JP4275896B2 - Polycrystalline diamond and method for producing the same - Google Patents

Polycrystalline diamond and method for producing the same Download PDF

Info

Publication number
JP4275896B2
JP4275896B2 JP2002098180A JP2002098180A JP4275896B2 JP 4275896 B2 JP4275896 B2 JP 4275896B2 JP 2002098180 A JP2002098180 A JP 2002098180A JP 2002098180 A JP2002098180 A JP 2002098180A JP 4275896 B2 JP4275896 B2 JP 4275896B2
Authority
JP
Japan
Prior art keywords
diamond
polycrystal
pressure
heating
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002098180A
Other languages
Japanese (ja)
Other versions
JP2003292397A (en
Inventor
徹男 入舩
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Network Shikoku Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Techno Network Shikoku Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku Co Ltd, Sumitomo Electric Industries Ltd filed Critical Techno Network Shikoku Co Ltd
Priority to JP2002098180A priority Critical patent/JP4275896B2/en
Publication of JP2003292397A publication Critical patent/JP2003292397A/en
Application granted granted Critical
Publication of JP4275896B2 publication Critical patent/JP4275896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤモンドおよびその製造方法に関するもので、特に、切削工具や掘削ビットなどに用いられる高強度で熱的特性に優れた高純度ダイヤモンド多結晶体とその製造方法に関するものである。
【0002】
【従来の技術】
従来の切削工具や掘削ビットなどに使われるダイヤモンド多結晶体には、焼結助剤あるいは結合剤としてCo、Ni、Feなどの鉄族金属や、SiCなどのセラミックスが用いられている。また、焼結助剤として炭酸塩を用いたものが知られている(特開平4−74766号公報、特開平4−114966号公報)。これらは、ダイヤモンドの粉末を焼結助剤や結合剤とともにダイヤモンドが熱力学的に安定な高圧高温条件下(通常、圧力5〜8GPa、温度1300〜2200℃)で焼結することにより得られる。一方、天然に産出するダイヤモンド多結晶体(カーボナードやバラス)も知られ、一部掘削ビットとして使用されているが、材質のバラツキが大きく、また産出量も少ないため、工業的にはあまり使用されていない。
【0003】
【発明が解決しようとする課題】
Coなどの鉄系金属を焼結助剤としたダイヤモンド多結晶体には、Coなどの鉄系金属が含まれ、これがダイヤモンドの黒鉛化を促す触媒として作用するため耐熱性に劣る。すなわち、不活性ガス雰囲気中でも700度程度でダイヤモンドが黒鉛化してしまう。また、この触媒金属とダイヤモンドの熱膨張差のため、多結晶体内に微細なクラックが入りやすい。さらにダイヤモンドの粒子間にCoなどの金属が連続層として存在するため、多結晶体の硬度や強度などの機械的特性が低下する。耐熱性を上げるために上記の粒界の金属を除去したものも知られており、これにより耐熱温度は約1200℃と向上するが、多結晶体が多孔質となるため強度がさらに大幅に低下する。SiCを結合体としたダイヤモンド焼結体は耐熱性には優れるが、ダイヤモンド粒同士は結合がないため、強度は低い。また、焼結助剤として炭酸塩を用いたダイヤモンド焼結体は、Co結合剤による焼結体に比べると耐熱性に優れるが、粒界に炭酸塩物質が存在するため、機械的特性は十分とはいえない。
【0004】
一方、ダイヤモンド製造方法として、黒鉛(グラファイト)やグラッシーカーボン、アモルファスカーボンなどの非ダイヤモンド炭素を超高圧高温下で、触媒や溶媒なしに直接的にダイヤモンドに変換させることが可能である。非ダイヤモンド相からダイヤモンド相へ直接変換すると同時に焼結させることでダイヤモンド単相の多結晶体が得られる。たとえば、J.Chem.Phys.,38(1963)631-643[F.P.Bundy]やJapan.J.Appl.Phys.,11(1972)578-590[M.Wakatsuki, K.Ichinose, T.Aoki]、Nature 259(1976)38[S.Naka, K.Horii, Y.Takeda, T.Hanawa]には、グラファイトを出発物質として14−18GPa、3000K以上の超高圧高温下の直接変換によりダイヤモンド多結晶体が得られることが開示されている。しかし、いずれもグラファイトなどの導電性のある非ダイヤモンド炭素に直接電流を流すことで加熱する直接通電加熱法によっているため、未変換グラファイトが残留したり、ダイヤモンド粒子径が不均質、あるいは部分的に焼結が不十分となる。このため、硬度や強度などの機械的特性が不十分で、しかも欠片状の多結晶体しか得られなかった。したがって、切削工具やビットなどに適用できず、実用化にはいたっていない。また、たとえば、特開2002−66302号公開特許公報にはカーボンナノチューブを10GPa以上、1600℃以上に加熱して、微細なダイヤモンドを合成する方法が記載されている。しかし、原料のカーボンナノチューブは極めて高価であり、製造コストに大きな問題がある。また、開示されている方法はカーボンナノチューブをダイアモンドアンビルで加圧し、炭酸ガスレーザーで集光加熱しているため、切削工具に適用できるサイズの均質なダイヤモンド多結晶体の製造は不可能である。
【0005】
本発明は、以上の従来の技術の問題点を解決するためになされたものであり、切削工具やドリルビットとして十分な強度、硬度、耐熱性を有する緻密で均質なダイヤモンド単相の多結晶体を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記のような問題を解決するため、超高圧下で非ダイヤモンド炭素を加熱してダイヤモンドに直接変換させる際、非ダイヤモンド炭素を直接通電加熱せずに、間接的に安定加熱できる方法を開発、実施したところ、通常のグラファイト型層状構造の炭素物質から99%以上ダイヤモンドからなる微細で強靭な多結晶体が得られることがわかった。得られるダイヤモンド多結晶体は、平均粒径が100nm以下、多くの場合20nm以下の微細なダイヤモンド粒子からなる緻密な組織を有し、介在物をほとんど含まず、硬度が70GPa以上と単結晶並の硬さを示し、不活性ガス中で1600℃まで劣化しないという、従来にない特徴を有することがわかった。また、従来はベルト型やガードル型の一軸圧縮性の超高圧装置で作成されていたためダイヤモンド多結晶体に異方性があり、特に圧縮方向に(111)配向する傾向が強く、層状に劈開による割れが起こりやすい傾向があったが、本発明では静水圧性の高い試料室構成で、かつマルチアンビルと呼ばれる等方圧縮が可能な加圧システムを採用しているため、従来になく等方性の多結晶体で、何れの方向からの圧縮や引っ張りに対しても高い強度を持つことがわかった。
【0007】
すなわち、本発明の特徴は、間接的に加熱する手段を備えた圧力セルに非ダイヤモンド炭素物質を入れ、加熱および加圧を行うことにより、焼結助剤や触媒の添加なしに直接変換でダイヤモンド多結晶体を製造することである。加熱手段としては、高融点金属からなるヒーターに電流を流して発熱させるものであることが、安定かつ効果的な間接加熱に有利である。前記非ダイヤモンド炭素物質と前記間接的に加熱する手段の間に絶縁体層を有し、その絶縁体層の少なくとも一部にアルカリハライド物質を設けてもよい。非ダイヤモンド炭素物質として純度99%以上の黒鉛を用いることが望ましい。加熱温度Tと加える圧力Pの条件としては、1800℃以上の加熱と20GPa以上の加圧、または2300℃以上の加熱と12GPa以上の加圧とするのがよい。さらに一般的には、下式の関係を満たすようにすれば、高品質のダイヤモンド多結晶体が得られる。
T>5P−241P+4909
ここでT:温度(℃)、P:圧力(GPa)
【0008】
また、本発明に係るダイヤモンド多結晶体は、その製造方法が新規であるにとどまらず、ダイヤモンド多結晶体自体が新規であり、次のような特徴を有する。すなわち、超高圧高温下でグラファイト型層状構造の炭素物質から焼結助剤や触媒の添加なしに変換焼結されたダイヤモンドからなる多結晶体であって、ダイヤモンドの平均粒径が100nm以下、純度が99%以上のダイヤモンド多結晶体である。そして、多くの場合、平均粒径が20nm以下であり、硬度が70GPa以上であり、多結晶体の任意方向のX線回折の(220)回折強度(I(220))の(111)回折強度(I(111))に対する比率I(220)/I(111)が0.1以上である。
【0009】
【発明の実施の形態】
本発明に係る多結晶体を製造する方法の実施の形態を図1に示す例を用いて説明する。図1は本発明に係る多結晶体を製造する方法に用いる高温高圧セルの断面を示したものである。外部はランタンクロマイト(LaCrO)でできた容器になっており、内部には試料1が収められる。本例では2つの試料が高温高圧セルの中にセットできる。この試料1はダイヤモンドの原料となる非ダイヤモンド炭素、たとえば黒鉛(グラファイト)を所定の形状に形成したものである。この試料1の形状がほぼそのまま、合成される多結晶体の形状となる。ここでは、黒鉛を円柱状に形成したものであり、図1には円柱の軸線に沿って半分に切断した断面が示されている。試料1の周りにはアルカリハライド物質である塩化ナトリウムの粉末2を配しており、さらにその周りを酸化マグネシウム3(MgO)で包んである。さらに酸化マグネシウム3の層の外側にレニウム(Re)よりなるヒーター4が設けられ、ヒーター4の外にはジルコニア(ZrO)よりなる断熱材5が設けられている。レニウムのような高融点金属からなるヒーターに電流を流して発熱させることで、試料1が間接加熱でありながらも効果的かつ安定に加熱されるようになっている。また、試料1とヒーター4の間には、高温でも安定なアルカリハライド物質である塩化ナトリウムの粉末2を配しているので、試料1あるいは生成されたダイヤモンド多結晶体はヒーター4から絶縁されるとともに加圧時にもその表面は保護される。高温高圧セルの上下にはモリブデン(Mo)からなる電極6があり、ヒーターを加熱するための電力が外部から供給されるようになっている。そして、断熱材5の周囲には酸化マグネシウム又は酸化コバルトの圧力媒体7が、電極6の上下には外部はランタンクロマイト(LaCrO)の圧力媒体8がそれぞれ設けられている。そして、高温高圧セルのほぼ中心には試料の温度を測定するためのタングステン・レニウムの熱電対が設けられている。
【0010】
図1に示すように試料や各種圧力媒体を装填したら、この高温高圧セルをマルチアンビル型加圧装置に入れて加圧する。加圧装置よりの荷重は高温高圧セルの圧力媒体を通して、ほぼ静水圧として試料に加えられる。同時に、電極6を通してヒーター4に電力を供給して試料1を加熱する。試料に加わる圧力は、ロードセル等で出力される加圧装置の荷重と加圧面の角度・面積より求めることができ、試料1の温度は近くに設けられた熱電対9によって把握できる。所定の温度・圧力で一定時間保持して試料1を多結晶体に合成する。合成後、たとえば600℃程度に保って減圧を行うと良質な焼結体を得るのに特に効果的である。
【0011】
【実施例】
次に、本発明をダイヤモンド多結晶体の合成に適用した実施例を示す。本実施例では、図1に示す高温高圧セルに試料1として純度99.9995%の黒鉛を用いた。また試料1の形状は直径1.5mm、高さ1mmの円柱である。所定の温度、圧力に加熱・加圧し約10分その状態を保持し、次に急冷し圧力を数時間かけて大気圧まで減圧する。温度および圧力を変えながら試験を繰り返した。その結果、圧力が12GPa(約12万気圧)の場合には、2300℃以上の温度で透明な立方晶のダイヤモンド多結晶体が得られることが判明した。また、圧力が20GPaの場合には、1800℃以上の温度で同様のダイヤモンド多結晶体が得られることが判明した。さらに、温度・圧力を変えて試験を行い、その結果を表示したものが図2に示すグラフである。縦軸は温度を、横軸は圧力をそれぞれ示しており、図中に示した点が実施した試験データを示している。これの試験データのうち、丸で示された点においては透明な立方晶のダイヤモンド多結晶体が得られた。次に四角で表された点では、白く濁った立方晶のダイヤモンド多結晶体が得られた。また、三角で表された点では、六方晶ダイヤモンドが混在していた。そして、これらの結果より、温度と圧力が次式
T>5P−241P+4909
ここでT:温度(℃)、P:圧力(GPa)
を満たすときに、透明な立方晶のダイヤモンド多結晶体が得られることが判明した。なお、温度は3000℃以下であることが、高温高圧セルを溶解させないためにも望ましい。
【0012】
本実施例において丸で示される条件で得られたダイヤモンド多結晶体はX線回折およびラマン分光分析により、純粋な立方晶ダイヤモンドであることがわかった。また、X線回折、走査電子顕微鏡観察および光学的観察により、極めてよく焼結された多結晶焼結体であり、光学的には単結晶ダイヤモンドのように無色透明である。多結晶であるため単結晶ダイヤモンドのような劈開性がなく、どの方向の荷重に対しても安定した強度・硬度を有する。本実施例の製造方法によって得られたダイヤモンド多結晶体は、研究用の超高圧発生装置の部品や切削工具に利用することができる。また、試料の形状が、ほぼそのまま合成される多結晶体の形状となるので、本例の円柱状以外でも利用形態に合せて任意の形状にすることができる。黒鉛は希望する形状への加工がダイヤモンドに比べて容易である。さらに、試料の大きさを変えれば任意のサイズの多結晶体を得ることができ、高温高圧セルを大きくして大きな試料を使えば10mm程度のダイヤモンド多結晶体も製造できる。
【0013】
本実施例の製造方法によって得られたダイヤモンド多結晶体の性質について試験データに基づいて詳細する。
【0014】
得られたダイヤモンド多結晶体の微細構造を調べるため、透過電子顕微鏡(TEM)で観察した。その結果、図2の丸で示された条件においてはいずれも100nm以下、多くは10−20nm以下の粒径の微細なダイヤモンドが緻密に結合しており、粒子界面には不純物や介在物は見られないことが判った。図3にその代表的な透過電子顕微鏡写真を示す。
【0015】
本発明で得られたダイヤモンド多結晶体は等方性が高いことがX線回折実験より判った。すなわちダイヤモンド多結晶体の任意方向のX線回折の(220)回折強度(I(220))の(111)回折強度(I(111))に対する比率I(220)/I(111)はいずれも0.1以上であり、多くは0.2〜0.25の範囲にあった。これに対し、ベルト型の一軸圧縮性の超高圧装置で作製されたダイヤモンド多結晶体は、一軸圧縮の方向と平行にいくらか{111}配向しており、X線回折線の測定方向によっては、上記比率I(220)/I(111)が0.1未満であった。
【0016】
次に、得られたダイヤモンド多結晶体の硬度を測定した。試料の表面をダイヤモンド電着砥石で鏡面に研磨し測定面とした。微小硬度計を用い、マイクロヌープ圧子で、荷重500gにより硬度を測定した。比較のために、不純物0.1ppm以下の高純度ダイヤモンド単結晶の(100)面上の〈100〉方位のヌープ硬度を同一条件で測定した。表1に結果を示す。いずれも70GPaを超える硬度を示し、条件によっては110GPaを超えてほとんど単結晶の硬度と同等の値を示した。
【表1】

Figure 0004275896
【0017】
【発明の効果】
以上、本発明に多結晶体を製造する方法は、触媒や焼結助剤を加えることなく純度の高い原料物質から純度の高い多結晶体を合成するので、透明度が高く物性に優れた多結晶体を得られるという効果を奏する。極めてよく焼結された多結晶焼結体であり、単結晶ダイヤモンドのような劈開性がなく、どの方向の荷重に対しても安定した強度・硬度を有するので、切削工具等の工業的利用に適した材料が得られる。
【図面の簡単な説明】
【図1】本発明の多結晶体を製造する方法に使用する高温高圧セルの一例を示す断面図である。
【図2】本発明の実施例および比較例を示すグラフである。
【図3】本発明の多結晶体の透過電子顕微鏡写真である。
【符号の説明】
1.試料
2.塩化ナトリウム
3.酸化マグネシウム
4.ヒーター
5.断熱材
6.電極
7、8.圧力媒体
9.熱電対[0001]
BACKGROUND OF THE INVENTION
The present invention relates to diamond and a method for producing the same, and more particularly to a high-purity diamond polycrystal having high strength and excellent thermal characteristics used for a cutting tool, a drill bit, and the like, and a method for producing the same.
[0002]
[Prior art]
Diamond polycrystals used for conventional cutting tools and drill bits use iron group metals such as Co, Ni and Fe, and ceramics such as SiC as sintering aids or binders. In addition, those using carbonate as a sintering aid are known (Japanese Patent Laid-Open Nos. 4-74766 and 4-114966). These can be obtained by sintering diamond powder together with a sintering aid and a binder under high pressure and high temperature conditions (usually pressure 5-8 GPa, temperature 1300-2200 ° C.) under which the diamond is thermodynamically stable. On the other hand, naturally-occurring diamond polycrystals (carbonados and ballasts) are also known, and some of them are used as drilling bits. However, they are widely used industrially due to large variations in material and low output. Not.
[0003]
[Problems to be solved by the invention]
The polycrystalline diamond using an iron-based metal such as Co as a sintering aid contains an iron-based metal such as Co, which acts as a catalyst for promoting the graphitization of diamond, and therefore has poor heat resistance. That is, diamond is graphitized at about 700 degrees even in an inert gas atmosphere. Further, due to the difference in thermal expansion between the catalytic metal and diamond, fine cracks are likely to occur in the polycrystalline body. Further, since a metal such as Co exists as a continuous layer between the diamond particles, the mechanical properties such as hardness and strength of the polycrystalline body are lowered. It is also known that the metal at the grain boundary is removed in order to increase the heat resistance. This improves the heat resistance temperature to about 1200 ° C, but the polycrystalline body becomes porous, so the strength is further greatly reduced. To do. A diamond sintered body using SiC as a bonded body is excellent in heat resistance, but the diamond grains are not bonded to each other, so that the strength is low. In addition, a diamond sintered body using carbonate as a sintering aid is superior in heat resistance compared to a sintered body using a Co binder, but has sufficient mechanical properties due to the presence of a carbonate substance at the grain boundary. That's not true.
[0004]
On the other hand, as a diamond manufacturing method, non-diamond carbon such as graphite, glassy carbon, and amorphous carbon can be directly converted to diamond without a catalyst or a solvent under an ultra-high pressure and high temperature. A single-phase polycrystalline diamond can be obtained by direct conversion from non-diamond phase to diamond phase and sintering. For example, J.Chem.Phys., 38 (1963) 631-643 [FPBundy], Japan.J.Appl.Phys., 11 (1972) 578-590 [M.Wakatsuki, K.Ichinose, T.Aoki], In Nature 259 (1976) 38 [S. Naka, K. Horii, Y. Takeda, T. Hanawa], a polycrystalline diamond is obtained by direct conversion at 14-18 GPa or more under high pressure and high temperature of 3000-18 K or more using graphite as a starting material. Is disclosed. However, since all are based on the direct current heating method in which a current is directly applied to conductive non-diamond carbon such as graphite, unconverted graphite remains, the diamond particle size is uneven, or partially Sintering is insufficient. For this reason, mechanical properties such as hardness and strength are insufficient, and only a piece-like polycrystal is obtained. Therefore, it cannot be applied to cutting tools and bits, and has not been put into practical use. For example, JP 2002-66302 A discloses a method of synthesizing fine diamond by heating a carbon nanotube to 10 GPa or more and 1600 ° C. or more. However, the raw material carbon nanotubes are extremely expensive, and there is a big problem in manufacturing cost. Moreover, since the disclosed method pressurizes carbon nanotubes with a diamond anvil and condenses and heats them with a carbon dioxide laser, it is impossible to produce a homogeneous diamond polycrystal having a size applicable to a cutting tool.
[0005]
The present invention has been made in order to solve the above-mentioned problems of the prior art, and is a dense and homogeneous diamond single-phase polycrystal having sufficient strength, hardness and heat resistance as a cutting tool or a drill bit. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors, when heating non-diamond carbon under ultra-high pressure and directly converting it to diamond, do not directly heat non-diamond carbon, but indirectly heat stably. As a result of developing and carrying out a method that can be used, it has been found that a fine and tough polycrystalline body made of diamond of 99% or more can be obtained from a carbon material having a normal graphite layer structure. The obtained polycrystalline diamond has a dense structure composed of fine diamond particles having an average particle diameter of 100 nm or less, and often 20 nm or less, hardly contains inclusions, and has a hardness of 70 GPa or more, which is equivalent to that of a single crystal. It has been found that it has an unprecedented characteristic that it exhibits hardness and does not deteriorate to 1600 ° C. in an inert gas. Further, since it was conventionally produced with a belt-type or girdle-type uniaxial compressible ultra-high pressure apparatus, the polycrystalline diamond has anisotropy, and in particular, has a strong tendency to be (111) -oriented in the compression direction, resulting in layered cleavage Although there was a tendency for cracking to occur, the present invention adopts a highly isostatically compressible pressure chamber called a multi-anvil and isotropic because it has a highly isostatic pressure. It was found that this polycrystal has high strength against compression and pulling from any direction.
[0007]
That is, the feature of the present invention is that a non-diamond carbon material is placed in a pressure cell equipped with a means for indirectly heating, and heating and pressurizing are performed, so that diamond can be directly converted without adding a sintering aid or a catalyst. It is to produce a polycrystal. As the heating means, it is advantageous for stable and effective indirect heating that a current is passed through a heater made of a refractory metal to generate heat. An insulator layer may be provided between the non-diamond carbon material and the means for indirectly heating, and an alkali halide material may be provided on at least a part of the insulator layer. It is desirable to use graphite having a purity of 99% or more as the non-diamond carbon material. As conditions for the heating temperature T and the pressure P to be applied, heating at 1800 ° C. or higher and pressurization at 20 GPa or higher, or heating at 2300 ° C. or higher and pressurization at 12 GPa or higher is preferable. More generally, a high-quality diamond polycrystal can be obtained by satisfying the relationship of the following formula.
T> 5P 2 -241P + 4909
Where T: temperature (° C.), P: pressure (GPa)
[0008]
Further, the polycrystalline diamond according to the present invention is not limited to a novel manufacturing method, and the polycrystalline diamond itself is novel and has the following characteristics. That is, it is a polycrystalline body made of diamond obtained by converting and sintering a carbon material having a graphite-type layered structure under an ultra-high pressure and high temperature without adding a sintering aid or a catalyst, and the average particle diameter of diamond is 100 nm or less, purity Is a polycrystalline diamond having 99% or more. In many cases, the average particle diameter is 20 nm or less, the hardness is 70 GPa or more, and the (111) diffraction intensity of the (220) diffraction intensity (I (220) ) of X-ray diffraction in any direction of the polycrystalline body. (I (111)) ratio I (220) / I (111 ) is 0.1 or more.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a method for producing a polycrystalline body according to the present invention will be described with reference to an example shown in FIG. FIG. 1 shows a cross section of a high-temperature high-pressure cell used in the method for producing a polycrystalline body according to the present invention. The outside is a container made of lanthanum chromite (LaCrO 3 ), and the sample 1 is stored inside. In this example, two samples can be set in the high temperature and high pressure cell. This sample 1 is obtained by forming non-diamond carbon as a raw material of diamond, such as graphite, into a predetermined shape. The shape of the sample 1 is almost the same as that of the synthesized polycrystalline body. Here, graphite is formed in a cylindrical shape, and FIG. 1 shows a cross section cut in half along the axis of the cylinder. Around the sample 1, a powder 2 of sodium chloride, which is an alkali halide substance, is disposed, and the periphery is wrapped with magnesium oxide 3 (MgO). Further, a heater 4 made of rhenium (Re) is provided outside the layer of magnesium oxide 3, and a heat insulating material 5 made of zirconia (ZrO 2 ) is provided outside the heater 4. By causing a current to flow through a heater made of a refractory metal such as rhenium to generate heat, the sample 1 is effectively and stably heated while being indirectly heated. Further, between the sample 1 and the heater 4, the sodium chloride powder 2, which is an alkali halide material that is stable even at high temperatures, is disposed, so that the sample 1 or the produced polycrystalline diamond is insulated from the heater 4. At the same time, the surface is protected even during pressurization. There are electrodes 6 made of molybdenum (Mo) above and below the high-temperature high-pressure cell, and power for heating the heater is supplied from the outside. A pressure medium 7 of magnesium oxide or cobalt oxide is provided around the heat insulating material 5, and a pressure medium 8 of lanthanum chromite (LaCrO 3 ) is provided above and below the electrode 6, respectively. A tungsten-rhenium thermocouple for measuring the temperature of the sample is provided almost at the center of the high-temperature and high-pressure cell.
[0010]
When a sample and various pressure media are loaded as shown in FIG. 1, the high-temperature and high-pressure cell is put into a multi-anvil pressurizing device and pressurized. The load from the pressurizing device is applied to the sample as almost hydrostatic pressure through the pressure medium of the high-temperature and high-pressure cell. At the same time, power is supplied to the heater 4 through the electrode 6 to heat the sample 1. The pressure applied to the sample can be obtained from the load of the pressurizer output from the load cell or the like and the angle / area of the pressurization surface, and the temperature of the sample 1 can be grasped by the thermocouple 9 provided nearby. Sample 1 is synthesized into a polycrystal by holding at a predetermined temperature and pressure for a certain period of time. For example, if the pressure is reduced after synthesis, for example, at about 600 ° C., it is particularly effective to obtain a high-quality sintered body.
[0011]
【Example】
Next, an example in which the present invention is applied to the synthesis of a polycrystalline diamond will be described. In this example, graphite having a purity of 99.9995% was used as the sample 1 in the high-temperature and high-pressure cell shown in FIG. The shape of the sample 1 is a cylinder having a diameter of 1.5 mm and a height of 1 mm. Heat and pressurize to a predetermined temperature and pressure, hold that state for about 10 minutes, then rapidly cool and reduce the pressure to atmospheric pressure over several hours. The test was repeated with varying temperature and pressure. As a result, it was found that when the pressure was 12 GPa (about 120,000 atm), a transparent cubic diamond polycrystal was obtained at a temperature of 2300 ° C. or higher. It was also found that when the pressure was 20 GPa, the same diamond polycrystal was obtained at a temperature of 1800 ° C. or higher. Further, the graph shown in FIG. 2 shows the results of tests conducted by changing the temperature and pressure. The vertical axis represents temperature and the horizontal axis represents pressure, and the points shown in the figure indicate test data performed. Among these test data, a transparent cubic diamond polycrystal was obtained at the points indicated by circles. Next, in terms of the squares, a white turbid cubic polycrystalline diamond was obtained. Moreover, the hexagonal diamond was mixed in the point represented by the triangle. From these results, the temperature and pressure are expressed by the following formula T> 5P 2 -241P + 4909.
Where T: temperature (° C.), P: pressure (GPa)
It has been found that a transparent cubic polycrystalline diamond can be obtained when The temperature is preferably 3000 ° C. or lower in order not to dissolve the high temperature / high pressure cell.
[0012]
The polycrystalline diamond obtained under the conditions indicated by the circles in this example was found to be pure cubic diamond by X-ray diffraction and Raman spectroscopic analysis. Further, it is a polycrystalline sintered body that is extremely well sintered by X-ray diffraction, scanning electron microscope observation and optical observation, and optically colorless and transparent like single crystal diamond. Since it is polycrystalline, it does not have the cleavage property of single crystal diamond, and has stable strength and hardness against load in any direction. The polycrystalline diamond obtained by the manufacturing method of this example can be used for parts and cutting tools of research ultra-high pressure generators. In addition, since the shape of the sample is the shape of a polycrystalline body that is synthesized almost as it is, any shape other than the cylindrical shape of this example can be formed in accordance with the use form. Graphite is easier to process into the desired shape than diamond. Furthermore, a polycrystalline body of an arbitrary size can be obtained by changing the size of the sample, and a diamond polycrystalline body of about 10 mm can be manufactured by using a large sample by enlarging the high-temperature and high-pressure cell.
[0013]
The properties of the polycrystalline diamond obtained by the production method of this example will be described in detail based on test data.
[0014]
In order to investigate the microstructure of the obtained polycrystalline diamond, it was observed with a transmission electron microscope (TEM). As a result, under the conditions indicated by the circles in FIG. 2, fine diamonds having a particle size of 100 nm or less, and most often 10-20 nm or less, are closely bonded, and impurities and inclusions are not observed at the particle interface. I found it impossible. FIG. 3 shows a typical transmission electron micrograph thereof.
[0015]
It was found from the X-ray diffraction experiment that the polycrystalline diamond obtained by the present invention is highly isotropic. That is, the ratio I (220) / I (111) of (220) diffraction intensity (I (220) ) to (111) diffraction intensity (I (111) ) of X-ray diffraction in any direction of the polycrystalline diamond is It was 0.1 or more, and many were in the range of 0.2 to 0.25. On the other hand, the polycrystalline diamond produced by the belt-type uniaxial compressible ultra-high pressure apparatus has some {111} orientation parallel to the direction of uniaxial compression, and depending on the measurement direction of the X-ray diffraction line, The ratio I (220) / I (111) was less than 0.1.
[0016]
Next, the hardness of the obtained polycrystalline diamond was measured. The surface of the sample was polished to a mirror surface with a diamond electrodeposition grindstone to obtain a measurement surface. Using a micro hardness meter, the hardness was measured with a micro Knoop indenter under a load of 500 g. For comparison, the Knoop hardness in the <100> orientation on the (100) plane of a high-purity diamond single crystal having an impurity of 0.1 ppm or less was measured under the same conditions. Table 1 shows the results. All showed hardness exceeding 70 GPa and depending on conditions, it exceeded 110 GPa and showed a value almost equivalent to the hardness of a single crystal.
[Table 1]
Figure 0004275896
[0017]
【The invention's effect】
As described above, the method for producing a polycrystal according to the present invention synthesizes a polycrystal having a high purity from a raw material having a high purity without adding a catalyst or a sintering aid. There is an effect that the body can be obtained. It is an extremely well-sintered polycrystalline sintered body that has no cleaving property like single crystal diamond, and has stable strength and hardness against loads in any direction. A suitable material is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a high-temperature and high-pressure cell used in a method for producing a polycrystalline body of the present invention.
FIG. 2 is a graph showing examples and comparative examples of the present invention.
FIG. 3 is a transmission electron micrograph of the polycrystalline body of the present invention.
[Explanation of symbols]
1. Sample 2. 2. Sodium chloride 3. Magnesium oxide 4. Heater Insulation material6. Electrodes 7,8. Pressure medium 9. thermocouple

Claims (7)

超高圧高温下で黒鉛から焼結助剤や触媒の添加なしに直接的に変換焼結された立方晶のダイヤモンド多結晶体であって、ダイヤモンドの平均粒径が100nm以下であり、純度が99%以上、硬度が110GPa以上であることを特徴とするダイヤモンド多結晶体。A cubic diamond polycrystal obtained by direct conversion and sintering from graphite under an ultrahigh pressure and high temperature without addition of a sintering aid or a catalyst, wherein the diamond has an average particle diameter of 100 nm or less and a purity of 99 % Diamond polycrystal having a hardness of 110 GPa or more. 前記ダイヤモンドの平均粒径が20nm以下である請求項1に記載のダイヤモンド多結晶体。The diamond polycrystal according to claim 1, wherein the diamond has an average particle diameter of 20 nm or less. 多結晶体の任意方向のX線回折の(220)回折強度(I(220))の(111)回折強度(I(111))に対する比率I(220)/I(111)が0.1以上である請求項1又は2に記載のダイヤモンド多結晶体。The ratio I (220) / I (111) of (220) diffraction intensity (I (220) ) to (111) diffraction intensity (I (111) ) of X-ray diffraction in any direction of the polycrystal is 0.1 or more. The diamond polycrystal according to claim 1 or 2, wherein 高融点金属からなるヒーターに電流を流して試料を間接加熱する手段を備えた圧力セルに黒鉛を入れ、加熱および加圧を行うことにより、焼結助剤や触媒の添加なしに直接的に立方晶のダイヤモンド多結晶体に変換焼結するものであって、加圧をマルチアンビル装置により行い、かつ、加熱温度Tと加える圧力Pが下式の関係を満たすものであることを特徴とするダイヤモンド多結晶体の製造方法。
T>5P−241P+4909
ここでT:温度(℃)、P:圧力(GPa)
By placing graphite in a pressure cell equipped with a means for indirect heating of the sample by passing an electric current through a heater made of a refractory metal, heating and pressurizing can be performed directly without adding a sintering aid or catalyst. A diamond characterized in that it is converted and sintered to a polycrystalline diamond crystal, the pressure is applied by a multi-anvil apparatus, and the heating temperature T and the applied pressure P satisfy the following relationship: A method for producing a polycrystal.
T> 5P 2 -241P + 4909
Where T: temperature (° C.), P: pressure (GPa)
前記黒鉛が、純度99%以上の黒鉛である請求項4記載のダイヤモンド多結晶体の製造方法。The method for producing a polycrystalline diamond according to claim 4, wherein the graphite is graphite having a purity of 99% or more. 高融点金属からなるヒーターに電流を流して試料を間接加熱する手段を備えた圧力セルに黒鉛を入れ、加熱および加圧を行うことにより、焼結助剤や触媒の添加なしに直接的に立方晶のダイヤモンド多結晶体に変換焼結するものであって、加圧をマルチアンビル装置により行い、かつ、1800℃以上の加熱と、20GPa以上の加圧を行うものであることを特徴とするダイヤモンド多結晶体の製造方法。By placing graphite in a pressure cell equipped with a means for indirect heating of the sample by passing an electric current through a heater made of a refractory metal, heating and pressurizing can be performed directly without adding a sintering aid or catalyst. A diamond characterized in that it is converted into a crystalline diamond polycrystal and is pressed by a multi-anvil apparatus , heated at 1800 ° C. or higher, and pressed at 20 GPa or higher. A method for producing a polycrystal. 高融点金属からなるヒーターに電流を流して試料を間接加熱する手段を備えた圧力セルに黒鉛を入れ、加熱および加圧を行うことにより、焼結助剤や触媒の添加なしに直接的に立方晶のダイヤモンド多結晶体に変換焼結するものであって、加圧をマルチアンビル装置により行い、かつ、2300℃以上の加熱と、12GPa以上の加圧を行うものであることを特徴とするダイヤモンド多結晶体の製造方法。By placing graphite in a pressure cell equipped with a means for indirect heating of the sample by passing an electric current through a heater made of a refractory metal, heating and pressurizing can be performed directly without adding a sintering aid or catalyst. A diamond characterized in that it is converted into a crystalline diamond polycrystal and is pressed by a multi-anvil apparatus , heated at 2300 ° C. or higher, and pressed at 12 GPa or higher. A method for producing a polycrystal.
JP2002098180A 2002-04-01 2002-04-01 Polycrystalline diamond and method for producing the same Expired - Lifetime JP4275896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098180A JP4275896B2 (en) 2002-04-01 2002-04-01 Polycrystalline diamond and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098180A JP4275896B2 (en) 2002-04-01 2002-04-01 Polycrystalline diamond and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003292397A JP2003292397A (en) 2003-10-15
JP4275896B2 true JP4275896B2 (en) 2009-06-10

Family

ID=29240289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098180A Expired - Lifetime JP4275896B2 (en) 2002-04-01 2002-04-01 Polycrystalline diamond and method for producing the same

Country Status (1)

Country Link
JP (1) JP4275896B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403215B2 (en) 2011-04-11 2016-08-02 Sumitomo Electric Industries, Ltd. Cutting tool and method for producing same
CN106163652A (en) * 2014-10-11 2016-11-23 河南飞孟金刚石工业有限公司 A kind of synthetic method of rough surface diamond
CN107108231A (en) * 2015-10-30 2017-08-29 住友电气工业株式会社 Polycrystalline body
US10167569B2 (en) 2012-08-16 2019-01-01 National University Corporation Ehime University Hexagonal diamond bulk sintered body and its manufacturing method
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11866372B2 (en) 2020-05-28 2024-01-09 Saudi Arabian Oil Company Bn) drilling tools made of wurtzite boron nitride (W-BN)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065809A1 (en) * 2003-12-11 2005-07-21 Sumitomo Electric Industries, Ltd. High-hardness conductive diamond polycrystalline body and method for producing same
JP2006007677A (en) * 2004-06-29 2006-01-12 National Institute For Materials Science Diamond polycrystalline substance scriber
EP1921049B1 (en) * 2005-07-21 2016-10-12 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond
JP5013156B2 (en) * 2005-07-21 2012-08-29 住友電気工業株式会社 High hardness diamond polycrystal and method for producing the same
CN103752220A (en) * 2008-02-06 2014-04-30 住友电气工业株式会社 Polycrystalline diamond
JP5289829B2 (en) * 2008-06-05 2013-09-11 住友電気工業株式会社 Polycrystalline diamond dresser
JP2009007248A (en) * 2008-08-15 2009-01-15 Sumitomo Electric Ind Ltd Diamond polycrystal body
US8297382B2 (en) 2008-10-03 2012-10-30 Us Synthetic Corporation Polycrystalline diamond compacts, method of fabricating same, and various applications
JP5416507B2 (en) * 2009-08-07 2014-02-12 住友電気工業株式会社 Rotary cutting tool
JP5776415B2 (en) * 2011-07-28 2015-09-09 住友電気工業株式会社 Method for producing graphite
JP5891635B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP5891636B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP5891634B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP5891638B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond, method for producing the same, and electron emission source
WO2013015348A1 (en) * 2011-07-28 2013-01-31 住友電気工業株式会社 Polycrystalline diamond, manufacturing method therefor, scribe tool, scribe wheel, dresser, rotary tool, water-jet orifice, wire drawing die, cutting tool, and electron source
JP5891639B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond and manufacturing method thereof, scribe tool, scribe wheel, dresser, rotary tool, water jet orifice, wire drawing die, and cutting tool
EP2738139B1 (en) 2011-07-28 2020-04-08 Sumitomo Electric Industries, Ltd. Polycrystalline diamond and manufacturing method therefor
JP5891637B2 (en) * 2011-07-28 2016-03-23 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP6015129B2 (en) * 2012-05-24 2016-10-26 住友電気工業株式会社 Polycrystalline diamond abrasives and method for producing the same, slurry, and fixed abrasive wire
JP6015325B2 (en) * 2012-10-09 2016-10-26 住友電気工業株式会社 Polycrystalline diamond, method for producing the same, and tool
JP5987629B2 (en) * 2012-10-23 2016-09-07 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP6007732B2 (en) * 2012-11-06 2016-10-12 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP2014129218A (en) * 2012-11-30 2014-07-10 Sumitomo Electric Ind Ltd Diamond polycrystal, method for producing the same and tool
JP6390151B2 (en) * 2014-04-30 2018-09-19 住友電気工業株式会社 Composite sintered body
JP6390152B2 (en) 2014-04-30 2018-09-19 住友電気工業株式会社 Composite sintered body
US9663371B2 (en) * 2014-05-08 2017-05-30 Sumitomo Electric Industries, Ltd. Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool, and method for producing polycrystalline diamond body
JP6458559B2 (en) * 2015-03-06 2019-01-30 住友電気工業株式会社 Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
ES2942298T3 (en) 2015-10-30 2023-05-31 Sumitomo Electric Industries polycrystalline compound
JP6112177B1 (en) * 2015-10-30 2017-04-12 住友電気工業株式会社 Composite polycrystal and method for producing the same
CN107108230B (en) * 2015-10-30 2021-06-25 住友电气工业株式会社 Composite polycrystal
CN105561882A (en) * 2015-12-28 2016-05-11 河南广度超硬材料有限公司 Polycrystalline diamond manufacturing method
CN106512859A (en) * 2016-12-07 2017-03-22 鸡西浩市新能源材料有限公司 Synthesizer of large granular diamond and synthesizing method
EP3825294A4 (en) * 2018-07-20 2022-02-23 Sumitomo Electric Industries, Ltd. Diamond polycrystal and tool provided with same
EP3825293B1 (en) * 2018-07-20 2024-08-14 Sumitomo Electric Industries, Ltd. Diamond polycrystal
CN111635231B (en) * 2020-06-05 2021-12-17 四川大学 Preparation method of polycrystalline diamond transparent ceramic
CN118437230B (en) * 2024-07-08 2024-09-24 吉林大学 Preparation method of hexagonal diamond and cubic-hexagonal heterostructure

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012001643B4 (en) 2011-04-11 2022-09-01 Sumitomo Electric Industries, Ltd. Cutting tool and method of making the same
US9403215B2 (en) 2011-04-11 2016-08-02 Sumitomo Electric Industries, Ltd. Cutting tool and method for producing same
US10167569B2 (en) 2012-08-16 2019-01-01 National University Corporation Ehime University Hexagonal diamond bulk sintered body and its manufacturing method
CN106163652A (en) * 2014-10-11 2016-11-23 河南飞孟金刚石工业有限公司 A kind of synthetic method of rough surface diamond
CN106163652B (en) * 2014-10-11 2019-02-01 河南飞孟金刚石工业有限公司 A kind of synthetic method of rough surface diamond
CN107108231A (en) * 2015-10-30 2017-08-29 住友电气工业株式会社 Polycrystalline body
CN107108231B (en) * 2015-10-30 2021-06-25 住友电气工业株式会社 Composite polycrystal
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11866372B2 (en) 2020-05-28 2024-01-09 Saudi Arabian Oil Company Bn) drilling tools made of wurtzite boron nitride (W-BN)
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11421497B2 (en) 2020-06-03 2022-08-23 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719063B2 (en) 2020-06-03 2023-08-08 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Also Published As

Publication number Publication date
JP2003292397A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP4275896B2 (en) Polycrystalline diamond and method for producing the same
JP5013156B2 (en) High hardness diamond polycrystal and method for producing the same
JP5070688B2 (en) High hardness diamond polycrystal and method for producing the same
JP4203900B2 (en) Polycrystalline diamond and method for producing the same
JP5435043B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP2009067609A (en) High purity diamond polycrystalline body and method of manufacturing the same
JP5140606B2 (en) Wire drawing dies
WO2007011019A1 (en) High-hardness polycrystalline diamond and process for producing the same
US10167569B2 (en) Hexagonal diamond bulk sintered body and its manufacturing method
JP5674009B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP5534181B2 (en) Diamond polycrystal
JP5076300B2 (en) High hardness diamond polycrystal
KR102216089B1 (en) Diamond polycrystal and its manufacturing method
JP2009007248A (en) Diamond polycrystal body
Jaworska et al. Influence of pulsed current during high pressure sintering on crystallite size and phase composition of diamond with TiB bonding phase
JP5672483B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP2009067610A (en) High-hardness diamond polycrystalline body and method for producing the same
Sorb et al. Diamond: high-pressure synthesis
JPH09206582A (en) Extra-high pressure and high temperature generator and synthesis of cbn
JP2007217281A (en) Cubical boron nitride sintered compact and method of manufacturing the same
WO2020089204A1 (en) High-pressure synthesis of diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Ref document number: 4275896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term