of the present inventors, together with other researchers, is actively researching (MoW)C in iron group metals, especially
We focused on the use of alloys bonded with Ni and Co. One of the inventors, in collaboration with other researchers, (MoW)C
The manufacturing method of (MoW) C-based cermet, and the characteristics of this cermet are being investigated. When we investigated the properties measured as a result, we found that this cermet largely covered the drawbacks of WC-Co mentioned above. That is, as shown in FIG. 1, (MoW) C-based cermets are softer than WC-based cermets at room temperature, but are harder at high temperatures. This is particularly important in cutting tool applications. Also, as shown in Figure 2, (MoW)C-Co
The amount of strain required to break is significantly larger than that of WC-Co. The characteristics of the (MoW) C-based cermet shown in FIG. 2 are well suited to the above-mentioned object of the present invention. In other words, an alloy with high plastic deformability and high rigidity has been discovered. The point of the present invention lies in the combination of the above-mentioned required performance during hot pressing under ultra-high pressure with the new performance exhibited by the new alloy. Other properties, such as transverse rupture strength, thermal conductivity, coefficient of thermal expansion, corrosion resistance, and oxidation resistance, are determined by WC.
There is almost no difference between -Co and (MoW)C-Co. Therefore, the inventors proposed this (MoW)
Various CBN sintered bodies were created using C-based cermet as a base material. As a result (MoW), although it was possible to prevent cracks from occurring in the C-based cermet base material,
The following problems were found. Firstly
If the content of CBN is high in the CBN sintered body, the high temperature and pressure during sintering will cause iron group metals, which are components of the (MoW) C-based cermet base material, to flow into the sintered body, causing the sintered body to The composition of the material changes and the performance deteriorates. Furthermore, there is a region enriched with iron group metals at the interface between the sintered body and the (MoW) C-based cermet base material, where CBN and iron group metals react and produce a large amount of boride. Since boride is very brittle, it reduces the bonding strength at the interface. secondly
When the CBN binder has poor affinity with the (MoW) C-based cermet, such as Al 2 O 3 , the CBN sintered body hardly adheres to the (MoW) C-based cermet. In order to solve the above problems, an intermediate bonding layer is placed between the CBN sintered body and the (MoW) C-based cermet to prevent the intrusion of iron group metals from the (MoW) C-based cermet, and the CBN sintering The bonding strength of the body-intermediate bonding layer (MoW) C-based cermet may be increased. The use of an intermediate bonding layer is disclosed in JP-A-Sho.
No. 51-64693, the intermediate bonding layer is a high temperature metal solder. In other words, the CBN hard sintered body and the cemented carbide base material are firmly attached to each other through the high-temperature metal solder. However, when CBN contains Al 2 O 3 as a binder, it is difficult to adhere to metal solder. Furthermore, in ultra-high pressure sintering, densification occurs at low temperatures and sintering progresses, so one of the biggest advantages is that grain growth can be suppressed. There is almost no reaction with the adhesive, and the adhesion strength is low. Furthermore, if a metal solder that melts at a low temperature is used, the metal solder component may enter the sintered body, reducing the performance of the sintered body, or the adhesion strength at the joint surface will decrease if the temperature reaches high temperatures during cutting. It cannot withstand use. The inventors of the present invention conducted extensive studies to solve the above-mentioned drawbacks, and found that the characteristics required for an intermediate bonding layer used in bonding a CBN-containing sintered body and a cemented carbide are those obtained by ultra-high pressure sintering. In order to be able to firmly bond with CBN-containing hard sintered bodies and cemented carbide base materials at low temperatures, and to prevent excessive residual stress from occurring in the sintered bodies, the coefficient of thermal expansion is lower than that of CBN-containing hard sintered bodies and cemented carbide. The material must almost match that of the base material, and when used as a cutting tool, the material must be difficult to deform at high temperatures so that it will not undergo plastic deformation due to the stress and heat applied to the cutting edge. It is desirable that the material has good thermal conductivity in order to allow the heat to escape, and from the viewpoint of strength, it is also necessary that it not be very brittle. As a result of various studies from the above viewpoint, we found that the intermediate bonding layer should be made of nitrides of group 4a and 5a transition metals of the periodic table, mixtures thereof, or mutual solid solution compounds, or 70% of these nitride compounds or mutual solid solution compounds. Materials containing less than % by volume of CBN, or nitrides of transition metals of groups 4a and 5a of the periodic table, or mixtures thereof, or mutual solid solution compounds containing Al and/or Si, or nitrides or mixtures thereof. It was concluded that a material containing less than 70% by volume of CBN in a mutual solid solution compound is suitable. These intermediate bonding layers are made of nitrides of groups 4a and 5a of the periodic table or contain CBN, and therefore have high rigidity and excellent high-temperature strength. By using an intermediate layer containing 20% by volume of CBN and the remainder consisting of TiN powder, the content of CBN is 80% by volume.
Ultra-high pressure sintering of the powder, the balance of which was Al 2 O 3 and TiC, was carried out. As a result (MoW), although Ni and Co, which are the bonding metals of the C base material, had invaded the intermediate layer,
The CBN-containing hard sintered body does not penetrate into the parts of the CBN-containing hard sintered body, and it is possible to prevent the deterioration of the performance of the CBN-containing hard sintered body due to the intrusion of iron group metals. It was firmly bonded to the base material. Furthermore, even at low temperatures of 1000 to 1100°C, a sintered body containing Al 2 O 3 as the CBN binder was created using an intermediate layer made of TiN containing 60% by volume of CBN and the remainder containing Al. The aggregate was firmly bonded to the (MoW) C base material via the intermediate bonding layer. When the intermediate bonding layer of the present invention is used as described above,
Even when ultra-high pressure sintering is performed at high temperatures of 1500 to 1600°C, it is possible to prevent the intrusion of iron group metals from (MoW) C-based cermets and to firmly bond them to the base material. It is also possible to firmly bond the CBN-containing hard sintered body and (MoW) C-based cermet during bonding. The reason for this is assumed to be as follows. (MoW) The reason why the intrusion of iron group metals from C-based cermets can be prevented is because iron group metals have poor affinity with nitrides in groups 4a and 5a of the periodic table. This is probably because even if the phase appears, the rate of penetration into the intermediate bonding layer is slow. Next, the bonding strength between the CBN-containing hard sintered body and the intermediate bonding layer is high due to the periodic table 4a in the intermediate bonding layer.
The 5a group nitride reacts with CBN in the hard sintered body layer, and the intermediate bonding layer and hard layer are in contact with each other in a powder state before sintering, so in this region, both layers have a width of a few particles. This is probably because a mixed region of both materials is created and sintered. The reason why the intermediate bonding layer and the (MoW) C-based cermet base material are well bonded is considered to be as follows. This is thought to be due to the fact that (MoW)C, which is the main component of the (MoW)C-based cermet, and the nitrides of transition metals from groups 4a and 5a of the periodic table contained in the intermediate bonding layer form a mutual solid solution. When the intermediate bonding layer forming powder contains Al or Si, the performance as an intermediate bonding layer is further improved. That is, this intermediate bonding layer can be used in a wide temperature range and has good adhesive properties. The effect is particularly great when TiN, which is a nitride in Group 4a of the periodic table, is used. The reason for this is that when Al is added to TiN, sintering is possible even at low temperatures of 800 to 900℃.
This is thought to be because it can be used without melting even at high temperatures of 1,500 to 1,600°C and has good affinity with CBN in the hard sintered body and (MoW)C in the (MoW)C-based cermet. When the intermediate bonding layer of the present invention contains high-pressure phase boron nitride, the strength of the intermediate bonding layer is high, and the thermal conductivity is also very excellent, making it possible to fully demonstrate the performance of the CBN hard sintered layer. It is possible. When the content of CBN in the intermediate bonding layer is 70% by volume or more, the content of the remaining nitrides of 4a and 5a of the periodic table, or their mixtures or mutual solid solutions, is less than 30% by volume, and it is different from the base alloy. The rate at which a mutual solid solution is formed with (MoW)C at the interface of (MoW)C decreases, and boride generated by the reaction between (MoW)C-based alloy and CBN increases too much, making the intermediate bonding layer brittle. Furthermore, since this boride has a low melting point, especially when sintered at a high temperature, a large amount of liquid phase is generated in the intermediate bonding layer and penetrates into the hard layer, degrading the performance. Therefore, the content of CBN in the intermediate bonding layer is preferably less than 70% by volume. In addition, the CBN content of the CBN-containing hard sintered body is 20
If it is less than 20% by volume, the performance as a tool will not be good, so 20% by volume or more is preferable. The thickness of the hard layer of the composite sintered body according to the present invention varies depending on the purpose of use, but is generally 0.5 mm to 2 mm.
A range of is suitable. When used as a tool cutting edge for cutting, the width of wear on the tool edge flank when the tool reaches the end of its life due to wear is usually approximately 0.5 mm or less.
It is sufficient to have a hard layer with a thickness greater than that, that is, 0.5 mm or more, and a thickness exceeding 2 mm is not actually necessary. The thickness of the intermediate bonding layer, which is a feature of the present invention, is 0.005
The diameter is not less than mm and not more than 2 mm. If the thickness of the intermediate bonding layer is less than 0.005 mm, it may not be possible to prevent the bonding metal from entering the C base material during high temperature sintering (MoW). Further, an intermediate bonding layer of 2 mm or more is not practically necessary. The method for manufacturing a composite sintered body according to the present invention includes:
When obtaining an intermediate bonding layer mainly composed of nitrides of Groups 4a and 5a of the periodic table, mixtures thereof, or mutual solid solution compounds, or those mainly containing CBN, these mixed powders are mixed with (MoW)C. The required amount of C-base is added between the base cermet base material and the CBN-containing hard layer-forming powder in powder form or as a stamped body, or by adding an appropriate solvent to the intermediate bonding layer-forming powder and making it into a slurry (MoW). A powder layer that forms an intermediate bonding layer is provided by applying it to the cermet base material, and this is hot-pressed under ultra-high pressure and high temperature to sinter the intermediate bonding layer simultaneously with the sintering of the CBN-containing hard layer. Join it to the base material. In addition, as the intermediate bonding layer, periodic table 4a,
If a nitride in which the value of x of the nitride represented by MNx is 0.5 or more and 0.95 or less is used, where M is a group 5a transition metal, the sinterability of the intermediate bonding layer will increase and the bonding strength will be good. The reason for this is that it is easy to sinter at low temperatures due to the presence of atomic vacancies, and when CBN is contained, it reacts with CBN to form a strong bond, and also reacts with CBN particles in the hard layer and WC in the base material, resulting in both This is thought to be due to the strong bond between the two. The value of
If it is less than 0.5, the strength of the nitride of transition metals belonging to groups 4a and 5a of the periodic table decreases, which is not preferable. Also X
When the value exceeds 0.95, the bonding strength decreases. The nitrides of metals 4a and 5a of the periodic table used in the present invention are high-strength compounds, but the CBN-containing hard layer is sintered under ultra-high pressure conditions (generally
90 kb), these compound powder particles are deformed, crushed, and easily packed into a dense state, and by subsequent heating, the intermediate bonding layer becomes a dense sintered body. The composite sintered body of the present invention is used for machining tools, etc., but especially when used in places where interrupted cutting is performed, the CBN-containing hard layer firmly adheres to the cermet base material through the intermediate bonding layer. Because of this, it can fully demonstrate its performance as a compound tool. In particular, the binder of the CBN-containing hard layer is Al 2 O 3 , Si 3 N 4
Alternatively, when the compatibility with the cermet base material is poor, such as SiC, or when the CBN content of the hard layer is 80% by volume or more, the effect of the intermediate bonding layer according to the present invention becomes even more remarkable. Note that equivalent performance can be obtained even if part or all of the CBN used in this paper is replaced with Wurtz type boron nitride, which is a type of high-pressure phase type boron nitride. The present invention will be explained in detail below with reference to Examples. Example 1 30% by volume in a Mo container with an inner diameter of 10 mm and an outer diameter of 14 mm
A cermet with a C-15.3% Co composition (Mo 0.7 W 0.3 ) was prepared by making a slurry of TiN0.7 powder containing CBN and the balance 20% Al in an organic solvent to a thickness of 0.2 mm (outer diameter 10 mm). , height 3 mm), and 0.3 g of a mixed powder of 80% by volume CBN and TiN-Al-Cu-Ni was filled in contact with this. Furthermore, Ta foil, 3 mm thick (MoW) C cermet, and 0.2 mm copper plate were placed on top of this. Next, a Ni stopper was placed on the container, and the entire container was placed in an ultra-high pressure device used for diamond synthesis.
Pyroferrite was used as the pressure medium, and a graphite cylinder was used as the heater. First, increase the pressure to 55kb
The temperature was then increased to 1500°C and held for 20 minutes. The Ni container was removed from the ultra-high pressure device, the Mo was removed, and the inside of the container was observed. There are no cracks in the (Mo 0.7 W 0.3 )C cermet base material, and the CB-containing hard sintered body is firmly bonded (Mo 0.7 W 0.3 )C through the intermediate bonding layer.
It was attached to the top. When this composite sintered body was cut and the bonding interface was observed (Mo.W), it was found that the iron group metal, which is the binder in the C cermet, was present in a part of the intermediate bonding layer, but the CBN-containing hard sintered body It was not present in the body, and the sintered body remained with the composition of the finished powder. For comparison, ultra-high pressure sintering was performed under the same conditions as in the above case except that WC-15.3v/oCo cemented carbide was used as the base material instead of the (MoW) C-based cermet coated with the intermediate bonding layer. did. When the inside of the container was observed, cracks were found in the WC-based cemented carbide base material. Furthermore, when the bonding interface was observed, a large amount of Co, which is the bonding metal of the cemented carbide base material, had penetrated into the CBN sintered body. Example 2 CBN powder with an average particle size of 3 μm and Al 2 O 3 powder were mixed in a volume ratio of 1:1. (Mo 0.9 W 0.1 )C-5%Ni
A mixed powder consisting of 60% CBN by volume and the balance TiN 0.8 , ZrN 0.7 , and Al in a ratio of 5:4:1 was applied to a -5% Co cermet base material in the same manner as in Example 1. 50% by volume in contact with the surface coated with this powder
A mixed powder consisting of CBN and Al 2 O 3 was filled into a container made of Mo. This was sintered at 1100℃ under ultra-high pressure of 50kb. The obtained sintered body was firmly bonded to the (Mo.W) C-based cermet base material through the intermediate bonding layer, and no cracks were present in the (Mo.W) C-based cermet. Example 3 A Ni container with an inner diameter of 10 mm and an outer diameter of 14 mm (Mo 0.5
W 0.5 ) C-19%Co cermet (outer diameter 10mm height 3
The intermediate bonding layer forming powder having the composition shown in Table 1 was molded into a container with an outer diameter of 10 mm and a thickness of 0.3 mm, and then placed in a container.
A mixed powder containing Al in a ratio of 6:2:2 by weight was filled. After placing Ta foil on top of this (Mo 0.7 W 0.3 )
Place a C-19% Co cermet and plug it with a Ni plug.

【表】 施例1と同様に、圧力50kb温度1350℃で焼結し
た。これらの焼結体を取り出し、鋼のバイトシヤ
ンクに通常の超硬合金用銀ロー材を用いて約800
℃でロー付けした。 ロウ付け後刃先をダイヤモンド砥石で研磨し、
接合状態を調べたところ、どの焼結体も
(MoW)Cサーメツト母材とは中間接合層を介
して強固に接合していた。 また刃先部での不純物の侵入をX線マイクロア
ナライザーを用いて調べた結果、(MoW)サー
メツトの結合金属の侵入は認められなかつた。 さらにCBN含有硬質層の接合強度を円周方向
に2ケ所180゜間隔にV溝を有する焼入侵炭鋼を切
削することにより調べた。なお切削条件は切削速
度100m/min、切込み1mm、送り0.35/revであ
つた。 比較のため、市販のCBN含有硬質層を直接超
硬合金母材にCoで結合した焼結体についても同
様の実験を行つた。その結果、A〜Eの中間接合
層を有する本発明焼結体は10000回溝を通過して
も焼結体は(Mo.W)Cサーメツト母材に強固に
付着していたのに付し、市販のCo結合された焼
結体は7000回溝を通過してCBN硬質層は超硬合
金母材果面より剥離した。
[Table] As in Example 1, sintering was carried out at a pressure of 50 kb and a temperature of 1350°C. These sintered bodies were taken out and placed in a steel bite shank using ordinary silver brazing material for cemented carbide.
Brazed at ℃. After brazing, the cutting edge is polished with a diamond whetstone.
When the bonding conditions were examined, all sintered bodies were firmly bonded to the (MoW)C cermet base material via an intermediate bonding layer. Furthermore, as a result of examining the intrusion of impurities at the cutting edge using an X-ray microanalyzer, no intrusion of the binding metal of the (MoW) cermet was observed. Furthermore, the bonding strength of the CBN-containing hard layer was investigated by cutting hardened carburized steel that had V-grooves spaced 180° apart at two locations in the circumferential direction. The cutting conditions were a cutting speed of 100 m/min, depth of cut of 1 mm, and feed rate of 0.35/rev. For comparison, similar experiments were conducted on a sintered body in which a commercially available CBN-containing hard layer was bonded directly to a cemented carbide base material with Co. As a result, the sintered body of the present invention having intermediate bonding layers A to E was firmly attached to the (Mo.W)C cermet base material even after passing through the groove 10,000 times. A commercially available Co-bonded sintered body passed through the groove 7000 times, and the CBN hard layer was peeled off from the surface of the cemented carbide base material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の効果を説明するためのもので
本発明で使用する(MoW)C基サーメツトと従
来のWC−Co超硬合金の高温ビツカース硬度を比
較したものである。結合相金属量が11vol%、
15.3vol%の各々2種の合金について示した。第
2図は本発明で使用する(MoW)C基サーメツ
トと従来のWC−Co超硬合金の圧縮応力下におけ
る応力−歪曲線を比較したものである。曲線の×
印で示した点が圧縮破壊した点であり、結合金属
のvol%が等しいWC−11vol%Co(1)と(Mo0.7
W0.3)C−11vol%Cc(3)では後者が著しく大きな
塑性変形能力を有することが判る。図面の符号は
次の各々の組成(容積%)を示す。 1……WC−11Co、2……WC−15.3Co、3…
…(Mo0.7W0.3)C−11Co、4……(Mo0.7W0.3
C−15.3Co、5……WC−16Co、6……WC−
24Co、7……(Mo0.5W0.5)C−19Co,。
FIG. 1 is for explaining the effects of the present invention, and compares the high-temperature Vickers hardness of the (MoW) C-based cermet used in the present invention and a conventional WC-Co cemented carbide. Binding phase metal content is 11vol%,
Two types of alloys each containing 15.3 vol% are shown. FIG. 2 compares the stress-strain curves of the (MoW) C-based cermet used in the present invention and a conventional WC-Co cemented carbide under compressive stress. Curved ×
The point indicated by the mark is the point of compression failure, and the vol% of the bonded metals is equal to WC−11vol%Co(1) and (Mo 0.7
W 0.3 ) C-11vol%Cc(3), it can be seen that the latter has a significantly large plastic deformation ability. The symbols in the drawings indicate the following compositions (volume %): 1...WC-11Co, 2...WC-15.3Co, 3...
...(Mo 0.7 W 0.3 )C-11Co, 4...(Mo 0.7 W 0.3 )
C-15.3Co, 5...WC-16Co, 6...WC-
24Co, 7...(Mo 0.5 W 0.5 )C-19Co,.

Claims (1)

【特許請求の範囲】 1 高圧相型窒化硼素を20容量%以上95容量%以
下含有する硬質焼結体とモリブデンを主成分とす
る(MoW)C基の炭化物結晶を鉄族金属で結合
したサーメツト母材とが、中間接合層を介して接
合され、該中間接合層は周期律表第4a,5a族遷
移金属の窒化物の1種もしくはこれらの混合物ま
たは相互固溶体化合物を主体としたもの、あるい
はこれら主体に高圧相型窒化硼素を70容量%未満
含有したものより成り、かつ前記硬質焼結体と異
なる組成で、その厚みは0.005mm以上2mm以下で
構成されていることを特徴とする工具用複合焼結
体。 2 特許請求の範囲第1項記載の複合焼結体にお
いて、硬質焼結体が高圧相型窒化硼素を20容量%
以上95容量%以下、残部がAl2O3、TiC,TiN,
SiC,Si3N4等の化合物、Al,Cu,Ni等の金属か
らなる硬質焼結体であることを特徴とする工具用
複合焼結体。 3 特許請求の範囲第1項記載の複合焼結体にお
いて、中間接合層には、さらにAlおよび/また
はSiを0.1重量%以上50重量%以下含有している
ことを特徴とする工具用複合焼結体。 4 特許請求の範囲第1項記載の複合焼結体にお
いて、中間接合層の周期律表第4a,5a族金属を
Mとした場合、MNxで表わされる窒化物のxが
0.5以上0.95以下の窒化物であることを特徴とす
る工具用複合焼結体。 5 特許請求の範囲第1,2,3または4項記載
の焼結体において、中間接合層の窒化物がTiNx
であることを特徴とする工具用複合焼結体。 6 モリブデンを主成分とする(MoW)C基の
炭化物結晶を鉄族金属で結合したサーメツト母材
上に、周期律表第4a,5a族遷移金属の窒化物の
一種もしくはこれらの混合物または相互固溶体化
合物を主体としたもの、あるいは、これら主体に
高圧相型窒化硼素を70容量%未満含有したものか
らなる中間接合層としての粉末を型押成形する
か、または該サーメツト母材上に予め塗布するか
して中間接合層を設け、この上に、上記中間接合
層と組成の異なる高圧相型窒化硼素を20容量%以
上、95容量%以下含有する硬質焼結体形成粉末ま
たは型押成型体を載置したのち、その全体を超高
圧、高温下でホツトプレスして高圧相型窒化硼素
を含有する硬質層および中間接合層の焼結、さら
には該硬質層と中間接合層とサーメツト母材との
接合を行わせることを特徴とする工具用複合焼結
体の製造方法。
[Scope of Claims] 1. A cermet in which a hard sintered body containing 20% to 95% by volume of high-pressure phase boron nitride and a C-based carbide crystal mainly composed of molybdenum (MoW) are bonded by an iron group metal. The base material is bonded to the base material via an intermediate bonding layer, and the intermediate bonding layer is mainly composed of one of the nitrides of transition metals of Groups 4a and 5a of the periodic table, a mixture thereof, or a mutual solid solution compound, or A tool for a tool, characterized in that it mainly contains less than 70% by volume of high-pressure phase boron nitride, has a composition different from the hard sintered body, and has a thickness of 0.005 mm or more and 2 mm or less. Composite sintered body. 2. In the composite sintered body according to claim 1, the hard sintered body contains 20% by volume of high-pressure phase boron nitride.
Above 95% by volume, the balance being Al 2 O 3 , TiC, TiN,
A composite sintered body for tools, characterized in that it is a hard sintered body made of compounds such as SiC, Si 3 N 4, etc., and metals such as Al, Cu, and Ni. 3. The composite sintered body for tools according to claim 1, wherein the intermediate bonding layer further contains Al and/or Si in an amount of 0.1% by weight to 50% by weight. Concretion. 4 In the composite sintered body according to claim 1, when M is a metal of groups 4a and 5a of the periodic table in the intermediate bonding layer, x of the nitride represented by MNx is
A composite sintered body for tools, characterized by being a nitride of 0.5 or more and 0.95 or less. 5. In the sintered body according to claim 1, 2, 3 or 4, the nitride of the intermediate bonding layer is TiNx.
A composite sintered body for tools, characterized by: 6 A type of nitride, a mixture of these, or a mutual solid solution of transition metals of Groups 4a and 5a of the periodic table is applied to a cermet base material in which molybdenum-based (MoW) C-based carbide crystals are bonded with iron group metals. A powder as an intermediate bonding layer consisting mainly of a compound or containing less than 70% by volume of high-pressure phase boron nitride is molded or pre-coated on the cermet base material. Then, an intermediate bonding layer is provided, and on this, a hard sintered body-forming powder or a molded body containing high-pressure phase boron nitride having a composition different from that of the intermediate bonding layer at 20% by volume or more and 95% by volume or less is provided. After mounting, the whole is hot-pressed under ultra-high pressure and high temperature to sinter the hard layer containing high-pressure phase boron nitride and the intermediate bonding layer, and further bond the hard layer, intermediate bonding layer, and cermet base material. A method for manufacturing a composite sintered body for a tool, the method comprising joining the composite sintered body.
JP56064896A 1981-04-27 1981-04-27 Composite sintered body for tool and manufacture Granted JPS57179083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56064896A JPS57179083A (en) 1981-04-27 1981-04-27 Composite sintered body for tool and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56064896A JPS57179083A (en) 1981-04-27 1981-04-27 Composite sintered body for tool and manufacture

Publications (2)

Publication Number Publication Date
JPS57179083A JPS57179083A (en) 1982-11-04
JPS6359381B2 true JPS6359381B2 (en) 1988-11-18

Family

ID=13271290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56064896A Granted JPS57179083A (en) 1981-04-27 1981-04-27 Composite sintered body for tool and manufacture

Country Status (1)

Country Link
JP (1) JPS57179083A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187412A (en) * 1983-04-08 1984-10-24 Mitsubishi Metal Corp Composite cutting tip
CN109321798A (en) * 2018-10-30 2019-02-12 湖南工业大学 A kind of hard alloy cutter coating material and preparation method thereof

Also Published As

Publication number Publication date
JPS57179083A (en) 1982-11-04

Similar Documents

Publication Publication Date Title
US6500557B1 (en) Composite and method for producing the same
RU2011649C1 (en) Method of manufacturing ceramics for cutting tools
CN101275213B (en) Method of manufacturing a part comprising at least one block made from a dense material
US4334928A (en) Sintered compact for a machining tool and a method of producing the compact
US6919040B2 (en) Method of producing an abrasive product containing cubic boron nitride
US4343651A (en) Sintered compact for use in a tool
KR100227879B1 (en) Group ivb boride based cutting tools
US20080230279A1 (en) Hard compact and method for making the same
GB2413813A (en) Thermally stable diamond bonded materials and compacts
KR20030048005A (en) Method of producing an abrasive product containing diamond
CA2295797A1 (en) A method to form dense complex shaped articles
EP0731186B1 (en) Composite material and process for producing the same
JPS6359381B2 (en)
JPS6125761B2 (en)
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPS6323155B2 (en)
JPS6350401B2 (en)
JPS6225630B2 (en)
JPS6257681B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS644840Y2 (en)
JPS638072B2 (en)
JPH0317792B2 (en)