JPH09206582A - Extra-high pressure and high temperature generator and synthesis of cbn - Google Patents

Extra-high pressure and high temperature generator and synthesis of cbn

Info

Publication number
JPH09206582A
JPH09206582A JP8018861A JP1886196A JPH09206582A JP H09206582 A JPH09206582 A JP H09206582A JP 8018861 A JP8018861 A JP 8018861A JP 1886196 A JP1886196 A JP 1886196A JP H09206582 A JPH09206582 A JP H09206582A
Authority
JP
Japan
Prior art keywords
pressure
zirconia
cylinder body
cbn
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8018861A
Other languages
Japanese (ja)
Other versions
JP3810116B2 (en
Inventor
Kazuyuki Hiruta
和幸 蛭田
Masaaki Watanabe
雅昭 渡辺
Masaharu Suzuki
正治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP01886196A priority Critical patent/JP3810116B2/en
Publication of JPH09206582A publication Critical patent/JPH09206582A/en
Application granted granted Critical
Publication of JP3810116B2 publication Critical patent/JP3810116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an extra-high pressure and high temp. generator in which stable high pressure can be generated by using a zirconia comprising cubic and/or tetragonal system and monoclinic system and having specified value or less in respect of Xm value calculated by specified formula to constitute a pressurizing plate. SOLUTION: In this extra-high pressure and high temp. generator, a cylinder body 1 is arranged between a pair of anvils 2, and a gasket 7 is inserted between the cylinder body 1 and the anvils 2 to form a reaction room in the center space between the cylinder body 1 and the anvils 2. Further, a pressurizing plate 3 is disposed between the reaction room and the anvil 2, and a pressure medium 9 is disposed between the reaction room and the cylinder body 1. The pressurizing plate 3 consists of such a zirconia that consists of a cubic or tetragonal system and a monoclinic system and has <=0.3Xm (including zero) calculated according to the formula I. Xm=Im(T11)+Im(111)/Im(T11)+Im(111)+1c(111) In the formula, Xm is the index of the amt. of the monoclinic crystal, Im(-111) is the integral intensity of the diffraction peak of-111 in the monoclinic system, Im(111) is the integral intensity of the diffraction peak of 111 in the monoclinic system, and Ic(111) is the integral intensity of the diffraction peak of 111 in the cubic system. crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超高圧高温発生装
置、詳しくは高硬度、高熱伝導性を有し化学的にも安定
であることから、機械加工用工具、半導体デバイス用放
熱板等として利用が進められているダイヤモンドや立方
晶窒化ほう素(cBN)等の合成に好適な超高圧高温発
生装置及びそれを用いたcBNの合成法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrahigh pressure and high temperature generator, and more particularly to a tool for machining, a heat sink for semiconductor devices, etc., because it has high hardness, high thermal conductivity and is chemically stable. The present invention relates to an ultrahigh pressure and high temperature generator suitable for synthesizing diamond, cubic boron nitride (cBN) and the like, which are being utilized, and a method for synthesizing cBN using the same.

【0002】[0002]

【従来の技術】従来、cBNは、低圧相BNである六方
晶BN(hBN)や乱層構造BN(tBN)等を各種金
属元素の窒化物、ホウ化物、ホウ窒化物を触媒とし、c
BNの熱力学的安定条件下、例えば圧力5〜6.5GP
a、温度1400℃〜1600℃で保持する触媒法、又
は触媒を使用せずに上記条件よりも高圧高温下、例えば
圧力7.5GPa以上、温度2000℃程度で保持する
直接転換法で合成されている。直接転換法によれば、合
成されたcBNは微細粒子からなる多結晶体となり、高
硬度、高純度、高熱伝導性、高靭性となることから、よ
り高性能の工具材料、放熱基板等としての利用が期待で
きる。
2. Description of the Related Art Conventionally, cBN has been prepared by using hexagonal BN (hBN), which is a low-pressure phase BN, and turbostratic structure BN (tBN), etc. as a catalyst with nitrides, borides, and boronitrides of various metal elements.
Under thermodynamically stable conditions of BN, for example, a pressure of 5 to 6.5 GP
a, a catalyst method in which the temperature is maintained at 1400 ° C. to 1600 ° C., or a direct conversion method in which the temperature is maintained at a pressure of 7.5 GPa or more and a temperature of about 2000 ° C. without using a catalyst. There is. According to the direct conversion method, the synthesized cBN becomes a polycrystalline body composed of fine particles and has high hardness, high purity, high thermal conductivity, and high toughness. Expected to be used.

【0003】従来、高圧高温発生装置としては、一対の
アンビル体の間にシリンダー体を設け、上記シリンダー
体と上記アンビル体との間にガスケットを挿入すること
によって、上記シリンダ体と上記アンビル体との中央空
間部に反応室を形成し、該反応室と上記アンビル体の間
にジルコニアからなる増圧板が挿入されてなるものが知
られている(特公昭59ー5547号公報)。
Conventionally, as a high-pressure and high-temperature generator, a cylinder body is provided between a pair of anvil bodies, and a gasket is inserted between the cylinder body and the anvil body, whereby the cylinder body and the anvil body are separated from each other. It is known that a reaction chamber is formed in the central space of the above, and a pressure increasing plate made of zirconia is inserted between the reaction chamber and the anvil body (Japanese Patent Publication No. 59-5547).

【0004】ジルコニアが増圧板として用いられている
理由は、ジルコニアは熱伝導性が低いために断熱性に優
れていることや、高弾性率を有するため圧力伝達板とし
ての機能を果たすからである。しかしながら、このよう
な高圧高温発生装置であっても、十分に高い圧力を安定
して発生させることが難しく、高品質のダイヤモンドや
cBN等を安定に合成することは困難であった。
The reason why zirconia is used as a pressure intensifying plate is that zirconia has a low thermal conductivity and thus is excellent in heat insulation, and that it has a high elastic modulus and thus functions as a pressure transmitting plate. . However, even with such a high-pressure and high-temperature generator, it is difficult to stably generate a sufficiently high pressure, and it is difficult to stably synthesize high-quality diamond, cBN, or the like.

【0005】本発明は、安定して高い圧力を発生するこ
とができ、高品質なダイヤモンド、cBN等を合成する
ことのできる超高圧高温発生装置、及び直接転換法によ
って転換度合の高いcBNの合成法を提供することを目
的とするものである。
The present invention is an ultrahigh pressure and high temperature generator capable of stably producing high pressure and capable of synthesizing high quality diamond, cBN and the like, and synthesizing cBN having a high degree of conversion by a direct conversion method. It is intended to provide the law.

【0006】すなわち、本発明は、以下を要旨とするも
のである。 (請求項1)一対のアンビル体2間にシリンダー体1を
設け、上記シリンダー体と上記アンビル体との間にガス
ケット7が挿入されることによって上記シリンダー体と
上記アンビル体との中央空間部に反応室が形成され、上
記反応室と上記アンビル体との間には増圧板3が、また
上記反応室と上記シリンダー体との間には圧力媒体9が
それぞれ設置されてなる高圧高温発生装置において、上
記増圧板が、立方晶及び/又は正方晶と単斜晶からなり
(1)式で算出されたXm値が0.3以下(0を含む)
のジルコニアからなるものであることを特徴とする超高
圧高温発生装置。
That is, the present invention has the following gist. (Claim 1) A cylinder body (1) is provided between a pair of anvil bodies (2), and a gasket (7) is inserted between the cylinder body and the anvil body to form a central space between the cylinder body and the anvil body. In a high-pressure high-temperature generator in which a reaction chamber is formed, a pressure increasing plate 3 is installed between the reaction chamber and the anvil body, and a pressure medium 9 is installed between the reaction chamber and the cylinder body. The pressure-increasing plate is made of cubic crystal and / or tetragonal crystal and monoclinic crystal, and the Xm value calculated by the formula (1) is 0.3 or less (including 0).
An ultrahigh pressure and high temperature generator characterized by comprising zirconia.

【数2】 (請求項2)低圧相BNを請求項1記載の超高圧高温発
生装置によりcBNの熱力学的安定条件下で保持するこ
とを特徴とするcBNの合成法。
[Equation 2] (Claim 2) A method for synthesizing cBN, characterized in that the low-pressure phase BN is held under the thermodynamically stable condition of cBN by the ultrahigh-pressure high-temperature generator according to claim 1.

【0007】[0007]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0008】本発明が対象としている超高圧高温発生装
置は、一対のアンビル体の間にシリンダー体を設け、上
記シリンダー体と上記アンビル体との間にガスケットが
挿入されることによって、上記シリンダー体と上記アン
ビル体との中央空間部に反応室が形成され、上記反応室
と上記アンビル体の間に増圧板が挿入されてなる高圧高
温発生装置であって、これにはフラットベルト型(例え
ば特公昭59ー5547号公報)とガードル型(例えば
特開昭61ー215293号公報)があるが、以下、フ
ラットベルト型を例にとって説明する。
The ultrahigh pressure and high temperature generator of the present invention is provided with a cylinder body between a pair of anvil bodies, and a gasket is inserted between the cylinder body and the anvil body. A high-pressure high-temperature generator in which a reaction chamber is formed in the central space between the reaction chamber and the anvil body, and a pressure booster plate is inserted between the reaction chamber and the anvil body. There is a girdle type (for example, Japanese Patent Laid-Open No. 61-215293), but a flat belt type will be described below as an example.

【0009】図1にフラットベルト型高圧高温発生装置
の概略断面図を示した。図1において、1はシリンダー
体、2は一対のアンビル体、3は増圧板、4は通電リン
グ、5は黒鉛製等のヒーター、6はMo電極板、7はパ
イロフィライト等のガスケット、8は紙等のガスケッ
ト、9は圧力媒体、10、11は塩化ナトリウム等から
なる試料容器である。圧力発生は、一対のアンビル体に
荷重を負荷することにより行われる。その際、荷重は増
圧板を通して反応室に負荷される荷重とガスケットに負
荷される荷重とに分配されるが、同一荷重をかけた場
合、増圧板に負荷される力量が大きいほど反応室内の圧
力は高くなる。加熱は、一対のアンビル体より通電リン
グ、Mo電極板を経てヒーターに交流を印加して行われ
る。
FIG. 1 shows a schematic sectional view of a flat belt type high pressure and high temperature generator. In FIG. 1, 1 is a cylinder body, 2 is a pair of anvil bodies, 3 is a pressure booster plate, 4 is a current-carrying ring, 5 is a heater made of graphite, 6 is a Mo electrode plate, 7 is a gasket such as pyrophyllite, 8 Is a gasket such as paper, 9 is a pressure medium, and 10 and 11 are sample containers made of sodium chloride or the like. The pressure is generated by applying a load to the pair of anvil bodies. At that time, the load is distributed between the load applied to the reaction chamber through the booster plate and the load applied to the gasket. However, when the same load is applied, the larger the force applied to the booster plate, the higher the pressure in the reaction chamber. Will be higher. The heating is performed by applying an alternating current to the heater from the pair of anvils through the current-carrying ring and the Mo electrode plate.

【0010】本発明の最大の特徴は、増圧板として使用
するジルコニアは単斜晶を全く含ませないか所定量以下
に抑えた点にある。その理由は以下の通りである。単斜
晶は、高圧高温下で正方晶に相転移する際に体積収縮を
伴うため発生圧力を小さくする。したがって、cBNを
安定に合成するのに必要な高い圧力を発現させるには、
その相転移による収縮量を小さくすること、すなわち単
斜晶量を少なくすることが重要となるからである。
The most important feature of the present invention is that the zirconia used as the pressure intensifying plate does not contain monoclinic crystals at all or is suppressed to a predetermined amount or less. The reason is as follows. Since the monoclinic crystal undergoes volume contraction when it undergoes a phase transition to a tetragonal crystal under high pressure and high temperature, the generated pressure is reduced. Therefore, in order to develop the high pressure required for stable synthesis of cBN,
This is because it is important to reduce the amount of shrinkage due to the phase transition, that is, to reduce the amount of monoclinic crystals.

【0011】本発明で使用される増圧板は、上記(1)
式で算出されたXm値が0.3以下(0を含む)好まし
くは0.15以下(0を含む)のジルコニアで構成され
ているものである。ここで、Xm値が0ということは単
斜晶を含まないジルコニアを意味している。このような
Xm値を有するジルコニアであれば、立方晶のみからな
る安定化ジルコニア、立方晶と正方晶からなる部分安定
化ジルコニア、正方晶のみからなるジルコニア、さらに
はこれらに少量の単斜晶を含有したジルコニアのいずれ
であってもよい。
The pressure-increasing plate used in the present invention has the above-mentioned (1).
The Xm value calculated by the formula is 0.3 or less (including 0), and preferably 0.15 or less (including 0). Here, having an Xm value of 0 means zirconia containing no monoclinic crystals. With zirconia having such an Xm value, stabilized zirconia consisting only of cubic crystals, partially stabilized zirconia consisting of cubic and tetragonal crystals, zirconia consisting only of tetragonal crystals, and further a small amount of monoclinic crystals to these. Any of the contained zirconia may be used.

【0012】ここでジルコニアについて概説すると、ジ
ルコニアは、安定化剤の種類・量によりその微構造が異
なる。ジルコニア単体の焼結体は、室温下で単斜晶であ
るが、1000℃付近まで加熱すると正方晶に相転移
し、その際の体積変化により破壊する。しかし、ジルコ
ニアにY2 3 、MgO、CaO等の酸化物を固溶させ
ると最高温相の立方晶が低温まで安定相として存在でき
る。これがいわゆる安定化ジルコニアである。
An outline of zirconia will be given below. The microstructure of zirconia differs depending on the type and amount of stabilizer. A zirconia simple substance sintered body is a monoclinic crystal at room temperature, but when heated up to around 1000 ° C., it undergoes a phase transition to a tetragonal crystal and is destroyed by a volume change at that time. However, when an oxide of Y 2 O 3 , MgO, CaO, or the like is dissolved in zirconia, the cubic crystal of the highest temperature phase can exist as a stable phase up to a low temperature. This is so-called stabilized zirconia.

【0013】一方、立方晶ジルコニアの安定化に必要な
酸化物の最小モル%は、1500℃で固溶させたときに
MgO:13.8%、CaO:11.2%、Y2 3
6%程度である。添加量がこれより少ないと、100%
の立方晶にはならず、立方晶と正方晶、立方晶と単斜
晶、立方晶と正方晶と単斜晶、正方晶と単斜晶といった
混合相又は正方晶単体となる。これらは部分安定化ジル
コニアと呼ばれているものであり、高強度、高靭性を示
す。一般にジルコニアセラミックスと呼ばれているもの
はこの部分安定化ジルコニアであり、機械的特性を向上
させることを目的としてある程度の単斜晶を含ませてあ
る。このような部分安定化ジルコニアのXm値は0.5
程度であり、本発明で使用されるジルコニアのXm値
0.3以下(0を含む)よりも大きなものである。
On the other hand, the minimum mol% of oxide necessary for stabilizing cubic zirconia is MgO: 13.8%, CaO: 11.2%, Y 2 O 3 : when solid-solved at 1500 ° C.
It is about 6%. If the amount added is less than this, 100%
Does not become a cubic crystal, but becomes a mixed phase such as a cubic crystal and a tetragonal crystal, a cubic crystal and a monoclinic crystal, a cubic crystal and a tetragonal crystal and a monoclinic crystal, a tetragonal crystal and a monoclinic crystal, or a tetragonal simple substance. These are called partially stabilized zirconia and show high strength and high toughness. What is generally called zirconia ceramics is this partially stabilized zirconia, which contains some monoclinic crystals for the purpose of improving mechanical properties. The Xm value of such partially stabilized zirconia is 0.5.
This is a degree, and is larger than the Xm value of zirconia used in the present invention of 0.3 or less (including 0).

【0014】本発明において、ジルコニアのXm値が
0.3をこえると高圧高温下における変形量が大きくな
って高い圧力を発生させることができなくなる。また、
本発明においては、増圧板の気孔率が小さいものほど高
圧高温下における変形量が小さく発生圧力も高くなるの
で、その気孔率は6%未満特に3%未満であることが好
ましい。
In the present invention, when the Xm value of zirconia exceeds 0.3, the amount of deformation under high pressure and high temperature becomes large and it becomes impossible to generate high pressure. Also,
In the present invention, the smaller the porosity of the pressure booster plate, the smaller the amount of deformation under high pressure and high temperature and the higher the generated pressure.

【0015】本発明で使用されるジルコニアは次のよう
にして製造することができる。基本的には、ジルコニア
粉末と上記酸化物粉末とを目的とするXm値となるよう
に所定量混合しその混合粉末を成形した後焼成するもの
であるが、気孔率を小さくするためには共沈法等の液相
法で調製された混合粉末を使用することが望ましい。成
形はCIP成形が好ましく、また焼成は1700℃程度
で行われる。
The zirconia used in the present invention can be manufactured as follows. Basically, the zirconia powder and the above oxide powder are mixed in a predetermined amount so as to have a desired Xm value, and the mixed powder is molded and then fired. However, in order to reduce the porosity, It is desirable to use a mixed powder prepared by a liquid phase method such as a precipitation method. CIP molding is preferable for molding, and firing is performed at about 1700 ° C.

【0016】酸化物粉末として、MgOを用いた場合に
ついてさらに具体的に説明する。まず、立方晶ジルコニ
アは、MgOを含有したZrO2 が立方晶の単相で存在
できる領域で焼成し急冷することによって製造すること
ができる。通常は、温度1700℃程度で焼成するの
で、この温度で立方晶が安定なMgO量は9〜13.8
モル%である。この場合において、MgO量を9モル%
よりも少なくすると、立方晶と正方晶からなるジルコニ
アが得られやすい。また、単斜晶を含むジルコニアは、
MgO量を1.5〜13.8モル%とし、1700℃程
度で焼成後徐冷するか、又は焼成温度を1000〜12
00℃程度にすることによって製造することができる。
The case where MgO is used as the oxide powder will be described more specifically. First, cubic zirconia can be manufactured by firing and quenching in a region where ZrO 2 containing MgO can exist in a cubic single phase. Normally, the firing is performed at a temperature of about 1700 ° C., so that the cubic Mg stable MgO amount is 9 to 13.8 at this temperature.
Mol%. In this case, the amount of MgO is 9 mol%
When the amount is less than that, cubic zirconia and tetragonal zirconia are easily obtained. In addition, zirconia containing monoclinic crystals,
The amount of MgO is set to 1.5 to 13.8 mol%, and calcined at about 1700 ° C. and then gradually cooled, or the calcining temperature is set to 1000 to 12
It can be produced by setting the temperature to about 00 ° C.

【0017】次に、本発明のcBNの合成法について説
明する。原料hBNは、粉末又は成形体のいずれでもよ
いが、好ましくは熱分解BN(P−BN)板である。特
に、直接転換法にあっては、P−BN板の使用が好適で
ある。原料hBNは上記した黒鉛製等のヒ−タ−内の反
応室に入れられ、cBNの熱力学的安定条件下で保持す
ることによって合成される。圧力・温度条件としては、
cBNの熱力学的条件下とすればよく、それについては
例えば特公昭59−5547号公報第5欄第28〜37
行に記載されている。直接転換法においては、圧力7G
Pa以上、温度1800℃以上が望ましく、合成速度を
速くするには圧力7.5GPa以上、温度2000℃程
度とするのがよい。
Next, the method for synthesizing cBN of the present invention will be described. The raw material hBN may be either powder or a compact, but is preferably a pyrolytic BN (P-BN) plate. Particularly, in the direct conversion method, it is preferable to use a P-BN plate. The raw material hBN is synthesized by placing it in a reaction chamber in a heater made of graphite or the like and holding it under the thermodynamically stable condition of cBN. The pressure and temperature conditions are
It may be carried out under the thermodynamic conditions of cBN, which is described in, for example, JP-B-59-5547, column 5, columns 28 to 37.
Listed on the line. In the direct conversion method, pressure 7G
It is desirable that the temperature is not less than Pa and the temperature is not less than 1800 ° C., and the pressure is 7.5 GPa or more and the temperature is about 2000 ° C. in order to increase the synthesis rate.

【0018】本発明のcBNの合成は、直接転換法に限
られることはなく、触媒法であってもよい。その際に使
用されるの触媒については、特開昭61−215203
号公報第3頁右上欄第13行〜左下欄第4行に記載され
ている。
The synthesis of cBN of the present invention is not limited to the direct conversion method, and may be a catalytic method. The catalyst used in that case is described in JP-A-61-215203.
It is described on page 3, upper right column, line 13 to lower left column, line 4 of the publication.

【0019】本発明のcBNの合成において、加熱は電
力制御において行うことができる。すなわち、電力と温
度の関係を、反応室内に白金−白金・ロジウム(13
%)熱電対、白金・ロジム(6%)−白金・ロジウム
(30%)熱電対、タングステン・レニウム(5%)−
タングステン・レニウム(26%)熱電対等を挿入し、
予め測定しておくことによって行うことができる。な
お、反応室内の圧力は、反応室内に装填した銀の溶融温
度を測定し、圧力と銀の溶融温度の対照表から判断する
ことができる。
In the synthesis of cBN of the present invention, heating can be performed under power control. That is, the relationship between the electric power and the temperature was calculated by comparing the platinum-platinum-rhodium
%) Thermocouple, Platinum / Rhodium (6%)-Platinum / Rhodium (30%) Thermocouple, Tungsten / Rhenium (5%)-
Insert Tungsten / Rhenium (26%) thermocouple,
It can be performed by measuring in advance. The pressure in the reaction chamber can be determined by measuring the melting temperature of silver loaded in the reaction chamber and comparing the pressure and the melting temperature of silver.

【0020】[0020]

【実施例】以下、実施例及び比較例をあげて具体的に説
明する。
EXAMPLES Hereinafter, examples and comparative examples will be specifically described.

【0021】実施例1 図1に示すシリンダ−体の内径が20mmの超高圧高温
発生装置に、MgOを安定化剤として添加した、気孔率
3.0%で、立方晶及び単斜晶を主相とし若干の正方晶
を含有してなるXm値0.15の部分安定化ジルコニア
を増圧板とし、反応室にP−BN板を充填した。その
後、500トンの荷重を負荷して、銀溶融法により発生
圧力を求めたところ、7.5GPaであった。
Example 1 An ultrahigh-pressure high-temperature generator having an inner diameter of a cylinder body of 20 mm shown in FIG. 1 was prepared by adding MgO as a stabilizer. Porosity was 3.0%, and cubic and monoclinic crystals were mainly used. A partially stabilized zirconia having an Xm value of 0.15, which contained some tetragonal crystals as a phase, was used as a pressure increasing plate, and the reaction chamber was filled with a P-BN plate. Then, when a load of 500 tons was applied and the generated pressure was determined by the silver melting method, it was 7.5 GPa.

【0022】このような500トンの荷重を負荷した状
態で2000℃まで昇温し、その温度で30分間保持し
てcBNの合成を行った。得られた試料について、X線
回折によるhBN(002)面及びcBN(111)面
の積分強度から、Ic/(Ih+Ic)で定義されるc
BNへの転換度合Fcを測定したところ、0.99であ
った。
Under such a load of 500 tons, the temperature was raised to 2000 ° C. and the temperature was maintained for 30 minutes to synthesize cBN. For the obtained sample, c defined by Ic / (Ih + Ic) from the integrated intensity of hBN (002) plane and cBN (111) plane by X-ray diffraction
The conversion degree Fc into BN was measured to be 0.99.

【0023】実施例2 安定化剤をY2 3 とした気孔率2.5%で正方晶のみ
からなる部分安定化ジルコニアを増圧板としたこと以外
は、実施例1と同様な方法で発生圧力の評価とcBNの
合成を行った。その結果を表1に示す。
Example 2 Generation in the same manner as in Example 1 except that the stabilizing agent was Y 2 O 3 and the pressure stabilizing plate was partially stabilized zirconia consisting only of tetragonal crystals with a porosity of 2.5%. The pressure was evaluated and cBN was synthesized. Table 1 shows the results.

【0024】実施例3 安定化剤をMgOとし、気孔率が4.0%で立方晶のみ
からなる安定化ジルコニアを増圧板とし、合成温度を1
800℃としたこと以外は、実施例1と同様にして発生
圧力の評価とcBNの合成を行った。その結果を表1に
示す。
Example 3 The stabilizing agent was MgO, the stabilizing plate was zirconia having a porosity of 4.0% and consisting of cubic crystals only, and the synthesis temperature was 1.
The generated pressure was evaluated and cBN was synthesized in the same manner as in Example 1 except that the temperature was set to 800 ° C. Table 1 shows the results.

【0025】実施例4〜5 安定化剤をMgOとし、表1に示される気孔率、ジルコ
ニア相及び単斜晶量の指標Xmを有してなる部分安定化
ジルコニアを増圧板としたこと以外は、実施例1と同様
にして発生圧力の評価とcBNの合成を行った。その結
果を表1に示す。
Examples 4 to 5 Except that the stabilizer was MgO and the partially stabilized zirconia having the porosity, zirconia phase and monoclinic crystal content index Xm shown in Table 1 was used as the pressure plate. The generated pressure was evaluated and cBN was synthesized in the same manner as in Example 1. Table 1 shows the results.

【0026】実施例6 安定化剤をMgOとし、気孔率が3.0%で立方晶と正
方晶からなるXm値0の部分安定化ジルコニアを増圧板
としたこと以外は、実施例3と同様にして発生圧力の評
価とcBNの合成を行った。その結果を表1に示す。
Example 6 The same as Example 3 except that the stabilizer was MgO and the pressure booster plate was partially stabilized zirconia with a porosity of 3.0% and cubic and tetragonal with an Xm value of 0. Then, the generated pressure was evaluated and cBN was synthesized. Table 1 shows the results.

【0027】比較例1〜3 安定化剤をMgOとし、表1に示される気孔率、ジルコ
ニア相及び単斜晶量の指標Xmを有してなる部分安定化
ジルコニアを増圧板としたこと以外は、実施例1と同様
にして発生圧力の評価とcBNの合成を行った。その結
果を表1に示す。
Comparative Examples 1 to 3 Except that the stabilizer was MgO and the partially stabilized zirconia having the porosity, the zirconia phase and the monoclinic crystal content index Xm shown in Table 1 was used as the pressure-increasing plate. The generated pressure was evaluated and cBN was synthesized in the same manner as in Example 1. Table 1 shows the results.

【0028】[0028]

【表1】 注:ジルコニア相の「C」は立方晶、「M」は単斜晶、
「T」は正方晶である。
[Table 1] Note: "C" in the zirconia phase is cubic, "M" is monoclinic,
"T" is tetragonal.

【0029】[0029]

【発明の効果】本発明によれば、安定した高い圧力の発
生が可能な超高圧高温発生装置が提供される。また、直
接転換法によるcBNを合成する場合、その転換度合が
向上する。
According to the present invention, there is provided an ultrahigh pressure and high temperature generator capable of stably generating a high pressure. In addition, when cBN is synthesized by the direct conversion method, the degree of conversion is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】フラットベルト型高圧高温発生装置の概略断面
図。
FIG. 1 is a schematic cross-sectional view of a flat belt type high pressure and high temperature generator.

【符号の説明】 1 シリンダー体 2 アンビル体 3 増圧板 4 通電リング 5 黒鉛製等のヒーター 6 Mo電極板 7 パイロフィライト等のガスケット 8 紙等のガスケット 9 圧力媒体 10 塩化ナトリウム等の試料容器 11 塩化ナトリウム等の試料容器[Explanation of symbols] 1 cylinder body 2 anvil body 3 booster plate 4 energizing ring 5 heater made of graphite 6 Mo electrode plate 7 gasket of pyrophyllite 8 gasket of paper 9 pressure medium 10 sample container of sodium chloride 11 Sample container for sodium chloride, etc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一対のアンビル体(2)の間にシリンダ
ー体(1)を設け、上記シリンダー体と上記アンビル体
との間にガスケット(7)が挿入されることによって上
記シリンダー体と上記アンビル体との中央空間部に反応
室が形成され、上記反応室と上記アンビル体との間には
増圧板(3)が、また上記反応室と上記シリンダー体と
の間には圧力媒体(9)がそれぞれ設置されてなる高圧
高温発生装置において、上記増圧板が、立方晶及び/又
は正方晶と単斜晶からなり(1)式で算出されたXm値
が0.3以下(0を含む)のジルコニアからなるもので
あることを特徴とする超高圧高温発生装置。 【数1】
1. A cylinder body (1) is provided between a pair of anvil bodies (2), and a gasket (7) is inserted between the cylinder body and the anvil body to thereby form the cylinder body and the anvil. A reaction chamber is formed in a central space with the body, a pressure increasing plate (3) is provided between the reaction chamber and the anvil body, and a pressure medium (9) is provided between the reaction chamber and the cylinder body. In the high-pressure and high-temperature generator in which each is installed, the pressure-increasing plate is made of cubic crystal and / or tetragonal crystal and monoclinic crystal, and Xm value calculated by the formula (1) is 0.3 or less (including 0). An ultrahigh pressure and high temperature generator characterized by comprising zirconia. [Equation 1]
【請求項2】 低圧相BNを請求項1記載の超高圧高温
発生装置によりcBNの熱力学的安定条件下で保持する
ことを特徴とするcBNの合成法。
2. A method for synthesizing cBN, characterized in that the low-pressure phase BN is held under the thermodynamically stable condition of cBN by the ultrahigh-pressure high-temperature generator according to claim 1.
JP01886196A 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method Expired - Fee Related JP3810116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01886196A JP3810116B2 (en) 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01886196A JP3810116B2 (en) 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method

Publications (2)

Publication Number Publication Date
JPH09206582A true JPH09206582A (en) 1997-08-12
JP3810116B2 JP3810116B2 (en) 2006-08-16

Family

ID=11983332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01886196A Expired - Fee Related JP3810116B2 (en) 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method

Country Status (1)

Country Link
JP (1) JP3810116B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064021A1 (en) * 2002-01-31 2003-08-07 General Electric Company (A New York Corporation) Improved pressure vessel
US7368015B2 (en) 2002-03-27 2008-05-06 Momentive Performance Materials Inc. Apparatus for producing single crystal and quasi-single crystal, and associated method
US7625446B2 (en) 2002-01-31 2009-12-01 Momentive Performance Materials Inc. High temperature high pressure capsule for processing materials in supercritical fluids
US7704324B2 (en) 2005-01-25 2010-04-27 General Electric Company Apparatus for processing materials in supercritical fluids and methods thereof
US7942970B2 (en) 2005-12-20 2011-05-17 Momentive Performance Materials Inc. Apparatus for making crystalline composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064021A1 (en) * 2002-01-31 2003-08-07 General Electric Company (A New York Corporation) Improved pressure vessel
US7625446B2 (en) 2002-01-31 2009-12-01 Momentive Performance Materials Inc. High temperature high pressure capsule for processing materials in supercritical fluids
US7368015B2 (en) 2002-03-27 2008-05-06 Momentive Performance Materials Inc. Apparatus for producing single crystal and quasi-single crystal, and associated method
US7704324B2 (en) 2005-01-25 2010-04-27 General Electric Company Apparatus for processing materials in supercritical fluids and methods thereof
US7942970B2 (en) 2005-12-20 2011-05-17 Momentive Performance Materials Inc. Apparatus for making crystalline composition

Also Published As

Publication number Publication date
JP3810116B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP4275896B2 (en) Polycrystalline diamond and method for producing the same
JPS5939362B2 (en) Boron nitride compound and its manufacturing method
Abovyan et al. Synthesis of alumina–silicon carbide composites by chemically activated self-propagating reactions
JPH09206582A (en) Extra-high pressure and high temperature generator and synthesis of cbn
JP2002128569A (en) High thermal conductive silicon nitride ceramic and its manufacturing method
JPH02302371A (en) Production of cubic boron nitride-containing inorganic composite sintered material
US5169832A (en) Synthesis of refractory metal boride powders of predetermined particle size
JP3550587B2 (en) Method for manufacturing fine diamond sintered body
JP2009007248A (en) Diamond polycrystal body
JP3444678B2 (en) Ultra high pressure and high temperature generator and synthesis method of cBN
JP2782685B2 (en) High hardness high density composite sintered body containing diamond and method for producing the same
CN101486576B (en) In situ reaction heat pressing synthesized V2AlC bulk ceramic and preparation thereof
JP3223275B2 (en) Method for producing cubic boron nitride sintered body
JPH0478335B2 (en)
JP2794079B2 (en) High-pressure high-hardness high-density composite sintered body containing boron nitride and method for producing the same
JP2628668B2 (en) Cubic boron nitride sintered body
JPH0455144B2 (en)
JPH06305732A (en) Wc type tantalum nitride and method for synthesizing the same
Cambier et al. Silicon nitride: relations between powder characteristics and sinterability
JPH08309176A (en) Pressure medium for ultrahigh pressure generation and device using the same
JP2538340B2 (en) Method for manufacturing ceramics sintered body
KR910005023B1 (en) Ceramic composite and preparation method thereof
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JPH08309175A (en) Pressure medium for ultrahigh pressure generation and device using the same
JP2004224662A (en) Reaction synthesis of alumina-boron nitride composite body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees