JP2009067609A - High purity diamond polycrystalline body and method of manufacturing the same - Google Patents

High purity diamond polycrystalline body and method of manufacturing the same Download PDF

Info

Publication number
JP2009067609A
JP2009067609A JP2007234992A JP2007234992A JP2009067609A JP 2009067609 A JP2009067609 A JP 2009067609A JP 2007234992 A JP2007234992 A JP 2007234992A JP 2007234992 A JP2007234992 A JP 2007234992A JP 2009067609 A JP2009067609 A JP 2009067609A
Authority
JP
Japan
Prior art keywords
diamond
purity
polycrystal
ppm
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234992A
Other languages
Japanese (ja)
Inventor
Hitoshi Sumiya
均 角谷
Katsuko Harano
佳津子 原野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2007234992A priority Critical patent/JP2009067609A/en
Publication of JP2009067609A publication Critical patent/JP2009067609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dense and homogeneous polycrystalline body of a diamond single phase which has strength, hardness and heat resistance enough to be used as tools such as a cutting tool, a dresser, a die or a drilling bit. <P>SOLUTION: The high purity diamond polycrystalline body is a polycrystalline body substantially comprising only diamond formed by converting and sintering a non-diamond carbon material as a starting material into the diamond under ultrahigh pressure and high temperature without adding a sintering aid or a catalyst, wherein the content of hydrogen impurity is ≤200 ppm and the content of oxygen impurity is ≤50 ppm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ダイヤモンドおよびその製造方法に関するもので、特に、切削バイトや、ドレッサー、ダイスなどの工具や、掘削ビットなどに用いられる高硬度高強度で熱的特性に優れる高純度ダイヤモンド多結晶体とその製造方法に関するものである。   The present invention relates to diamond and a method for producing the same, and in particular, a high-purity diamond polycrystal having high hardness and high strength and excellent thermal characteristics used for tools such as cutting tools, dressers and dies, drill bits, etc. It relates to the manufacturing method.

従来の切削バイトや、ドレッサー、ダイスなどの工具や、掘削ビットなどに使われるダイヤモンド多結晶体には、焼結助剤あるいは結合剤としてCo、Ni、Feなどの鉄族金属や、SiCなどのセラミックスが用いられている。また、焼結助剤として炭酸塩を用いたものも知られている(特許文献1及び2)。これらは、ダイヤモンドの粉末を焼結助剤や結合剤とともにダイヤモンドが熱力学的に安定な高圧高温条件下(通常、圧力5〜8GPa、温度1300〜2200℃)で焼結することにより得られる。一方、天然に産出するダイヤモンド多結晶体(カーボナードやバラス)も知られ、一部掘削ビットとして使用されているが、材質のバラツキが大きく、また産出量も少ないため、工業的にはあまり使用されていない。   Diamond polycrystalline materials used in conventional cutting tools, tools such as dressers and dies, drill bits, etc., include iron group metals such as Co, Ni, and Fe as sintering aids or binders, SiC, etc. Ceramics are used. Moreover, what uses carbonate as a sintering auxiliary agent is also known (patent documents 1 and 2). These can be obtained by sintering diamond powder together with a sintering aid and a binder under high pressure and high temperature conditions (usually pressure 5-8 GPa, temperature 1300-2200 ° C.) under which the diamond is thermodynamically stable. On the other hand, naturally-occurring diamond polycrystals (carbonados and ballasts) are also known, and some of them are used as drilling bits, but they are widely used industrially due to large variations in materials and low output. Not.

Coなどの鉄系金属触媒を焼結助剤としたダイヤモンド多結晶体には、用いた焼結助剤が多結晶中に含まれ、これがダイヤモンドの黒鉛化を促す触媒として作用するため耐熱性に劣る。すなわち、不活性ガス雰囲気中でも700度程度でダイヤモンドが黒鉛化してしまう。また、この焼結助剤とダイヤモンドの熱膨張差のため、多結晶体内に微細なクラックが入りやすい。さらにダイヤモンドの粒子間にCoなどの金属が連続層として存在するため、多結晶体の硬度や強度などの機械的特性が低下する。耐熱性を上げるために上記の粒界の金属を除去したものも知られており、これにより耐熱温度は約1200℃と向上するが、多結晶体が多孔質となるため強度がさらに大幅に低下する。SiCを結合体としたダイヤモンド焼結体は耐熱性には優れるが、ダイヤモンド粒同士は結合がないため、強度は低い。また、焼結助剤として炭酸塩を用いたダイヤモンド焼結体は、Co結合剤による焼結体に比べると耐熱性に優れるが、粒界に炭酸塩物質が存在するため、機械的特性は十分とはいえない。   The polycrystalline diamond with an iron-based metal catalyst such as Co as a sintering aid contains the sintering aid used in the polycrystal, which acts as a catalyst to promote graphitization of the diamond, thus making it heat resistant. Inferior. That is, diamond is graphitized at about 700 degrees even in an inert gas atmosphere. Further, due to the difference in thermal expansion between the sintering aid and diamond, fine cracks are likely to occur in the polycrystalline body. Further, since a metal such as Co exists as a continuous layer between the diamond particles, the mechanical properties such as hardness and strength of the polycrystalline body are lowered. It is also known that the metal at the grain boundary is removed in order to increase the heat resistance. This improves the heat resistance temperature to about 1200 ° C, but the polycrystalline body becomes porous, so the strength is further greatly reduced. To do. A diamond sintered body using SiC as a bonded body is excellent in heat resistance, but the diamond grains are not bonded to each other, so that the strength is low. In addition, a diamond sintered body using carbonate as a sintering aid is superior in heat resistance compared to a sintered body using a Co binder, but has sufficient mechanical properties due to the presence of a carbonate substance at the grain boundaries. That's not true.

一方、黒鉛(グラファイト)やグラッシーカーボン、アモルファスカーボンなどの非ダイヤモンド炭素を超高圧高温下で、触媒や溶媒なしに直接的にダイヤモンドに変換させることが可能である。非ダイヤモンド相からダイヤモンド相へ直接変換すると同時に焼結させることでダイヤモンド単相の多結晶体が得られる。たとえば、非特許文献1〜3には、グラファイトを出発物質として14−18GPa、3000K以上の超高圧高温下の直接変換によりダイヤモンド多結晶体が得られることが開示されている。しかし、いずれもグラファイトなどの導電性のある非ダイヤモンド炭素に直接電流を流すことで加熱する直接通電加熱法によっているため、未変換グラファイトが残留することは避けられない。また、ダイヤモンド粒子径が不均一であり、また、部分的に焼結が不十分となりやすい。このため、硬度や強度などの機械的特性が不十分で、しかも欠片状の多結晶体しか得られなかった。また、14GPa、3000Kを越える超々高圧高温条件が必要で、製造コストが極めて高く、生産性にも乏しい。このため、切削工具やビットなどに適用できず、実用化にはいたっていない。また、非特許文献4及び5には、高純度グラファイトを出発物質として、12GPa以上、2200℃以上の超高圧高温下で間接加熱による直接変換焼結により緻密で高純度なダイヤモンド多結晶体を得る方法が開示されている。この方法で得られるダイヤモンドは非常に高い硬度を有するが、耐摩耗性や耐欠損性、耐熱性など実用特性が不十分で安定しないという問題があった。   On the other hand, non-diamond carbon such as graphite, glassy carbon, and amorphous carbon can be directly converted to diamond without a catalyst or solvent under an ultra-high pressure and high temperature. A single-phase polycrystalline diamond can be obtained by direct conversion from non-diamond phase to diamond phase and sintering. For example, Non-Patent Documents 1 to 3 disclose that a polycrystalline diamond can be obtained by direct conversion at 14-18 GPa and 3000 K or more under an ultra-high pressure and high temperature using graphite as a starting material. However, in any case, since it is based on a direct current heating method in which a current is directly applied to conductive non-diamond carbon such as graphite, it is inevitable that unconverted graphite remains. Further, the diamond particle diameter is non-uniform and the sintering is likely to be partially insufficient. For this reason, mechanical properties such as hardness and strength are insufficient, and only a piece-like polycrystal is obtained. In addition, ultra high pressure and high temperature conditions exceeding 14 GPa and 3000 K are necessary, the manufacturing cost is extremely high, and the productivity is poor. For this reason, it cannot be applied to cutting tools and bits, and has not been put to practical use. In Non-Patent Documents 4 and 5, a high-purity graphite is used as a starting material, and a dense and high-purity diamond polycrystal is obtained by direct conversion sintering by indirect heating at an ultrahigh pressure and high temperature of 12 GPa or higher and 2200 ° C. or higher. A method is disclosed. The diamond obtained by this method has a very high hardness, but has a problem that it is not stable due to insufficient practical properties such as wear resistance, fracture resistance, and heat resistance.

特開平4−074766号公報Japanese Unexamined Patent Publication No. 4-074766 特開平4−114966号公報JP-A-4-114966 J. Chem. Phys., 38 (1963) 631-643 [F.P.Bundy]J. Chem. Phys., 38 (1963) 631-643 [F.P.Bundy] Japan. J. Appl. Phys., 11 (1972) 578-590 [M.Wakatsuki, K.Ichinose, T.Aoki]Japan. J. Appl. Phys., 11 (1972) 578-590 [M.Wakatsuki, K.Ichinose, T.Aoki] Nature 259 (1976) 38 [S.Naka, K.Horii, Y.Takeda, T.Hanawa]Nature 259 (1976) 38 [S. Naka, K. Horii, Y. Takeda, T. Hanawa] New Diamond and Frontier Carbon Technology, 14 (2004) 313 [T. Irifune, H. Sumiya]New Diamond and Frontier Carbon Technology, 14 (2004) 313 [T. Irifune, H. Sumiya] SEIテクニカルレビュー 165 (2004) 68 [角谷、入舩]SEI Technical Review 165 (2004) 68 [Kakutani, Izumi]

本発明は、以上の従来の技術の問題点を解決するためになされたものであり、切削バイトや、ドレッサー、ダイスなどの工具や、掘削ビットとして十分な強度、硬度、耐熱性を有する緻密で均質なダイヤモンド単相の多結晶体を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems of the prior art, and is a dense tool having sufficient strength, hardness, and heat resistance as a cutting tool, a tool such as a dresser, a die, or a drill bit. An object is to provide a homogeneous diamond single-phase polycrystal.

グラファイトを出発物質として12GPa以上、2200℃以上の処理で得られるダイヤモンド多結晶体を詳しく調査したところ、1000ppmを越える水素不純物や100ppmを超える酸素不純物が含まれることがわかり、また、これらの不純物が原因で、耐摩耗性や耐欠損性などの機械特性や耐熱性が低下し、バイトやダイスなどの切削工具や耐摩耗工具としての実用性能が低下することがわかった。   A detailed investigation of the polycrystalline diamond obtained by processing at 12 GPa or more and 2200 ° C. or more using graphite as a starting material reveals that it contains hydrogen impurities exceeding 1000 ppm and oxygen impurities exceeding 100 ppm. As a result, it was found that the mechanical properties such as wear resistance and fracture resistance, and heat resistance were lowered, and the practical performance as a cutting tool and wear resistant tool such as a cutting tool and a die was lowered.

そこで、本発明者らは、上記のような問題を解決するため鋭意検討を重ねた結果、非ダイヤモンド状炭素を出発物質として、TaまたはNbまたはHfの高融点金属製のカプセルに入れて完全に密封し、温度1600−2800℃以下の温度条件で、ダイヤモンドが熱力学的に安定な圧力下で、ダイヤモンドに直接変換させ同時に焼結させることが有効であることを見出した。すなわち、本発明は、以下の構成を有することを特徴とする。   Therefore, as a result of intensive studies to solve the above problems, the present inventors have completely put non-diamond-like carbon as a starting material in a refractory metal capsule of Ta, Nb, or Hf. It has been found that it is effective to seal and simultaneously convert the diamond directly into diamond under a thermodynamically stable pressure under a temperature condition of 1600-2800 ° C. or less. That is, the present invention is characterized by having the following configuration.

(1)本発明に係る高純度ダイヤモンド多結晶体は、非ダイヤモンド状炭素物質を出発物質として、超高圧高温下で焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換焼結された、実質的にダイヤモンドのみからなる多結晶体であって、水素不純物量が200ppm以下であることを特徴とする。
(2)上記(1)に記載の高純度ダイヤモンド多結晶体において、前記多結晶体の酸素不純物量が50ppm以下であることを特徴とする。
(1) The high-purity diamond polycrystal according to the present invention was directly converted and sintered into diamond without adding a sintering aid or a catalyst under a high pressure and high temperature using a non-diamond carbon material as a starting material. The polycrystalline body is substantially composed of only diamond, and the hydrogen impurity amount is 200 ppm or less.
(2) The high-purity diamond polycrystal according to (1) above, wherein the polycrystal has an oxygen impurity amount of 50 ppm or less.

(3)上記(1)又は(2)に記載の高純度ダイヤモンド多結晶体の製造方法であって、
非ダイヤモンド状炭素物質を、密閉した高融点金属カプセルの中で、温度1600℃以上かつ2800℃以下、圧力12GPa以上で、焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換させると同時に焼結させることを特徴とする。
(4)上記(3)に記載の高純度ダイヤモンド多結晶体の製造方法において、前記高融点金属がTa、Nb、Hfから選ばれる少なくとも1種の金属又はその合金であることを特徴とする。
(5)上記(3)又は(4)に記載の高純度ダイヤモンド多結晶体の製造方法において、前記非ダイヤモンド状炭素物質を、高融点金属カプセル内に、真空中で密閉することを特徴とする。
(3) A method for producing a high-purity diamond polycrystal according to (1) or (2) above,
At the same time that non-diamond-like carbon material is directly converted to diamond in a sealed refractory metal capsule at a temperature of 1600 ° C. or more and 2800 ° C. or less and a pressure of 12 GPa or more without adding a sintering aid or a catalyst. It is characterized by sintering.
(4) In the method for producing a high-purity diamond polycrystal according to (3), the refractory metal is at least one metal selected from Ta, Nb, and Hf or an alloy thereof.
(5) In the method for producing a high-purity diamond polycrystal according to (3) or (4), the non-diamond carbon material is sealed in a refractory metal capsule in a vacuum. .

これにより、試料室の構成部材から混入する水素不純物が200ppm以下でかつ、酸素不純物が50ppm以下の、高純度で非常に微細なダイヤモンド粒子が均質に焼結した組織を持つダイヤモンド単相の多結晶体が得られる。そして、こうして得られる高純度ダイヤモンド多結晶体は、特に高温下での硬度や靭性などの機械的特性に優れ、高温下でのチッピングや微細クラックの発生が起こりにくい。このため、このダイヤモンド多結晶体は、高温下で高い機械特性の要求される精密バイトや、線引き用ダイス等の切削工具や耐摩工具素材として非常に有用である。   As a result, a diamond single-phase polycrystal having a structure in which hydrogen impurities mixed from the constituent members of the sample chamber are 200 ppm or less and oxygen impurities are 50 ppm or less and high purity and very fine diamond particles are uniformly sintered. The body is obtained. And the high purity diamond polycrystal obtained in this way is excellent in mechanical characteristics, such as hardness and toughness especially at high temperature, and the occurrence of chipping and fine cracks at high temperature hardly occurs. Therefore, this polycrystalline diamond is very useful as a precision tool requiring high mechanical properties at high temperatures, a cutting tool such as a drawing die, and a wear-resistant tool material.

以上、本発明によれば、水素不純物や酸素不純物の少ない高純度で耐熱性に優れるダイヤモンド多結晶体が得られる。このダイヤモンド多結晶体は、精密バイトや、極細線の線引き用ダイスなどの工具素材として極めて有効な材料である。   As described above, according to the present invention, a polycrystalline diamond having high purity and excellent heat resistance with few hydrogen impurities and oxygen impurities can be obtained. This diamond polycrystal is an extremely effective material as a tool material such as a precision tool and a fine wire drawing die.

本発明に係る高純度ダイヤモンド多結晶体は、非ダイヤモンド状炭素物質を出発物質として、超高圧高温下で焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換焼結された、実施的にダイヤモンドのみからなる多結晶体であって、水素不純物量が200ppm以下であることを特徴とする。更に、該多結晶体において、酸素不純物量が50ppm以下であることを特徴とする。これにより、水素不純物や酸素不純物が原因となる、耐摩耗性や耐欠損性などの機械特性や耐熱性が低下することなく、バイトやダイスなどの切削工具や耐摩耗工具として好ましく利用することが可能となる。なお、超高圧高温とは、12GPa以上、1600〜2800℃の圧力・温度条件を意味する。   The high-purity diamond polycrystal according to the present invention is a practical example in which a non-diamond-like carbon material is used as a starting material, and is directly converted and sintered into diamond without adding a sintering aid or a catalyst under an ultra-high pressure and temperature. And a polycrystalline body composed only of diamond, wherein the hydrogen impurity amount is 200 ppm or less. Furthermore, the polycrystal is characterized in that the amount of oxygen impurities is 50 ppm or less. As a result, it can be preferably used as a cutting tool or wear-resistant tool such as a cutting tool or a die without deteriorating mechanical properties and heat resistance such as wear resistance and fracture resistance caused by hydrogen impurities and oxygen impurities. It becomes possible. The ultra-high pressure and high temperature means a pressure / temperature condition of 12 GPa or more and 1600 to 2800 ° C.

本発明に係る高純度ダイヤモンド多結晶体の製造方法は、非ダイヤモンド物質を、密閉した高融点金属カプセルの中で、温度1600℃以上かつ2800℃以下、圧力12GPa以上で、焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換させると同時に焼結させることを特徴とする。非ダイヤモンド物質に1600℃〜2800℃の温度で、かつ、12GPa以上の圧力をかけることにより、ダイヤモンドへの変換と同時に焼結させることが可能となる。温度が1600℃未満であると、ダイヤモンドの変換が不充分となり、2800℃を超えると、ダイヤモンド粒子が粗大化して焼結体の強度が低下するため好ましくない。より好ましくは2200℃〜2500℃である。また、圧力が12GPa未満であると、ダイヤモンドへの変換が不充分となるため好ましくない。例えば、ベルト型やマルチアンビル型の超高圧高温発生装置を用いて、圧力12GPa以上、温度1600−2800℃の条件でダイヤモンドに変換焼結させることができる。   The method for producing a high-purity diamond polycrystal according to the present invention comprises a non-diamond substance in a sealed refractory metal capsule at a temperature of 1600 ° C. or higher and 2800 ° C. or lower and a pressure of 12 GPa or higher. It is characterized in that it is directly converted into diamond without being added and sintered. By applying a pressure of 12 GPa or more to a non-diamond substance at a temperature of 1600 ° C. to 2800 ° C., it becomes possible to sinter simultaneously with conversion to diamond. If the temperature is less than 1600 ° C., the conversion of diamond is insufficient, and if it exceeds 2800 ° C., the diamond particles become coarse and the strength of the sintered body decreases, which is not preferable. More preferably, it is 2200 degreeC-2500 degreeC. Further, if the pressure is less than 12 GPa, conversion to diamond becomes insufficient, which is not preferable. For example, using a belt-type or multi-anvil type ultrahigh-pressure high-temperature generator, it can be converted and sintered to diamond under conditions of a pressure of 12 GPa or more and a temperature of 1600-2800 ° C.

出発物質としては、高純度なグラファイトを用いることが好ましい。アモルファスカーボン(超微粉砕したグラファイトも含む)やグラッシーカーボン、ファラーレンなどの各種非グラファイト型炭素物質も用いることができるが、HやOを不純物としてほとんど含まないものがこのましい。また、出発物質には特に鉄族の金属不純物が含まれていないものを用いる必要がある。鉄族の金属は、ダイヤモンド変換の触媒として作用し、粒成長を促進するので、微細なダイヤモンド多結晶体は得られないからである。   It is preferable to use high-purity graphite as a starting material. Various non-graphitic carbon materials such as amorphous carbon (including ultra-finely pulverized graphite), glassy carbon, and fararene can also be used, but those containing almost no H or O as impurities are preferable. In addition, it is necessary to use a starting material that does not contain iron group metal impurities. This is because an iron group metal acts as a catalyst for diamond conversion and promotes grain growth, so that a fine diamond polycrystal cannot be obtained.

非ダイヤモンド物質を高融点金属製のカプセルに入れ、完全に密封して変換焼結させることにより、水素不純物及び酸素不純物の少ない高純度のダイヤモンド多結晶体を作製することが可能となる。高融点金属カプセルを構成する金属は、融点が2200℃以上であることが好ましい。また、超高圧発生時に割れることの少ない、延性の高い金属が好ましい。特に、Ta、Nb、Hfから選ばれる少なくとも1種の金属又はその合金により形成されていることが好ましい。これにより、超高圧発生用の試料室構成部材からの水素及び酸素不純物の混入をより少なくすることができる。
また、出発物質である非ダイヤモンド状炭素物質を高融点金属カプセル内に入れる際には、真空中で密閉することが好ましい。このとき、真空中で200℃以上の温度に加熱しながら、ロウ付け、あるいは電子ビームやレーザー溶接で密封するとより好ましい。これにより、出発物質に吸着している水素や酸素を除去でき、かつ、空気からの水素や酸素の混入を防止できる。
By putting a non-diamond substance in a refractory metal capsule, completely sealing it, and converting and sintering it, it becomes possible to produce a high-purity diamond polycrystal with less hydrogen and oxygen impurities. The metal constituting the refractory metal capsule preferably has a melting point of 2200 ° C. or higher. Further, a highly ductile metal that is less likely to crack when an ultrahigh pressure is generated is preferable. In particular, it is preferably formed of at least one metal selected from Ta, Nb, and Hf or an alloy thereof. Thereby, mixing of hydrogen and oxygen impurities from the sample chamber constituent member for generating ultrahigh pressure can be further reduced.
In addition, when the non-diamond-like carbon material as a starting material is put in the refractory metal capsule, it is preferably sealed in a vacuum. At this time, it is more preferable to seal by brazing or electron beam or laser welding while heating to a temperature of 200 ° C. or higher in vacuum. Thereby, hydrogen and oxygen adsorbed on the starting material can be removed, and mixing of hydrogen and oxygen from the air can be prevented.

出発物質である非ダイヤモンド多結晶体として、高純度グラファイトを用い、表1に示す圧力・温度でダイヤモンド変換・焼結を行った。高融点金属カプセルとしてはTa製のものを用い、(真空中で200℃以上に加熱しながら、ロウ付けにより)密封した。ダイヤモンド変換・焼結のための加熱・加圧は、(マルチアンビル型の超高圧高温発生装置)を用いて行った。
また、同様に比較例として、高純度グラファイトを出発物質として、Reシートによりダイヤモンド変換・焼結を行った。
High-purity graphite was used as a non-diamond polycrystal as a starting material, and diamond conversion / sintering was performed at the pressure and temperature shown in Table 1. A refractory metal capsule made of Ta was used and sealed (by brazing while heating to 200 ° C. or higher in a vacuum). Heating and pressurization for diamond conversion / sintering were performed using a (multi-anvil type ultra-high pressure high temperature generator).
Similarly, as a comparative example, high-purity graphite was used as a starting material, and diamond conversion / sintering was performed using a Re sheet.

こうして得られた、ダイヤモンド多結晶体の水素と酸素の不純物の含有量を測定した結果の例を表1に示す。   Table 1 shows an example of the results obtained by measuring the content of hydrogen and oxygen impurities in the polycrystalline diamond thus obtained.

Figure 2009067609
Figure 2009067609

このように、高融点金属がIVa族元素のTaまたはNbまたはHfの高融点金属製のカプセルに入れて完全に密封することで、水素や酸素がそれぞれ200ppm以下、50ppm以下の高純度なダイヤモンド多結晶体が得られる。このようにして得られたダイヤモンド多結晶体は、高温下での機械特性や耐熱性に影響を与える水素や酸素不純物が少ないため、従来のダイヤモンド多結晶体よりはるかに優れた高温硬度、高温強度、耐熱性を有し、精密バイトや、線引き用ダイス等の切削工具や耐摩工具素材として非常に有用となる。   In this way, the high melting point metal is placed in a capsule made of a high melting point metal of the IVa group element Ta, Nb or Hf and completely sealed, so that hydrogen and oxygen are contained in a high purity diamond containing 200 ppm or less and 50 ppm or less, respectively. A crystal is obtained. The diamond polycrystal obtained in this way has less hydrogen and oxygen impurities that affect its mechanical properties and heat resistance at high temperatures, so it has much higher temperature hardness and strength than conventional diamond polycrystals. It has heat resistance and is very useful as a cutting tool and wear-resistant tool material such as precision tools and drawing dies.

Claims (5)

非ダイヤモンド状炭素物質を出発物質として、超高圧高温下で焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換焼結された、実質的にダイヤモンドのみからなる多結晶体であって、水素不純物量が200ppm以下であることを特徴とする高純度ダイヤモンド多結晶体。   A non-diamond-like carbon material as a starting material, a polycrystalline material substantially consisting of diamond, which is directly converted and sintered to diamond without the addition of a sintering aid or catalyst under an ultra-high pressure and temperature, A high-purity diamond polycrystal having a hydrogen impurity amount of 200 ppm or less. 前記多結晶体の酸素不純物量が50ppm以下であることを特徴とする請求項1に記載の高純度ダイヤモンド多結晶体。   The high purity diamond polycrystal according to claim 1, wherein the polycrystal has an oxygen impurity amount of 50 ppm or less. 非ダイヤモンド状炭素物質を、密閉した高融点金属カプセルの中で、温度1600℃以上かつ2800℃以下、圧力12GPa以上で、焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換させると同時に焼結させることを特徴とする請求項1又は2に記載の高純度ダイヤモンド多結晶体の製造方法。   At the same time that non-diamond-like carbon material is directly converted to diamond in a sealed refractory metal capsule at a temperature of 1600 ° C. or more and 2800 ° C. or less and a pressure of 12 GPa or more without adding a sintering aid or a catalyst. The method for producing a high-purity diamond polycrystal according to claim 1 or 2, wherein sintering is performed. 前記高融点金属がTa、Nb、Hfから選ばれる少なくとも1種の金属又はその合金であることを特徴とする請求項3に記載の高純度ダイヤモンド多結晶体の製造方法。   The method for producing a high-purity diamond polycrystal according to claim 3, wherein the refractory metal is at least one metal selected from Ta, Nb, and Hf or an alloy thereof. 前記非ダイヤモンド状炭素物質を、高融点金属カプセル内に、真空中で密閉することを特徴とする請求項3または4に記載の高純度ダイヤモンド多結晶体の製造方法。   The method for producing a high-purity diamond polycrystal according to claim 3 or 4, wherein the non-diamond-like carbon substance is sealed in a refractory metal capsule in a vacuum.
JP2007234992A 2007-09-11 2007-09-11 High purity diamond polycrystalline body and method of manufacturing the same Pending JP2009067609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234992A JP2009067609A (en) 2007-09-11 2007-09-11 High purity diamond polycrystalline body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234992A JP2009067609A (en) 2007-09-11 2007-09-11 High purity diamond polycrystalline body and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009067609A true JP2009067609A (en) 2009-04-02

Family

ID=40604277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234992A Pending JP2009067609A (en) 2007-09-11 2007-09-11 High purity diamond polycrystalline body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009067609A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023473A1 (en) * 2010-08-19 2012-02-23 住友電気工業株式会社 Diamond polycrystal and process for production thereof
WO2013015348A1 (en) * 2011-07-28 2013-01-31 住友電気工業株式会社 Polycrystalline diamond, manufacturing method therefor, scribe tool, scribe wheel, dresser, rotary tool, water-jet orifice, wire drawing die, cutting tool, and electron source
WO2013015347A1 (en) 2011-07-28 2013-01-31 住友電気工業株式会社 Polycrystalline diamond and manufacturing method therefor
JP2013028499A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same, and electron emission source
JP2013028498A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
JP2013028500A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same, scribe tool, scribe wheel, dresser, rotating tool, orifice for waterjet, wire drawing die and cutting tool
JP2013028495A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
JP2013028497A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
JP2013028496A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
JP2013245126A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire
JP2013245260A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain-type wire
JP2014076910A (en) * 2012-10-09 2014-05-01 Sumitomo Electric Ind Ltd Diamond polycrystal and method of producing the same, and tool
JP6521206B1 (en) * 2018-10-01 2019-05-29 住友電気工業株式会社 Diamond polycrystal, tool provided with diamond polycrystal and method for producing diamond polycrystal
JP2020111503A (en) * 2015-10-30 2020-07-27 住友電気工業株式会社 Composite polycrystal
JP2021515741A (en) * 2018-03-01 2021-06-24 ビジネス リサーチ アンド ダイアモンズ、エセ.エレ. A method for obtaining synthetic diamond from sucrose and an apparatus for carrying out the above method.
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11866372B2 (en) 2020-05-28 2024-01-09 Saudi Arabian Oil Company Bn) drilling tools made of wurtzite boron nitride (W-BN)
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US12024470B2 (en) 2021-02-08 2024-07-02 Saudi Arabian Oil Company Fabrication of downhole drilling tools

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234595A (en) * 1993-02-12 1994-08-23 Sumitomo Electric Ind Ltd Production of diamond thin plate
JP2004131336A (en) * 2002-10-11 2004-04-30 Sumitomo Electric Ind Ltd Diamond polycrystal and its production method
WO2006048957A1 (en) * 2004-11-05 2006-05-11 Sumitomo Electric Industries, Ltd. Single-crystal diamond
WO2007011019A1 (en) * 2005-07-21 2007-01-25 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234595A (en) * 1993-02-12 1994-08-23 Sumitomo Electric Ind Ltd Production of diamond thin plate
JP2004131336A (en) * 2002-10-11 2004-04-30 Sumitomo Electric Ind Ltd Diamond polycrystal and its production method
WO2006048957A1 (en) * 2004-11-05 2006-05-11 Sumitomo Electric Industries, Ltd. Single-crystal diamond
WO2007011019A1 (en) * 2005-07-21 2007-01-25 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond and process for producing the same

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023473A1 (en) * 2010-08-19 2012-02-23 住友電気工業株式会社 Diamond polycrystal and process for production thereof
JP5720686B2 (en) * 2010-08-19 2015-05-20 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
US8784767B2 (en) 2010-08-19 2014-07-22 Sumitomo Electric Industries, Ltd. Polycrystalline diamond and method of manufacturing the same
CN103732535B (en) * 2011-07-28 2016-07-06 住友电气工业株式会社 Polycrystalline diamond and manufacture method thereof
JP2013028499A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same, and electron emission source
JP2013028500A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same, scribe tool, scribe wheel, dresser, rotating tool, orifice for waterjet, wire drawing die and cutting tool
JP2013028495A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
JP2013028497A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
JP2013028496A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
US9878956B2 (en) 2011-07-28 2018-01-30 Sumitomo Electric Industries, Ltd. Polycrystalline diamond and manufacturing method thereof, scribe tool, scribing wheel, dresser, rotating tool, orifice for water jet, wiredrawing die, cutting tool, and electron emission source
US9878914B2 (en) 2011-07-28 2018-01-30 Sumitomo Electric Industries, Ltd. Polycrystalline diamond and manufacturing method thereof
CN103732535A (en) * 2011-07-28 2014-04-16 住友电气工业株式会社 Polycrystalline diamond and manufacturing method therefor
JP2013028498A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Polycrystalline diamond and method for producing the same
WO2013015347A1 (en) 2011-07-28 2013-01-31 住友電気工業株式会社 Polycrystalline diamond and manufacturing method therefor
WO2013015348A1 (en) * 2011-07-28 2013-01-31 住友電気工業株式会社 Polycrystalline diamond, manufacturing method therefor, scribe tool, scribe wheel, dresser, rotary tool, water-jet orifice, wire drawing die, cutting tool, and electron source
US10829379B2 (en) 2011-07-28 2020-11-10 Sumitomo Electric Industries, Ltd. Polycrystalline diamond and manufacturing method thereof, scribe tool, scribing wheel, dresser, rotating tool, orifice for water jet, wiredrawing die, cutting tool, and electron emission source
US9714197B2 (en) 2011-07-28 2017-07-25 Sumitomo Electric Industries, Ltd. Polycrystalline diamond and manufacturing method thereof, scribe tool, scribing wheel, dresser, rotating tool, orifice for water jet, wiredrawing die, cutting tool, and electron emission source
US9850135B2 (en) 2011-07-28 2017-12-26 Sumitomo Electric Industries, Ltd. Polycrystalline diamond and manufacturing method thereof
JP2013245260A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain-type wire
JP2013245126A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire
JP2014076910A (en) * 2012-10-09 2014-05-01 Sumitomo Electric Ind Ltd Diamond polycrystal and method of producing the same, and tool
JP2020111503A (en) * 2015-10-30 2020-07-27 住友電気工業株式会社 Composite polycrystal
JP2021515741A (en) * 2018-03-01 2021-06-24 ビジネス リサーチ アンド ダイアモンズ、エセ.エレ. A method for obtaining synthetic diamond from sucrose and an apparatus for carrying out the above method.
WO2020070776A1 (en) * 2018-10-01 2020-04-09 住友電気工業株式会社 Polycrystalline diamond, tool provided with polycrystalline diamond, and polycrystalline diamond production method
TWI704106B (en) * 2018-10-01 2020-09-11 日商住友電氣工業股份有限公司 Diamond polycrystal, tool including diamond polycrystal, and method of producing diamond polycrystal
JP6521206B1 (en) * 2018-10-01 2019-05-29 住友電気工業株式会社 Diamond polycrystal, tool provided with diamond polycrystal and method for producing diamond polycrystal
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11866372B2 (en) 2020-05-28 2024-01-09 Saudi Arabian Oil Company Bn) drilling tools made of wurtzite boron nitride (W-BN)
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11421497B2 (en) 2020-06-03 2022-08-23 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719063B2 (en) 2020-06-03 2023-08-08 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US12024470B2 (en) 2021-02-08 2024-07-02 Saudi Arabian Oil Company Fabrication of downhole drilling tools
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Similar Documents

Publication Publication Date Title
JP2009067609A (en) High purity diamond polycrystalline body and method of manufacturing the same
JP5013156B2 (en) High hardness diamond polycrystal and method for producing the same
JP4275896B2 (en) Polycrystalline diamond and method for producing the same
JP5435043B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP4203900B2 (en) Polycrystalline diamond and method for producing the same
JP5070688B2 (en) High hardness diamond polycrystal and method for producing the same
KR102580073B1 (en) Cubic boron nitride polycrystal and method for producing the same
JP6958563B2 (en) Diamond polycrystal manufacturing method, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
WO2016143391A1 (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool and method for producing polycrystalline diamond body
JP2008539155A (en) Cubic boron nitride compact
JP2009067610A (en) High-hardness diamond polycrystalline body and method for producing the same
JP5076300B2 (en) High hardness diamond polycrystal
JP6007732B2 (en) Polycrystalline diamond and method for producing the same
JP2009007248A (en) Diamond polycrystal body
JP6772743B2 (en) Manufacturing method of diamond polycrystal, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
JP3472630B2 (en) Cubic boron nitride sintered body for cutting tools and cutting tools
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
JPH09142932A (en) Diamond sintered compact and its production
JPH09142933A (en) Diamond sintered compact and its production
JPH11335175A (en) Cubic boron nitride sintered compact
JPH0952766A (en) Diamond sintered compact and production thereof
JPH1135375A (en) Sintered compact of drilling bit and its production
JPH0967164A (en) Diamond sintered compact and its production
JPH10182231A (en) High strength sintered compact and its production
JPH10182230A (en) High strength sintered compact and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130712