JP2018505839A - Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method - Google Patents

Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method Download PDF

Info

Publication number
JP2018505839A
JP2018505839A JP2017535366A JP2017535366A JP2018505839A JP 2018505839 A JP2018505839 A JP 2018505839A JP 2017535366 A JP2017535366 A JP 2017535366A JP 2017535366 A JP2017535366 A JP 2017535366A JP 2018505839 A JP2018505839 A JP 2018505839A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
microcrystalline
microns
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017535366A
Other languages
Japanese (ja)
Inventor
チャン,カイ
サレシュ ヴァガラリ,
サレシュ ヴァガラリ,
Original Assignee
ダイヤモンド イノヴェーションズ インコーポレイテッド
ダイヤモンド イノヴェーションズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイヤモンド イノヴェーションズ インコーポレイテッド, ダイヤモンド イノヴェーションズ インコーポレイテッド filed Critical ダイヤモンド イノヴェーションズ インコーポレイテッド
Publication of JP2018505839A publication Critical patent/JP2018505839A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic

Abstract

多結晶立方晶窒化ホウ素成形体は、バインダー材料のマトリックスに焼結された微結晶立方晶窒化ホウ素を有する本体を含む。微結晶立方晶窒化ホウ素粒子は、2ミクロンから50ミクロンの範囲のサイズを有する。微結晶立方晶窒化ホウ素の粒子は複数のサブグレインを含み、各サブグレインが0.1ミクロンから2ミクロンの範囲のサイズを有する。成形体は高圧−高温(HPHT)焼結法で製造される。成形体は粒間の欠陥生成、続いて摩耗の導入を示す。サブグレインは、劈開機構よりもむしろマイクロチッピングに基づく亀裂伝播を促進し、焼結体においては、亀裂が粒内ではなく粒間で伝播し、それにより単結晶立方晶窒化ホウ素と比較して靭性が向上し、摩耗特性が改善される。成形体は研磨工具としての使用に適している。【選択図】図1BThe polycrystalline cubic boron nitride compact includes a body having microcrystalline cubic boron nitride sintered in a matrix of binder material. Microcrystalline cubic boron nitride particles have a size in the range of 2 microns to 50 microns. The microcrystalline cubic boron nitride particles comprise a plurality of subgrains, each subgrain having a size ranging from 0.1 microns to 2 microns. The compact is produced by a high pressure-high temperature (HPHT) sintering method. The compact exhibits intergranular defect formation followed by the introduction of wear. Subgrains promote crack propagation based on micro-chipping rather than cleavage mechanism, and in sintered bodies, cracks propagate between grains rather than within grains, thereby toughening compared to single crystal cubic boron nitride And the wear characteristics are improved. The shaped body is suitable for use as an abrasive tool. [Selection] Figure 1B

Description

関連出願
なし
Related applications None

本開示は、一般的には多結晶立方晶窒化ホウ素(PcBN)に関する。特に、本開示は、多結晶立方晶窒化ホウ素粉末を調製すること及びそのような多結晶立方晶窒化ホウ素粉末を研磨工具に加工する方法に関する。多結晶立方晶窒化ホウ素粉末は、多結晶立方晶窒化ホウ素の粒子がそれぞれ数多くのサブグレインを含有する多結晶粒状構造を示し、そのような多結晶立方晶窒化ホウ素粉末を用いて作製された研磨工具は多結晶粒状構造を保存する。   The present disclosure relates generally to polycrystalline cubic boron nitride (PcBN). In particular, the present disclosure relates to preparing polycrystalline cubic boron nitride powder and a method of processing such polycrystalline cubic boron nitride powder into an abrasive tool. Polycrystalline cubic boron nitride powder exhibits a polycrystalline granular structure in which each of the polycrystalline cubic boron nitride particles contains a number of subgrains, and polishing made using such polycrystalline cubic boron nitride powder The tool preserves the polycrystalline granular structure.

以下の説明では、特定の構造及び/又は方法について言及する。しかしながら、以下の言及は、これらの構造及び/又は方法が先行技術を構成することを認めるものと解釈されるべきではない。出願人は、そのような構造及び/又は方法が本発明に対する先行技術としての資格がないことを示す権利を明示的に留保する。   In the following description, reference will be made to specific structures and / or methods. However, the following references should not be construed as an admission that these structures and / or methods constitute prior art. Applicants expressly reserve the right to indicate that such structures and / or methods are not eligible for prior art to the present invention.

窒化ホウ素の立方晶(立方晶窒化ホウ素(cBN))は研磨材料として有用である。そのような使用の一つは、ボンディングシステムを使用して凝集し、砥石のような研磨工具を形成する粒子としての使用である。研磨材料、特に切削工具としての適用のためには、立方晶窒化ホウ素が摩耗、擦り切れ及びチッピング特性に寄与するか、又は少なくとも有害な影響を与えないことが望ましい。他の用途には、ホーニング、ダイシング、及び研磨が含まれる。   Boron nitride cubic (cubic boron nitride (cBN)) is useful as an abrasive material. One such use is as a particle that aggregates using a bonding system to form an abrasive tool such as a grindstone. For applications as abrasive materials, particularly cutting tools, it is desirable for cubic boron nitride to contribute to wear, fraying and chipping properties, or at least not have a detrimental effect. Other applications include honing, dicing, and polishing.

機械加工には、切削工具が高い摩耗特性、低い擦り切れ及びチッピング並びに長い寿命を有することが要求される。理想的には、工具の破損モードは、マイクロクラック又はマクロクラックの伝播によって誘発されたバインダー及び/又は立方晶窒化ホウ素供給におけるいかなる破損でもなく、摩損のみである。従来の立方晶窒化ホウ素系工具は、各立方晶窒化ホウ素粒子が単一結晶である単結晶立方晶窒化ホウ素粉末を利用する。単結晶構造は単結晶立方晶窒化ホウ素供給物から作製された工具の破壊モードに影響を与えるが、それは、マイクロクラック及びマクロクラックの両方が、バインダー中の破壊としてだけでなく、単結晶立方晶窒化ホウ素結晶の劈開によっても起こり得るからである。これらの破壊機構の両方は、単結晶立方晶窒化ホウ素粉末から作製された研磨工具の性能を低下させるのに寄与する。   Machining requires that cutting tools have high wear characteristics, low fraying and chipping, and long life. Ideally, the failure mode of the tool is only wear, not any failure in the binder and / or cubic boron nitride feed induced by the propagation of microcracks or macrocracks. A conventional cubic boron nitride-based tool utilizes a single crystal cubic boron nitride powder in which each cubic boron nitride particle is a single crystal. The single crystal structure affects the failure mode of tools made from a single crystal cubic boron nitride feed, but it is not only that both microcracks and macrocracks are broken in the binder as well as single crystal cubic crystals. This is because it can also occur by cleavage of boron nitride crystals. Both of these fracture mechanisms contribute to reducing the performance of abrasive tools made from single crystal cubic boron nitride powder.

立方晶窒化ホウ素の焼結には高圧−高温(HPHT)法が関与しているが、この種の材料の焼結における技術的改善は主に結合相の研究に焦点を当てており、立方晶窒化ホウ素の供給に関する研究はほとんどなく、供給物中の立方晶窒化ホウ素粉末は、特に機械加工用途において、焼結製品の焼結及び最終的な性能に影響を及ぼす。   Although sintering of cubic boron nitride involves the high pressure-high temperature (HPHT) method, technical improvements in the sintering of this type of material have mainly focused on the study of the binder phase. There is little research on the supply of boron nitride, and the cubic boron nitride powder in the supply affects the sintering and final performance of the sintered product, especially in machining applications.

改善された磨耗性能及び衝撃靱性に寄与する立方晶窒化ホウ素材料の改善を同定することが、立方晶窒化ホウ素系の研磨工具において有益であろう。   It would be beneficial in cubic boron nitride based abrasive tools to identify improvements in cubic boron nitride materials that contribute to improved wear performance and impact toughness.

立方晶窒化ホウ素は、結晶粒界によって分離されたミクロン又はサブミクロン(マイクロメートル)サイズの複数のサブグレインから成る微結晶メッシュ又はミクロン粒子として合成することができ、微結晶立方晶窒化ホウ素と呼ばれる。米国特許第2947617号及び同第5985228号を参照のこと。それらの全文は、本明細書に参照により援用される。微結晶立方晶窒化ホウ素は、単結晶立方晶窒化ホウ素よりも増加した靱性を有する。微結晶立方晶窒化ホウ素のその他有利な特性は、i)残留金属触媒及び/又は不純物を含まない立方晶窒化ホウ素粒子の純度の増加;ii)標準的な単結晶立方晶窒化ホウ素粉末より高い靭性;iii)劈開機構ではなく、マイクロチッピングに基づく亀裂伝播モード;iv)焼結体において、亀裂は粒内ではなく粒子間で伝播すること;及びv)粗い表面性状を有する塊状の結晶形状を含み得る。多結晶立方晶窒化ホウ素粒子を含む微細構造を有する研磨工具は、改良された磨耗性能及び衝撃靭性を付与する粒界によって分離された多数のサブグレインを含む。   Cubic boron nitride can be synthesized as a microcrystalline mesh or micron particles consisting of multiple subgrains of micron or submicron (micrometer) size separated by grain boundaries, referred to as microcrystalline cubic boron nitride . See U.S. Pat. Nos. 2,947,617 and 5,985,228. The full texts of which are hereby incorporated by reference. Microcrystalline cubic boron nitride has an increased toughness than single crystal cubic boron nitride. Other advantageous properties of microcrystalline cubic boron nitride are: i) increased purity of cubic boron nitride particles free of residual metal catalyst and / or impurities; ii) higher toughness than standard single crystal cubic boron nitride powder Iii) crack propagation mode based on micro-chipping rather than cleavage mechanism; iv) in a sintered body, the crack propagates between particles rather than within the grains; and v) a massive crystal shape with rough surface properties obtain. Abrasive tools having a microstructure that includes polycrystalline cubic boron nitride particles include a number of subgrains separated by grain boundaries that impart improved wear performance and impact toughness.

一実施態様において、多結晶立方晶窒化ホウ素成形体は、バインダー材料のマトリックスに焼結された微結晶立方晶窒化ホウ素を有する本体を含む。微結晶立方晶窒化ホウ素粒子は、2ミクロンから50ミクロンの範囲のサイズを有する。微結晶立方晶窒化ホウ素の粒子は複数のサブグレインを含み、各サブグレインは0.1ミクロンから2ミクロンの範囲のサイズを有する。   In one embodiment, the polycrystalline cubic boron nitride compact includes a body having microcrystalline cubic boron nitride sintered in a matrix of binder material. Microcrystalline cubic boron nitride particles have a size in the range of 2 microns to 50 microns. The microcrystalline cubic boron nitride particles comprise a plurality of subgrains, each subgrain having a size in the range of 0.1 microns to 2 microns.

別の実施態様において、多結晶立方晶窒化ホウ素成形体の製造方法は、制御雰囲気下で微結晶立方晶窒化ホウ素粒子をバインダー材料とブレンドし、粉末ブレンドを形成すること、ブレンドを高圧−高温(HPHT)焼結法で使用するためにセル構造に集めること、及びブレンドを焼結し、集合体に高圧及び高温を適用することによって多結晶立方晶窒化ホウ素成形体を形成することを含む。多結晶立方晶窒化ホウ素成形体は、バインダー材料のマトリックスに焼結された微結晶立方晶窒化ホウ素を含む本体を含む。微結晶立方晶窒化ホウ素粒子は、2ミクロンから50ミクロンの範囲のサイズを有する粒子である。微結晶立方晶窒化ホウ素の粒子は複数のサブグレインを含み、各サブグレインは0.1ミクロン未満から2ミクロンの範囲のサイズを有する。   In another embodiment, a method for making a polycrystalline cubic boron nitride compact includes blending microcrystalline cubic boron nitride particles with a binder material under a controlled atmosphere to form a powder blend, and blending the high pressure-high temperature ( HPHT) collecting into a cell structure for use in the sintering process, and sintering the blend and applying high pressure and high temperature to the aggregate to form a polycrystalline cubic boron nitride compact. The polycrystalline cubic boron nitride compact includes a body comprising microcrystalline cubic boron nitride sintered in a matrix of binder material. Microcrystalline cubic boron nitride particles are particles having a size in the range of 2 microns to 50 microns. The microcrystalline cubic boron nitride particles comprise a plurality of subgrains, each subgrain having a size in the range of less than 0.1 microns to 2 microns.

前述の概要及び以下の発明を実施するための形態は、添付の図面と併せて読むことにより、よりよく理解されるであろう。示された実施態様は、示されている正確な構成及び手段に限定されないことを理解されたい。   The foregoing summary, as well as the following detailed description, will be better understood when read in conjunction with the appended drawings. It should be understood that the illustrated embodiments are not limited to the precise configuration and instrumentalities shown.

A及びBは、微結晶立方晶窒化ホウ素の例示的実施態様の走査電子顕微鏡法(SEM)の顕微鏡写真である。A and B are scanning electron microscopy (SEM) photomicrographs of an exemplary embodiment of microcrystalline cubic boron nitride. A及びBは、単結晶立方晶窒化ホウ素の走査電子顕微鏡法(SEM)の顕微鏡写真である。A and B are scanning electron microscopy (SEM) micrographs of single crystal cubic boron nitride. A及びBは、多結晶立方晶窒化ホウ素粒子の焼結体を組み入れた支持成形体及び非支持成形体の例示的形状を示す。A and B show exemplary shapes of supported and unsupported shaped bodies incorporating a sintered body of polycrystalline cubic boron nitride particles. 微結晶立方晶窒化ホウ素粒子を用いて作製された試料成形体の微細構造を示す走査電子顕微鏡法(SEM)の顕微鏡写真である。It is a microscope picture of the scanning electron microscope (SEM) which shows the fine structure of the sample molded object produced using the microcrystal cubic boron nitride particle. 単結晶立方晶窒化ホウ素粒子を用いて作製された試料成形体の微細構造を示す走査電子顕微鏡法(SEM)の顕微鏡写真である。It is a microscope picture of the scanning electron microscope (SEM) which shows the fine structure of the sample molded object produced using the single crystal cubic boron nitride particle. A及びBは、それぞれ図4A及び4Bに示される微細構造の走査電子顕微鏡法(SEM)の拡大顕微鏡写真である。A and B are magnified photomicrographs of the scanning electron microscopy (SEM) of the microstructure shown in FIGS. 4A and 4B, respectively.

図1A及びBは、多結晶立方晶窒化ホウ素の例示的実施態様の走査電子顕微鏡法(SEM)の顕微鏡写真である。図1Aは、2000倍に拡大された多くの微結晶立方晶窒化ホウ素粒子10を示す。微結晶立方晶窒化ホウ素粒子は、18ミクロンの粒子サイズのD50値を有する。微結晶立方晶窒化ホウ素粒子10上の蛍光X線(XRF)は、それらが基本的にはCo(8ppm)、Cr(10ppm)、Fe(69ppm)、Ni(25ppm)及びSi(19ppm)の不純物準位を有するホウ素及び窒素である組成物を有することを示す。これらの不純物は、このような微結晶粒子を作製するために使用される粉砕処理中に立方晶窒化ホウ素粒子に導入された粉砕媒体由来である。   1A and B are scanning electron microscopy (SEM) photomicrographs of an exemplary embodiment of polycrystalline cubic boron nitride. FIG. 1A shows a number of microcrystalline cubic boron nitride particles 10 magnified 2000 times. Microcrystalline cubic boron nitride particles have a D50 value of 18 micron particle size. The fluorescent X-rays (XRF) on the microcrystalline cubic boron nitride particles 10 are basically impurities of Co (8 ppm), Cr (10 ppm), Fe (69 ppm), Ni (25 ppm) and Si (19 ppm). It shows having a composition that is boron and nitrogen with levels. These impurities are derived from the grinding media introduced into the cubic boron nitride particles during the grinding process used to make such microcrystalline particles.

微結晶立方晶窒化ホウ素粒子は、ミクロン又はサブミクロン(マイクロメートル)サイズの複数のサブグレインから成るメッシュ又はミクロン粒子として合成し、結晶粒界によって分離することができる。米国特許第2947617号及び同第5985228号を参照のこと。それらの全文は、本明細書に参照により援用される。   Microcrystalline cubic boron nitride particles can be synthesized as mesh or micron particles composed of a plurality of subgrains of micron or submicron (micrometer) size and separated by grain boundaries. See U.S. Pat. Nos. 2,947,617 and 5,985,228. The full texts of which are hereby incorporated by reference.

微結晶立方晶窒化ホウ素粒子10は、一様ではない形状と非常に粗い表面性状を有する。この表面性状は、5000倍に拡大した、微結晶立方晶窒化ホウ素粒子(具体的には図1Aの左下角にある微結晶立方晶窒化ホウ素粒子10)のSEM顕微鏡写真である、図1Bでより容易に見られる。図1Bにおいて、微結晶立方晶窒化ホウ素粒子10は、非直線の端部及び多数の高さ変化(この両方は多結晶性の本体(即ち微結晶性の本体)を示す)を伴い、一様ではなく、微結晶性の本体における個々の結晶性粒子の表面終端に層間がある。各微結晶性粒子の表面性状の高さは、粒子表面上に曝露したサブグレインの粒子サイズの1/2により決定される。   The microcrystalline cubic boron nitride particles 10 have a non-uniform shape and a very rough surface property. This surface property is a SEM micrograph of microcrystalline cubic boron nitride particles (specifically, microcrystalline cubic boron nitride particles 10 in the lower left corner of FIG. 1A) magnified 5000 times, more in FIG. 1B. Easily seen. In FIG. 1B, the microcrystalline cubic boron nitride particles 10 are uniform with non-linear edges and multiple height changes (both exhibiting a polycrystalline body (ie, a microcrystalline body)). Rather, there is an interlayer at the surface termination of the individual crystalline particles in the microcrystalline body. The height of the surface texture of each microcrystalline particle is determined by 1/2 the particle size of the subgrain exposed on the particle surface.

微結晶立方晶窒化ホウ素粒子10と比較して、単結晶性立方晶窒化ホウ素粒子は走査電子顕微鏡法下で観察された。図2A及び2Bは、単結晶立方晶窒化ホウ素の例示的実施態様の走査電子顕微鏡法(SEM)の顕微鏡写真である。図2Aは、2500倍に拡大された多くの微結晶立方晶窒化ホウ素粒子20を示す。単結晶立方晶窒化ホウ素粒子は、18ミクロンのD50値を有する。単結晶性立方晶窒化ホウ素粒子20は、単結晶性構造の結晶面に沿って破砕された方面を示す、滑らかでファセットされた表面性状を有する。この表面性状は、4000倍に拡大した単結晶性立方晶窒化ホウ素粒子20のSEM顕微鏡写真である図2Bでより容易に見られ、領域25中の結晶面の層形成を示す。   Compared to microcrystalline cubic boron nitride particles 10, single crystalline cubic boron nitride particles were observed under scanning electron microscopy. 2A and 2B are scanning electron microscopy (SEM) photomicrographs of an exemplary embodiment of single crystal cubic boron nitride. FIG. 2A shows a number of microcrystalline cubic boron nitride particles 20 magnified 2500 times. Single crystal cubic boron nitride particles have a D50 value of 18 microns. The monocrystalline cubic boron nitride particles 20 have a smooth and faceted surface texture that indicates a direction that is crushed along the crystal plane of the monocrystalline structure. This surface texture is more easily seen in FIG. 2B, which is a SEM micrograph of single crystal cubic boron nitride particles 20 magnified 4000 times, indicating the layer formation of the crystal plane in region 25.

微結晶性粒子は非常に粗い外見及び比較的ストレートではない結晶エッジを有する塊状の形を示すが、単結晶粒子は粗さと滑らかさの混ざった外見及びストレートエッジを有する角ばった形を示す。   Microcrystalline particles exhibit a massive shape with a very rough appearance and relatively non-straight crystal edges, while single crystal particles have a mixed appearance of roughness and smoothness and an angular shape with straight edges.

微結晶立方晶窒化ホウ素粒子は、焼結された多結晶立方晶窒化ホウ素成形体を製造するための供給物として、あるいは支持成形体又は非支持成形体として使用され得る。例示的な製造プロセスにおいて、不活性雰囲気等の制御雰囲気下で微結晶立方晶窒化ホウ素粒子はバインダー材料とブレンドされ、粉末ブレンドを形成する。微結晶立方晶窒化ホウ素粒子範囲は、1ミクロンから50ミクロン、又は2ミクロン20ミクロン、又は約18ミクロンのサイズの範囲であり得、そのサイズは粒子サイズのD50値として報告される。粉末ブレンドの組成物は、0から50重量パーセント(重量%)、あるいは10から40重量%のバインダーを含み得る。適切なバインダー材料は、Ti、AlとZrの窒化物、炭化物、及び炭窒化物、例えばTiN、TiC、Ti(C,N)、ZrN、AlN、及びCoとAl並びにそれらの混合物を含む。   The microcrystalline cubic boron nitride particles can be used as a feed to produce a sintered polycrystalline cubic boron nitride compact, or as a support or non-support compact. In an exemplary manufacturing process, microcrystalline cubic boron nitride particles are blended with a binder material under a controlled atmosphere, such as an inert atmosphere, to form a powder blend. The microcrystalline cubic boron nitride particle range can range in size from 1 micron to 50 microns, or 2 microns, 20 microns, or about 18 microns, the size being reported as the D50 value of particle size. The composition of the powder blend may contain 0 to 50 weight percent (wt%), alternatively 10 to 40 wt% binder. Suitable binder materials include Ti, Al and Zr nitrides, carbides, and carbonitrides such as TiN, TiC, Ti (C, N), ZrN, AlN, and Co and Al and mixtures thereof.

粉末ブレンドは、次いで、当該技術分野で知られる高温−高圧(HPHT)焼結法での使用のためにセル構造に集められる。米国特許第3767371号を参照のこと。その全文は、本明細書に参照により援用される。HPHT焼結法の例として、粉末ブレンドは、硬く焼結された炭化物ディスクのような基材の表面と接触して分配されてもよい。粉末−基材組み合わせは、粉末及び任意選択的な基材を封入し、酸素を排除し、除去する容器又は金属ラッピングのような薄いジルコニウム遮蔽体中に入れられる。この集合体は、次いで、高圧伝達要素、例えばNaCl系の要素により次々に取り囲まれ、HPHTセルを形成し得る。多数の集合体はHPHTセル内で組み合され得る。HPHTセルは、次いでHPHT焼結装置に入れられ、次いで高圧及び高温(5.5〜7Gpa、好ましくは6GPa、及び1,300℃から1,800℃、好ましくは1,500℃)が適切な時間適用されて、粉末ブレンドを焼結し、焼結された粉末ブレンドを任意選択的な基材の表面に接着させる。典型的なHPHT処理時間は30分から4時間の範囲である。圧力を除去し、HPHTセルを冷却させた後、複合研磨体が回収され得る。   The powder blend is then collected into a cell structure for use in high temperature-high pressure (HPHT) sintering methods known in the art. See U.S. Pat. No. 3,767,371. The full text of which is hereby incorporated by reference. As an example of the HPHT sintering method, the powder blend may be dispensed in contact with the surface of a substrate such as a hard sintered carbide disk. The powder-substrate combination is placed in a thin zirconium shield such as a container or metal wrapping that encapsulates the powder and optional substrate and excludes and removes oxygen. This assembly can then be surrounded one after another by high-pressure transmission elements, for example NaCl-based elements, to form HPHT cells. Multiple aggregates can be combined in an HPHT cell. The HPHT cell is then placed in an HPHT sintering apparatus, then high pressure and high temperature (5.5-7 Gpa, preferably 6 GPa, and 1,300 ° C. to 1,800 ° C., preferably 1,500 ° C.) for an appropriate time. Applied to sinter the powder blend and adhere the sintered powder blend to the surface of the optional substrate. Typical HPHT treatment times range from 30 minutes to 4 hours. After removing the pressure and allowing the HPHT cell to cool, the composite abrasive body can be recovered.

微結晶立方晶窒化ホウ素粒子が前処理される任意選択的な工程は、微結晶立方晶窒化ホウ素粒子をブレンダー材料とブレンドする前に、上記の製造プロセスに含まれ得る。前処理工程は、微結晶立方晶窒化ホウ素粒子をアンモニア雰囲気中、炉内で500℃から1,300℃、好ましくは900℃の温度で2時間以下、好ましくは1から2時間加熱することを含む。温度及び時間は、高温が使用されるとより短時間に、低温が使用されるとより長時間に、これらの範囲内で変わり得る。前処理工程は、あらゆる夾雑物の微結晶立方晶窒化ホウ素粒子の表面を洗浄する。洗浄された表面を維持するのを助けるために、前処理された微結晶立方晶窒化ホウ素粒子は保存され、不活性ガス環境中の続く製造プロセスに移される。更に且つ上記の通り、前処理された微結晶立方晶窒化ホウ素粒子はバインダー材料とブレンドされ、ブレンドプロセスはまた、不活性ガス中でブレンドプロセスを行うことのような制御雰囲気下でも生じる。   An optional step in which the microcrystalline cubic boron nitride particles are pretreated can be included in the above manufacturing process prior to blending the microcrystalline cubic boron nitride particles with the blender material. The pretreatment step includes heating the microcrystalline cubic boron nitride particles in an ammonia atmosphere in a furnace at a temperature of 500 ° C. to 1,300 ° C., preferably 900 ° C. for 2 hours or less, preferably 1 to 2 hours. . The temperature and time can vary within these ranges in a shorter time when a high temperature is used and a longer time when a low temperature is used. The pre-treatment step cleans the surface of any contaminant microcrystalline cubic boron nitride particles. To help maintain the cleaned surface, the pretreated microcrystalline cubic boron nitride particles are stored and transferred to a subsequent manufacturing process in an inert gas environment. Further and as described above, the pretreated microcrystalline cubic boron nitride particles are blended with the binder material and the blending process also occurs under a controlled atmosphere such as performing the blending process in an inert gas.

基材を含む複合研磨体は支持成形体として知られる。上で説明される製造プロセスはまた、基材がない状態でも行うことができ、その場合回収された複合研磨体は基材を含まない。このような複合研磨体は、非支持成形体として知られる。図3A及び3Bは、それぞれ非支持成形体及び支持成形体70の例示的な形状を示す。支持成形体70は、バインダー材料のマトリックスに焼結された微結晶立方晶窒化ホウ素を含む本体80を含む。本体80は基材90と結合している。本体80は、本体80中の焼結された微結晶立方晶窒化ホウ素粒子の接触面への基材90中の金属相の熱拡散により基材90と一体的に結合されている。非支持成形体60は、バインダー材料のマトリックスに焼結された微結晶立方晶窒化ホウ素を含む本体62を含む。支持成形体70及び非支持成形体60の両方において、焼結体は複数の粒子を含む。複数の粒子のそれぞれは、複数のサブグレインを有する。各サブグレインは、MicroTrac粒子特性化システムにより測定された場合1ミクロン未満から2ミクロン、又は0.1ミクロンから1.5ミクロンの範囲のサイズを有する。1から2ミクロンの粒子直径を有する典型的な微結晶立方晶窒化ホウ素粒子は、約10から約5,000のサブグレイン、例えばおよそ1000のサブグレインを含有する。   A composite abrasive including a substrate is known as a support molded body. The manufacturing process described above can also be performed in the absence of a substrate, in which case the recovered composite abrasive does not include a substrate. Such a composite abrasive body is known as an unsupported molded body. 3A and 3B show exemplary shapes of an unsupported molded body and a supported molded body 70, respectively. Support compact 70 includes a body 80 comprising microcrystalline cubic boron nitride sintered in a matrix of binder material. The main body 80 is coupled to the base material 90. The body 80 is integrally bonded to the substrate 90 by thermal diffusion of the metal phase in the substrate 90 to the contact surfaces of the sintered microcrystalline cubic boron nitride particles in the body 80. Unsupported shaped body 60 includes a body 62 comprising microcrystalline cubic boron nitride sintered in a matrix of binder material. In both the support molded body 70 and the non-support molded body 60, the sintered body includes a plurality of particles. Each of the plurality of particles has a plurality of subgrains. Each subgrain has a size ranging from less than 1 to 2 microns, or from 0.1 to 1.5 microns as measured by the MicroTrac particle characterization system. Typical microcrystalline cubic boron nitride particles having a particle diameter of 1 to 2 microns contain about 10 to about 5,000 subgrains, for example about 1000 subgrains.

微細構造調査は非支持成形体の試料上で行われた。一非支持成形体は、微結晶立方晶窒化ホウ素粒子をHPHT法を介して製造するための供給物として使用して製造された。他の支持成形体は、単結晶立方晶窒化ホウ素粒子をHPHT法を介して製造するための供給物として使用した。第一の試料(試料A)は、6.75グラムの18ミクロンの粒子サイズのD50値を有する微結晶立方晶窒化ホウ素(cBN)粒子(グレードBMP 550 15−25としてSandvik Hyperionより入手可能)を耐熱管容器に入れることより調製された。Alディスク(0.012”(0.3mm)の厚さ)の二片が容器の両端に置かれ、非結合cBN粒子と接触した。次いで、グラファイトディスクがAlディスクと接触するように、一のグラファイトディスクを耐熱管容器の各端部に置くことによって容器は密閉され、それによりコア集合体を形成した。続いて、コア集合体は高圧セルに取り込まれ、Taディスク及び塩圧透過媒体ピルのようなセル成分により封入された。高圧−高温(HPHT)焼結は、55kバールの圧力及び1400℃の浸漬温度で、約20分間の滞留時間行われた。滞留時間後、セルは初めに50℃/分の温度低下速度で4分間冷却され、次いで、全加熱エネルギーは冷却剤を使用して迅速な温度低下のために終了した。試料Aの形成されたPcBN体は、標準的な四辺形の工具形状を有した。   Microstructural investigations were performed on samples of unsupported compacts. One unsupported compact was made using microcrystalline cubic boron nitride particles as a feed for making via the HPHT process. The other support compact was used as a feed for producing single crystal cubic boron nitride particles via the HPHT process. The first sample (Sample A) is 6.75 grams of microcrystalline cubic boron nitride (cBN) particles having a D50 value of 18 micron particle size (available from Sandvik Hyperion as grade BMP 550 15-25). It was prepared by placing in a heat-resistant tube container. Two pieces of Al disk (0.012 ″ (0.3 mm) thick) were placed at both ends of the container and contacted with unbound cBN particles. Then, one of the graphite disks was in contact with the Al disk. By placing a graphite disk at each end of the heat-resistant tube container, the container was sealed, thereby forming a core assembly, which was then taken into the high pressure cell and the Ta disk and salt pressure permeable media pills. High pressure-high temperature (HPHT) sintering was carried out for a residence time of about 20 minutes at a pressure of 55 kbar and an immersion temperature of 1400 ° C. After the residence time, the cell was first Cooled for 4 minutes at a temperature drop rate of 0 ° C./min, then the total heating energy was terminated due to a rapid temperature drop using the coolant, the formed PcBN body of Sample A was a standard It had a quadrilateral of the tool shape.

比較のため、第二の試料(試料B)がベースラインとして調製され、18マイクロメートルの粒子サイズD50を有する単結晶立方晶窒化ホウ素(cBN)粒子(グレードCFB 180としてSandvik Hyperionより入手可能)を使用して作製された。第二の試料は試料Aと同じHPHT処理条件を使用して処理された。試料A(本発明)は、供給粒子の微細構造において試料B(ベースライン)と異なる(即ち、微結晶対単結晶)。表1は製造プロセスの詳細をまとめる。

Figure 2018505839
For comparison, a second sample (Sample B) was prepared as a baseline and single crystal cubic boron nitride (cBN) particles having a particle size D50 of 18 micrometers (available from Sandvik Hyperion as grade CFB 180). Made using. The second sample was processed using the same HPHT processing conditions as Sample A. Sample A (invention) differs from Sample B (baseline) in the microstructure of the feed particles (ie, microcrystal vs. single crystal). Table 1 summarizes the details of the manufacturing process.
Figure 2018505839

試料Aは図4Aに示され、試料Bは図4Bに示された。両方の試料は、一般に円筒形状の試料の直径に沿って立方晶窒化ホウ素層の断面を露出させるために試料を破砕することによって調製された。次いで、断面ラッピング及び研磨と続く最終工程としてのイオンビーム圧延によるSEMを使用した構造的特徴付けのために、試料A(本発明)及び試料B(ベースライン)を更に調製した。   Sample A is shown in FIG. 4A and sample B is shown in FIG. 4B. Both samples were prepared by crushing the sample to expose a cross section of the cubic boron nitride layer along the diameter of the generally cylindrical sample. Sample A (invention) and Sample B (baseline) were then further prepared for structural characterization using SEM with cross-section lapping and polishing followed by ion beam rolling as the final step.

上の詳細に従って作製された試料A及びBの微細構造は、走査電子顕微鏡法(SEM)を使用して調査された。使用されたSEM装置は日立S4500であり、設定は電圧25KV及び作動距離12mmであった。図4Aは試料Aの微細構造を示すSEM顕微鏡写真であり、図4Bは試料Bの微細構造を示すSEM顕微鏡写真である。図4A及び4Bの両方は1000倍に拡大されており、図4Aにおける棒ゲージは同様に図4Bに適用する。   The microstructures of Samples A and B made according to the above details were investigated using scanning electron microscopy (SEM). The SEM device used was a Hitachi S4500, the settings were a voltage of 25 KV and a working distance of 12 mm. 4A is an SEM micrograph showing the microstructure of sample A, and FIG. 4B is an SEM micrograph showing the microstructure of sample B. FIG. Both FIGS. 4A and 4B are magnified 1000 times, and the bar gauge in FIG. 4A applies to FIG. 4B as well.

図4A及び4Bの顕微鏡写真は、類似する一般的な焼結特長を示す。両方の顕微鏡写真において、粗い立方晶窒化ホウ素粒子は、細かい立方晶窒化ホウ素粒子(黒色で示される)及びバインダー相(灰色及び白色で示される)の両方により分離される。概して、試料A中の焼結された粒子のサイズは、試料B中の焼結された粒子のサイズよりもわずかに小さい。その上、試料AのcBN粒子とバインダー相との間の焼結された接触面(図5A、210と標識された矢印で示される)は、試料Bのそれ(図5B、100と標識された矢印で示される)よりも粗い。これらの顕微鏡写真において、粗さは焼結されたcBN粒子の表面性状により決定される。焼結体中の微細亀裂は両方の試料で観察された。これらの亀裂は、図5Aで240と標識された矢印及び図5Bで110と標識された矢印に見られるように、断面図に関して試料を破砕することにより生じる。   The micrographs of FIGS. 4A and 4B show similar general sintering features. In both micrographs, coarse cubic boron nitride particles are separated by both fine cubic boron nitride particles (shown in black) and binder phase (shown in gray and white). In general, the size of the sintered particles in sample A is slightly smaller than the size of the sintered particles in sample B. Moreover, the sintered contact surface between the cBN particles of sample A and the binder phase (indicated by arrows labeled FIGS. 5A and 210) is that of sample B (labeled FIGS. 5B and 100). Coarser than indicated by arrows). In these photomicrographs, the roughness is determined by the surface properties of the sintered cBN particles. Microcracks in the sintered body were observed in both samples. These cracks are caused by crushing the sample with respect to the cross-sectional view, as seen in the arrow labeled 240 in FIG. 5A and the arrow labeled 110 in FIG. 5B.

図5A及び5Bは図4A及び4Bに示される微細構造の拡大顕微鏡写真であり、それぞれ試料A及び試料Bに関する。これらの顕微鏡写真は5000倍に拡大されており、焼結されたPcBN粒子は明確に区別することができるが、試料Aと試料Bとの間には微細構造差異がある。第一に、試料A中の焼結された粒子(図5A)は、試料B中の焼結された粒子(図5B)よりも塊状の形をしている。第二に、試料A中の各個別の焼結された粒子内の微結晶性粒子(サブグレイン)の対比は、図5Aで250と標識される矢印により示されるように明らかに観察され得る。その上、各微結晶性粒子はまた、図5Aで230と標識される円により示されるピット又はボイドを表面上に含む。ボイド又はピットの大きさはナノメートルの範囲内である。これらのピット又はボイドは、cBNが多結晶本体に加工される場合、バインダー相中のcBNの保持を機械的に向上させる。図5Bにおいて、顕微鏡写真中の単結晶性立方晶窒化ホウ素粒子のそれぞれは、濃淡又はコントラストに変化なく実質的に均一な黒色であり、したがって焼結された単結晶性立方晶窒化ホウ素粒子にはサブグレインは存在しないことを示す。第三に、試料A(図5A)において、微結晶立方晶窒化ホウ素粒子とバインダーとの間の接触面は、試料B(図5B)のそれよりも粗い。微結晶cBN粒子とバインダーとの間の粗さにおける相対的な増加は、試料Aに使用される微結晶cBNの表面形態の存在による。これらの顕微鏡写真において、粗さはcBNサブグレインサイズの約1/2と決定される。   5A and 5B are magnified photomicrographs of the microstructure shown in FIGS. 4A and 4B and relate to Sample A and Sample B, respectively. These micrographs are magnified 5000 times and the sintered PcBN particles can be clearly distinguished, but there is a microstructural difference between sample A and sample B. First, the sintered particles in sample A (FIG. 5A) are more massive than the sintered particles in sample B (FIG. 5B). Second, the contrast of microcrystalline particles (subgrains) within each individual sintered particle in Sample A can be clearly observed as shown by the arrow labeled 250 in FIG. 5A. In addition, each microcrystalline particle also includes pits or voids on the surface, indicated by a circle labeled 230 in FIG. 5A. The size of the void or pit is in the nanometer range. These pits or voids mechanically improve the retention of cBN in the binder phase when cBN is processed into a polycrystalline body. In FIG. 5B, each of the single crystal cubic boron nitride particles in the photomicrograph is substantially uniform black with no change in contrast or contrast, so the sintered single crystal cubic boron nitride particles are Indicates that there is no subgrain. Third, in sample A (FIG. 5A), the contact surface between the microcrystalline cubic boron nitride particles and the binder is rougher than that of sample B (FIG. 5B). The relative increase in roughness between the microcrystalline cBN particles and the binder is due to the presence of the surface morphology of the microcrystalline cBN used for Sample A. In these micrographs, the roughness is determined to be about 1/2 of the cBN subgrain size.

最後に、図5Aで240と標識される矢印で示されるように、亀裂は試料A中のバインダー相に存在し、それは試料調製中の断面破砕により生じた。亀裂は、微結晶立方晶窒化ホウ素粒子の粒内及びそれを通してよりもむしろ、個々の微結晶立方晶窒化ホウ素粒子の周りの粒間で伝播する。亀裂伝播経路は、顕微鏡写真に重なる矢印240により示される。この粒間亀裂伝播挙動は、亀裂が単結晶性立方晶窒化ホウ素粒子を通って貫通し、単結晶性立方晶窒化ホウ素粒子を破断した、即ち亀裂が粒内で伝播した、試料Bの単結晶性立方晶窒化ホウ素で観察されたものとは異なる。微結晶cBN試料粒子を含む試料Aは、単結晶cBN粒子を含む試料Bよりも粗いという事実を考慮すると、微結晶粒子は、亀裂エネルギーを吸収すること及び/又は亀裂伝播の経路を逸脱させることにより亀裂伝播を終了させる能力を示す。   Finally, as indicated by the arrow labeled 240 in FIG. 5A, cracks were present in the binder phase in Sample A, which was caused by cross-sectional fracture during sample preparation. The cracks propagate between grains around individual microcrystalline cubic boron nitride particles, rather than within and through the grains of microcrystalline cubic boron nitride particles. The crack propagation path is indicated by an arrow 240 overlapping the micrograph. This intergranular crack propagation behavior is similar to the single crystal of sample B, where the cracks penetrated through the single crystalline cubic boron nitride particles and broke the single crystalline cubic boron nitride particles, i.e., the cracks propagated within the grains. Different from that observed with crystalline cubic boron nitride. Considering the fact that Sample A containing microcrystalline cBN sample particles is coarser than Sample B containing single crystalline cBN particles, the microcrystalline particles can absorb crack energy and / or deviate from the crack propagation path. Indicates the ability to terminate crack propagation.

試料A及び試料Bの焼結された多結晶立方晶窒化ホウ素本体の微細構造特徴のある組成物はEDXを使用して分析された。調査された微細構造の領域は、図5に示され、以下を含む。灰色の領域(300)は二ホウ化アルミニウム(AlB)により同定された。AlB付近の明るい領域(310)はホウ化アルミニウム(AlN)として同定された。AlBとAlNとの間の領域(320)はcBN相である。領域330は、cBN結晶であるとも調査され、確認されたAlB領域内の島様ドメインである(スペクトラム4を参照のこと)。色のコントラストに基づき、SEM顕微鏡写真は、試料A及び試料Bの両方でバインダー中にAlN相よりも多くのAlB相があることを定性的に示す。表1は、構成要素の量(原子パーセント(at.%))及び領域の組成物の同定を含むこれらの四領域のEDX結果をまとめる。

Figure 2018505839
Compositions with microstructure features of sintered polycrystalline cubic boron nitride bodies of Sample A and Sample B were analyzed using EDX. The areas of microstructure that were investigated are shown in FIG. 5 and include: The gray area (300) was identified by aluminum diboride (AlB 2 ). A bright area (310) near AlB 2 was identified as aluminum boride (AlN). AlB 2 and the region between the AlN (320) is a cBN phase. Region 330 is an island-like domain within the AlB 2 region that was also investigated and identified as a cBN crystal (see Spectrum 4). Based on color contrast, SEM micrographs qualitatively show that there are more AlB 2 phases in the binder than AlN phases in both Sample A and Sample B. Table 1 summarizes the EDX results for these four regions including the amount of components (atomic percent (at.%)) And identification of the composition of the region.
Figure 2018505839

特定の実施態様について言及されているが、その精神と範囲から逸脱することなく、その他実施態様及び変化体が当業者により考案され得ることは明らかである。添付の特許請求の範囲は、全てのそのような実施態様及び同等の変化体を含むもの解釈されることが意図される。   Although specific embodiments are mentioned, it is obvious that other embodiments and variations can be devised by those skilled in the art without departing from the spirit and scope thereof. It is intended that the appended claims be construed to include all such embodiments and equivalent variations.

Claims (15)

バインダー材料のマトリックス中に焼結された微結晶立方晶窒化ホウ素を含む本体を含む多結晶立方晶窒化ホウ素成形体であって:
微結晶立方晶窒化ホウ素が、2ミクロンから50ミクロンの範囲のサイズを有する粒子であり、
微結晶立方晶窒化ホウ素の粒子が複数のサブグレインを含み、各サブグレインが0.1ミクロンから2ミクロンの範囲のサイズを有する、
多結晶立方晶窒化ホウ素成形体。
A polycrystalline cubic boron nitride compact comprising a body comprising microcrystalline cubic boron nitride sintered in a matrix of binder material:
The microcrystalline cubic boron nitride is a particle having a size ranging from 2 microns to 50 microns;
The microcrystalline cubic boron nitride particles comprise a plurality of subgrains, each subgrain having a size ranging from 0.1 microns to 2 microns;
Polycrystalline cubic boron nitride molded body.
基材を更に含み、本体が基材に一体的に結合している、請求項1に記載の多結晶立方晶窒化ホウ素成形体。   The polycrystalline cubic boron nitride molded body according to claim 1, further comprising a base material, wherein the main body is integrally bonded to the base material. 各サブグレインが0.5ミクロンから1.5ミクロンの範囲のサイズを有する、請求項1又は2に記載の多結晶立方晶窒化ホウ素成形体。   The polycrystalline cubic boron nitride compact according to claim 1 or 2, wherein each subgrain has a size in the range of 0.5 microns to 1.5 microns. 微結晶立方晶窒化ホウ素粒子が約10から約5000のサブグレインを含有する、請求項1又は2に記載の多結晶立方晶窒化ホウ素成形体。   3. The polycrystalline cubic boron nitride compact according to claim 1 or 2, wherein the microcrystalline cubic boron nitride particles contain from about 10 to about 5000 subgrains. 本体の組成物が最大50質量%のバインダー材料を含む、請求項1又は2に記載の多結晶立方晶窒化ホウ素成形体。   3. The polycrystalline cubic boron nitride compact according to claim 1 or 2, wherein the composition of the main body comprises up to 50% by weight of a binder material. バインダー材料が、Ti、Al、Zr、Co、Alの窒化物、炭化物、及び炭窒化物、並びにそれらの混合物からなる群より選択される、請求項5に記載の多結晶立方晶窒化ホウ素成形体。   The polycrystalline cubic boron nitride compact according to claim 5, wherein the binder material is selected from the group consisting of Ti, Al, Zr, Co, Al nitrides, carbides, carbonitrides, and mixtures thereof. . 成長したままの表面ボイド又はピット及びサブグレインのサイズのおよそ半分の寸法の表面性状を有する微結晶cBN粒子を含有する、請求項1又は2に記載の多結晶立方晶窒化ホウ素成形体。   3. The polycrystalline cubic boron nitride compact according to claim 1, comprising microcrystalline cBN particles having surface properties approximately half the size of as-grown surface voids or pits and subgrains. 多結晶立方晶窒化ホウ素成形体の製造方法であって:
制御雰囲気下で微結晶立方晶窒化ホウ素粒子をバインダー材料とブレンドし、粉末ブレンドを形成すること;
ブレンドを高圧−高温(HPHT)焼結法で使用するためにセル構造に集めること;
ブレンドを焼結し、集合体に高圧及び高温を適用することによって多結晶立方晶窒化ホウ素成形体を形成することを含む、方法であり、
多結晶立方晶窒化ホウ素成形体が、バインダー材料のマトリックスに焼結された微結晶立方晶窒化ホウ素を含む本体を含み、
微結晶立方晶窒化ホウ素が、1ミクロンから50ミクロンの範囲のサイズを有する粒子であり、
微結晶立方晶窒化ホウ素の粒子が複数のサブグレインを含み、各サブグレインが0.1ミクロン未満から2ミクロンの範囲のサイズを有する、
方法。
A method for producing a polycrystalline cubic boron nitride compact comprising:
Blending microcrystalline cubic boron nitride particles with a binder material under a controlled atmosphere to form a powder blend;
Collecting the blend into a cell structure for use in a high pressure-high temperature (HPHT) sintering process;
Sintering the blend and forming a polycrystalline cubic boron nitride compact by applying high pressure and high temperature to the assembly,
A polycrystalline cubic boron nitride compact comprises a body comprising microcrystalline cubic boron nitride sintered in a matrix of binder material;
The microcrystalline cubic boron nitride is a particle having a size in the range of 1 to 50 microns;
The microcrystalline cubic boron nitride particles comprise a plurality of subgrains, each subgrain having a size in the range of less than 0.1 microns to 2 microns;
Method.
セル構造がブレンドと接触している表面を有する基材を含み、多結晶立方晶窒化ホウ素成形体が基材及び基材に一体的に結合している本体を含む、請求項8に記載の方法。   9. The method of claim 8, wherein the cellular structure includes a substrate having a surface in contact with the blend, and the polycrystalline cubic boron nitride compact includes a substrate and a body integrally bonded to the substrate. . 微結晶立方晶窒化ホウ素粒子をバインダー材料とブレンドする前に、微結晶立方晶窒化ホウ素粒子をアンモニア雰囲気中で最長2時間500℃から1,300℃の範囲の温度に加熱することを更に含む、請求項8又は9に記載の方法。   Further comprising heating the microcrystalline cubic boron nitride particles to a temperature in the range of 500 ° C. to 1,300 ° C. for up to 2 hours in an ammonia atmosphere before blending the microcrystalline cubic boron nitride particles with the binder material; 10. A method according to claim 8 or 9. 各サブグレインが0.5ミクロンから1.5ミクロンの範囲のサイズを有する、請求項8又は9に記載の方法。   10. A method according to claim 8 or 9, wherein each subgrain has a size in the range of 0.5 microns to 1.5 microns. 微結晶立方晶窒化ホウ素粒子が約10から約5000のサブグレインを含有する、請求項8又は9に記載の方法。   10. The method of claim 8 or 9, wherein the microcrystalline cubic boron nitride particles contain about 10 to about 5000 subgrains. 本体の組成物が最大50質量%のバインダー材料を含む、請求項8又は9に記載の方法。   10. A method according to claim 8 or 9, wherein the composition of the body comprises up to 50% by weight binder material. バインダー材料が、Ti、Al、Zr、Co、Alの窒化物、炭化物、及び炭窒化物、並びにそれらの混合物からなる群より選択される、請求項13に記載の方法。   14. The method of claim 13, wherein the binder material is selected from the group consisting of Ti, Al, Zr, Co, Al nitrides, carbides, and carbonitrides, and mixtures thereof. 多結晶立方晶窒化ホウ素成形体が成長したままの表面ボイド又はピット及びサブグレインのサイズのおよそ半分の寸法の表面性状を有する微結晶cBN粒子を含有する、請求項8又は9に記載の方法。   10. The method according to claim 8 or 9, wherein the polycrystalline cubic boron nitride compact contains microcrystalline cBN particles having a surface texture that is approximately half the size of the as-grown surface voids or pits and subgrains.
JP2017535366A 2014-12-31 2015-12-31 Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method Pending JP2018505839A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462099142P 2014-12-31 2014-12-31
US62/099,142 2014-12-31
PCT/US2015/068239 WO2016109775A1 (en) 2014-12-31 2015-12-31 Polycrystalline cubic boron nitride (pcbn) comprising microcrystalline cubic boron nitride (cbn) and method of making

Publications (1)

Publication Number Publication Date
JP2018505839A true JP2018505839A (en) 2018-03-01

Family

ID=55273533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017535366A Pending JP2018505839A (en) 2014-12-31 2015-12-31 Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method

Country Status (6)

Country Link
US (1) US20170369314A1 (en)
EP (1) EP3245176A1 (en)
JP (1) JP2018505839A (en)
KR (1) KR20170100600A (en)
CN (1) CN107207365A (en)
WO (1) WO2016109775A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798648B1 (en) * 2019-12-16 2020-12-09 住友電気工業株式会社 Cubic boron nitride sintered body
WO2021124400A1 (en) * 2019-12-16 2021-06-24 住友電気工業株式会社 Cubic boron nitride sintered compact
WO2021124401A1 (en) * 2019-12-16 2021-06-24 住友電気工業株式会社 Cubic boron nitride sintered body
WO2021124403A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact
WO2021124402A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102580073B1 (en) * 2018-06-18 2023-09-18 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cubic boron nitride polycrystal and method for producing the same
WO2021124701A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact and method for manufacturing same
US20230013675A1 (en) * 2019-12-16 2023-01-19 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered material and method of producing same
KR20220038898A (en) * 2020-09-21 2022-03-29 엘지전자 주식회사 Cubic boron nitride powder and method of fabrication the same
CN113999035B (en) * 2021-11-25 2023-03-10 桂林特邦新材料有限公司 Rod crystal/plate crystal ZrB 2 PCBN composite sheet of (-ZrN) -AlN composite ceramic and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505770A (en) * 1995-05-15 1999-05-25 スミス インターナショナル,インコーポレイティド Polycrystalline cubic boron nitride cutting tool
JPH11335175A (en) * 1998-05-22 1999-12-07 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
JP2006347850A (en) * 2005-06-20 2006-12-28 Sumitomo Electric Ind Ltd Cubic system boron nitride sintered compact and method of manufacturing the same
JP2015202981A (en) * 2014-04-14 2015-11-16 住友電気工業株式会社 Cubic boron nitride composite sintered body, production method thereof and cutting tool, abrasion-resistant tool and grinding tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947617A (en) 1958-01-06 1960-08-02 Gen Electric Abrasive material and preparation thereof
US3743489A (en) * 1971-07-01 1973-07-03 Gen Electric Abrasive bodies of finely-divided cubic boron nitride crystals
US3767371A (en) 1971-07-01 1973-10-23 Gen Electric Cubic boron nitride/sintered carbide abrasive bodies
US5985228A (en) * 1992-12-22 1999-11-16 General Electric Company Method for controlling the particle size distribution in the production of multicrystalline cubic boron nitride
CN101892412B (en) * 2010-06-23 2012-05-23 郑州博特硬质材料有限公司 Cubic boron nitride/ titanium carbide compound sintered cutter material and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505770A (en) * 1995-05-15 1999-05-25 スミス インターナショナル,インコーポレイティド Polycrystalline cubic boron nitride cutting tool
JPH11335175A (en) * 1998-05-22 1999-12-07 Sumitomo Electric Ind Ltd Cubic boron nitride sintered compact
JP2006347850A (en) * 2005-06-20 2006-12-28 Sumitomo Electric Ind Ltd Cubic system boron nitride sintered compact and method of manufacturing the same
JP2015202981A (en) * 2014-04-14 2015-11-16 住友電気工業株式会社 Cubic boron nitride composite sintered body, production method thereof and cutting tool, abrasion-resistant tool and grinding tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798648B1 (en) * 2019-12-16 2020-12-09 住友電気工業株式会社 Cubic boron nitride sintered body
WO2021124400A1 (en) * 2019-12-16 2021-06-24 住友電気工業株式会社 Cubic boron nitride sintered compact
WO2021124401A1 (en) * 2019-12-16 2021-06-24 住友電気工業株式会社 Cubic boron nitride sintered body
WO2021124399A1 (en) * 2019-12-16 2021-06-24 住友電気工業株式会社 Cubic boron nitride sintered body
WO2021124403A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact
WO2021124402A1 (en) * 2019-12-16 2021-06-24 住友電工ハードメタル株式会社 Cubic boron nitride sintered compact
US11161790B2 (en) 2019-12-16 2021-11-02 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered material
US11352298B2 (en) 2019-12-16 2022-06-07 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
US11377390B2 (en) 2019-12-16 2022-07-05 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
US11767268B2 (en) 2019-12-16 2023-09-26 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material

Also Published As

Publication number Publication date
WO2016109775A1 (en) 2016-07-07
CN107207365A (en) 2017-09-26
US20170369314A1 (en) 2017-12-28
EP3245176A1 (en) 2017-11-22
KR20170100600A (en) 2017-09-04

Similar Documents

Publication Publication Date Title
JP2018505839A (en) Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method
CN107207363B (en) Cubic boron nitride polycrystalline material, cutting tool, wear-resistant tool, abrasive tool, and method for producing cubic boron nitride polycrystalline material
CN107207364B (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
CA2675959C (en) Cutting tool
KR101555120B1 (en) Super-hard structure, tool element and method of making same
TW201111321A (en) Tough coated hard particles consolidated in a tough matrix material
AU2009237260A1 (en) Super-hard enhanced hard-metals
WO2007011019A1 (en) High-hardness polycrystalline diamond and process for producing the same
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
JP5674009B2 (en) High hardness conductive diamond polycrystal and method for producing the same
CN110219042A (en) Polycrystalline diamond body, cutting element, wear resistant tools, grinding tool and the method for manufacturing polycrystalline diamond body
CN107207358B (en) Composite polycrystal and method for producing same
JP6098044B2 (en) Method for producing polycrystalline diamond abrasive grains
TWI704105B (en) Diamond polycrystal and tool including same
JP5076044B2 (en) Composite wear-resistant member and manufacturing method thereof
WO2004054943A1 (en) Heat-resistant composite diamond sintered product and method for production thereof
JP5078061B2 (en) Cubic boron nitride sintered body
US10377671B2 (en) Structural and mechanical properties of nano and micro Al2O3-cBN composites prepared by spark plasma sintering
WO2017073297A1 (en) Polycrystalline composite
CN107108229B (en) Composite polycrystal
US8828110B2 (en) ADNR composite
TWI704106B (en) Diamond polycrystal, tool including diamond polycrystal, and method of producing diamond polycrystal
JP2015030816A (en) Abrasive grains, polishing slurry, wire saw, bound body, and method for producing abrasive grains
WO2021059700A1 (en) Polycrystal cubic crystal boron nitride and tool
JP2015030817A (en) Abrasive grains, polishing slurry, wire saw, bound body, tool, and method for producing abrasive grains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721