JP5432610B2 - Diamond polycrystal - Google Patents

Diamond polycrystal Download PDF

Info

Publication number
JP5432610B2
JP5432610B2 JP2009154637A JP2009154637A JP5432610B2 JP 5432610 B2 JP5432610 B2 JP 5432610B2 JP 2009154637 A JP2009154637 A JP 2009154637A JP 2009154637 A JP2009154637 A JP 2009154637A JP 5432610 B2 JP5432610 B2 JP 5432610B2
Authority
JP
Japan
Prior art keywords
diamond
less
particles
polycrystalline
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009154637A
Other languages
Japanese (ja)
Other versions
JP2011011920A (en
Inventor
佳津子 山本
武 佐藤
直大 戸田
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2009154637A priority Critical patent/JP5432610B2/en
Publication of JP2011011920A publication Critical patent/JP2011011920A/en
Application granted granted Critical
Publication of JP5432610B2 publication Critical patent/JP5432610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ダイヤモンド多結晶材料に関するもので、特に切削バイト等に用いる高硬度高強度で耐熱性に優れるダイヤモンド多結晶体に関するものである。   The present invention relates to a polycrystalline diamond material, and more particularly to a polycrystalline diamond having high hardness, high strength and excellent heat resistance used for a cutting tool or the like.

材料の切削に際しては被削材料に適した切削工具及び切削方法が選択される。硬質セラミクスや光学ガラスの形状加工にはダイヤモンド砥石を用いた研削加工が行われる。しかしながら、汎用の自生作用の高い樹脂製ボンドやセラミクス製バインダによりダイヤモンド砥粒を固めた砥石では、切れが良く形状精度は出せるが砥粒の脱落などにより加工面の面粗さを損なう場合がある。一方金属製の硬質バインダを用いた砥石では目詰まりしてしまい研削抵抗が上がり、被加工体に微小クラックや面精度の悪化を生じたり、破損したりすることがある   In cutting the material, a cutting tool and a cutting method suitable for the work material are selected. Grinding using a diamond grindstone is performed for shape processing of hard ceramics and optical glass. However, a grindstone in which diamond abrasive grains are hardened with a general-purpose resin bond or ceramic binder that has a high self-generating effect can be cut well and give shape accuracy, but the surface roughness of the machined surface may be impaired due to falling off of the abrasive grains. . On the other hand, a grindstone using a metal hard binder may become clogged, resulting in increased grinding resistance, which may cause microcracks, surface accuracy deterioration, or damage to the workpiece.

また、難削材の中には加工部の温度を高温に保ち被削材の材料強度が低下した状態で、工具刃先を塑性変形させながら切削加工を行う方法がとられているものがある。
焼き入れ鋼はcBN焼結体工具で切削液を用いずに切削点の摩擦による温度上昇により被削剤の軟化を利用して切削される。硬質セラミックスである窒化珪素やアルミナの切削加工は極めて困難であり、レーザ照射やプラズマ輻射を利用して試料を積極的に加熱し、軟化させながら耐熱性の高い工具で切削加工を行う方法が取られている。
Further, among difficult-to-cut materials, there is a method in which cutting is performed while plastically deforming the tool blade edge in a state where the temperature of the processed portion is kept high and the material strength of the work material is reduced.
Hardened steel is a cBN sintered body tool that is cut by utilizing the softening of the work material by the temperature rise due to friction at the cutting point without using a cutting fluid. Cutting of hard ceramics such as silicon nitride and alumina is extremely difficult, and the method of cutting with a tool with high heat resistance while actively heating and softening the sample using laser irradiation or plasma radiation is used. It has been.

このように切削点を高温に保つことが不可欠となる切削には、刃具材質の耐熱性と熱伝導率が重要となる。切削刃具には超硬合金の他、耐熱性の高いセラミックスをバインダとするcBN焼結体が用いられているが、超硬合金の場合は600℃程度から材質中のCoが溶融し始めるなど材質そのものの耐熱性が低いという問題があった。   Thus, the heat resistance and thermal conductivity of the blade material are important for cutting where it is essential to keep the cutting point at a high temperature. In addition to cemented carbide, a cBN sintered body using a ceramic with high heat resistance as a binder is used for the cutting blade. In the case of cemented carbide, the material such as Co starts to melt from about 600 ° C. There was a problem that the heat resistance itself was low.

多結晶ダイヤモンド焼結体はcBN焼結体工具に比べて、砥粒の硬度が高く低温では切削性能に優れるが、その多くは組織に含まれる焼結助剤の為に高温下での切削性能に劣る。
すなわち、多結晶ダイヤモンド焼結体として工業的に多用されているものとしては結合材としてCoを用いたダイヤモンド焼結体があり、切削バイトや、ドレッサー、ダイスなどの工具や、掘削ビットなどに使われている。しかしながら、このダイヤモンド焼結体はダイヤモンドの粒子間にCoなどの金属が連続層として存在するため、多結晶体の硬度や強度などの機械的特性が低下し、また、用いた焼結助剤が多結晶中に含まれ、これがダイヤモンドの黒鉛化を促す触媒として作用するためC700℃程度からダイヤモンドの黒鉛化が見られるなど耐熱性に劣る。
Compared to cBN sintered body tools, polycrystalline diamond sintered bodies have higher abrasive hardness and excellent cutting performance at low temperatures, but most of them are cutting performance at high temperatures due to the sintering aid contained in the structure. Inferior to
In other words, one that is widely used industrially as a polycrystalline diamond sintered body is a diamond sintered body using Co as a binder, which is used for tools such as cutting tools, dressers and dies, and drill bits. It has been broken. However, in this diamond sintered body, a metal such as Co exists as a continuous layer between the diamond particles, so that the mechanical properties such as hardness and strength of the polycrystalline body are lowered, and the sintering aid used is Since it is contained in the polycrystal and acts as a catalyst for promoting the graphitization of diamond, it is inferior in heat resistance such as the graphitization of diamond is observed from about C700 ° C.

また、焼結助剤として炭酸塩を用いたもの(特許文献1及び特許文献2参照)やSiCを用いたものが知られているが、焼結助剤として炭酸塩を用いたダイヤモンド多結晶体は、結合剤としてCoを用いたものに比べると耐熱性に優れるが、粒界に炭酸塩物質が存在するため、機械的特性は十分とはいえない。また、SiCを焼結助剤とするダイヤモンド多結晶体は、耐熱性は高いが、ダイヤモンド粒子間の結合力が弱いため材料強度が弱い。   Also known are those using carbonates as sintering aids (see Patent Literature 1 and Patent Literature 2) and those using SiC. Polycrystalline diamond using carbonates as sintering aids. Is superior in heat resistance to those using Co as a binder, but the mechanical properties are not sufficient due to the presence of a carbonate substance at the grain boundaries. In addition, the polycrystalline diamond using SiC as a sintering aid has high heat resistance, but the material strength is weak because the bonding force between diamond particles is weak.

さらに、たとえば、特許文献3にはカーボンナノチューブを10GPa以上、1600℃以上に加熱して、微細なダイヤモンドを合成する方法が記載されている(特許文献3)。しかし、開示されている方法はカーボンナノチューブをダイアモンドアンビルで加圧し、炭酸ガスレーザーで集光加熱しているため、切削工具等に適用できるサイズの均質なダイヤモンド多結晶体の製造は不可能である。   Furthermore, for example, Patent Document 3 describes a method of synthesizing fine diamond by heating a carbon nanotube to 10 GPa or more and 1600 ° C. or more (Patent Document 3). However, since the disclosed method pressurizes carbon nanotubes with a diamond anvil and collects and heats them with a carbon dioxide laser, it is impossible to produce a homogenous diamond polycrystal having a size applicable to a cutting tool or the like. .

前記ダイヤモンド多結晶体の耐熱性を上げるために、ダイヤモンド焼結体を酸処理して粒界中の金属焼結助剤を溶解除去してダイヤモンド粒子のみからなる構造体を得る方法があるが、ダイヤモンド粒子間結合の形成過程は焼結条件や金属触媒の局所的な濃度に極めて敏感であり、制御することが難しい。このため、ダイヤモンド粒子によって焼結助剤が封じられる部位も多数発生してしまう。かかる部位では酸処理によって焼結体内部の金属焼結助剤を完全に除去することは困難であり、直接変換により得られた焼結助剤を含まない多結晶ダイヤモンドに比べると耐熱性が不十分である。
また、前記焼結体を構成するダイヤモンド粒の平均粒径は概ね1μm以上であり、酸処理により焼結助剤を溶出させて形成される空隙のサイズは0.03〜3μm程度であるため、工具とした場合に十分な刃先の形状精度が出せない、空隙サイズが大きく材料強度が著しく低下する、などの問題がある。
In order to increase the heat resistance of the diamond polycrystalline body, there is a method of obtaining a structure consisting only of diamond particles by acid-treating the diamond sintered body and dissolving and removing the metal sintering aid in the grain boundary. The formation process of diamond particle bonds is very sensitive to the sintering conditions and the local concentration of the metal catalyst and is difficult to control. For this reason, many sites where the sintering aid is sealed by the diamond particles are generated. At such sites, it is difficult to completely remove the metal sintering aid inside the sintered body by acid treatment, and the heat resistance is inferior to that of polycrystalline diamond containing no sintering aid obtained by direct conversion. It is enough.
Further, the average particle size of the diamond grains constituting the sintered body is approximately 1 μm or more, and the size of the void formed by eluting the sintering aid by acid treatment is about 0.03 to 3 μm. When used as a tool, there are problems such that sufficient shape accuracy of the cutting edge cannot be obtained, the gap size is large, and the material strength is significantly reduced.

焼結体中に焼結助剤を残存させない、非ダイヤモンド型炭素を原料として直接変換により得られる緻密で硬度が高い、ダイヤモンド多結晶体が開発されている(特許文献4〜7参照)。これらの多結晶体は、焼結助剤が組織に残留する多結晶ダイヤモンド焼結体に比べると、耐熱性に優れ、硬度や耐磨耗性などの機械に極めて優れた特性を示す。
しかしながら、これらのグラファイト状炭素を出発原料として直接変換させて得られるダイヤモンド多結晶体は、緻密体であり機械強度・耐熱特性ともに優れるが、研削工具として使用する場合には、この高硬度性の為にチップポケットとなる微小凹凸の加工が困難であり、研削抵抗が高くなる。一方、熱伝導率が高く、切削点を高温に保つことが重要となる被削材に対する切削性能は劣る。このように研削及び、切削工具としての用途のための特性の点では未だ十分なものとはいえなかった。
Dense and high hardness diamond polycrystals obtained by direct conversion using non-diamond carbon as a raw material without leaving a sintering aid in the sintered body have been developed (see Patent Documents 4 to 7). These polycrystalline bodies are superior in heat resistance and have extremely excellent characteristics such as hardness and wear resistance as compared with a polycrystalline diamond sintered body in which a sintering aid remains in the structure.
However, the polycrystalline diamond obtained by directly converting these graphite-like carbons as a starting material is a dense body and excellent in both mechanical strength and heat resistance, but when used as a grinding tool, this high hardness For this reason, it is difficult to process the minute unevenness that becomes the chip pocket, and the grinding resistance increases. On the other hand, the cutting performance with respect to the work material which has high thermal conductivity and it is important to keep the cutting point at a high temperature is inferior. Thus, it has not yet been sufficient in terms of characteristics for grinding and use as a cutting tool.

特開平4−74766号公報Japanese Patent Laid-Open No. 4-74766 特開平4−114966号公報JP-A-4-114966 特開2002−66302号公報JP 2002-66302 A 特開2003−292397号公報JP 2003-292397 A 特開2004−131336号公報JP 2004-131336 A 特開2007−22888号公報Japanese Patent Laid-Open No. 2007-22888 特開2007−99559号公報JP 2007-99559 A

本発明は、切削バイト等に用いるための、高強度で耐熱性に優れ、熱伝導率が低く切削点での温度を高く保ち、難削材の切削において高い切削性能が得られるダイヤモンド多結晶体を提供することを目的とする。 The present invention is a diamond polycrystalline body for use in a cutting tool or the like, which has high strength, excellent heat resistance, low thermal conductivity, high temperature at the cutting point, and high cutting performance in cutting difficult-to-cut materials. The purpose is to provide.

本発明者らは鋭意研究の結果、非ダイヤモンド型炭素材料を出発原料として焼結条件を最適化することで、95質量%以上がダイヤモンドからなる焼結体であって、ダイヤモンド粒子同士が3次元的に強固に結合しており、微小空隙を有する高硬度な焼結体が得られることを見出した。
すなわち本発明は以下に記載するとおりのダイヤモンド多結晶体に係るものである。
As a result of intensive studies, the present inventors have optimized a sintering condition using a non-diamond type carbon material as a starting material, so that 95% by mass or more of the sintered body is made of diamond, and the diamond particles are three-dimensional. It was found that a high-hardness sintered body that is firmly bonded to each other and has minute voids can be obtained.
That is, the present invention relates to a polycrystalline diamond as described below.

(1)非ダイヤモンド型炭素原料を超高圧・超高温下で焼結助剤や触媒の添加なしに直接変換して得られる95質量%以上がダイヤモンドからなる多結晶体であり、ダイヤモンド粒子のD95粒径が100nm以下で、かつ平均粒径が50nm以下であり、ダイヤモンド粒子が3次元的に結合して気孔が形成されており、気孔率が0.01〜30vol%であることを特徴とするダイヤモンド多結晶体。
(2)前記気孔の円相当径のD95粒径が500nm以下であり、円相当径の平均値が100nm以下である(1)に記載のダイヤモンド多結晶体。
(3)粒子のD95粒径が50nm以下、かつ平均粒径が30nm以下である(1)又は(2)に記載のダイヤモンド多結晶体。
(4)硬度が50GPa以上である(1)〜(3)のいずれかに記載のダイヤモンド多結晶体。
(1) A non-diamond type carbon raw material is a polycrystalline body composed of 95% by mass or more of diamond, which is obtained by directly converting non-diamond type carbon raw material under ultrahigh pressure / high temperature without adding a sintering aid or a catalyst. The particle size is 100 nm or less, the average particle size is 50 nm or less, diamond particles are three-dimensionally bonded to form pores, and the porosity is 0.01 to 30 vol%. Diamond polycrystal.
(2) The diamond polycrystalline body according to (1), wherein the D95 particle diameter of the equivalent circle diameter of the pores is 500 nm or less and the average value of the equivalent circle diameter is 100 nm or less.
(3) The polycrystalline diamond according to (1) or (2), wherein the particle has a D95 particle size of 50 nm or less and an average particle size of 30 nm or less.
(4) The polycrystalline diamond according to any one of (1) to (3), having a hardness of 50 GPa or more.

本発明のダイヤモンド多結晶体は、ダイヤモンド粒子が3次元的に結合し機械的強度が高く、また、多孔質体であるため、熱伝導率も直接変換により得られる緻密体のダイヤモンド多結晶体に比べて低いため加工点を高温に保持しながら研削及び、切削加工を行うことができる。   The diamond polycrystal of the present invention is a dense diamond polycrystal obtained by directly converting the thermal conductivity because diamond particles are three-dimensionally bonded and have high mechanical strength and is a porous body. Since it is comparatively low, grinding and cutting can be performed while maintaining the processing point at a high temperature.

ダイヤモンドが熱力学的に安定な領域を圧力と温度との関係で示す図である。It is a figure which shows the area | region where a diamond is thermodynamically stable by the relationship between a pressure and temperature.

本発明のダイヤモンド多結晶体は原料である非ダイヤモンド型炭素材料をダイヤモンドに直接変換させることで得られる焼結体であり、焼結助剤を用いてダイヤモンド粒子を焼結させた従来のダイヤモンド焼結体と異なり、ダイヤモンド粒子間の結合も粒子と同時に形成されるため、ダイヤモンド粒子同士が極めて強固に結合して一体化しており、ダイヤモンド粒子が3次元的に連続した構造となっている。   The polycrystalline diamond according to the present invention is a sintered body obtained by directly converting a non-diamond type carbon material as a raw material into diamond, and a conventional diamond sintered body obtained by sintering diamond particles using a sintering aid. Unlike the bonded body, the bonds between the diamond particles are formed at the same time as the particles. Therefore, the diamond particles are extremely strongly bonded and integrated, and the diamond particles have a three-dimensional continuous structure.

本発明のダイヤモンド多結晶体は、非ダイヤモンド型炭素原料が超高圧・高温下で焼結助剤や触媒の添加なしに直接的にダイヤモンドに変換された95質量%以上がダイヤモンドからなる多結晶体であり、粒子のD95粒径が50nm以下100nm以下かつ平均粒径が50nm以下のダイヤモンド焼結粒子(一次粒子)によって構成されている。また、一次粒子の最大粒径は50nm以下、平均粒径が30nm以下であることが好ましい。   The diamond polycrystal of the present invention is a polycrystal comprising 95% by mass or more of non-diamond type carbon raw material, which is directly converted to diamond without adding a sintering aid or a catalyst under ultrahigh pressure and high temperature. The particles are composed of diamond sintered particles (primary particles) having a D95 particle size of 50 nm or less and 100 nm or less and an average particle size of 50 nm or less. The maximum primary particle size is preferably 50 nm or less and the average particle size is preferably 30 nm or less.

本発明のダイヤモンド多結晶体においては、ダイヤモンド粒子が3次元的に結合して粒子間に微細な気孔(空隙)が形成される。本発明のダイヤモンド多結晶体においてはその気孔率は0.01vol%以上30vol%以下である。
気孔率を上記の数値範囲とすることによってダイヤモンド多結晶体の機械的強度を損なわずに熱伝導率を低くすることができる。
また、気孔の円相当径のD95粒径が500nm以下であることが好ましく、この粒子間の空隙の円相当径は平均100nm以下であることが好ましい。円相当径をこの数値範囲とすることにより、切削用刃具として用いた場合にダイヤモンド粒子の粒径を小さくすることと相まって十分な刃先稜線の加工精度を得ることが出来る。
In the polycrystalline diamond according to the present invention, diamond particles are three-dimensionally bonded to form fine pores (voids) between the particles. The porosity of the polycrystalline diamond according to the present invention is 0.01 vol% or more and 30 vol% or less.
By setting the porosity to the above numerical range, the thermal conductivity can be lowered without impairing the mechanical strength of the polycrystalline diamond.
The D95 particle diameter of the equivalent circle diameter of the pores is preferably 500 nm or less, and the equivalent circle diameter of voids between the particles is preferably 100 nm or less on average. By setting the equivalent circle diameter within this numerical range, sufficient cutting edge ridge line processing accuracy can be obtained in combination with reducing the particle size of the diamond particles when used as a cutting tool.

上記のように、本発明のダイヤモンド多結晶体においてはダイヤモンド粒子の最大粒径は100nm以下であり、粒子間空隙の円相当径も平均100nm以下と十分小さいため、切削用刃具として用いた場合に十分な刃先稜線の加工精度を得ることが出来る。またダイヤモンド粒子間の空隙は最大30vol%であるため、機械的強度の低下も問題とならず、ダイヤモンドに次いで硬いcBN単結晶よりも高い硬度を有し、工具として実用可能である。   As described above, in the polycrystalline diamond according to the present invention, the maximum particle diameter of diamond particles is 100 nm or less, and the equivalent circle diameter of the interparticle voids is also sufficiently small as an average of 100 nm or less, so when used as a cutting tool. Sufficient cutting edge ridgeline processing accuracy can be obtained. Further, since the gap between diamond particles is 30 vol% at the maximum, a decrease in mechanical strength is not a problem, and it has higher hardness than diamond, which is hard next to diamond, and can be used as a tool.

本発明のダイヤモンド多結晶体はダイヤモンド粒子が3次元的に強固に結合しているため機械強度が高い。また、空隙を高密度に有しているため熱伝導率が低く、加工点を高温に保つ加工に適し、高精度の工具形状が形成可能な高硬度材質である。この空隙は研削加工時には研削により除去された研削屑や切削液を溜めるチップポケットとして大きな効果を発揮する。
以下では、本発明のダイヤモンド多結晶体の製造方法について述べる。
The diamond polycrystalline body of the present invention has high mechanical strength because diamond particles are firmly bonded three-dimensionally. In addition, since it has a high density of voids, it has a low thermal conductivity, is suitable for machining that keeps the machining point at a high temperature, and is a high-hardness material capable of forming a highly accurate tool shape. This gap exhibits a great effect as a chip pocket for collecting grinding scraps and cutting fluid removed by grinding during grinding.
Below, the manufacturing method of the diamond polycrystal of this invention is described.

(非ダイヤモンド型炭素原料)
本発明は、非ダイヤモンド型炭素材料を直接変換焼結させたダイヤモンド多結晶体であり、前記非ダイヤモンド型炭素材料としては、フラーレン、カーボンナノチューブ、アモルファスカーボン、グラッシーカーボン、グラファイトなどが適用可能であるが、これらに限定されるものではない。
本発明のダイヤモンド多結晶体を得るには原料炭素をできるだけ緻密な形態に整えて焼結させる必要があり、カーボンナノチューブやアモルファスカーボン等は粉末状ではなく冷間等方加圧法などにより、ペレット状に成形して用いることが望ましい。
ダイヤモンド多結晶体を構成するダイヤモンド粒子のD95粒径を100nm以下とし、平均粒径を50nm以下とするためには非ダイヤモンド型炭素原料の粒子径を微細なものとすることが必要であり、好ましくは1μm以下とする。1μm以下とすることはダイヤモンド粒子の平均粒径を50nm以下とするのに有効な手段の一つである。
(Non-diamond carbon material)
The present invention is a polycrystalline diamond obtained by directly converting and sintering a non-diamond type carbon material. As the non-diamond type carbon material, fullerene, carbon nanotube, amorphous carbon, glassy carbon, graphite and the like are applicable. However, it is not limited to these.
In order to obtain the polycrystalline diamond of the present invention, it is necessary to arrange and sinter the raw material carbon as densely as possible. Carbon nanotubes, amorphous carbon, etc. are not in powder form, but in the form of pellets by cold isostatic pressing, etc. It is desirable to use it after being molded.
In order to set the D95 particle size of the diamond particles constituting the polycrystalline diamond to 100 nm or less and the average particle size to 50 nm or less, it is necessary to make the particle size of the non-diamond carbon raw material fine, preferably Is 1 μm or less. Setting it to 1 μm or less is one of effective means for setting the average particle diameter of diamond particles to 50 nm or less.

(ダイヤモンドへの変換)
前記非グラファイト炭素原料を高融点金属カプセルに充填し、超高圧発生装置を用いてダイヤモンドを熱的に安定な圧力環境下で所定時間保持することにより、非グラファイト炭素原料がダイヤモンドに直接変換されて高硬度ダイヤモンド多結晶体となる。本発明の微細な空隙を持った組織とするためには2000℃以上の高温下で処理することが好ましい。
(Conversion to diamond)
The non-graphite carbon raw material is directly converted into diamond by filling the non-graphite carbon raw material in a high melting point metal capsule and holding the diamond in a thermally stable pressure environment for a predetermined time using an ultrahigh pressure generator. It becomes a high-hardness diamond polycrystal. In order to obtain a structure having fine voids of the present invention, it is preferable to perform the treatment at a high temperature of 2000 ° C. or higher.

非ダイヤモンド型原料炭素をダイヤモンドに変換させる加熱方法は、間接加熱が好ましい。原料炭素への直接通電加熱や、局所的に熱力を与えるレーザ加熱では、原料全体を一定温度に保つことが困難であり、ダイヤモンドへの未変換部分や微細空隙を内包しない部分が生じやすくなるためである。   Indirect heating is preferable as a heating method for converting non-diamond raw material carbon to diamond. In direct current heating to raw carbon and laser heating that gives local heat, it is difficult to keep the whole raw material at a constant temperature, and it is easy to generate unconverted parts to diamond and parts that do not contain fine voids. It is.

上記の原料炭素をダイヤモンドに変換する過程におけるダイヤモンドが熱力学的に安定な圧力領域は、温度により異なるが、1500℃以上の焼結温度に対して8.5GPa以上の加圧が必要であり、微細な空隙を持つ組織とするためには2000℃以上に加熱する場合には更に高圧の12GPa以上が好ましい。
またダイヤモンドに変換する過程における所定温度及び、所定圧力の保持時間としては、特に限定されないが10〜10000秒程度が好ましい。
The pressure region in which diamond is thermodynamically stable in the process of converting the raw material carbon into diamond varies depending on the temperature, but requires a pressure of 8.5 GPa or more for a sintering temperature of 1500 ° C. or more. In order to obtain a structure having fine voids, a higher pressure of 12 GPa or higher is preferable when heating to 2000 ° C. or higher.
Further, the holding time of the predetermined temperature and the predetermined pressure in the process of converting to diamond is not particularly limited, but is preferably about 10 to 10,000 seconds.

図1はダイヤモンドが熱力学的に安定な領域を圧力と温度との関係で示したものである。
本発明では、このダイヤモンドへの変換過程を上記のように1500℃以上で行うため、この温度を考慮して、図1のハッチングで示す範囲から適宜選定することが好ましい。さらに、ダイヤモンド安定領域にあっても、圧力が低いと未変換部が残留しやすくなるため、平衡線(図1中の一点鎖線)よりやや高い圧力が好ましく、具体的には8.5GPa以上が好ましい。なお、図1において、一点鎖線の上方がダイヤモンド安定領域であり、一点鎖線の下方がグラファイト安定領域である。
FIG. 1 shows the region where diamond is thermodynamically stable in terms of the relationship between pressure and temperature.
In the present invention, since the conversion process to diamond is performed at 1500 ° C. or higher as described above, it is preferable to appropriately select from the range shown by hatching in FIG. Further, even in the diamond stable region, an unconverted portion is likely to remain if the pressure is low, and therefore, a pressure slightly higher than the equilibrium line (the one-dot chain line in FIG. 1) is preferable, specifically 8.5 GPa or more. preferable. In FIG. 1, the upper portion of the alternate long and short dash line is the diamond stable region, and the lower portion of the alternate long and short dash line is the graphite stable region.

このようにして95質量%以上がダイヤモンドからなるダイヤモンド多結晶体でありながら、300W/m・K以下と熱伝導率が極めて低く、脆性硬質材料の切削に適する材質が得られる。
多結晶体ダイヤモンドの粒子が3次元的に強固に結合していない場合は、ダイヤモンド砥粒を散布した鋳鉄盤によるスカイフ研磨を行っても、研磨中に粒子の脱落が生じる為、Ra0.1μm以下の鏡面は得られない。一方、粒子間に強固な結合が形成されている場合は、良好な研磨面が得られる。
実際の切削は断熱性を向上させるために断熱系で、かつ非酸化雰囲気で行われることが望ましい。
In this way, although it is a diamond polycrystal composed of diamond of 95 mass% or more, a material suitable for cutting brittle hard materials can be obtained with an extremely low thermal conductivity of 300 W / m · K or less.
If the polycrystalline diamond particles are not three-dimensionally firmly bonded, even if the skiff polishing is performed with a cast iron disk in which diamond abrasive grains are dispersed, the particles fall off during the polishing, so Ra 0.1 μm or less No mirror surface can be obtained. On the other hand, when a strong bond is formed between the particles, a good polished surface can be obtained.
Actual cutting is desirably performed in a heat insulating system and in a non-oxidizing atmosphere in order to improve heat insulating properties.

本発明を実施例及び比較例を挙げることによってより詳細に説明するが、これらの実施例は例示的なものであり、本発明の範囲はこれらに限定されるものではない。
測定方法は以下の通りである。
EXAMPLES Although an Example and a comparative example demonstrate this invention in detail, these Examples are illustrative and the scope of the present invention is not limited to these.
The measuring method is as follows.

<原料の粒径評価>
炭素原料の平均粒子径は、バルク原料については破断面を、粉末原料については粉末を走査型電子顕微鏡により観察し、粒度分布を測定した。
<ダイヤモンド粒子の平均粒径>
ダイヤモンド多結晶体中のダイヤモンド粒子の平均粒径は走査型電子顕微鏡により倍率10〜50万倍で写真撮影像を元にして画像解析を実施することで得た。ダイヤモンドは絶縁体であるため高倍率でのSEM観察には導電性薄膜のコーティングが必要であり、このような微小粒径は観察できない。高感度のシンチレーターフォトマルチプライヤー組み合わせ型検出器搭載のSEMにより、加速電圧を極めて低く(0.7〜1.5KV)し、プローブ電流量を15〜16.5pAと大きくすることで、倍率2〜10万倍での組織観察が可能となった。この写真撮影像を元にして画像解析を実施することで、平均粒径及びD95粒径を得た。
以下にその詳細方法を示す。
まず、走査型電子顕微鏡で撮影した撮影像を元に焼結体を構成する結晶粒の粒径分布を測定する。具体的には、画像解析ソフト(例えば、Scion Corporation社製、ScionImage)を用いて、個々の粒子を抽出し、抽出した粒子を2値化処理して各粒子の面積(S)を算出する。そして、各粒子の粒径(D)を、同じ面積を有する円の直径(D=2√(S/π))として算出する。
次に、上記で得られた粒径分布をデータ解析ソフト(例えば、OriginLab社製Origin、Parametric Technology社製Mathchad等)によって処理し、平均粒径並びにD95粒径を算出した。
以下に記載する実施例、比較例では走査型電子顕微鏡としてCarl Zeiss社製 ULTRA55を用いた。
<Evaluation of particle size of raw material>
The average particle diameter of the carbon raw material was determined by observing the fracture surface for the bulk raw material and the powder for the powder raw material with a scanning electron microscope and measuring the particle size distribution.
<Average particle size of diamond particles>
The average particle diameter of diamond particles in the polycrystalline diamond was obtained by carrying out image analysis based on a photographed image at a magnification of 100 to 500,000 with a scanning electron microscope. Since diamond is an insulator, a coating of a conductive thin film is necessary for SEM observation at a high magnification, and such a minute particle size cannot be observed. With an SEM equipped with a highly sensitive scintillator photomultiplier combination detector, the acceleration voltage is extremely low (0.7 to 1.5 KV), and the probe current is increased to 15 to 16.5 pA, so that the magnification is 2 to 2. The structure can be observed at a magnification of 100,000 times. Image analysis was performed based on this photographed image to obtain an average particle size and a D95 particle size.
The detailed method is shown below.
First, the particle size distribution of the crystal grains constituting the sintered body is measured based on a photographed image taken with a scanning electron microscope. Specifically, individual particles are extracted using image analysis software (for example, ScionImage, manufactured by Scion Corporation), and the extracted particles are binarized to calculate the area (S) of each particle. Then, the particle size (D) of each particle is calculated as the diameter of a circle having the same area (D = 2√ (S / π)).
Next, the particle size distribution obtained above was processed by data analysis software (for example, Origin manufactured by OriginLab, Mathchad manufactured by Parametric Technology, etc.), and average particle size and D95 particle size were calculated.
In Examples and Comparative Examples described below, ULTRA55 manufactured by Carl Zeiss was used as a scanning electron microscope.

<硬度>
硬度測定はヌープ圧子を用いて測定荷重を4.9Nとして実施した。
<気孔径及び、気孔率>
高精度に面出しした試料の高分解能走査型電子顕微鏡観察像より、空隙箇所を抽出し、画像解析ソフト(例えば、Scion Corporation社製、ScionImage)を用いて、空隙箇所を抽出し、ダイヤモンド粒子の粒径計測と同様に円相当径を求め、解析し平均径とD95粒径を求めた。また気孔部の面積を求め、画像面と比較することによって求めた。
<熱伝導率>
キセノンフラッシュランプによるパルス加熱法により測定した。
<Hardness>
The hardness was measured using a Knoop indenter and the measurement load was 4.9N.
<Pore diameter and porosity>
Extract the void from the high-resolution scanning electron microscope observation image of the sample surfaced with high accuracy, extract the void using an image analysis software (for example, ScionImage, manufactured by Scion Corporation), and Similar to the particle diameter measurement, the equivalent circle diameter was determined and analyzed to determine the average diameter and the D95 particle diameter. Moreover, it calculated | required by calculating | requiring the area of a pore part and comparing with an image surface.
<Thermal conductivity>
It was measured by a pulse heating method using a xenon flash lamp.

[実施例]
原料として、平均粒径が0.5〜1μmで純度が99.95%以上である、フラーレン粉末、カーボンナノチューブ粉末、グラッシーカーボン粉末、グラファイト粉末と、このグラファイト粉末を冷間静水圧加圧法により、ペレット状に整形したバルク試料を用いて、種々の圧力、温度条件で10分間処理して。ダイヤモンド多結晶体を得た。
得られた試料について、その生成相をX線回折により同定し、TEM観察により構成粒子の粒径を調べた。また、得られた試料の表面を鏡面に研磨し、その研磨面での硬さをマイクロヌープ硬度計で測定すると共に、熱伝導率を測定した。
結果を表1に示す。
[Example]
As raw materials, an average particle size of 0.5 to 1 μm and a purity of 99.95% or more, fullerene powder, carbon nanotube powder, glassy carbon powder, graphite powder, and this graphite powder by cold isostatic pressing, Using a bulk sample shaped into a pellet, it was treated for 10 minutes under various pressure and temperature conditions. A polycrystalline diamond was obtained.
About the obtained sample, the production | generation phase was identified by X-ray diffraction, and the particle size of the constituent particles was examined by TEM observation. Further, the surface of the obtained sample was polished to a mirror surface, and the hardness on the polished surface was measured with a micro Knoop hardness meter, and the thermal conductivity was measured.
The results are shown in Table 1.

Figure 0005432610
Figure 0005432610

本発明のダイヤモンド多結晶体は、従来の金属結合材や焼結助剤を含むダイヤモンド焼結体に比べて熱伝導率が低く、機械的強度及び耐熱性にも優れるので、特に切削工具等の用途に好適に使用することができる。   The diamond polycrystalline body of the present invention has a low thermal conductivity and excellent mechanical strength and heat resistance as compared with a diamond sintered body containing a conventional metal binder and sintering aid. It can be used suitably for a use.

Claims (4)

非ダイヤモンド型炭素原料を超高圧・超高温下で焼結助剤や触媒の添加なしに直接変換して得られる95質量%以上がダイヤモンドからなる多結晶体であり、ダイヤモンド粒子のD95粒径が100nm以下で、かつ平均粒径が50nm以下であり、ダイヤモンド粒子が3次元的に結合して気孔が形成されており、気孔率が0.01〜30vol%であることを特徴とするダイヤモンド多結晶体。   More than 95% by mass of a non-diamond carbon raw material obtained by directly converting a non-diamond type carbon raw material without adding a sintering aid or a catalyst under ultra high pressure / high temperature is a polycrystalline body. Polycrystalline diamond characterized by having a diameter of 100 nm or less, an average particle diameter of 50 nm or less, diamond particles three-dimensionally bonded to form pores, and a porosity of 0.01 to 30 vol% body. 前記気孔の円相当径のD95粒径が500nm以下であり、円相当径の平均値が100nm以下である請求項1に記載のダイヤモンド多結晶体。   2. The polycrystalline diamond according to claim 1, wherein the D95 particle diameter of the equivalent circle diameter of the pores is 500 nm or less, and the average value of equivalent circle diameters is 100 nm or less. 粒子のD95粒径が50nm以下、かつ平均粒径が30nm以下である請求項1又は2に記載のダイヤモンド多結晶体。   The diamond polycrystal according to claim 1 or 2, wherein the particles have a D95 particle size of 50 nm or less and an average particle size of 30 nm or less. 硬度が50GPa以上である請求項1〜3のいずれかに記載のダイヤモンド多結晶体。   Hardness is 50 GPa or more, The diamond polycrystal in any one of Claims 1-3.
JP2009154637A 2009-06-30 2009-06-30 Diamond polycrystal Active JP5432610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154637A JP5432610B2 (en) 2009-06-30 2009-06-30 Diamond polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154637A JP5432610B2 (en) 2009-06-30 2009-06-30 Diamond polycrystal

Publications (2)

Publication Number Publication Date
JP2011011920A JP2011011920A (en) 2011-01-20
JP5432610B2 true JP5432610B2 (en) 2014-03-05

Family

ID=43591184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154637A Active JP5432610B2 (en) 2009-06-30 2009-06-30 Diamond polycrystal

Country Status (1)

Country Link
JP (1) JP5432610B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129218A (en) * 2012-11-30 2014-07-10 Sumitomo Electric Ind Ltd Diamond polycrystal, method for producing the same and tool
JP6724928B2 (en) * 2015-10-30 2020-07-15 住友電気工業株式会社 Composite polycrystalline
KR102216089B1 (en) 2017-11-17 2021-02-15 스미토모덴키고교가부시키가이샤 Diamond polycrystal and its manufacturing method
WO2020017039A1 (en) 2018-07-20 2020-01-23 住友電気工業株式会社 Diamond polycrystal and tool provided with same
CN110933944B (en) 2018-07-20 2022-10-18 住友电气工业株式会社 Diamond polycrystal and tool comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005184021A (en) * 2001-11-09 2005-07-07 Sumitomo Electric Ind Ltd Heat sink using high temperature conductive diamond sintered body and its manufacturing method
JP4203900B2 (en) * 2002-10-11 2009-01-07 住友電気工業株式会社 Polycrystalline diamond and method for producing the same
JP5070688B2 (en) * 2005-08-22 2012-11-14 住友電気工業株式会社 High hardness diamond polycrystal and method for producing the same

Also Published As

Publication number Publication date
JP2011011920A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5534181B2 (en) Diamond polycrystal
JP5070688B2 (en) High hardness diamond polycrystal and method for producing the same
JP5197383B2 (en) Cutting tools
JP5028800B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP4203900B2 (en) Polycrystalline diamond and method for producing the same
JP5432610B2 (en) Diamond polycrystal
JP6387897B2 (en) Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP6458559B2 (en) Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP5674009B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP6958563B2 (en) Diamond polycrystal manufacturing method, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
JP2018505839A (en) Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method
KR20090109110A (en) Wire drawing die
Hou et al. Effect of porosity on the grinding performance of vitrified bond diamond wheels for grinding PCD blades
CN107207358B (en) Composite polycrystal and method for producing same
TW202012309A (en) Diamond polycrystal and tool including same
CN105073310A (en) Cutting tool
JP6939928B2 (en) Composite polycrystal
JP6772743B2 (en) Manufacturing method of diamond polycrystal, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
Rosinski et al. Properties of WCCO/diamond composites produced by PPS method intended for drill bits for machining of building stones
JP2009007248A (en) Diamond polycrystal body
WO2017073297A1 (en) Polycrystalline composite
JP6421905B1 (en) Diamond polycrystalline body and tool provided with the same
JP2013052488A (en) Polishing machine for polishing diamond material and method of polishing diamond material
EP4353679A1 (en) Diamond polycrystalline body and tool comprising diamond polycrystalline body
Herman et al. Effect of the glass-crystalline bond microstructure on the cutting ability of grinding wheels with Al2O3 abrasive grains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250