JPH0798964B2 - Cubic boron nitride cemented carbide composite sintered body - Google Patents
Cubic boron nitride cemented carbide composite sintered bodyInfo
- Publication number
- JPH0798964B2 JPH0798964B2 JP62033471A JP3347187A JPH0798964B2 JP H0798964 B2 JPH0798964 B2 JP H0798964B2 JP 62033471 A JP62033471 A JP 62033471A JP 3347187 A JP3347187 A JP 3347187A JP H0798964 B2 JPH0798964 B2 JP H0798964B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- cbn
- sintered body
- layer
- boron nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Laminated Bodies (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は立方晶窒化ホウ素(以下CBNという)の焼結層
とタングステンカーバイド(WC)を主体とする超硬合金
層が接合したCBN超硬合金複合焼結体に関し、さらに詳
しくはこの超硬合金層のバインダー金属として特定の合
金を用いたCBN超硬合金複合焼結体に関する。TECHNICAL FIELD The present invention relates to a CBN cemented carbide composite in which a sintered layer of cubic boron nitride (hereinafter referred to as CBN) and a cemented carbide layer mainly composed of tungsten carbide (WC) are joined. The present invention relates to a sintered body, and more specifically to a CBN cemented carbide composite sintered body using a specific alloy as a binder metal of the cemented carbide layer.
従来の技術 各種材料の切削、穴明け工具等として超硬物質であるCB
Nの焼結体が近年急速に需要が増加している。この焼結
体は多くは基板となるWC-Co系超硬合金に直接に接合さ
れ、その超硬合金が工具シャンクにろう付け等により保
持されて使用されている。Conventional technology CB, which is a super-hard material, for cutting various materials, drilling tools, etc.
Demand for N sintered compacts has increased rapidly in recent years. Most of the sintered bodies are directly bonded to a WC-Co type cemented carbide as a substrate, and the cemented carbide is used by being held by a tool shank by brazing or the like.
発明が解決しようとする問題点 CBN焼結体の熱膨脹係数α(室温〜800℃、以下同じ)は
一般に(4〜6)×10-6(1/℃)である。一方、通常の
CBN超硬合金複合焼結体に使用される超硬合金はWC-Co系
でCoが8〜14重量%(以下断りない限り%は重量%を表
わす)であって、そのαは(6〜8)×10-6(1/℃)で
ある。Coを少なくすればαは6×10-6(1/℃)以下にな
り得るが、基板として必要な強度が得られない。Problems to be Solved by the Invention The thermal expansion coefficient α (room temperature to 800 ° C., the same applies hereinafter) of a CBN sintered body is generally (4 to 6) × 10 −6 (1 / ° C.). Meanwhile, normal
The cemented carbide used in the CBN cemented carbide composite sintered body is a WC-Co system, in which Co is 8 to 14% by weight (% represents% by weight unless otherwise specified), and α is (6 to 8) × 10 -6 (1 / ° C). If Co is decreased, α can be 6 × 10 −6 (1 / ° C.) or less, but the strength required as a substrate cannot be obtained.
CBN焼結体と超硬合金基板の熱膨脹係数の上記の差は大
きな問題である。CBN焼結体の弾性率が約5×104(Kg/m
m2)、超硬合金の軟化が事実上止まるのが1000℃以下と
考えると、1000℃以下において両者間に発生する応力は
50〜100Kg/mm2となり、焼結体の抗折強度に匹敵する値
である。The above difference in the coefficient of thermal expansion between the CBN sintered body and the cemented carbide substrate is a big problem. The elastic modulus of CBN sintered body is about 5 × 10 4 (Kg / m
m 2 ), considering that the softening of the cemented carbide virtually stops at 1000 ° C or less, the stress generated between them at 1000 ° C or less is
The value is 50 to 100 kg / mm 2 , which is comparable to the bending strength of the sintered body.
これらの残留応力が超硬合金を削って素材を薄くした時
の反りや剥離、更には工具シャンクにろう付けした時の
ろう付け割れ、さらにドリル用素材として強く要望され
ている超硬合金−CBN−超硬合金のサンドイッチ構造で
従来のものは、CBN層に水平クラックが生じる原因とな
るものである。These residual stresses warp and peel when the material is thinned by scraping the cemented carbide, brazing cracks when brazing to the tool shank, and cemented carbide-CBN that is strongly demanded as a material for drilling-CBN -The conventional cemented carbide sandwich structure causes horizontal cracks in the CBN layer.
これらの問題を解決する為に超硬合金以外の基板をもつ
複合体も提案されている(特開昭61-26574)。In order to solve these problems, a composite having a substrate other than cemented carbide has been proposed (Japanese Patent Laid-Open No. 61-26574).
しかし、WC系超硬合金は剛性、強度及び硬度が大で、か
つ銀ろう付けも可能という優れた特性をもっている。However, WC-based cemented carbide has excellent properties such as high rigidity, strength and hardness, and silver brazing is possible.
本発明の目的は、CBN焼結層と超硬合金層とを接合した
複合体において、超硬合金の前記特性を失なうことな
く、その熱膨脹係数を低くしてできるだけCBN焼結体の
熱膨脹係数に合わせるとともに、高強度を維持すること
により、複合体の剥離、クラックの発生等を防止するこ
とにある。An object of the present invention is to provide a composite in which a CBN sintered layer and a cemented carbide layer are joined, and the thermal expansion coefficient of the CBN sintered body is reduced as much as possible without lowering the above-mentioned characteristics of the cemented carbide. By adjusting the coefficient and maintaining high strength, peeling of the composite, generation of cracks, etc. can be prevented.
問題点を解決するための手段 本発明者はWCを主体とする超硬合金のバインダーメタル
について種々研究した結果、超硬合金のαを低くし、か
つ強度が大きいメタルとしては特定組成のFe-Ni-Co系合
金であることを見出し、本発明に至った。Means for Solving the Problems As a result of various studies on the binder metal of the cemented carbide mainly composed of WC, the present inventor has made α of the cemented carbide low and Fe-having a specific composition as a metal having high strength. The inventors of the present invention have found that the alloy is a Ni-Co alloy and have completed the present invention.
即ち、本発明はWCを主体とする炭化物90〜96%とFe系合
金4〜10%からなり、該Fe系合金はNi20〜50%、Co2〜2
0%、残部Feである超硬合金層とCBNの焼結層とが接合し
たCBN超硬合金複合焼結体である。That is, the present invention comprises 90 to 96% of WC-based carbides and 4 to 10% of Fe-based alloys, and the Fe-based alloys include Ni of 20 to 50% and Co2 to 2%.
This is a CBN cemented carbide composite sintered body in which a cemented carbide layer with 0% balance Fe and a sintered layer of CBN are joined.
基板とする超硬合金の炭化物は通常WCでよいが、その50
%以内でこれをTaC、TiC等で置換したものも同様に使用
することができる。Carbide of cemented carbide used as the substrate is usually WC, but 50
A material in which TaC, TiC or the like is substituted within% can be used in the same manner.
Fe-Ni合金の場合、Ni30〜40%のとき、室温から200℃迄
は超硬合金のαが小さいが、高温でのαが通常のWC-Co
系に近くなる。これにCoを添加すると高温領域までαを
小さく保つことができる。この効果を出すにはCoは最低
2%は必要であり、またあまり多過ぎてもαが大きくな
るため上限は20%が適当である。Coがこの範囲のときNi
は30%前後の場合が超硬合金のαが最も小さいが、CBN
焼結体の熱膨脹係数にも幅があり、これに合せて使用さ
れるので、Niが20〜50%の範囲の合金が適する。この範
囲外だとαを小さくする効果に乏しく、逆に耐食性や耐
熱性の面で欠点が現れる。In the case of Fe-Ni alloy, when Ni is 30-40%, α of cemented carbide is small from room temperature to 200 ℃, but α at high temperature is normal WC-Co.
It becomes close to the system. By adding Co to this, α can be kept small even in a high temperature region. To obtain this effect, Co must be at least 2%, and even if it is too much, α becomes large, so an upper limit of 20% is appropriate. Ni when Co is in this range
Is around 30%, the α of cemented carbide is the smallest, but CBN
Since the coefficient of thermal expansion of the sintered body has a wide range and is used according to this, an alloy having Ni in the range of 20 to 50% is suitable. Outside this range, the effect of reducing α is poor, and conversely, defects appear in terms of corrosion resistance and heat resistance.
CBN焼結体は被削材の多様さのためにCBN含有量は60〜90
%と幅が大きく、またバインダーも金属、各種セラミッ
クスなど種々のものが使われており、それに応じてαも
(4〜6)×10-6の範囲の幅をもつ。CBN content is 60 ~ 90 due to the variety of work materials.
%, And various binders such as metals and various ceramics are used, and accordingly α has a width in the range of (4 to 6) × 10 −6 .
本発明において前記バインターメタルを用いた超硬合金
のαは(4.6〜6.0)×10-6(1/℃)であり、CBN焼結体
のαに応じてその中から選ばれる。例えばαが4.8×10
-6(1/℃)になる組成の一例をあげればWC-6%Fe合金の
系ではFe-29%Ni-17%Coが適する。そして超硬合金中の
Fe量を増し、あるいはFe合金中のNiの量を上記の値より
増加又は減少させることによりαを6.0×10-6(1/℃)
まで変えることができる。In the present invention, α of the cemented carbide using the binder metal is (4.6 to 6.0) × 10 −6 (1 / ° C.), and is selected from among them according to the α of the CBN sintered body. For example, α is 4.8 × 10
Fe-29% Ni-17% Co is suitable for the system of WC-6% Fe alloy as an example of the composition which becomes -6 (1 / ° C). And in cemented carbide
Α is 6.0 × 10 -6 (1 / ° C) by increasing the Fe content or increasing or decreasing the Ni content in the Fe alloy from the above value.
Can be changed.
WCを主体とする炭化物とFe-Ni-Co系合金の割合は、後者
が4%未満では基板としての必要な強度が維持できず、
また10%を越えると本願のFe合金を用いても超硬合金の
αが6より大きくなるので該炭化物90〜96%、該合金4
〜10%が適する。As for the ratio of carbide mainly composed of WC and Fe-Ni-Co alloy, if the latter is less than 4%, the strength required as a substrate cannot be maintained,
On the other hand, if it exceeds 10%, α of the cemented carbide becomes larger than 6 even if the Fe alloy of the present invention is used, so 90 to 96% of the carbide, 4 of the alloy
~ 10% is suitable.
本発明におけるCBN焼結体はCBN粉末にAl、Ni、Co、Mn等
の金属、あるいは各種セラミックスを添加し、焼結した
ものが使用される。その厚さは多くは0.5〜1.5mmであ
る。As the CBN sintered body in the present invention, a CBN powder obtained by adding a metal such as Al, Ni, Co or Mn, or various ceramics and sintering the CBN powder is used. Its thickness is often 0.5-1.5 mm.
本発明の複合焼結体には、CBN焼結層と超硬合金層が接
続したものの外、CBN焼結層の外側に超硬合金層を接合
したサンドイッチ構造のものなども含まれる。The composite sintered body of the present invention includes not only one having a CBN sintered layer and a cemented carbide layer connected thereto but also one having a sandwich structure in which a cemented carbide layer is joined to the outside of the CBN sintered layer.
CBN焼結層に接合される超硬合金層の厚さは0.1〜2.0mm
が適する。The thickness of the cemented carbide layer bonded to the CBN sintered layer is 0.1-2.0 mm
Is suitable.
CBN焼結層と超硬合金層は高温、高圧下で圧着されるの
で強固に接合している。また本発明においては上記焼結
層と超硬合金層との間に公知の方法に従ってMo、W、T
a、Nbから選ばれた金属薄板を介在させることもでき
る。Since the CBN sintered layer and the cemented carbide layer are pressure bonded under high temperature and high pressure, they are firmly bonded. Further, in the present invention, Mo, W, T is formed between the sintered layer and the cemented carbide layer according to a known method.
It is also possible to interpose a thin metal plate selected from a and Nb.
金属薄板はCBN焼結層と超硬合金層との接合強度を高め
る効果があり、またこの両者の間に多少とも生ずる熱応
力緩和等の効果もある。金属薄板の厚さは50μm〜200
μmが適当である。The thin metal plate has the effect of increasing the bonding strength between the CBN sintered layer and the cemented carbide layer, and also has the effect of relaxing the thermal stress that occurs between the two to some extent. The thickness of the thin metal plate is 50 μm to 200
μm is suitable.
次に本発明のCBN超硬合金複合焼結体の製法について説
明する。Next, a method for producing the CBN cemented carbide composite sintered body of the present invention will be described.
バインダーメタルはFe、Ni、Coの粉末を前記組成範囲に
混合して用いてもよく、また予じめ合金にしたものを粉
砕して用いてもよい。前者の場合は超硬合金の焼結中に
合金となる。これらの金属混合粉末あるいは合金粉末は
WCを主体とする炭化物粉末と混合して使用される。As the binder metal, powders of Fe, Ni, and Co may be mixed and used within the above composition range, or a preliminarily alloyed powder may be crushed and used. In the former case, it becomes an alloy during sintering of the cemented carbide. These metal mixed powders or alloy powders
It is used as a mixture with carbide powder mainly composed of WC.
CBNはその粉末を前記したような添加物と混合して焼結
される。CBN is sintered by mixing the powder with additives as described above.
超硬合金は予じめ焼結したものを用いてもよい。超硬合
金あるいはその組成物と添加物を含むCBN層とを重ね合
せ、超高圧装置を用い、好ましくは1300〜1600℃、40〜
60Kbの範囲で焼結し、CBN超硬合金複合焼結体とする。
なお、金属薄板を使用する場合はそれを両者の界面に置
いて圧着接合する。W、Mo、Ta、Nbのαは4〜7×10-6
(1/℃)程度であり、焼結時CBN及びWCとの作用で炭化
物や窒化物を生成するが、それらは金属よりさらにαは
小さくなるので熱応力による剥離等の問題は生じない。The cemented carbide may be pre-sintered. CBN layer containing cemented carbide or its composition and additives are superposed, using a high pressure device, preferably 1300 ~ 1600 ℃, 40 ~
Sinter in the range of 60 Kb to obtain a CBN cemented carbide composite sintered body.
When a thin metal plate is used, it is placed at the interface between the two and pressure bonded. Α of W, Mo, Ta and Nb is 4 to 7 × 10 -6
It is about (1 / ° C), and carbides and nitrides are formed by the action of CBN and WC during sintering, but since α is smaller than that of metals, there is no problem such as peeling due to thermal stress.
超硬合金の作成 表1の配合で先ず超硬合金を作製した。Fe、Ni、Coは平
均粒度2μmのものを使用した。各々の粉末を表1に従
って配合し、カンファーを使用して予備成形したものを
乾燥後1350℃で真空加熱して焼結した。その特性を表1
に示す。Preparation of Cemented Carbide First, a cemented carbide was prepared with the composition shown in Table 1. Fe, Ni and Co used had an average particle size of 2 μm. Each powder was blended according to Table 1, preformed using camphor, dried, and then vacuum-heated at 1350 ° C. for sintering. The characteristics are shown in Table 1.
Shown in.
表1より熱膨張係数が近接した本発明のNo.1と比較例の
No.3、本発明のNo.4、6、7、8、9、10と比較例のN
o.2、4、5、熱膨張係数が同一である本発明のNo.5と
比較例のNo.1を較べてみるとわかるように本願発明のも
のは抗折力が高い。 From Table 1, the thermal expansion coefficient of No. 1 of the present invention is close to that of the comparative example.
No. 3, No. 4, 6, 7, 8, 9, 10 of the present invention and N of Comparative Example
As can be seen by comparing No. 5 of the present invention having the same coefficient of thermal expansion of Nos. 2, 4, 5 and No. 1 of the comparative example, the invention has a high transverse rupture strength.
実施例1 平均粒度5μmのWC粉末94%とNi29%、Co17%、Fe54%
のFe合金6%から超硬合金(表1の本発明のNo.2)を得
た。この基板とCBN70%、TiC20%、Al10%の混合粉の成
形体を重ね合せ40Kb、1350℃で圧縮し、得られた複合体
をCBN層0.8mm厚、超硬合金層0.8mm厚、全厚1.6mmの調製
後、20×3mmの長方形に切断してハイス鋼のエンドミル
シャンクにろう付けし、研摩後SKD11HRC60の溝入れに加
工に問題なく使用できた。このCBN焼結体の熱膨脹係数
(室温〜800℃)は約4.7である。Example 1 94% WC powder having an average particle size of 5 μm, Ni29%, Co17%, Fe54%
A cemented carbide (No. 2 of the present invention in Table 1) was obtained from Fe alloy 6%. This substrate and a compact of mixed powder of 70% CBN, 20% TiC, and 10% Al were overlaid and compressed at 40 Kb and 1350 ° C, and the obtained composite was 0.8 mm thick for CBN layer, 0.8 mm thick for cemented carbide layer, and total thickness. After preparing 1.6 mm, it was cut into a rectangle of 20 × 3 mm, brazed to a high-speed steel end mill shank, and after polishing, could be used for grooving of SKD11H R C60 without any problem in processing. The thermal expansion coefficient (room temperature to 800 ° C) of this CBN sintered body is about 4.7.
比較のためWC−6%Coの超硬合金(表1の比較例のNo.
1)とCBN焼結体との複合焼結体を作製したが、エンドミ
ルシャンク作製のろう付け時にCBN層内で水平剥離を起
した。For comparison, WC-6% Co cemented carbide (Comparative Example No. 1 in Table 1)
A composite sintered body of 1) and a CBN sintered body was prepared, but horizontal delamination occurred in the CBN layer during brazing in the end mill shank preparation.
実施例2 CBN70%、TiC20、Al10%の混合物の両外側に厚さ50μm
のMo板を置き、更にその外側に表1の本発明のNo.3の超
硬合金(焼結済厚さ1.0mm)を配し、40Kb 1350℃で焼結
した。得られたサンドイッチ構造の複合体を傘型にワイ
ヤーカットし、超硬合金製ドリルシャンクの先端に設け
たスリットに挟むようにろう付けし、ドリルを作製し
た。FC25のエンジンブロックの孔開けに使用したが100
孔加工可能であった。Example 2 A mixture of 70% CBN, 20% TiC and 10% Al has a thickness of 50 μm on both outer sides.
No. 3 cemented carbide of the present invention (sintered thickness 1.0 mm) of Table 1 was placed on the outside of the Mo plate, and sintered at 40 Kb 1350 ° C. The obtained composite having a sandwich structure was wire-cut into an umbrella shape and brazed so as to be sandwiched between slits provided at the tip of a cemented carbide drill shank to prepare a drill. It was used to drill holes in the FC25 engine block, but it was 100
It was possible to drill holes.
比較して、表1の比較例のNo.1のWC-6Co超硬合金を使用
した所、素材製造の段階で半数以上にクラックが発生し
ており、又、見掛上異常ないものもろう付け時にCBN層
中間で破断した。In comparison, when the No. 1 WC-6Co cemented carbide of the comparative example in Table 1 was used, more than half of the cracks were generated at the material manufacturing stage, and there may be apparently no abnormalities. It fractured in the middle of the CBN layer during attachment.
発明の効果 本発明によればWC系の優れた特性を損なわない範囲でWC
系超硬合金の熱膨脹係数をCBN焼結体と同等にすること
ができる。これによって複合焼結体は熱応力等による剥
離を起すことなく使用が可能となった。EFFECTS OF THE INVENTION According to the present invention, WC is used within a range that does not impair the excellent properties of WC.
The coefficient of thermal expansion of cemented carbide can be made equal to that of CBN sintered body. As a result, the composite sintered body can be used without causing separation due to thermal stress or the like.
Claims (2)
物90〜96重量%と鉄系合金4〜10重量%からなり、該鉄
系合金はニッケル20〜50重量%、コバルト2〜20重量
%、残部鉄である超硬合金層と立方晶窒化ホウ素の焼結
層とが接合してなる立方晶窒化ホウ素超硬合金複合焼結
体。1. 90 to 96% by weight of a carbide mainly composed of tungsten carbide and 4 to 10% by weight of an iron-based alloy, wherein the iron-based alloy is 20 to 50% by weight of nickel, 2 to 20% by weight of cobalt, and the balance iron. A cubic boron nitride cemented carbide composite sintered body obtained by joining the cemented carbide layer which is the above and a sintered layer of cubic boron nitride.
物90〜96重量%と鉄系合金4〜10重量%からなり、該鉄
系合金はニッケル20〜50重量%、コバルト2〜20重量
%、残部鉄である超硬合金層と立方晶窒化ホウ素の焼結
層との間にモリブデン、タングステン、タンタル、ニオ
ブから選ばれた薄板を介在させて接合してなる立方晶窒
化ホウ素超硬合金複合焼結体。2. A carbide containing 90 to 96% by weight mainly of tungsten carbide and 4 to 10% by weight of an iron-based alloy, the iron-based alloy being 20 to 50% by weight of nickel, 2 to 20% by weight of cobalt, and the balance iron. A cubic boron nitride cemented carbide composite sintered body obtained by bonding a thin plate selected from molybdenum, tungsten, tantalum, and niobium between the cemented carbide layer and the sintered layer of cubic boron nitride. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62033471A JPH0798964B2 (en) | 1987-02-18 | 1987-02-18 | Cubic boron nitride cemented carbide composite sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62033471A JPH0798964B2 (en) | 1987-02-18 | 1987-02-18 | Cubic boron nitride cemented carbide composite sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63203705A JPS63203705A (en) | 1988-08-23 |
JPH0798964B2 true JPH0798964B2 (en) | 1995-10-25 |
Family
ID=12387457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62033471A Expired - Fee Related JPH0798964B2 (en) | 1987-02-18 | 1987-02-18 | Cubic boron nitride cemented carbide composite sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0798964B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323372B1 (en) | 2000-01-31 | 2012-12-04 | Smith International, Inc. | Low coefficient of thermal expansion cermet compositions |
JP2002144131A (en) * | 2000-11-09 | 2002-05-21 | Gn Tool Kk | Ball end mill |
GB0810542D0 (en) * | 2008-06-09 | 2008-07-16 | Element Six Production Pty Ltd | Cubic boron nitride compact |
CN107805749B (en) * | 2017-08-11 | 2019-06-28 | 武汉新锐合金工具有限公司 | A kind of carbide matrix material of polycrystalline cubic boron nitride complex |
CN113941708A (en) * | 2021-10-12 | 2022-01-18 | 桂林理工大学 | Preparation method for enhancing interface bonding capability of PcBN composite sheet |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61125707A (en) * | 1984-11-21 | 1986-06-13 | Sumitomo Electric Ind Ltd | Composite sintered body tool and its manufacturing method |
JPS61266364A (en) * | 1985-05-17 | 1986-11-26 | 住友電気工業株式会社 | High hardness sintered body composite material having sandwich structure |
JPS62142704A (en) * | 1985-12-18 | 1987-06-26 | Sumitomo Electric Ind Ltd | Composite sintered material |
-
1987
- 1987-02-18 JP JP62033471A patent/JPH0798964B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63203705A (en) | 1988-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8936665B2 (en) | Diamond metal composite | |
US7879129B2 (en) | Wear part formed of a diamond-containing composite material, and production method | |
US4343651A (en) | Sintered compact for use in a tool | |
EP0534191B1 (en) | Cermets and their production and use | |
EP0297071A1 (en) | Temperature resistant abrasive polycrystalline diamond bodies | |
US8956438B2 (en) | Low coefficient of thermal expansion cermet compositions | |
CA2822029C (en) | High quality pcd compact | |
US20110182682A1 (en) | Cutting insert and cutting tool | |
JPH06669B2 (en) | High hardness sintered compact composite material with sandwich structure | |
JPH0798964B2 (en) | Cubic boron nitride cemented carbide composite sintered body | |
JPS6225631B2 (en) | ||
JP2893886B2 (en) | Composite hard alloy material | |
JP3303186B2 (en) | Method for producing heat-resistant tungsten carbide-based cemented carbide having high strength | |
JPS6049589B2 (en) | Composite sintered body for tools and its manufacturing method | |
JPS5916942A (en) | Composite diamond-sintered body useful as tool and its manufacture | |
JPH08176719A (en) | Nitrogen-containing sintered hard alloy | |
JP2000246645A (en) | Polycrystalline polishing material molding improved in corrosion resistance | |
JP2002013377A (en) | Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength | |
JPH10193210A (en) | Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece | |
JP2893887B2 (en) | Composite hard alloy material | |
JPH05302136A (en) | Whisker reinforced sintered hard alloy | |
JPS61293705A (en) | Combined cutting tip | |
JP2814632B2 (en) | Composite hard alloy material | |
JPS6134130A (en) | Manufacture of high strength cermet having superior chipping resistance | |
JPS63203704A (en) | Composite sintered body of diamond and sintered hard alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |