JPH10182230A - High strength sintered compact and its production - Google Patents

High strength sintered compact and its production

Info

Publication number
JPH10182230A
JPH10182230A JP8343484A JP34348496A JPH10182230A JP H10182230 A JPH10182230 A JP H10182230A JP 8343484 A JP8343484 A JP 8343484A JP 34348496 A JP34348496 A JP 34348496A JP H10182230 A JPH10182230 A JP H10182230A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
oxide
powder
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8343484A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kawate
克之 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8343484A priority Critical patent/JPH10182230A/en
Publication of JPH10182230A publication Critical patent/JPH10182230A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength sintered compact having heat and wear resistances and a fine homogeneous texture and useful as stock for a cutting or grinding tool by blending diamond particles with a prescribed amt. of a sintering aid made of a compd. contg. yttrium, an iron family metal and oxygen. SOLUTION: Diamond particles having <=10μm average particle diameter are blended with 0.1-30vol.% sintering aid based on the total amt. A mixture of yttrium oxide such as y2 O3 with oxide of an iron family metal such as Fe2 O3 or a multiple oxide such as Fe2 Y2 O6 is used as the sintering aid and the particle diameter of the sintering aid is preferably 0.01-10μm. For example, 95vol.% natural diamond powder having 3-8μm particle diameter is blended with 5vol.% YFeO having about 1μm particle diameter as a sintering aid and the resultant mixture is filled into an Mo capsule and sintered by holding at 1,750 deg.C under 6.5GPa pressure for 15min with a belt type ultrahigh pressure and high temp. generator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はダイヤモンド焼結体
及びその製造方法に関するものである。本発明のダイヤ
モンド焼結体は非鉄金属やセラミックス等の切削、研削
工具用素材として有効に使用できるものである。
The present invention relates to a diamond sintered body and a method for producing the same. The diamond sintered body of the present invention can be effectively used as a material for cutting and grinding tools for non-ferrous metals and ceramics.

【0002】[0002]

【従来の技術】従来のダイヤモンド焼結体としては、焼
結助剤あるいは結合剤としてCo,Ni,Feなどの鉄
族金属を用いたものや、SiCなどのセラミックスを用
いたものが知られており、切削工具などに使用されてい
る。また、焼結助剤として炭酸塩を用いたものが知られ
ている(特開平4−74766号公報、特開平4−11
4966号公報)。その他、天然のダイヤモンド焼結体
(カーボナード)があるが、材質のバラツキが大きく、
また産出量も極少量であるため、ほとんど工業的には使
用されていない。
2. Description of the Related Art As conventional diamond sintered bodies, there have been known those using iron group metals such as Co, Ni and Fe as sintering aids or binders, and those using ceramics such as SiC. It is used for cutting tools. Further, those using a carbonate as a sintering aid are also known (JP-A-4-74766, JP-A-4-11).
No. 4966). In addition, there is a natural diamond sintered body (carbonado), but the material varies greatly,
Also, since the amount of production is very small, it is hardly used industrially.

【0003】[0003]

【発明が解決しようとする課題】Coなどの鉄族金属を
焼結助剤としたダイヤモンド焼結体は、Coなどの鉄族
金属がダイヤモンドの黒鉛化を促す触媒として作用する
ため耐熱性に劣る。すなわち、不活性ガス雰囲気中で、
700℃程度で黒鉛化してしまう。また、ダイヤモンド
粒の粒界にCoなどの金属が連続相として存在するため
焼結体の強度はあまり高くなく、切削工具として用いた
場合に刃先が欠損しやすい。そして、この金属とダイヤ
モンドの熱膨張差のため、切削工具として用いた場合、
刃先が熱劣化して、欠けや摩耗が起こり易くなるという
問題もある。耐熱性を上げるために上記の粒界の金属を
酸処理により除去されたものも知られている。これによ
り耐熱温度は約1200℃と向上するが、焼結体が多孔
質となるため強度が大幅(30%程度)に低下する。
A diamond sintered body using an iron group metal such as Co as a sintering aid has poor heat resistance because the iron group metal such as Co acts as a catalyst for promoting the graphitization of diamond. . That is, in an inert gas atmosphere,
It is graphitized at about 700 ° C. In addition, since a metal such as Co exists as a continuous phase at the grain boundaries of diamond grains, the strength of the sintered body is not very high, and when used as a cutting tool, the cutting edge is likely to be broken. And, when used as a cutting tool due to the difference in thermal expansion between this metal and diamond,
There is also a problem that the cutting edge is thermally deteriorated, and chipping and wear are likely to occur. It is also known that the above-mentioned metal at the grain boundary is removed by an acid treatment in order to increase heat resistance. As a result, the heat resistance temperature is increased to about 1200 ° C., but the strength is greatly reduced (about 30%) because the sintered body becomes porous.

【0004】さらに、Coなどの金属触媒を焼結助剤と
した場合は、微粒のダイヤモンド粉末を焼結する際にダ
イヤモンド粒子が異常成長しやすく、微細で均質な組織
を必要とする切削工具用途としては大きな問題となって
いた。また、SiCを結合剤としたダイヤモンド焼結体
は耐熱性には優れるが、ダイヤモンド粒同士は結合がな
いため、強度は低い。一方、焼結助剤として炭酸塩を用
いたダイヤモンド焼結体は、Co結合剤による焼結体に
比べると耐熱性に優れるが、1000℃程度より炭酸塩
の分解がはじまり焼結体の強度が低下する。また、焼結
助剤として炭酸塩を用いる方法ではダイヤモンド焼結体
の製造に7.7GPa、2000℃以上と大変厳しい圧
力、温度条件を要するため、コストがかなり高くなり、
工業生産は難しい。本発明は以上の問題点を解決して、
切削工具として有効な、耐欠損性、耐摩耗性、耐熱性を
有する微細で均質なダイヤモンド焼結体、並びに該ダイ
ヤモンド焼結体を工業生産可能な条件で、低コストで製
造する方法を提供することを目的とする。
Further, when a metal catalyst such as Co is used as a sintering aid, diamond particles are liable to grow abnormally when sintering fine diamond powder, and are required for cutting tools requiring a fine and homogeneous structure. As a big problem. Further, although a diamond sintered body using SiC as a binder is excellent in heat resistance, the strength is low because diamond particles do not bond with each other. On the other hand, a diamond sintered body using a carbonate as a sintering aid has better heat resistance than a sintered body made of a Co binder, but the decomposition of the carbonate starts at about 1000 ° C. and the strength of the sintered body is reduced. descend. Further, in the method using a carbonate as a sintering aid, the production of a diamond sintered body requires extremely severe pressure and temperature conditions of 7.7 GPa and 2000 ° C. or higher, so that the cost becomes considerably high,
Industrial production is difficult. The present invention solves the above problems,
Provided is a fine and uniform diamond sintered body having chipping resistance, wear resistance, and heat resistance, which is effective as a cutting tool, and a method for producing the diamond sintered body at low cost under conditions that enable industrial production. The purpose is to:

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、 (1)イットリウムと鉄族金属と酸素を含有する化合物
からなる物質を0.1〜30体積%含み残部が平均粒径
10μm以下のダイヤモンド粒子からなる高強度焼結
体、
Means for Solving the Problems As means for solving the above-mentioned problems, (1) a substance comprising a compound containing yttrium, an iron group metal and oxygen is contained in an amount of 0.1 to 30% by volume, and the balance is average particle size. A high-strength sintered body composed of diamond particles having a diameter of 10 μm or less,

【0006】(2)イットリウムと鉄族金属と酸素を含
有する化合物が、イットリウムの酸化物と鉄族金属の酸
化物からなる複合酸化物又は固溶体である上記(1)記
載の高強度焼結体、
(2) The high-strength sintered body according to the above (1), wherein the compound containing yttrium, iron group metal and oxygen is a complex oxide or solid solution comprising yttrium oxide and iron group metal oxide. ,

【0007】(3)焼結助剤として酸化イットリウムと
鉄族金属の酸化物の混合物、又は複合酸化物を用い、こ
の粉末と、平均粒径10μm以下のダイヤモンド粉末
を、又は、平均粒径10μm以下のダイヤモンド粉末と
非ダイヤモンド炭素の混合粉末とを混合し、これをダイ
ヤモンドの熱力学的安定領域の圧力、温度条件で保持
し、焼結することを特徴とする上記(1)又は(2)に
記載の高強度焼結体の製造方法、
(3) A mixture or a composite oxide of yttrium oxide and an iron group metal oxide is used as a sintering aid, and this powder and diamond powder having an average particle size of 10 μm or less, or an average particle size of 10 μm The following (1) or (2), wherein the following diamond powder and a mixed powder of non-diamond carbon are mixed, and the mixture is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered. Method for producing a high-strength sintered body according to

【0008】(4)焼結助剤として酸化イットリウムと
鉄族金属の酸化物の混合物、又は複合酸化物を用い、こ
の粉末の成形体と、平均粒径10μm以下のダイヤモン
ド粉末の成形体又は平均粒径10μm以下のダイヤモン
ド粉末と非ダイヤモンド炭素の混合粉末の成形体とを積
層し、これをダイヤモンドの熱力学的安定領域の圧力、
温度条件で保持し、焼結することを特徴とする上記
(1)又は(2)に記載の高強度焼結体の製造方法、
(4) A mixture of yttrium oxide and an oxide of an iron group metal or a complex oxide is used as a sintering aid, and a compact of this powder and a compact of diamond powder having an average particle diameter of 10 μm or less or an average of A diamond powder having a particle size of 10 μm or less is laminated with a molded product of a mixed powder of non-diamond carbon, and this is subjected to pressure in a thermodynamically stable region of diamond,
The method for producing a high-strength sintered body according to the above (1) or (2), wherein the method is held at a temperature condition and sintered.

【0009】(5)平均粒径10μmのダイヤモンド粉
末の表面に酸化イットリウムと鉄族金属の複合酸化物又
は混合物を形成し、これをダイヤモンドの熱力学的安定
領域の圧力、温度条件で保持し、焼結することを特徴と
する上記(1)又は(2)に記載の高強度焼結体の製造
方法及び
(5) A composite oxide or a mixture of yttrium oxide and an iron group metal is formed on the surface of diamond powder having an average particle diameter of 10 μm, and this is held under the pressure and temperature conditions in the thermodynamically stable region of diamond. The method for producing a high-strength sintered body according to the above (1) or (2), wherein the method comprises sintering.

【0010】(6)平均粒径10μmのダイヤモンド粉
末の表面に酸化イットリウムを形成したダイヤモンド粉
末の成形体と、鉄族金属の酸化物の成形体とを積層し、
これをダイヤモンドの熱力学的安定領域の圧力、温度条
件で保持し、焼結することを特徴とする上記(1)又は
(2)に記載の高強度焼結体の製造方法を提供する。 (7)平均粒径10μm以下のダイヤモンド粉末の表面
に鉄族金属の酸化物を形成したダイヤモンド粉末の成形
体と、酸化イットリウムの成形体とを積層し、これをダ
イヤモンドの熱力学的安定領域の圧力、温度条件で保持
し、焼結することを特徴とする上記(1)又は(2)に
記載の高強度焼結体の製造方法。 上記製造方法(3)〜(7)において、焼結助剤は混合
物中0.1〜30体積%となるよう配合する。
(6) A molded body of diamond powder in which yttrium oxide is formed on the surface of diamond powder having an average particle diameter of 10 μm and a molded body of oxide of iron group metal are laminated.
The method for producing a high-strength sintered body according to the above (1) or (2), wherein the method is held and sintered under the pressure and temperature conditions of the thermodynamically stable region of diamond. (7) A compact of diamond powder in which an oxide of an iron group metal is formed on the surface of diamond powder having an average particle diameter of 10 μm or less and a compact of yttrium oxide are laminated, and this is formed into a thermodynamically stable region of diamond. The method for producing a high-strength sintered body according to the above (1) or (2), wherein the method is held under pressure and temperature conditions and sintered. In the above production methods (3) to (7), the sintering aid is blended so as to be 0.1 to 30% by volume in the mixture.

【0011】[0011]

【発明の実施の形態】従来、酸化イットリウムと鉄族金
属の酸化物の複合酸化物や、これらの混合物がダイヤモ
ンド焼結体の有効な焼結助剤として用いられた例はな
い。この度、本発明者らにより、これらの複合酸化物や
混合物を焼結助剤とし、平均粒径10μm以下のダイヤ
モンド粉末を焼結することで、従来にない高強度で、か
つ耐摩耗性、耐欠損性、耐熱性に優れた切削工具用ダイ
ヤモンド焼結体が、従来の非金属触媒を焼結助剤とした
場合より低い圧力温度条件で得られることが新たに見い
だされ、本発明に至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Heretofore, there has been no example in which a composite oxide of yttrium oxide and an oxide of an iron group metal or a mixture thereof has been used as an effective sintering aid for a diamond sintered body. Now, the present inventors use these composite oxides and mixtures as sintering aids and sinter diamond powder having an average particle size of 10 μm or less, thereby achieving unprecedented high strength, abrasion resistance, It has been newly found that diamond sinters for cutting tools excellent in chipping properties and heat resistance can be obtained under lower pressure and temperature conditions than when a conventional non-metallic catalyst is used as a sintering aid. .

【0012】すなわち、本発明の特徴は、ダイヤモンド
焼結体の焼結助剤として酸化イットリウム(Y2 3
と鉄族金属の酸化物(FeO,Fe2 3 ,CoO,C
34 ,NiO,CoFe2 4 など)の複合酸化物
や、混合物を用い、原料に平均粒径10μm以下のダイ
ヤモンドを用いた点にある。これらの酸化イットリウム
と鉄族金属の酸化物の複合酸化物あるいは混合物は、ダ
イヤモンドに対し、強い触媒作用を示し、これらを焼結
助剤とするとダイヤモンド粒子が極めて強固に結合した
マトリックスが形成される。また、原料に1μm前後の
かなり微粒のダイヤモンド粉末を用いても異常粒成長が
起こり難く、均質な組織の焼結体が得られる。このよう
な焼結助剤は0.01〜10μmの粒径範囲のものが好
ましい。さらに、これらの複合酸化物や混合物の触媒作
用は、炭酸塩触媒に比べ約500℃低い温度で起こる。
このため、これらの複合酸化物や混合物を焼結助剤とし
た場合、その低温での触媒作用(焼結可能)により6.
5GPa、1700℃といったマイルドな条件で上記の
ような強固でかつ耐熱性に優れた焼結体を得ることがで
きる。すなわち、従来にない高強度で耐摩耗性や耐熱性
に優れた切削工具用のダイヤモンド焼結体が、工業生産
が容易な条件で得られる。
That is, a feature of the present invention is that yttrium oxide (Y 2 O 3 ) is used as a sintering aid for a diamond sintered body.
And oxides of iron group metals (FeO, Fe 2 O 3 , CoO, C
o 3 O 4 , NiO, CoFe 2 O 4 ) or a mixture thereof, and diamond having an average particle diameter of 10 μm or less is used as a raw material. These composite oxides or mixtures of yttrium oxide and iron group metal oxides show a strong catalytic action on diamond, and when they are used as sintering aids, a matrix is formed in which diamond particles are very strongly bonded. . Further, even if a very fine diamond powder of about 1 μm is used as a raw material, abnormal grain growth hardly occurs, and a sintered body having a uniform structure can be obtained. Such a sintering aid preferably has a particle size range of 0.01 to 10 μm. Further, the catalysis of these composite oxides and mixtures occurs at a temperature about 500 ° C. lower than that of the carbonate catalyst.
For this reason, when these composite oxides and mixtures are used as sintering aids, they have a low temperature catalytic action (sintering is possible).
Under such mild conditions as 5 GPa and 1700 ° C., a sintered body having the above-mentioned strength and excellent heat resistance can be obtained. That is, an unprecedented high-strength diamond sintered compact for cutting tools having excellent wear resistance and heat resistance can be obtained under conditions that facilitate industrial production.

【0013】こうして得られるダイヤモンド焼結体は、
イットリウムと鉄族金属及び酸素を含有する化合物から
なる物質を含み、微細で均質な組織を有するのが特徴で
ある。イットリウムと鉄族金属及び酸素を含有する化合
物としては、イットリウムと鉄族金属の酸化物の複合酸
化物(例えば、Fe2 2 6 ,Y3 Fe5 12など)
が挙げられる。このような物質は1000℃を越える高
温下でも安定で、このため本発明のダイヤモンド焼結体
は耐熱性に優れた特性を示す。また、微細で均質な組織
の焼結体であるため、極めてシャープな刃先が得られ、
特に切削工具として有効である。
The diamond sintered body thus obtained is
It is characterized by having a fine and homogeneous structure, including a substance composed of a compound containing yttrium, an iron group metal and oxygen. Examples of the compound containing yttrium, an iron group metal, and oxygen include a composite oxide of an oxide of yttrium and an iron group metal (eg, Fe 2 Y 2 O 6 , Y 3 Fe 5 O 12 ).
Is mentioned. Such a substance is stable even at a high temperature exceeding 1000 ° C., and therefore, the diamond sintered body of the present invention exhibits excellent heat resistance. In addition, since it is a sintered body with a fine and homogeneous structure, an extremely sharp cutting edge is obtained,
It is particularly effective as a cutting tool.

【0014】本発明のダイヤモンド焼結体において、イ
ットリウムと鉄族金属及び酸素を含有する化合物からな
る物質の含有量は0.1〜30体積%、特に1〜20体
積%が好ましいが、この理由は0.1体積%未満ではダ
イヤモンド粒子間の結合性、すなわち焼結性が低下し、
30体積%を越えると過剰の化合物の影響で、強度、耐
摩耗性が低下するからである。また、焼結体を構成する
ダイヤモンドは、平均粒径10μm以下が好ましい。平
均粒径が10μmを越えると、シャープな刃先が得られ
なくなり、また、刃先が欠損しやすくなるなど切削工具
として用いた場合に不具合が生じやすい。
In the diamond sintered body of the present invention, the content of a substance comprising a compound containing yttrium, an iron group metal and oxygen is preferably 0.1 to 30% by volume, particularly preferably 1 to 20% by volume. If less than 0.1% by volume, the bonding between diamond particles, that is, the sinterability is reduced,
If the content exceeds 30% by volume, the strength and the abrasion resistance decrease due to the influence of the excess compound. Further, the diamond constituting the sintered body preferably has an average particle diameter of 10 μm or less. When the average particle size exceeds 10 μm, a sharp edge cannot be obtained, and the edge is liable to be broken.

【0015】ダイヤモンドの原料としては合成ダイヤモ
ンド粉末、天然ダイヤモンド粉末、多結晶ダイヤモンド
粉末などを用いることができる。粉末の粒径は0.01
〜20μmで、用途によって微粒又は粗粒に粒径を揃え
たもの、もしくは微粒、粗粒の混合物を用いる。また、
これらのダイヤモンドに黒鉛やグラッシーカーボン、熱
分解黒鉛などの非ダイヤモンドを適量添加したものも原
料とすることができる。また、ダイヤモンドとこれら非
ダイヤモンド黒鉛の混合物を用いることもできる。
As a raw material of diamond, synthetic diamond powder, natural diamond powder, polycrystalline diamond powder and the like can be used. The particle size of the powder is 0.01
Depending on the application, a particle having a particle size of about 20 μm or fine or coarse, or a mixture of fine and coarse particles is used. Also,
Raw materials obtained by adding non-diamonds such as graphite, glassy carbon, and pyrolytic graphite to these diamonds in an appropriate amount can also be used. Also, a mixture of diamond and these non-diamond graphites can be used.

【0016】本発明のダイヤモンド焼結体の製造方法と
しては、ダイヤモンド粉末とイットリウムと鉄族金属の
酸化物の複合酸化物あるいは混合物とを、ダイヤモンド
が熱力学的に安定な圧力、温度条件下で保持する方法
と、ダイヤモンド粉末の成形体と、イットリウムと鉄族
金属の酸化物の複合酸化物あるいは混合物の成形体を積
層したものを原料として、上記の圧力、温度条件下で保
持する方法がある。また、イットリウムと鉄族金属の酸
化物の複合酸化物あるいは混合物をあらかじめ熱プラズ
マ法などにより原料のダイヤモンド粉末の表面に形成さ
せておき、これを上記の圧力、温度条件で焼結すること
により、より均質な焼結体が得られる。また、イットリ
ウム酸化物を原料のダイヤモンド粉末の表面に形成させ
ておき、この粉末の成形体と鉄族金属の酸化物の成形体
を積層したものを上記の圧力、温度条件で焼結してもよ
く、逆に鉄族金属の酸化物をダイヤモンド粉末の表面に
形成したものの成形体とイットリウム酸化物の成形体と
を積層したものを上記の圧力、温度条件で焼結してもよ
い。
In the method for producing a diamond sintered body of the present invention, a diamond powder and a composite oxide or a mixture of yttrium and an iron group metal oxide are prepared under the conditions of pressure and temperature under which diamond is thermodynamically stable. There is a method in which a molded body of diamond powder and a molded body of a composite oxide or a mixture of an oxide of yttrium and an iron-group metal or a molded body of a mixture are stacked as raw materials under the above-described pressure and temperature conditions. . Further, by forming a complex oxide or a mixture of an oxide of yttrium and an iron group metal on the surface of the raw material diamond powder in advance by a thermal plasma method or the like, and sintering the mixture under the above pressure and temperature conditions, A more homogeneous sintered body is obtained. Also, it is possible to form yttrium oxide on the surface of the raw material diamond powder, and to sinter the compact of the powder and the compact of the oxide of iron group metal under the above pressure and temperature conditions. Conversely, a compact obtained by forming an oxide of an iron group metal on the surface of diamond powder and laminating a compact of yttrium oxide may be sintered under the above-described pressure and temperature conditions.

【0017】[0017]

【実施例】【Example】

(実施例1)焼結助剤として粒径約1μmのY3 Fe5
12を用いた。粒径3〜8μm(平均5μm)の天然ダ
イヤモンド粉末と、Y3 Fe5 12粉末をそれぞれ95
体積%、5体積%の割合で十分に混合し、この混合物を
Moカプセルに入れ、ベルト型の超高圧高温発生装置を
用いて、6.5GPa、1750℃の圧力温度条件で1
5分間保持し、焼結させた。得られたダイヤモンド焼結
体について、X線回折により組成を同定したところ、ダ
イヤモンドの他、約5体積%のイットリウムと鉄の複合
酸化物が検出された。また、走査型顕微鏡で組織を観察
すると、粒径が平均5μmで揃ったダイヤモンド粒子が
結合した緻密な組織を有することがわかり、異常粒成長
は認められなかった。この焼結体の硬度をヌープ圧子に
より評価したところ8300Kg/mm2 と高硬度であ
った。また、この焼結体を真空中で1200℃に加熱処
理した後、硬度を測定したが、処理前とほとんど変化が
なかった。このダイヤモンド焼結体から、切削工具用の
刃先チップを作製したところ、極めてシャープな刃先が
得られた。これを活性鑞材を用いて超硬台金に真空鑞付
けし切削工具を作製し、Al−Si合金を断続切削し
た。比較材として従来のCoバインダーによる平均粒径
5μmのダイヤモンド焼結体を用い、同一条件で切削性
能を比較した。逃げ面の摩耗量は、従来のCoバインダ
ーによるダイヤモンド焼結体の1/5で、刃先の欠損も
ほとんど見られず、優れた切削性能を有することがわか
った。
Example 1 Y 3 Fe 5 having a particle size of about 1 μm was used as a sintering aid.
O 12 was used. Natural diamond powder having a particle size of 3 to 8 μm (average 5 μm) and Y 3 Fe 5 O 12
The mixture was sufficiently mixed at a ratio of 5% by volume to 5% by volume, and the mixture was placed in a Mo capsule.
Hold for 5 minutes and sinter. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 5% by volume of a composite oxide of yttrium and iron was detected in addition to diamond. Further, when the structure was observed with a scanning microscope, it was found that the structure had a dense structure in which diamond particles having a uniform particle diameter of 5 μm were combined, and no abnormal grain growth was observed. When the hardness of this sintered body was evaluated using a Knoop indenter, it was as high as 8300 Kg / mm 2 . After the sintered body was heated to 1200 ° C. in a vacuum, the hardness was measured. When a cutting edge for a cutting tool was prepared from this diamond sintered body, an extremely sharp cutting edge was obtained. This was vacuum brazed to a hard metal base using an active brazing material to produce a cutting tool, and the Al-Si alloy was intermittently cut. As a comparative material, a cutting performance was compared under the same conditions using a diamond sintered body having a mean particle size of 5 μm using a conventional Co binder. The wear amount of the flank was 1/5 of that of the conventional diamond sintered body made of the Co binder, and almost no cutting edge was found, indicating excellent cutting performance.

【0018】(実施例2)焼結助剤に5体積%のY2
2 6 を用いた他は、実施例1と同様にしてダイヤモ
ンド焼結体を作製した。得られた焼結体にはイットリウ
ムと鉄の複合酸化物が含まれており、硬度、耐熱性、切
削性能とも実施例1と同様であった。
Example 2 5% by volume of Y 2 F was added to the sintering aid.
A diamond sintered body was produced in the same manner as in Example 1 except that e 2 O 6 was used. The obtained sintered body contained a composite oxide of yttrium and iron, and had the same hardness, heat resistance, and cutting performance as in Example 1.

【0019】(実施例3)焼結助剤として、Y2 3
Fe2 3 をモル比で1:1で混合したものを焼結助剤
とした他は、実施例1と同様にしてダイヤモンド焼結体
を作製した。得られた焼結体にはイットリウムと鉄の複
合酸化物が含まれており、硬度、耐熱性、切削性能とも
実施例1と同様であった。
Example 3 A sintering aid was prepared in the same manner as in Example 1 except that a mixture of Y 2 O 3 and Fe 2 O 3 at a molar ratio of 1: 1 was used as the sintering aid. To produce a diamond sintered body. The obtained sintered body contained a composite oxide of yttrium and iron, and had the same hardness, heat resistance, and cutting performance as in Example 1.

【0020】(実施例4)焼結助剤として、Y2 3
Fe2 3 をモル比で3:5で混合したものを焼結助剤
とした他は、実施例1と同様にしてダイヤモンド焼結体
を作製した。得られた焼結体にはイットリウムと鉄の複
合酸化物が含まれており、硬度、耐熱性、切削性能とも
実施例1と同様であった。
Example 4 The procedure of Example 1 was repeated except that a mixture of Y 2 O 3 and Fe 2 O 3 at a molar ratio of 3: 5 was used as the sintering aid. To produce a diamond sintered body. The obtained sintered body contained a composite oxide of yttrium and iron, and had the same hardness, heat resistance, and cutting performance as in Example 1.

【0021】(実施例5)焼結助剤として、Y2 3
CoOをモル比で1:1で混合したものを焼結助剤とし
た他は、実施例1と同様にしてダイヤモンド焼結体を作
製した。得られた焼結体にはイットリウムとコバルトの
複合酸化物が含まれており、硬度、耐熱性、切削性能と
も実施例1と同様であった。
Example 5 Diamond sintering was carried out in the same manner as in Example 1 except that a mixture of Y 2 O 3 and CoO at a molar ratio of 1: 1 was used as a sintering aid. A body was produced. The obtained sintered body contained a composite oxide of yttrium and cobalt, and the hardness, heat resistance, and cutting performance were the same as in Example 1.

【0022】(実施例6)焼結助剤として、Y2 3
CoFe2 4 をモル比で1:1で混合したものを焼結
助剤とした他は、実施例1と同様にしてダイヤモンド焼
結体を作製した。得られた焼結体にはイットリウムと鉄
及びコバルトの複合酸化物が含まれており、硬度、耐熱
性、切削性能とも実施例1と同様であった。
Example 6 A sintering aid was prepared in the same manner as in Example 1 except that a mixture of Y 2 O 3 and CoFe 2 O 4 at a molar ratio of 1: 1 was used as the sintering aid. To produce a diamond sintered body. The obtained sintered body contained a composite oxide of yttrium, iron, and cobalt, and had the same hardness, heat resistance, and cutting performance as in Example 1.

【0023】(実施例7)焼結助剤として粒径1μmの
3 Fe5 12を用いた。粒径1μm以下の微粒合成ダ
イヤモンド粉末と、上記粉末をそれぞれ厚み2mm、1
mmに成形したものを交互に積層してMoカプセルに入
れ、ベルト型の超高圧高温発生装置を用いて、6.5G
Pa、1700℃の圧力温度条件で15分間保持し焼結
した。得られたダイヤモンド焼結体についてX線回折に
より組成を同定したところ、ダイヤモンドの他、約2体
積%のイットリウムと鉄の複合酸化物が検出された。ま
た、走査型顕微鏡で組織を観察すると、粒径の揃った微
細なダイヤモンド粒子(平均粒径0.5μm)が結合し
た緻密な組織を有することがわかり、異常粒成長は認め
られなかった。この焼結体の硬度をヌープ圧子により評
価したところ約7500Kg/mm2 と高硬度であり、
真空中で1200℃に加熱処理した後も硬度にはほとん
ど変化がなかった。このダイヤモンド焼結体から切削工
具用の刃先チップを作製したところ、極めてシャープな
刃先が得られた。これを活性鑞材を用いて超硬台金に真
空鑞付けし切削工具を作製し、Al−Si合金を断続切
削した。比較材として従来のCoバインダーによる平均
粒径0.5μmのダイヤモンド焼結体を用い、同一条件
で切削性能を比較した。逃げ面の摩耗量は、従来のCo
バインダーによるダイヤ焼結体の1/3以下で、刃先の
欠損もほとんど見られず、優れた切削性能を有すること
がわかった。
Example 7 As a sintering aid, Y 3 Fe 5 O 12 having a particle size of 1 μm was used. Fine synthetic diamond powder having a particle size of 1 μm or less,
mm are alternately laminated and placed in a Mo capsule.
It was kept under a pressure and temperature condition of Pa and 1700 ° C. for 15 minutes and sintered. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 2% by volume of a composite oxide of yttrium and iron was detected in addition to diamond. Further, when the structure was observed with a scanning microscope, it was found that the structure had a dense structure in which fine diamond particles having a uniform particle size (average particle size: 0.5 μm) were bonded, and no abnormal grain growth was observed. When the hardness of this sintered body was evaluated using a Knoop indenter, it was as high as about 7500 Kg / mm 2 ,
The hardness hardly changed even after the heat treatment at 1200 ° C. in a vacuum. When a cutting edge for a cutting tool was prepared from this diamond sintered body, an extremely sharp cutting edge was obtained. This was vacuum brazed to a hard metal base using an active brazing material to produce a cutting tool, and the Al-Si alloy was intermittently cut. As a comparative material, a cutting performance was compared under the same conditions using a diamond sintered body having a mean particle size of 0.5 μm using a conventional Co binder. The wear amount of the flank is the same as that of the conventional Co.
With less than 1/3 of the diamond sintered body due to the binder, almost no chipping of the cutting edge was observed, and it was found that it had excellent cutting performance.

【0024】(実施例8)焼結助剤として、Y2 3
Fe2 3 をモル比で1:1で混合したものを焼結助剤
とした他は、実施例7と同様にしてダイヤモンド焼結体
を作製した。得られた焼結体にはイットリウムと鉄の複
合酸化物が含まれており、硬度、靱性、耐熱性とも実施
例7と同様であった。
Example 8 The procedure of Example 7 was repeated except that a mixture of Y 2 O 3 and Fe 2 O 3 at a molar ratio of 1: 1 was used as the sintering aid. To produce a diamond sintered body. The obtained sintered body contained a composite oxide of yttrium and iron, and the hardness, toughness, and heat resistance were the same as in Example 7.

【0025】(実施例9)粒径1〜3ミクロンのダイヤ
モンド粉末の表面に約10体積%のY3 Fe5 12を熱
プラズマ法でコーティングし、これをMoカプセルに入
れ、ベルト型の超高圧高温発生装置を用いて6.5GP
a、1700℃の圧力温度条件で15分間保持し、焼結
させた。得られたダイヤモンド焼結体について、X線回
折により組成を同定したところ、ダイヤモンドの他、約
10体積%のイットリウムと鉄の複合酸化物が検出され
た。組織を観察すると異常粒成長が全く見られず、均質
で緻密な組織を有することがわかった。この焼結体の硬
度をヌープ圧子により評価したところ約7800Kg/
mm2 と高硬度で、真空中で1200℃に加熱処理した
後もほとんど変化がなかった。このダイヤモンド焼結体
から切削工具用の刃先チップを作製したところ、極めて
シャープな刃先が得られた。これを活性鑞材を用いて超
硬台金に真空鑞付けし切削工具を作製し、Al−Si合
金を断続切削した。比較材として従来のCoバインダー
による粒径1〜3μmのダイヤモンド焼結体を用い、同
一条件で切削性能を比較した。逃げ面の摩耗量は、従来
のCoバインダーによるダイヤ焼結体の1/5以下で、
刃先の欠損もほとんど見られず、優れた切削性能を有す
ることがわかった。
Example 9 Diamond having a particle size of 1 to 3 microns
About 10% by volume of YThreeFeFiveO 12The heat
Coated by plasma method and put into Mo capsule
6.5 GP using a belt-type ultra-high pressure and high temperature generator
a, Hold at 1700 ° C pressure and temperature for 15 minutes and sinter
I let it. X-ray diffraction
When the composition was identified by folding, in addition to diamond, about
10% by volume of complex oxide of yttrium and iron is detected
Was. Observation of the structure shows no abnormal grain growth and uniform
It was found to have a dense structure. The hardness of this sintered body
When the degree was evaluated with a Knoop indenter, it was about 7800 Kg /
mmTwoHeat treatment at 1200 ° C in vacuum with high hardness
After that there was little change. This diamond sintered body
Made a cutting edge for cutting tools from
A sharp edge was obtained. Using an activated brazing filler metal
Vacuum brazing to hard metal to produce cutting tool, Al-Si alloy
Gold was intermittently cut. Conventional Co binder as comparison material
Using a diamond sintered body with a particle size of 1 to 3 μm.
The cutting performance was compared under one condition. Conventional flank wear
Less than 1/5 of the diamond sintered body with Co binder
Excellent cutting performance with almost no chipping
I found out.

【0026】(実施例10)粒径1〜3ミクロンのダイ
ヤモンド粉末の表面に約3体積%のY3 3 を熱プラズ
マ法でコーティングした粉末と、FeOの粉末をそれぞ
れ厚み2mm、1mmに成形したものを交互に積層して
Moカプセルに入れ、ベルト型の超高圧高温発生装置を
用いて、6.5GPa、1700℃の圧力温度条件で1
5分間保持し焼結した。得られたダイヤモンド焼結体に
ついてX線回折により組成を同定したところ、ダイヤモ
ンドの他、約6体積%のイットリウムと鉄の複合酸化物
が検出された。組織を観察すると異常粒成長が全く見ら
れず、均質で緻密な組織を有することがわかった。この
焼結体の硬度をヌープ圧子により評価したところ約81
00Kg/mm2 と高硬度であり、真空中で1200℃
に加熱処理した後もほとんど変化がなかった。このダイ
ヤモンド焼結体から切削工具用の刃先チップを作製した
ところ、極めてシャープな刃先が得られた。これを活性
鑞材を用いて超硬台金に真空鑞付けし切削工具を作製
し、Al−Si合金を断続切削した。比較材として従来
のCoバインダーによる粒径1〜3μmのダイヤモンド
焼結体を用い、同一条件で切削性能を比較した。逃げ面
の摩耗量は、従来のCoバインダーによるダイヤモンド
焼結体の1/5以下で、刃先の欠損もほとんど見られ
ず、優れた切削性能を有することがわかった。
Example 10 A powder obtained by coating about 3% by volume of Y 3 O 3 on the surface of a diamond powder having a particle diameter of 1 to 3 μm by a thermal plasma method and a powder of FeO were formed to a thickness of 2 mm and 1 mm, respectively. The layers were alternately laminated and placed in a Mo capsule, and the pressure was adjusted to 6.5 GPa and 1700 ° C. using a belt-type ultrahigh-pressure high-temperature generator.
Hold for 5 minutes and sinter. When the composition of the obtained diamond sintered body was identified by X-ray diffraction, about 6% by volume of a composite oxide of yttrium and iron was detected in addition to diamond. When the structure was observed, no abnormal grain growth was observed at all, indicating that the structure had a homogeneous and dense structure. When the hardness of this sintered body was evaluated using a Knoop indenter, it was found to be about 81
High hardness of 00Kg / mm 2 , 1200 ° C in vacuum
After heat treatment, there was almost no change. When a cutting edge for a cutting tool was prepared from this diamond sintered body, an extremely sharp cutting edge was obtained. This was vacuum brazed to a hard metal base using an active brazing material to produce a cutting tool, and the Al-Si alloy was intermittently cut. As a comparative material, a cutting performance was compared under the same conditions using a diamond sintered body having a particle size of 1 to 3 μm using a conventional Co binder. The amount of wear on the flank was 1/5 or less of that of a conventional diamond sintered body made of a Co binder, and there was almost no chipping of the cutting edge, indicating that the material had excellent cutting performance.

【0027】(比較例1)焼結助剤として、Y3 Fe5
12を用いた。粒径3〜8μmの天然ダイヤモンド粉末
に、微量の上記の粉末(約0.05体積%)を添加し、
十分に混合したものを原料にした他は、実施例1と同様
にダイヤモンド焼結体の製造を試みた。しかし、得られ
た焼結体には、未焼結部が多く残留していた。
(Comparative Example 1) As a sintering aid, Y 3 Fe 5
O 12 was used. A small amount of the above powder (about 0.05% by volume) is added to a natural diamond powder having a particle size of 3 to 8 μm,
An attempt was made to produce a diamond sintered body in the same manner as in Example 1 except that a sufficiently mixed material was used as a raw material. However, many unsintered portions remained in the obtained sintered body.

【0028】(比較例2)焼結助剤として、Y3 Fe5
12を用いた。粒径3〜8μmの合成ダイヤモンド粉末
60体積%と、上記の粉末40体積%を添加し、十分に
混合したものを原料にした他は、実施例1と同様にダイ
ヤモンド焼結体の製造を試みた。しかし、得られた焼結
体は、粒子同士の結合が十分でなく、硬度は4000K
g/mm2程度と低かった。
Comparative Example 2 As a sintering aid, Y 3 Fe 5
O 12 was used. Production of a diamond sintered body was attempted in the same manner as in Example 1 except that 60 vol% of synthetic diamond powder having a particle size of 3 to 8 μm and 40 vol% of the above powder were added and mixed sufficiently as a raw material. Was. However, the obtained sintered body has insufficient bonding between particles, and has a hardness of 4000K.
g / mm 2 .

【0029】(比較例3)焼結助剤として、Y3 Fe5
12を用いた。平均粒径30μmの合成ダイヤモンド粉
末に、この焼結助剤を10体積%添加し、十分に混合し
たものを原料にした他は、実施例1と同様にダイヤモン
ド焼結体の製造を試みた。得られた焼結体で切削工具を
作製したが、シャープな刃先が得難く、切削試験におい
ても刃先の欠損が目立った。
Comparative Example 3 Y 3 Fe 5 was used as a sintering aid.
O 12 was used. Production of a diamond sintered body was attempted in the same manner as in Example 1, except that 10% by volume of this sintering aid was added to a synthetic diamond powder having an average particle diameter of 30 μm, and the mixture was sufficiently mixed as a raw material. A cutting tool was prepared from the obtained sintered body, but it was difficult to obtain a sharp cutting edge, and the cutting edge was noticeable in a cutting test.

【0030】[0030]

【発明の効果】以上説明したように、本発明のダイヤモ
ンド焼結体は、従来にない高強度で、耐熱性、耐摩耗性
を有し、かつ微細で均質な組織であるため、非鉄金属や
セラミックス等の切削、研削工具用素材として非常に有
効である。
As described above, the diamond sintered body of the present invention has an unprecedented high strength, heat resistance and abrasion resistance, and has a fine and homogeneous structure. It is very effective as a material for cutting and grinding tools such as ceramics.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 イットリウムと鉄族金属と酸素を含有す
る化合物からなる物質を0.1〜30体積%含み残部が
平均粒径10μm以下のダイヤモンド粒子からなる高強
度焼結体。
1. A high-strength sintered body comprising 0.1 to 30% by volume of a substance comprising a compound containing yttrium, an iron group metal and oxygen and the balance being diamond particles having an average particle diameter of 10 μm or less.
【請求項2】 イットリウムと鉄族金属と酸素を含有す
る化合物が、イットリウムの酸化物と鉄族金属の酸化物
からなる複合酸化物又は固溶体である請求項1記載の高
強度焼結体。
2. The high-strength sintered body according to claim 1, wherein the compound containing yttrium, iron group metal and oxygen is a composite oxide or solid solution comprising yttrium oxide and iron group metal oxide.
【請求項3】 焼結助剤として酸化イットリウムと鉄族
金属の酸化物の混合物、又は複合酸化物を用い、この粉
末と、平均粒径10μm以下のダイヤモンド粉末を、又
は、平均粒径10μm以下のダイヤモンド粉末と非ダイ
ヤモンド炭素の混合粉末とを混合し、これをダイヤモン
ドの熱力学的安定領域の圧力、温度条件で保持し、焼結
することを特徴とする請求項1又は2に記載の高強度焼
結体の製造方法。
3. A mixture of yttrium oxide and an oxide of an iron group metal or a composite oxide as a sintering aid, and using this powder and diamond powder having an average particle size of 10 μm or less, or an average particle size of 10 μm or less. 3. The method according to claim 1, wherein a diamond powder and a mixed powder of non-diamond carbon are mixed, and the mixture is held under pressure and temperature conditions in a thermodynamically stable region of diamond and sintered. Manufacturing method of strength sintered body.
【請求項4】 焼結助剤として酸化イットリウムと鉄族
金属の酸化物の混合物、又は複合酸化物を用い、この粉
末の成形体と、平均粒径10μm以下のダイヤモンド粉
末の成形体又は平均粒径10μm以下のダイヤモンド粉
末と非ダイヤモンド炭素の混合粉末の成形体とを積層
し、これをダイヤモンドの熱力学的安定領域の圧力、温
度条件で保持し、焼結することを特徴とする請求項1又
は2に記載の高強度焼結体の製造方法。
4. A mixture of yttrium oxide and an oxide of an iron group metal or a composite oxide as a sintering aid, and a compact of this powder and a compact or an average particle of diamond powder having an average particle diameter of 10 μm or less. 2. A method comprising laminating a compact of a mixed powder of diamond powder and non-diamond carbon having a diameter of 10 .mu.m or less, holding the compact under the pressure and temperature conditions in a thermodynamically stable region of diamond, and sintering the compact. Or the method for producing a high-strength sintered body according to 2.
【請求項5】平均粒径10μm以下のダイヤモンド粉末
の表面に酸化イットリウムと鉄族金属の複合酸化物又は
混合物を形成し、これをダイヤモンドの熱力学的安定領
域の圧力、温度条件で保持し、焼結することを特徴とす
る請求項1又は2に記載の高強度焼結体の製造方法。
5. A composite oxide or a mixture of yttrium oxide and an iron group metal is formed on the surface of diamond powder having an average particle diameter of 10 μm or less, and this is maintained under pressure and temperature conditions in a thermodynamically stable region of diamond. The method for producing a high-strength sintered body according to claim 1, wherein sintering is performed.
【請求項6】平均粒径10μm以下のダイヤモンド粉末
の表面に酸化イットリウムを形成したダイヤモンド粉末
の成形体と、鉄族金属の酸化物の成形体とを積層し、こ
れをダイヤモンドの熱力学的安定領域の圧力、温度条件
で保持し、焼結することを特徴とする請求項1又は2に
記載の高強度焼結体の製造方法。
6. A diamond powder compact in which yttrium oxide is formed on the surface of a diamond powder having an average particle diameter of 10 μm or less, and a compact of an iron group metal oxide are laminated. The method for producing a high-strength sintered body according to claim 1, wherein the sintering is performed while maintaining the pressure and temperature conditions in the region.
【請求項7】平均粒径10μm以下のダイヤモンド粉末
の表面に鉄族金属の酸化物を形成したダイヤモンド粉末
の成形体と、酸化イットリウムの成形体とを積層し、こ
れをダイヤモンドの熱力学的安定領域の圧力、温度条件
で保持し、焼結することを特徴とする請求項1又は2に
記載の高強度焼結体の製造方法。
7. A diamond powder having an iron group metal oxide formed on the surface of a diamond powder having an average particle diameter of 10 μm or less, and a yttrium oxide compact are laminated on each other. The method for producing a high-strength sintered body according to claim 1, wherein the sintering is performed while maintaining the pressure and temperature conditions in the region.
JP8343484A 1996-12-24 1996-12-24 High strength sintered compact and its production Pending JPH10182230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8343484A JPH10182230A (en) 1996-12-24 1996-12-24 High strength sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8343484A JPH10182230A (en) 1996-12-24 1996-12-24 High strength sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH10182230A true JPH10182230A (en) 1998-07-07

Family

ID=18361885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8343484A Pending JPH10182230A (en) 1996-12-24 1996-12-24 High strength sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH10182230A (en)

Similar Documents

Publication Publication Date Title
US8961719B2 (en) Super-hard structure, tool element and method of making same
JP2009067609A (en) High purity diamond polycrystalline body and method of manufacturing the same
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JPH08109431A (en) Diamond sintered compact containing hard alloy as binding material and its production
JPH09142933A (en) Diamond sintered compact and its production
JPH10182230A (en) High strength sintered compact and its production
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
JP3733613B2 (en) Diamond sintered body and manufacturing method thereof
JP5008789B2 (en) Super hard sintered body
JPH09142932A (en) Diamond sintered compact and its production
JPH10182231A (en) High strength sintered compact and its production
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JP3622261B2 (en) Diamond sintered body and manufacturing method thereof
JPH09324236A (en) Production of diamond sintered body and its production
JP3642082B2 (en) Diamond sintered body and manufacturing method thereof
JPH1135375A (en) Sintered compact of drilling bit and its production
JPH0952766A (en) Diamond sintered compact and production thereof
JPH0967164A (en) Diamond sintered compact and its production
JPH02167666A (en) Manufacture of fine grain diamond sintering body
JPH1135374A (en) Sintered compact for drilling bit and its production
JPH05302136A (en) Whisker reinforced sintered hard alloy
JP3978789B2 (en) Diamond sintered body and method for producing the same
JPH08310865A (en) Diamond sintered compact and its production
JPH0811712B2 (en) Cubic boron nitride sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107