JP5534181B2 - Diamond polycrystal - Google Patents

Diamond polycrystal Download PDF

Info

Publication number
JP5534181B2
JP5534181B2 JP2010055304A JP2010055304A JP5534181B2 JP 5534181 B2 JP5534181 B2 JP 5534181B2 JP 2010055304 A JP2010055304 A JP 2010055304A JP 2010055304 A JP2010055304 A JP 2010055304A JP 5534181 B2 JP5534181 B2 JP 5534181B2
Authority
JP
Japan
Prior art keywords
diamond
less
polycrystalline
particles
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010055304A
Other languages
Japanese (ja)
Other versions
JP2011190124A (en
JP2011190124A5 (en
Inventor
佳津子 山本
武 佐藤
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010055304A priority Critical patent/JP5534181B2/en
Publication of JP2011190124A publication Critical patent/JP2011190124A/en
Publication of JP2011190124A5 publication Critical patent/JP2011190124A5/ja
Application granted granted Critical
Publication of JP5534181B2 publication Critical patent/JP5534181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、ダイヤモンド多結晶材料に関するもので、特に切削バイト等に用いる高硬度、高強度で耐熱性に優れるダイヤモンド多結晶体に関するものである。   The present invention relates to a polycrystalline diamond material, and particularly to a polycrystalline diamond having high hardness, high strength and excellent heat resistance used for cutting tools and the like.

材料の切削に際しては被削材料に適した切削工具及び切削方法が選択される。
切削加工において長寿命を達成するためには、如何に切削時の刃先温度を抑制できるかが重要であり、熱伝導率に優れる工具材料が重用されている。一般に、熱伝導率に優れるダイヤモンド焼結体やcBN焼結体などの超高圧焼結体工具を用いた切削加工においても、高速条件や、大切り込み、高送り条件での高能率条件では、刃先温度の上昇により、被削材との拡散や、酸化などの化学的な摩耗が発達する。そこで、工具摩耗を抑制する方策として、低速条件への変更や、工具刃先の楔角の低減による切削抵抗抑制、またはクーラントの切削点への吐出による切削点の冷却などが行われている。
In cutting the material, a cutting tool and a cutting method suitable for the work material are selected.
In order to achieve a long life in the cutting process, it is important how the cutting edge temperature can be suppressed during cutting, and a tool material excellent in thermal conductivity is used heavily. In general, even in cutting using ultra-high pressure sintered tools such as diamond sintered bodies and cBN sintered bodies with excellent thermal conductivity, the cutting edge is used under high-efficiency conditions with high speed conditions, large cutting depths, and high feed conditions. As the temperature rises, chemical wear such as diffusion with the work material and oxidation occurs. Therefore, as measures for suppressing tool wear, changing to a low speed condition, cutting resistance suppression by reducing the wedge angle of the tool blade edge, or cooling of the cutting point by discharging coolant to the cutting point, and the like are performed.

例えば、難削材の切削加工における更なる長寿命化方策として、特許文献1には、刃先の少なくとも切削に関与する部分に熱伝導率100W/m・K以上の放熱性の良い超高圧焼結体材料を適用した切削工具の刃先を高圧クーラントで冷却しながら加工を行うことにより、切削熱による刃先の温度上昇が抑える発明が開示されている。   For example, as a measure for further prolonging the life in cutting difficult-to-cut materials, Patent Document 1 discloses ultra-high pressure sintering that has a heat conductivity of at least 100 W / m · K or more at a portion related to cutting of the cutting edge. An invention has been disclosed in which the cutting edge temperature of the cutting tool to which the body material is applied is suppressed by cooling with a high-pressure coolant, thereby suppressing the temperature rise of the cutting edge due to cutting heat.

一方、例えばガラスやセラミックス、超硬、焼結合金難削材料などの脆性難削材の切削加工では、高速条件で切削を行うことや、レーザーアシストにより被削材の切削点の温度を上昇させることにより、被削材を軟化、もしくは切り屑の生成メカニズムを脆性モードから延性モードへ変化させ、良好な加工面を達成させることが提案されているが、原理上、工具刃先が高温に曝され、かつ急冷もされることから刃具が劣化しやすく、チッピングや突発的な欠損が生じやすくなる。また工作機械にも、主軸回転数の制約や、高価なレーザー装置の設置が必要となるなどの問題が生ずる。   On the other hand, for cutting of brittle difficult-to-cut materials such as glass, ceramics, carbide, and sintered alloy difficult-to-cut materials, cutting is performed under high-speed conditions and the temperature at the cutting point of the workpiece is increased by laser assist. It has been proposed to soften the work material or change the chip generation mechanism from brittle mode to ductile mode to achieve a good machined surface, but in principle, the tool edge is exposed to high temperatures. In addition, since the tool is rapidly cooled, the cutting tool is likely to be deteriorated, and chipping and sudden loss are likely to occur. In addition, the machine tool also has problems such as restrictions on the number of rotations of the spindle and the need to install an expensive laser device.

このように切削点を高温に保つことが不可欠となる難削材切削には、刃具材質の耐欠損性、耐熱性、及び熱伝導率が重要となる。切削刃具には従来の超硬合金やサーメットよりも、高温硬度、及び強度に優れるダイヤモンド焼結体やcBN焼結体などの超高圧焼結体工具が適している。   Thus, in difficult-to-cut material cutting in which it is indispensable to keep the cutting point at a high temperature, the fracture resistance, heat resistance, and thermal conductivity of the blade material are important. For the cutting tool, an ultra-high pressure sintered body tool such as a diamond sintered body or a cBN sintered body, which is superior in high-temperature hardness and strength, is more suitable than conventional cemented carbide or cermet.

一般に焼結ダイヤモンドと呼ばれるダイヤモンド多結晶体はcBN焼結体工具に比べて、2倍以上の高硬度を有し、600℃以下の刃先温度条件化では、切削性能に優れるが、鉄族元素を主成分とする焼結助剤によるダイヤモンドからグラファイトへの逆変換作用や酸化による劣化のために、高温下での切削性能に劣る。
すなわち、焼結ダイヤモンドとして工業的に多用されているダイヤモンド多結晶体としては焼結助剤としてCoやNiなどの鉄族元素を用いたダイヤモンド多結晶体があり、切削バイトや、ドレッサー、ダイスなどの工具や、掘削ビットなどに使われている。しかしながら、このダイヤモンド多結晶体はダイヤモンドの粒子間に、Coなどの鉄族元素金属が存在するため、ダイヤモンドの黒鉛化や酸化により、ダイヤモンド多結晶体の硬度や強度などの機械的特性が低下する。
Generally, a polycrystalline diamond called sintered diamond has a hardness that is at least twice as high as that of a cBN sintered body tool, and excels in cutting performance under a cutting edge temperature condition of 600 ° C. or lower. Due to the reverse conversion action from diamond to graphite by the sintering aid as the main component and deterioration due to oxidation, the cutting performance at high temperatures is inferior.
That is, diamond polycrystals which are widely used industrially as sintered diamond include diamond polycrystals using iron group elements such as Co and Ni as sintering aids, such as cutting tools, dressers, dies, etc. Used for tools and drill bits. However, since this diamond polycrystal has an iron group element metal such as Co between the diamond particles, mechanical properties such as hardness and strength of the diamond polycrystal are lowered by the graphitization and oxidation of diamond. .

また、焼結助剤として炭酸塩を用いたもの(特許文献2、特許文献3参照)やSiCを用いたものが知られているが、焼結助剤として炭酸塩を用いたダイヤモンド多結晶体は、焼結助剤としてCoを用いたものに比べると耐熱性に優れるが、粒界に炭酸塩物質が存在するため、機械的特性は十分とはいえない。また、SiCを焼結助剤とするダイヤモンド多結晶体は、耐熱性は高いが、ダイヤモンド粒子間の結合力が弱いため材料強度が弱い。   Also known are those using carbonates as sintering aids (see Patent Literature 2 and Patent Literature 3) and those using SiC. Polycrystalline diamond using carbonates as sintering aids. Is superior in heat resistance as compared with the one using Co as a sintering aid, but the mechanical properties are not sufficient due to the presence of a carbonate substance at the grain boundaries. In addition, the polycrystalline diamond using SiC as a sintering aid has high heat resistance, but the material strength is weak because the bonding force between diamond particles is weak.

さらに、たとえば、特許文献4にはカーボンナノチューブを10GPa以上、1600℃以上に加熱して、微細なダイヤモンドを合成する方法が記載されている。しかし、開示されている方法はカーボンナノチューブをダイアモンドアンビルで加圧し、炭酸ガスレーザーで集光加熱しているため、切削工具等に適用できるサイズの均質なダイヤモンド多結晶体の製造は不可能である。   Furthermore, for example, Patent Document 4 describes a method of synthesizing fine diamond by heating a carbon nanotube to 10 GPa or more and 1600 ° C. or more. However, since the disclosed method pressurizes carbon nanotubes with a diamond anvil and collects and heats them with a carbon dioxide laser, it is impossible to produce a homogenous diamond polycrystal having a size applicable to a cutting tool or the like. .

前記ダイヤモンド多結晶体の耐熱性を上げるために、ダイヤモンド焼結体を酸処理して粒界中の金属焼結助剤を溶解除去してダイヤモンド粒子のみからなる構造体を得る方法があるが、ダイヤモンド粒子間結合の形成過程は焼結条件や金属触媒の局所的な濃度に極めて敏感であり、制御することが難しい。このため、ダイヤモンド粒子によって焼結助剤が封じられる部位も多数発生してしまう。かかる部位では酸処理によって焼結体内部の金属焼結助剤を完全に除去することは困難であり、直接変換により得られた焼結助剤を含まない多結晶ダイヤモンドに比べると耐熱性が不十分である。
また、前記多結晶体を構成するダイヤモンド粒の平均粒径は概ね1μm以上であり、酸処理により焼結助剤を溶出させて形成される空隙のサイズは0.03〜3μm程度であるため、工具とした場合に十分な刃先の形状精度が出せない、空隙サイズが大きく材料強度が著しく低下するなどの問題がある。
In order to increase the heat resistance of the diamond polycrystalline body, there is a method of obtaining a structure consisting only of diamond particles by acid-treating the diamond sintered body and dissolving and removing the metal sintering aid in the grain boundary. The formation process of diamond particle bonds is very sensitive to the sintering conditions and the local concentration of the metal catalyst and is difficult to control. For this reason, many sites where the sintering aid is sealed by the diamond particles are generated. At such sites, it is difficult to completely remove the metal sintering aid inside the sintered body by acid treatment, and the heat resistance is inferior to that of polycrystalline diamond containing no sintering aid obtained by direct conversion. It is enough.
Further, the average grain size of the diamond grains constituting the polycrystal is approximately 1 μm or more, and the size of the void formed by eluting the sintering aid by acid treatment is about 0.03 to 3 μm. When used as a tool, there are problems such that sufficient shape accuracy of the cutting edge cannot be obtained, the gap size is large, and the material strength is significantly reduced.

焼結体中に焼結助剤を残存させないダイヤモンド多結晶体として、非ダイヤモンド型炭素を原料として直接変換により得られる緻密で硬度が高い、ダイヤモンド多結晶体が開発されている(特許文献5〜特許文献8参照)。これらの多結晶体は、焼結助剤が組織に残留するダイヤモンド多結晶体に比べると、耐熱性に優れ、硬度や耐摩耗性などの機械的特性に極めて優れた特性を示す。   As a polycrystalline diamond that does not leave a sintering aid in the sintered body, a dense polycrystalline diamond that is obtained by direct conversion using non-diamond carbon as a raw material has been developed (Patent Documents 5 to 5). (See Patent Document 8). These polycrystals have excellent heat resistance and extremely excellent mechanical properties such as hardness and wear resistance as compared with diamond polycrystals in which the sintering aid remains in the structure.

しかしながら、これらの非ダイヤモンド型炭素を出発原料として直接変換させて得られるダイヤモンド多結晶体は、緻密体であり機械強度・耐熱特性ともに優れるが、高温で機械強度、耐熱性に劣るCoなどの鉄族元素を主成分とする焼結助剤を有しないため、従来の市販のダイヤモンド焼結体材種の熱伝導率である400w/m・K以上の高熱伝導率を有する。このため、ガラスやセラミックス、超硬、焼結合金難削材料などの切削点を高温に保つことが重要となる脆性難削材用の切削工具としては、工具性能が不十分であった。   However, the polycrystalline diamond obtained by directly converting these non-diamond carbons as a starting material is a dense body and excellent in mechanical strength and heat resistance, but iron such as Co, which is inferior in mechanical strength and heat resistance at high temperatures. Since it does not have a sintering aid mainly composed of a group element, it has a high thermal conductivity of 400 w / m · K or higher, which is the thermal conductivity of a conventional commercially available diamond sintered compact. For this reason, the tool performance was insufficient as a cutting tool for brittle difficult-to-cut materials in which it is important to keep the cutting point at high temperatures such as glass, ceramics, cemented carbide, and sintered alloy difficult-to-cut materials.

特開2009−45715号公報JP 2009-45715 A 特開平4−74766号公報Japanese Patent Laid-Open No. 4-74766 特開平4−114966号公報JP-A-4-114966 特開2002−66302号公報JP 2002-66302 A 特開2003−292397号公報JP 2003-292397 A 特開2004−131336号公報JP 2004-131336 A 特開2007−22888号公報Japanese Patent Laid-Open No. 2007-22888 特開2007−99559号公報JP 2007-99559 A

本発明は、熱伝導率が低く、切削点を高温に保持して被削材の材料強度が低下した状態で切削することが可能な切削バイト等に用いるための高強度で耐熱性に優れたダイヤモンド多結晶体を提供することを目的とする。   The present invention has low heat conductivity, high strength and excellent heat resistance for use in a cutting tool capable of cutting in a state where the cutting point is kept at a high temperature and the material strength of the work material is reduced. An object is to provide a polycrystalline diamond.

本発明者らは鋭意研究の結果、非ダイヤモンド型炭素材料を出発原料として焼結条件を最適化することで、実質的にダイヤモンドのみからなる焼結体でありながら、熱伝導率が300W/・K以下と極めて低いダイヤモンド多結晶体を得るに至った。
すなわち本発明は以下に記載するとおりのダイヤモンド多結晶体に係るものである。
As a result of diligent research, the present inventors have optimized the sintering conditions using a non-diamond carbon material as a starting material, so that a thermal conductivity of 300 W / · A diamond polycrystal having an extremely low K or less was obtained.
That is, the present invention relates to a polycrystalline diamond as described below.

(1)非ダイヤモンド型炭素原料を超高圧・超高温下で焼結助剤や触媒の添加なしに直接変換して得られる95質量%以上がダイヤモンドからなる多結晶体であり、ダイヤモンド粒子が3次元的に結合し、粒子間に微細気孔を含みこの微細気孔がダイヤモンド多結晶体中に占める割合が50vol%以下であり、熱伝導率が300W/m・K以下であることを特徴とするダイヤモンド多結晶体。
(2)平均粒径が50nm以下であり、かつD95の粒径が100nm以下のダイヤモンド粒子によって構成されることを特徴とする(1)に記載のダイヤモンド多結晶体。
)熱伝導率が100W/m・K以下であることを特徴とする(1)または(2)に記載のダイヤモンド多結晶体。
)平均粒径が20nm以下かつD95の粒径が30nm以下のダイヤモンド粒子によって構成されることを特徴とする()または()に記載のダイヤモンド多結晶体。
(1) more than 95 wt% obtained by converting directly without the addition of non-diamond carbon material a sintering aid or a catalyst in an ultra high pressure and ultra high temperature is polycrystalline body comprising diamond, diamond particles 3 Diamond that is dimensionally bonded and includes fine pores between particles, and the proportion of the fine pores in the polycrystalline diamond is 50 vol% or less, and the thermal conductivity is 300 W / m · K or less. Polycrystal.
(2) The diamond polycrystal according to (1), characterized in that it is composed of diamond particles having an average particle size of 50 nm or less and a D95 particle size of 100 nm or less.
( 3 ) The polycrystalline diamond according to (1) or (2), wherein the thermal conductivity is 100 W / m · K or less.
( 4 ) The polycrystalline diamond according to ( 2 ) or ( 3 ), wherein the polycrystalline diamond is composed of diamond particles having an average particle size of 20 nm or less and a D95 particle size of 30 nm or less.

本願発明のダイヤモンド多結晶体は、熱伝導率が300W/m・K以下と極めて低いために、加工点を高温に保持しながら、被削材の材料強度が低下した状態で、かつダイヤモンド多結晶体工具の刃先を塑性変形させることで被削材の脆性破壊を回避した切削加工を行うことができる。   Since the polycrystalline diamond of the present invention has a very low thermal conductivity of 300 W / m · K or less, the material strength of the work material is reduced while maintaining the processing point at a high temperature, and the polycrystalline diamond By cutting the cutting edge of the body tool plastically, it is possible to perform cutting that avoids brittle fracture of the work material.

ダイヤモンドが熱力学的に安定な領域を圧力と温度との関係で示す図である。It is a figure which shows the area | region where a diamond is thermodynamically stable by the relationship between a pressure and temperature.

本願発明のダイヤモンド多結晶体は原料炭素材料を直接変換させることで得られるダイヤモンド多結晶体であり、焼結助剤を用いてダイヤモンド粒子を焼結させた従来のダイヤモンド焼結体と異なり、95質量%以上がダイヤモンドからなるため耐熱性に優れる。また、ダイヤモンド多結晶体を形成するダイヤモンド焼結粒子の平均粒径を50nm以下かつD95粒径を100nm以下に制御することで、前記特許文献5〜特許文献8に開示されているダイヤモンド多結晶体に比べて、300W/m・K以下という極めて低い熱伝導率を有するダイヤモンド多結晶体が得られる。 The diamond polycrystal of the present invention is a diamond polycrystal obtained by directly converting a raw material carbon material. Unlike a conventional diamond sintered body in which diamond particles are sintered using a sintering aid, 95 Excellent heat resistance because more than mass% is made of diamond. Further, the diamond polycrystalline body disclosed in Patent Documents 5 to 8 is controlled by controlling the average particle diameter of the diamond sintered particles forming the diamond polycrystalline body to 50 nm or less and the D95 particle diameter to 100 nm or less. Compared to the above, a polycrystalline diamond having an extremely low thermal conductivity of 300 W / m · K or less can be obtained.

平均粒径が50nm以下であっても、100nm近い粒子の比率が高い場合は、熱伝導率が高くなる。一方100nmを超える粗粒を含んでいても、比率が5%以下と低い場合は粗粒の耐摩耗性を生かしながら、熱伝導率の向上には寄与しない。
このダイヤモンド多結晶体はダイヤモンド粒子が極めて微粒であるため切削用刃具として用いた場合に非常に高い精度の刃先稜線を作成することが出来る。原料炭素と焼結条件の選定の仕方によっては更に、粒子間に微細気孔を生じる場合がある。この気孔がダイヤモンド多結晶体中に占める割合(気孔率)は最大50vol%に及ぶが、ダイヤモンド粒子間が3次元的に強固に結合しているため、工具材料として耐え得る。機械強度の観点からは30vol%以下の空隙を有する組織であることが望ましい。
Even if the average particle size is 50 nm or less, the thermal conductivity increases if the ratio of particles close to 100 nm is high. On the other hand, even if coarse particles exceeding 100 nm are included, if the ratio is as low as 5% or less, the wear resistance of the coarse particles is utilized, but the thermal conductivity is not improved.
Since this diamond polycrystal has extremely fine diamond particles, a cutting edge ridge line with very high accuracy can be created when used as a cutting tool. Depending on how the raw carbon and the sintering conditions are selected, fine pores may be generated between the particles. The ratio (porosity) of the pores in the polycrystalline diamond is up to 50 vol%. However, since the diamond particles are three-dimensionally firmly bonded, they can endure as a tool material. From the viewpoint of mechanical strength, a structure having voids of 30 vol% or less is desirable.

本発明の高硬度ダイヤモンド多結晶体は、非ダイヤモンド型炭素原料を超高圧・高温下で焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換された95質量%以上がダイヤモンドからなる多結晶体であり、平均粒径が50nm以下かつD95粒径が100nm未満であって、かつ気孔率が50vol%以下であるダイヤモンド多結晶体であって、ダイヤモンド粒子が3次元的に結合し、粒子間に気孔が存在することを特徴とするダイヤモンド多結晶体であり、熱伝導率が300W/m・K以下と極めて低い。このため、切削点を高温に保つ加工に適し、高精度の刃先形状が形成可能な高硬度材質である。更に好ましくは平均粒径が30nm以下かつD95粒径が50nm未満であるダイヤモンド多結晶体であり、熱伝導率が100W/m・K以下である。   The high-hardness diamond polycrystal of the present invention is a non-diamond type carbon raw material that is directly converted to diamond without adding a sintering aid or a catalyst under ultrahigh pressure and high temperature. A polycrystalline diamond having an average particle size of 50 nm or less, a D95 particle size of less than 100 nm, and a porosity of 50 vol% or less, wherein the diamond particles are three-dimensionally bonded, It is a polycrystalline diamond characterized by the presence of pores in between, and its thermal conductivity is as low as 300 W / m · K or less. For this reason, it is a high-hardness material suitable for processing that keeps the cutting point at a high temperature and capable of forming a highly accurate cutting edge shape. More preferred is a polycrystalline diamond having an average particle size of 30 nm or less and a D95 particle size of less than 50 nm, and a thermal conductivity of 100 W / m · K or less.

(非ダイヤモンド型炭素原料)
本発明のダイヤモンド多結晶体は、原料として非ダイヤモンド型炭素を用い、焼結助剤や触媒の添加なしに、原料を直接ダイヤモンドに変換することによって得られる。
前記非ダイヤモンド型炭素材料としては、グラファイト、フラーレン、カーボンナノチューブ、アモルファスカーボン、グラッシーカーボンなどが適用可能であるが、これらに限定されるものではない。グラファイトはボールミルや遊星ボールミルなどにより超微粒に粉砕した粉末を用いることで、極端に粒径を細かく制御することができる。原料炭素をできるだけ緻密な形態に整えて焼結させる必要があり、粉末グラファイト、カーボンナノチューブやアモルファスカーボン等は粉末状ではなく冷間等方加圧法などにより、ペレット状又はロッド状に成形して用いることが望ましいが、これらの形態に限定されるものではない。
ダイヤモンド多結晶体を構成するダイヤモンド粒子の平均粒径を50nm以下かつD95粒径を100nmとするためには、非ダイヤモンド型炭素原料の粒子径を微細なものとすることが必要であり、好ましくは1μm以下とする。1μm以下とすることはダイヤモンド粒子の平均粒径を50nm以下とするのに有効な手段の一つである。
(Non-diamond carbon material)
The diamond polycrystal of the present invention can be obtained by using non-diamond carbon as a raw material and directly converting the raw material into diamond without adding a sintering aid or a catalyst.
As the non-diamond type carbon material, graphite, fullerene, carbon nanotube, amorphous carbon, glassy carbon and the like can be applied, but are not limited thereto. Graphite can be extremely finely controlled in particle size by using powder pulverized into ultrafine particles by a ball mill or a planetary ball mill. It is necessary to arrange and sinter the raw carbon as densely as possible, and powder graphite, carbon nanotubes, amorphous carbon, etc. are used in the form of pellets or rods by cold isostatic pressing, etc. instead of powder. However, the present invention is not limited to these forms.
In order to set the average particle diameter of diamond particles constituting the polycrystalline diamond to 50 nm or less and the D95 particle diameter to 100 nm, it is necessary to make the particle diameter of the non-diamond carbon raw material fine, preferably 1 μm or less. Setting it to 1 μm or less is one of effective means for setting the average particle diameter of diamond particles to 50 nm or less.

(ダイヤモンドへの変換)
前記非ダイヤモンド型炭素原料を高融点金属カプセルに充填し、超高圧発生装置を用いてダイヤモンドを熱的に安定な圧力環境下で所定時間保持することにより、非ダイヤモンド型炭素はダイヤモンドに直接変換されて高硬度ダイヤモンド多結晶体となる。
非ダイヤモンド型炭素原料をダイヤモンドに変換させる加熱方法は、間接加熱が好ましい。原料炭素への直接通電加熱や、局所的に熱力を与えるレーザ加熱では、原料全体を一定温度に保つことが困難であり、ダイヤモンドへの未変換部分が生じやすくなるためである。
(Conversion to diamond)
Non-diamond carbon is directly converted to diamond by filling the non-diamond carbon raw material into a refractory metal capsule and holding the diamond in a thermally stable pressure environment for a predetermined time using an ultrahigh pressure generator. It becomes a high hardness diamond polycrystal.
Indirect heating is preferable as the heating method for converting the non-diamond carbon material into diamond. This is because direct current heating to the raw material carbon or laser heating that locally applies heat power makes it difficult to keep the entire raw material at a constant temperature, and unconverted portions to diamond are likely to occur.

上記の原料炭素をダイヤモンドに変換する過程におけるダイヤモンドが熱力学的に安定な圧力領域は、温度により異なるが、1500℃以上の焼結温度に対して8.5GPa以上の加圧が必要であり、グラファイト状炭素を原料とする場合には1900℃以上に加熱することが好ましい。焼結温度が高すぎると、ダイヤモンド粒子の粒成長を招き、熱伝導率が高くなってしまう。このため、2200℃未満で焼結することが望ましい。またダイヤモンドに変換する過程における所定温度及び、所定圧力の保持時間としては、特に限定しないが10〜10000秒程度が好ましい。   The pressure region in which diamond is thermodynamically stable in the process of converting the raw material carbon into diamond varies depending on the temperature, but requires a pressure of 8.5 GPa or more for a sintering temperature of 1500 ° C. or more. When using graphitic carbon as a raw material, it is preferable to heat to 1900 ° C. or higher. If the sintering temperature is too high, diamond particles will grow and the thermal conductivity will increase. For this reason, it is desirable to sinter at less than 2200 degreeC. Further, the holding time of the predetermined temperature and the predetermined pressure in the process of converting to diamond is not particularly limited, but is preferably about 10 to 10,000 seconds.

図1はダイヤモンドが熱力学的に安定な領域を圧力と温度との関係で示したものである。
本発明では、このダイヤモンドへの変換過程を上記のように1500℃以上で行うため、この温度を考慮して、図1のハッチングで示す範囲から適宜選定することが好ましい。さらに、ダイヤモンド安定領域にあっても、圧力が低いと未変換部が残留しやすくなるため、平衡線(図1中の一点鎖線)よりやや高い圧力が好ましく、具体的には8.5GPa以上が好ましい。なお、図1において、一点鎖線の上方がダイヤモンド安定領域であり、一点鎖線の下方がグラファイト安定領域である。
FIG. 1 shows the region where diamond is thermodynamically stable in terms of the relationship between pressure and temperature.
In the present invention, since the conversion process to diamond is performed at 1500 ° C. or higher as described above, it is preferable to appropriately select from the range shown by hatching in FIG. Further, even in the diamond stable region, an unconverted portion is likely to remain if the pressure is low, and therefore, a pressure slightly higher than the equilibrium line (the one-dot chain line in FIG. 1) is preferable, specifically 8.5 GPa or more. preferable. In FIG. 1, the upper portion of the alternate long and short dash line is the diamond stable region, and the lower portion of the alternate long and short dash line is the graphite stable region.

このようにして95質量%以上がダイヤモンドからなるダイヤモンド多結晶体でありながら、300W/m・K以下と熱伝導率が極めて低く、脆性硬質材料の切削に適する材質が得られる。
多結晶体ダイヤモンドの粒子が3次元的に強固に結合していない場合は、ダイヤモンド砥粒を散布した鋳鉄盤によるスカイフ研磨を行っても、研磨中に粒子の脱落が生じる為、Ra0.1μm以下の鏡面は得られない。一方、粒子間に強固な結合が形成されている場合は、良好な研磨面が得られる。
実際の切削は断熱性を向上させるために断熱系で、かつ非酸化雰囲気で行われることが望ましい。
In this way, although it is a diamond polycrystal composed of diamond of 95 mass% or more, a material suitable for cutting brittle hard materials can be obtained with an extremely low thermal conductivity of 300 W / m · K or less.
If the polycrystalline diamond particles are not three-dimensionally firmly bonded, even if the skiff polishing is performed with a cast iron disk in which diamond abrasive grains are dispersed, the particles fall off during the polishing, so Ra 0.1 μm or less No mirror surface can be obtained. On the other hand, when a strong bond is formed between the particles, a good polished surface can be obtained.
Actual cutting is desirably performed in a heat insulating system and in a non-oxidizing atmosphere in order to improve heat insulating properties.

本発明を実施例及び比較例を挙げることによってより詳細に説明するが、これらの実施例は例示的なものであり、本発明の範囲はこれらに限定されるものではない。
測定方法は以下の通りである。
EXAMPLES Although an Example and a comparative example demonstrate this invention in detail, these Examples are illustrative and the scope of the present invention is not limited to these.
The measuring method is as follows.

<原料の粒径評価>
バルク原料については破断面を、粉末原料については粉末を走査型電子顕微鏡により観察し、粒度分布を測定した。
<ダイヤモンド粒子の平均粒径及び、D95粒径>
ダイヤモンド多結晶体中のダイヤモンド粒子の平均粒径は走査型電子顕微鏡により観察した。ダイヤモンドは絶縁体であるため高倍率でのSEM観察には導電性薄膜のコーティングが必要であり、このような微小粒径は観察できない。高感度のシンチレーターフォトマルチプライヤー組み合わせ型検出器搭載のSEMにより、加速電圧を極めて低く(0.7〜1.5KV)し、プローブ電流量を15〜16.5pAと大きくすることで、倍率2〜10万倍での組織観察が可能となった。この写真撮影像を元にして画像解析を実施することで、平均粒径及びD95粒径を得た。
以下にその詳細方法を示す。
まず、走査型電子顕微鏡で撮影した撮影像を元に焼結体を構成する結晶粒の粒径分布を測定する。具体的には、画像解析ソフト(例えば、Scion Corporation社製、ScionImage)を用いて、個々の粒子を抽出し、抽出した粒子を2値化処理して各粒子の面積(S)を算出する。そして、各粒子の粒径(D)を、同じ面積を有する円の直径(D=2√(S/π))として算出する。
次に、上記で得られた粒径分布をデータ解析ソフト(例えば、OriginLab社製Origin、Parametric Technology社製Mathchad等)によって処理し、平均粒径を算出した。
以下に記載する実施例、比較例では走査型電子顕微鏡としてCarl Zeiss社製 ULTRA55を用いた。
<Evaluation of particle size of raw material>
The fracture surface was observed for the bulk material, and the powder for the powder material was observed with a scanning electron microscope, and the particle size distribution was measured.
<Average particle diameter of diamond particles and D95 particle diameter>
The average particle size of diamond particles in the polycrystalline diamond was observed with a scanning electron microscope. Since diamond is an insulator, a coating of a conductive thin film is necessary for SEM observation at a high magnification, and such a minute particle size cannot be observed. With an SEM equipped with a highly sensitive scintillator photomultiplier combination detector, the acceleration voltage is extremely low (0.7 to 1.5 KV), and the probe current is increased to 15 to 16.5 pA, so that the magnification is 2 to 2. The structure can be observed at a magnification of 100,000 times. Image analysis was performed based on this photographed image to obtain an average particle size and a D95 particle size.
The detailed method is shown below.
First, the particle size distribution of the crystal grains constituting the sintered body is measured based on a photographed image taken with a scanning electron microscope. Specifically, individual particles are extracted using image analysis software (for example, ScionImage, manufactured by Scion Corporation), and the extracted particles are binarized to calculate the area (S) of each particle. Then, the particle size (D) of each particle is calculated as the diameter of a circle having the same area (D = 2√ (S / π)).
Next, the particle size distribution obtained above was processed by data analysis software (for example, Origin manufactured by OriginLab, Mathchad manufactured by Parametric Technology, etc.), and the average particle size was calculated.
In Examples and Comparative Examples described below, ULTRA55 manufactured by Carl Zeiss was used as a scanning electron microscope.

<硬度>
硬度測定はヌープ圧子を用いて測定荷重を4.9Nとして実施した。
<気孔率>
高精度に面出しした試料の高分解能走査型電子顕微鏡観察像より、空隙箇所を抽出し、画像解析ソフト(例えば、Scion Corporation社製、ScionImage)を用いて、空隙部の面積を求め、画像面と比較することによって求めた。
<熱伝導率>
キセノンフラッシュランプによるパルス加熱法により測定した。
<研磨面粗さ>
触針式面粗度計にて、ダイヤモンド製の触針を用いて高精度に面出しした試料の表面粗さを計測した。
<Hardness>
The hardness was measured using a Knoop indenter and the measurement load was 4.9N.
<Porosity>
Extract the void from the high-resolution scanning electron microscope observation image of the sample surfaced, and use image analysis software (for example, ScionImage, manufactured by Scion Corporation) to determine the area of the void. Obtained by comparing with.
<Thermal conductivity>
It was measured by a pulse heating method using a xenon flash lamp.
<Polished surface roughness>
Using a stylus type surface roughness meter, the surface roughness of the sample surfaced with high precision was measured using a diamond stylus.

[実施例]
原料として、平均粒径が0.5〜1μmで純度が99.95%以上である、カーボンナノチューブ粉末、フラーレン粉末、グラッシーカーボン粉末、グラファイト粉末、及びこのグラファイト粉末を冷間静水圧加圧法によりペレット状に成形したバルク試料を用いた。これらの混合物をMoカプセルに充填、密封し、ベルト型超高圧発生装置を用いて、種々の圧力、温度条件で10分処理してダイヤモンド多結晶体を得た。
得られた試料について、その生成相をX線回折により同定し、TEM観察により構成粒子の粒径を調べた。また、得られた試料の表面を鏡面に研磨し、その研磨面での硬さをマイクロヌープ硬度計で測定すると共に、気孔率、熱伝導率を測定した。
結果を表1に示す。
[Example]
As raw materials, carbon nanotube powder, fullerene powder, glassy carbon powder, graphite powder having an average particle diameter of 0.5 to 1 μm and a purity of 99.95% or more, and pellets of this graphite powder by cold isostatic pressing A bulk sample molded into a shape was used. These mixtures were filled into Mo capsules, sealed, and treated for 10 minutes under various pressure and temperature conditions using a belt-type ultrahigh pressure generator to obtain polycrystalline diamond.
About the obtained sample, the production | generation phase was identified by X-ray diffraction, and the particle size of the constituent particles was examined by TEM observation. Further, the surface of the obtained sample was polished to a mirror surface, and the hardness on the polished surface was measured with a micro Knoop hardness meter, and the porosity and thermal conductivity were measured.
The results are shown in Table 1.

Figure 0005534181
Figure 0005534181

本発明のダイヤモンド多結晶体は、従来の金属結合材や焼結助剤を含むダイヤモンド焼結体に比べて熱伝導率が低く、機械的強度及び耐熱性にも優れるので、特に切削工具等の用途に好適に使用することができる。   The diamond polycrystalline body of the present invention has a low thermal conductivity and excellent mechanical strength and heat resistance as compared with a diamond sintered body containing a conventional metal binder and sintering aid. It can be used suitably for a use.

Claims (4)

非ダイヤモンド型炭素原料を超高圧・超高温下で焼結助剤や触媒の添加なしに直接変換して得られる95質量%以上がダイヤモンドからなる多結晶体であり、ダイヤモンド粒子が3次元的に結合し、粒子間に微細気孔を含みこの微細気孔がダイヤモンド多結晶体中に占める割合が50vol%以下であり、熱伝導率が300W/m・K以下であることを特徴とするダイヤモンド多結晶体。 A polycrystal least 95 mass% obtained by converting directly without the addition of sintering aid or a catalyst a non-diamond carbon material under ultra-high pressure and ultra high temperature is made of diamond, diamond particles 3-dimensionally A diamond polycrystalline body characterized by being bonded and containing fine pores between particles, wherein the proportion of the fine pores in the diamond polycrystalline body is 50 vol% or less, and the thermal conductivity is 300 W / m · K or less . 平均粒径が50nm以下であり、かつD95の粒径が100nm以下のダイヤモンド粒子によって構成されることを特徴とする請求項1に記載のダイヤモンド多結晶体。 2. The polycrystalline diamond according to claim 1, wherein the polycrystalline diamond is composed of diamond particles having an average particle size of 50 nm or less and a D95 particle size of 100 nm or less. 熱伝導率が100W/m・K以下であることを特徴とする請求項1または請求項2に記載のダイヤモンド多結晶体。 The polycrystalline diamond according to claim 1 or 2 , wherein the thermal conductivity is 100 W / m · K or less. 平均粒径が20nm以下かつD95の粒径が30nm以下のダイヤモンド粒子によって構成されることを特徴とする請求項2または請求項3に記載のダイヤモンド多結晶体。 4. The polycrystalline diamond according to claim 2, wherein the polycrystalline diamond is composed of diamond particles having an average particle size of 20 nm or less and a D95 particle size of 30 nm or less.
JP2010055304A 2010-03-12 2010-03-12 Diamond polycrystal Active JP5534181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055304A JP5534181B2 (en) 2010-03-12 2010-03-12 Diamond polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055304A JP5534181B2 (en) 2010-03-12 2010-03-12 Diamond polycrystal

Publications (3)

Publication Number Publication Date
JP2011190124A JP2011190124A (en) 2011-09-29
JP2011190124A5 JP2011190124A5 (en) 2013-02-28
JP5534181B2 true JP5534181B2 (en) 2014-06-25

Family

ID=44795438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055304A Active JP5534181B2 (en) 2010-03-12 2010-03-12 Diamond polycrystal

Country Status (1)

Country Link
JP (1) JP5534181B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161849A1 (en) 2012-04-24 2013-10-31 株式会社東京精密 Dicing blade
KR20150004931A (en) * 2012-06-15 2015-01-13 가부시키가이샤 토쿄 세이미쯔 Dicing device and dicing method
JP6390152B2 (en) 2014-04-30 2018-09-19 住友電気工業株式会社 Composite sintered body
JP6390151B2 (en) * 2014-04-30 2018-09-19 住友電気工業株式会社 Composite sintered body
DE202015009584U1 (en) * 2014-05-08 2018-06-07 Sumitomo Electric Industries, Ltd. Polycrystalline diamond body, cutting tool, wear-resistant tool and grinding tool
JP6458559B2 (en) * 2015-03-06 2019-01-30 住友電気工業株式会社 Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP6112177B1 (en) * 2015-10-30 2017-04-12 住友電気工業株式会社 Composite polycrystal and method for producing the same
JP2019019052A (en) * 2018-08-23 2019-02-07 住友電気工業株式会社 Composite sintered body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203900B2 (en) * 2002-10-11 2009-01-07 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP5070688B2 (en) * 2005-08-22 2012-11-14 住友電気工業株式会社 High hardness diamond polycrystal and method for producing the same
JP2007251002A (en) * 2006-03-17 2007-09-27 Toshiba Corp Heat sink, electronic device, method for manufacturing heat sink and method for manufacturing electronic device

Also Published As

Publication number Publication date
JP2011190124A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5534181B2 (en) Diamond polycrystal
JP5013156B2 (en) High hardness diamond polycrystal and method for producing the same
JP4275896B2 (en) Polycrystalline diamond and method for producing the same
JP5070688B2 (en) High hardness diamond polycrystal and method for producing the same
JP5197383B2 (en) Cutting tools
JP5028800B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP6458559B2 (en) Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP6387897B2 (en) Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP4203900B2 (en) Polycrystalline diamond and method for producing the same
CN101588877B (en) Wire drawing die
EP3351520B1 (en) Method for producing diamond polycrystal and, diamond polycrystal
JP5674009B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP5432610B2 (en) Diamond polycrystal
JP6112177B1 (en) Composite polycrystal and method for producing the same
WO2017073293A1 (en) Polycrystalline composite
JP6741017B2 (en) Composite polycrystalline
JP6939928B2 (en) Composite polycrystal
JP6772743B2 (en) Manufacturing method of diamond polycrystal, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
Rosinski et al. Properties of WCCO/diamond composites produced by PPS method intended for drill bits for machining of building stones
JP2009007248A (en) Diamond polycrystal body
JP2009107909A (en) Method for producing fine crystal particle titanium silicon carbide ceramic

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5534181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250