JP2013052488A - Polishing machine for polishing diamond material and method of polishing diamond material - Google Patents

Polishing machine for polishing diamond material and method of polishing diamond material Download PDF

Info

Publication number
JP2013052488A
JP2013052488A JP2011193710A JP2011193710A JP2013052488A JP 2013052488 A JP2013052488 A JP 2013052488A JP 2011193710 A JP2011193710 A JP 2011193710A JP 2011193710 A JP2011193710 A JP 2011193710A JP 2013052488 A JP2013052488 A JP 2013052488A
Authority
JP
Japan
Prior art keywords
polishing
diamond
disk
oxide
diamond material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011193710A
Other languages
Japanese (ja)
Inventor
Kazuko Yamamoto
佳津子 山本
Hitoshi Sumiya
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011193710A priority Critical patent/JP2013052488A/en
Publication of JP2013052488A publication Critical patent/JP2013052488A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polishing machine for a diamond material, which can polish a diamond at high speed with high surface precision.SOLUTION: In the polishing machine to be used to polish a diamond, a polishing surface of the polishing machine, which abuts on the diamond, is formed of a material including an oxide at 50 vol% or more and having indentation hardness of 500 Kfg/cmor more. As the oxide, an oxide of one or more elements selected from a group of Si, Al, Ti, Cr and Zr is desirable.

Description

本発明は、ダイヤモンド材料の加工技術に関し、ダイヤモンド材料を応用した工具・半導体素子及び光学部品の研磨面を高速で得るための研磨盤及びダイヤモンド材料の研磨方法に関する。   The present invention relates to a diamond material processing technique, and relates to a polishing machine and a diamond material polishing method for obtaining a polishing surface of a tool / semiconductor element and an optical component to which the diamond material is applied at high speed.

ダイヤモンドは物質中で最も高い硬度を持つ上、紫外から中赤外に及ぶ広波長域にわたって光学材料として使用できるうえ、耐腐食性、耐熱性、電気的特性や熱的特性に優れにもすぐれることから、工具、光学材料、電子材料として幅広く実用化が進められている。
これらの用途に適用するには、ダイヤモンドを工具の刃先や光学窓・レンズの形状に加工する必要がある。
Diamond has the highest hardness among materials, and can be used as an optical material over a wide wavelength range from ultraviolet to mid-infrared, and has excellent corrosion resistance, heat resistance, electrical properties, and thermal properties. For this reason, they are widely used as tools, optical materials, and electronic materials.
In order to apply to these applications, it is necessary to process diamond into the shape of the cutting edge of a tool, optical window, or lens.

これらの用途に実用化が進められているダイヤモンド材料としては、天然及び超高圧・高温下で合成される単結晶ダイヤモンドと、人工的に合成される多結晶ダイヤモンドとがある。一部では、天然に採取される極めて結晶性の悪いボーツと呼ばれる多結晶ダイヤモンドも利用されるが、極めて少量に過ぎない。人工合成のダイヤモンドには、ダイヤモンド砥粒と金属若しくはセラミックス結合材を超高圧高温下に保持して焼結させて得られる焼結ダイヤモンド、バインダを一切含まず、炭素同素体原料より直接変換合成により得られる多結晶ダイヤモンド、気相合成法により成長させて得られる多結晶ダイヤモンド及び、単結晶ダイヤモンドなどがある。以下、本発明においては、焼結ダイヤモンド、多結晶ダイヤモンド及び単結晶ダイヤモンドを合わせてダイヤモンド材料という。   Diamond materials that have been put to practical use for these applications include single crystal diamond synthesized under natural and ultrahigh pressure and high temperature, and polycrystalline diamond synthesized artificially. In some cases, polycrystalline diamonds called boats with poor crystallinity that are collected in nature are also used, but only in very small quantities. Artificially synthesized diamond does not contain any sintered diamond or binder obtained by holding diamond abrasive grains and metal or ceramic binder under high pressure and high temperature, and is obtained by direct conversion synthesis from carbon allotrope raw material. There are polycrystalline diamond, polycrystalline diamond obtained by vapor phase synthesis, single crystal diamond, and the like. Hereinafter, in the present invention, sintered diamond, polycrystalline diamond and single crystal diamond are collectively referred to as diamond material.

ダイヤモンドの研磨には、鋳鉄板にダイヤモンドの遊離砥粒を埋め込み、この鋳鉄板を高速回転させて、ダイヤモンドを当接せしめ、研磨するスカイフ研磨という手法が、従来から用いられている。
スカイフ研磨では、研磨速度が盤面の状態に大きく依存するが、オリーブオイルなどの潤滑油剤でダイヤモンド砥粒を鋳鉄板に埋め込んで研磨盤面を作成するため、研磨盤面の管理は難度が高く、習熟を要する技術である。スカイフ研磨の他に樹脂やセラミックスまたは金属の結合材にダイヤモンド砥粒を均一に分散させて焼結したダイヤモンド砥石を用いて研磨する場合がある。通常これらの砥石に含まれるダイヤモンド砥粒は25体積%程度であり、基体となる樹脂やセラミックス及び、金属はダイヤモンドに比べはるかに柔らかいため、研磨の進行に伴って盤面が変形してしまう。盤面の変形によって基体中に分散しているダイヤモンド砥粒が脱落し、ダイヤモンドに研磨傷が付いてしまい、スカイフ研磨と同様の問題がある。
For the polishing of diamond, a technique called Skyf polishing, in which loose abrasive grains of diamond are embedded in a cast iron plate and the cast iron plate is rotated at a high speed to bring the diamond into contact with each other and polished, has been conventionally used.
In skiff polishing, the polishing speed largely depends on the state of the board surface, but diamond abrasive grains are embedded in the cast iron plate with a lubricant such as olive oil to create the polishing disk surface, so the management of the polishing disk surface is difficult and proficient. It is a necessary technology. In addition to skiff polishing, polishing may be performed using a diamond grindstone in which diamond abrasive grains are uniformly dispersed and sintered in a binder of resin, ceramics, or metal. Usually, the diamond abrasive grains contained in these grindstones are about 25% by volume. Since the resin, ceramics, and metal used as the base are much softer than diamond, the surface of the board is deformed as the polishing proceeds. The diamond abrasive grains dispersed in the substrate fall off due to the deformation of the board surface, and the diamond is damaged by polishing, and there is a problem similar to Skyf polishing.

単結晶ダイヤモンドは機械的特性の結晶異方性が強く、極めて摩耗量が少ない結晶方位と、摩耗しやすい結晶面方位がある。従来単結晶ダイヤモンドはスカイフ研磨や砥石によって摩耗しやすい方位に特化して、形状素加工を行っている。このため、最も摩耗が進行しないことで知られる(111)面はその難加工性がネックとなっており、ダイヤモンドの(111)面を、工具の摩耗方向に適用してダイヤモンドの材質性能を最大に引き出すという利用方法は不可能であった。   Single crystal diamond has strong crystal anisotropy in mechanical properties and has a crystal orientation with very little wear and a crystal plane orientation that is easy to wear. Conventionally, single crystal diamond has been subjected to shape element processing, specializing in orientations that are easily worn by skiff polishing or grinding stones. For this reason, the (111) surface, which is known to have the least wear, has a difficult processability, and the diamond (111) surface is applied to the wear direction of the tool to maximize the material performance of the diamond. It was impossible to use it.

これに対し、あらゆる面方位が表れる多結晶ダイヤは、最も摩耗が進行しない面方位の粒子も多数が加工面に現れるため加工が困難であり、焼結ダイヤモンド、CVD多結晶ダイヤモンド、超高圧高温下で直接変換法により得られる多結晶ダイヤモンドは、ダイヤモンド砥粒を用いて長時間をかけて共削りせざるをえない。焼結ダイヤモンドは、ダイヤモンドと金属及びセラミックス結合材の複合材料であるため、研磨による摩擦熱で結合材とダイヤモンドの熱膨張差より微視的にクラックが発生し、加工を進行させることができるが、ダイヤモンド単層からなるCVD法及び超高圧高温下で直接変換法により得られる多結晶ダイヤモンドは、非常に加工が困難で長い加工時間を要し、加工コストが高くなる。また、これらの研磨方法で無理に研削圧を加えて加工速度を上げようとすると、ダイヤモンド砥粒による機械的なダメージを強く与えてしまい、結晶に加工歪や微細クラックを生じ、製品性能を損なってしまうといった問題があった。   On the other hand, polycrystalline diamonds that exhibit all plane orientations are difficult to process because many of the particles with the plane orientation with the least wear appear on the processed surface. Sintered diamond, CVD polycrystalline diamond, The polycrystalline diamond obtained by the direct conversion method must be co-machined over a long time using diamond abrasive grains. Sintered diamond is a composite material of diamond, metal and ceramic binder, so that the frictional heat generated by polishing causes microscopic cracks due to the difference in thermal expansion between the binder and diamond, and the processing can proceed. Polycrystalline diamond obtained by a CVD method consisting of a single diamond layer and a direct conversion method under ultra-high pressure and high temperature is very difficult to process, requires a long processing time, and increases the processing cost. In addition, forcibly applying grinding pressure with these polishing methods to increase the processing speed causes strong mechanical damage due to the diamond abrasive grains, resulting in processing strain and fine cracks in the crystal, which impairs product performance. There was a problem such as.

これらを解決するために、化学的反応摩耗のみによる研磨方法として、金属との反応摩耗(非特許文献1)や、紫外線を照射することで、表面酸化を促進させながら研磨を進める方法(特許文献1)などが提案されたが、金属との化学的反応摩耗では、研磨面の粗さが大きすぎる上、研磨面の硬度を損なうなどの問題があり、また、紫外線照射による表面反応促進法では、紫外線発生装置や紫外線の保護カバー、オゾンやCOなど高輝度紫外線により雰囲気に発生する有害ガスの警報器など、作業者の安全を確保するための付帯設備が必要となり、工業的な利用には課題があった。   In order to solve these problems, as a polishing method using only chemical reactive abrasion, reactive abrasion with metal (Non-Patent Document 1) or a method of advancing polishing while promoting surface oxidation by irradiating ultraviolet rays (Patent Document) 1) has been proposed, but chemical reaction wear with metals has problems such as the roughness of the polished surface being too large and the hardness of the polished surface being impaired. Additional equipment for ensuring the safety of workers, such as UV generators, UV protective covers, and alarms for harmful gases generated in the atmosphere by high-intensity UV rays such as ozone and CO, are necessary for industrial use. There was a problem.

一方、ダイヤモンド砥粒に金属メッキを施し、金属基体にダイヤモンド砥粒を固着させた電着砥石で、光学ガラスを研削する際にダイヤモンド電着砥石が極端に摩耗することが知られており、光学ガラスをダイヤモンド電着砥石のツルーアとして利用する試みがなされている(非特許文献2)。しかしながら、粒径数十μmの砥粒の先端数μmを平坦にするために利用されているに過ぎず、砥粒を加工した面の平坦性や平滑性は不十分であった。製品の形状加工に実用化するためには、加工面の平坦性を向上させる必要があった。   On the other hand, it is known that the electrodeposited whetstone is extremely worn out when grinding optical glass. Attempts have been made to use glass as a truer for diamond electrodepositing wheels (Non-Patent Document 2). However, it is only used for flattening the tip of several μm of abrasive grains having a particle size of several tens of μm, and the flatness and smoothness of the surface on which the abrasive grains are processed are insufficient. In order to put it into practical use for product shape processing, it was necessary to improve the flatness of the processed surface.

特開2007−253244号公報JP 2007-253244 A

日本機械学会論文集(C編),76巻764号(2010−4)Transactions of the Japan Society of Mechanical Engineers (C), 76, 764 (2010-4) 機械と工具 2005年6月(81−87)Machinery and tools June 2005 (81-87)

本発明は、従来の研磨方法よりも高い研磨速度で研磨を行うことができ、従来研磨が困難であった耐摩耗性の高い面方位を含み、研磨が極めて困難な多結晶ダイヤモンドの研磨についても高速の研磨でありながら、加工面の平坦性を保った加工を行うことを可能とするダイヤモンド用の研磨盤及びこれを用いた研磨方法を提供することを目的とする。   The present invention is also applicable to polishing polycrystalline diamond that can be polished at a higher polishing rate than conventional polishing methods, includes a highly wear-resistant surface orientation that has been difficult to polish, and is extremely difficult to polish. An object of the present invention is to provide a diamond polishing machine and a polishing method using the same, which enable high-speed polishing while maintaining processing surface flatness.

本発明者らは、上記課題を解決するために鋭意検討を進めた結果、研磨盤として、ダイヤモンドと当接する研磨盤の研磨面が、酸化物セラミックスを50%以上含み、押し込み硬度が500Kgf/cm以上である研磨盤を用いることによって上記課題を解決することができることを見いだして本発明を完成した。
すなわち、本発明は以下に記載する通りのダイヤモンド材料研磨用の研磨盤及びこれを用いた研磨方法に係るものである。
As a result of intensive studies to solve the above problems, the inventors of the present invention, as a polishing disk, the polishing surface of the polishing disk that comes into contact with diamond contains 50% or more of oxide ceramics, and the indentation hardness is 500 kgf / cm. The present invention has been completed by finding that the above-mentioned problems can be solved by using a polishing disk of 2 or more.
That is, the present invention relates to a polishing disk for polishing a diamond material as described below and a polishing method using the same.

(1)ダイヤモンドの研磨に用いられる研磨盤であって、ダイヤモンドと当接する研磨盤の研磨面が、酸化物を50体積%以上含み、押し込み硬度が500Kgf/cm以上である材料からなることを特徴とするダイヤモンド材料研磨用の研磨盤。
(2)前記酸化物がSi,Al,Ti,Cr及び、Zrからなる群より選ばれた1つ以上の元素の酸化物であることを特徴とする(1)に記載のダイヤモンド材料研磨用の研磨盤。
(3)前記研磨面の軟化点が1500℃以上であることを特徴とする(1)または(2)に記載のダイヤモンド材料研磨用の研磨盤。
(4)
前記研磨面の線膨張率が1.0×10−6以下であることを特徴とする(1)〜(3)のいずれかに記載のダイヤモンド材料研磨用の研磨盤。
(5)前記研磨面の表面粗さ(Ra)が0.1μm以上10μm以下であることを特徴とする(1)〜(4)のいずれかに記載のダイヤモンド材料研磨用の研磨盤。
(6)(1)〜(5)のいずれかに記載のダイヤモンド材料研磨用の研磨盤に、研磨すべきダイヤモンドを当接せしめ、両者を相対的に摺動させてダイヤモンドの表面を研磨することを特徴とするダイヤモンド材料の研磨方法。
(1) A polishing disk used for polishing diamond, wherein the polishing surface of the polishing disk that comes into contact with diamond is made of a material containing 50% by volume or more of oxide and having an indentation hardness of 500 kgf / cm 2 or more. A polishing machine for polishing diamond materials.
(2) The oxide for polishing diamond material according to (1), wherein the oxide is an oxide of one or more elements selected from the group consisting of Si, Al, Ti, Cr, and Zr. Polishing machine.
(3) The polishing disk for polishing diamond material according to (1) or (2), wherein the softening point of the polished surface is 1500 ° C. or higher.
(4)
The polishing disk for polishing diamond material according to any one of (1) to (3), wherein the linear expansion coefficient of the polished surface is 1.0 × 10 −6 or less.
(5) The polishing disk for polishing diamond material according to any one of (1) to (4), wherein the surface roughness (Ra) of the polished surface is 0.1 μm or more and 10 μm or less.
(6) The diamond to be polished is brought into contact with the polishing machine for polishing a diamond material according to any one of (1) to (5), and the surface of the diamond is polished by sliding both relatively. A method for polishing a diamond material.

本発明に係るダイヤモンド材料研磨用の研磨盤を用いてダイヤモンドを研磨すると、従来の研磨方法よりも高い研磨速度で研磨を行うことができ、従来研磨が困難であった耐摩耗性の高い面方位を含み、研磨が極めて困難な多結晶ダイヤモンドの研磨も従来になく高速の研磨でありながら、加工面の平坦性を保った加工を行うことができる。   When diamond is polished using the polishing disk for polishing diamond material according to the present invention, polishing can be performed at a higher polishing rate than the conventional polishing method, and the surface orientation with high wear resistance which has been difficult to polish conventionally. In addition, the polishing of polycrystalline diamond, which is extremely difficult to polish, can be performed while maintaining the flatness of the processed surface while the polishing of the polycrystalline diamond is a high-speed polishing unprecedented.

本発明の研磨方法に用いる研磨盤には、酸化物セラミックスが50体積%以上含まれる。研磨盤の押し込み硬度は500Kgf/cm以上である。
この体積含有率は、研磨盤を解砕してICP(誘導結合高周波プラズマ分光分析)による定量分析の他、SEMやTEMによる断面観察により測定できる。
押し込み硬度が500Kgf/cm未満であると、研磨中に研磨盤の盤面の変形がすこぶる大きくなり、ダイヤモンドを望む形状に加工できなくなる可能性がある。
The polishing disk used in the polishing method of the present invention contains 50% by volume or more of oxide ceramics. The indentation hardness of the polishing disk is 500 kgf / cm 2 or more.
This volume content can be measured not only by quantitative analysis by ICP (Inductively Coupled High Frequency Plasma Spectroscopy) by crushing the polishing disc but also by cross-sectional observation by SEM or TEM.
If the indentation hardness is less than 500 kgf / cm 2 , the deformation of the surface of the polishing disk becomes extremely large during polishing, and there is a possibility that the diamond cannot be processed into a desired shape.

本発明の研磨盤を構成する酸化物は、Si,Al,Ti,Cr及び、Zrからなる群より選ばれる1つ以上の元素の酸化物からなることが好ましい。これらの酸化物を含む酸化物セラミックスは、炭素による還元反応を受けやすく、ダイヤモンドの化学的反応摩耗を促進させる。これらの酸化物は、研削に関与する研磨面のみに存在していれば良い。酸化物が研磨盤の内部に含まれていない場合は、研磨によって新たに発生した面に同様の酸化物が生じるような化合物等で研磨盤を構成すれば、上記の効果を持続させることができる。たとえば、SiやSiで研磨盤を構成した場合、研磨盤の表面には酸化膜であるSiOが形成されており、これらを研磨盤として用いた場合にも同様の効果が得られる。
また、酸化物以外の成分としてはcBNや、β―Siなどの硬質材料を含んでいても良く、cBNを用いることが特に好ましい。
The oxide constituting the polishing disk of the present invention is preferably composed of an oxide of one or more elements selected from the group consisting of Si, Al, Ti, Cr, and Zr. Oxide ceramics containing these oxides are susceptible to a reduction reaction by carbon and promote chemical reaction wear of diamond. These oxides only need to be present on the polishing surface involved in grinding. In the case where an oxide is not contained in the polishing disk, the above effect can be maintained by configuring the polishing disk with a compound or the like that generates a similar oxide on the surface newly generated by polishing. . For example, when the polishing disk is made of Si 3 N 4 or Si, SiO 2 that is an oxide film is formed on the surface of the polishing disk, and the same effect can be obtained when these are used as the polishing disk. .
Further, components other than oxides may include hard materials such as cBN and β-Si 3 N 4, and it is particularly preferable to use cBN.

本発明の研磨盤の軟化点は1500℃以上であることが望ましい。軟化点が1500℃未満であると、研磨中に研磨盤の盤面の変形が進み、望む形状にダイヤモンドを加工することができなくなる可能性がある。   The softening point of the polishing disk of the present invention is desirably 1500 ° C. or higher. If the softening point is less than 1500 ° C., the surface of the polishing disk may be deformed during polishing, and diamond may not be processed into a desired shape.

本発明の研磨盤の線膨張率は1.0×10−6以下であることが望ましい。
前記研磨盤の線膨張率が1.0×10−6を超えると、研磨中に研磨盤の盤面の変形が進み、望む形状にダイヤモンドを加工することができなくなる可能性がある。
The linear expansion coefficient of the polishing disk of the present invention is desirably 1.0 × 10 −6 or less.
When the linear expansion coefficient of the polishing disk exceeds 1.0 × 10 −6 , deformation of the disk surface of the polishing disk progresses during polishing, and diamond may not be processed into a desired shape.

本発明の研磨盤の面粗さ(Ra)は0.1μm以上10μm以下であることが望ましい。
Raが0.1μm未満であると、研削抵抗が低すぎて十分な研磨速度が得られない可能性があり、10μmを超える場合には研削抵抗が高くなりすぎて、研磨盤を破損する可能性がある。
The surface roughness (Ra) of the polishing disk of the present invention is desirably 0.1 μm or more and 10 μm or less.
If Ra is less than 0.1 μm, the grinding resistance may be too low to obtain a sufficient polishing rate, and if it exceeds 10 μm, the grinding resistance may be too high and the polishing machine may be damaged. There is.

本発明において研磨盤の材料として酸化物を含む材料を用いた理由について以下述べる。
ダイヤモンドの加工への反応摩耗の実用化は様々な方法が提案されてきたが、従来の方法は、例えば鉄との反応摩耗を利用した加工方法のように、摩耗速度が速くても摩耗量を制御して、実用化可能なレベルの形状精度に加工することが困難であったり、非常に高い面精度で形状を制御することができても、加工時間がかかりコスト高となってしまい、商業的に実用化ができないものが殆どであった。
The reason why an oxide-containing material is used as the polishing disk material in the present invention will be described below.
Various methods have been proposed for the practical application of reactive wear to diamond processing, but the conventional method can reduce the amount of wear even if the wear rate is high, such as a processing method using reactive wear with iron. Even if it is difficult to control and process the shape accuracy to a practical level or the shape can be controlled with very high surface accuracy, processing time is increased and the cost is increased. Most of them cannot be put into practical use.

これに対し、酸化物セラミックスを研磨盤として用いることで、研磨盤表面でダイヤモンドを摺動させた際に発生する摩擦熱により、ダイヤモンド表面の炭素により酸化物の還元反応が進み、ダイヤモンドの加工が進行する。摺動面の温度を高くすると、反応が促進される。これにより、高い研磨速度と高い面精度とを両立することができる。
なお、摺動面の温度を高くする方法としては、摺動部での線速度を速くして摩擦熱の発生量を増やす方法や、スポット集光可能な発熱灯やパルス発振レーザにより外部加熱を行なう方法を用いることができる。
On the other hand, by using oxide ceramics as a polishing disk, the reduction reaction of the oxide proceeds by the carbon on the diamond surface due to frictional heat generated when the diamond is slid on the polishing disk surface, and the diamond is processed. proceed. Increasing the temperature of the sliding surface promotes the reaction. Thereby, both high polishing speed and high surface accuracy can be achieved.
Note that the temperature of the sliding surface can be increased by increasing the linear velocity at the sliding part to increase the amount of frictional heat generated, or by external heating with a spotlight-generating heat lamp or pulsed laser. The method of doing can be used.

本発明の研磨方法は、研磨盤として本発明の研磨盤を使用し、この研磨盤に研磨すべきダイヤモンドを当接せしめ、酸素を含む雰囲気中で両者を相対的に摺動させてダイヤモンドの表面を研磨するものである。
ダイヤモンド研磨中に研磨盤とダイヤモンド材料との摺動表面は、局所的に高温になっており、雰囲気中に酸素を含むと雰囲気中の酸素によって、高温になったダイヤモンド表面の酸化が促進され、研磨を進行させることができる。
酸素分圧が高いと研磨速度を向上させるには好ましいが、大気中での摺動で十分な効果が得られる。
研磨のための具体的な設備としては、研磨盤を保持して回転ブレ無く高速に回転させる機構と、被加工体であるダイヤモンド材料を保持し、高速回転している研磨盤に一定圧力で当接せしめる機構と、研磨盤の径方向に被加工体を搖動させる機構とを有する設備を用いる。
The polishing method of the present invention uses the polishing disk of the present invention as a polishing disk, abuts the diamond to be polished on this polishing disk, and relatively slides both of them in an oxygen-containing atmosphere to thereby surface the diamond. Is for polishing.
During the diamond polishing, the sliding surface between the polishing disk and the diamond material is locally hot, and if the atmosphere contains oxygen, the oxygen in the atmosphere promotes oxidation of the diamond surface that has become hot, Polishing can proceed.
A high oxygen partial pressure is preferable for improving the polishing rate, but a sufficient effect can be obtained by sliding in the air.
Specific equipment for polishing includes a mechanism that holds the polishing machine and rotates it at high speed without rotational vibration, and holds the diamond material that is the workpiece, and applies it to the polishing machine that rotates at a constant pressure. Equipment having a mechanism for contacting and a mechanism for swinging the workpiece in the radial direction of the polishing machine is used.

以下に実施例及び比較例を挙げて本発明を詳述する。これらの実施例は例示であって、本発明はこれらの実施例によって何ら限定されるものではなく、本発明の範囲は特許請求の範囲の範囲によって示され、特許請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. These examples are illustrative, and the present invention is not limited by these examples. The scope of the present invention is indicated by the scope of the claims, and is equivalent to the scope of the claims. All changes within the meaning and scope are included.

<研磨用試料のダイヤモンドの作製>
高純度グラファイトを原料とし、超高圧・高温発生装置を用いて15GPa−2200℃で高圧・高温処理して、バインダを一切含まず、組織粒径がナノメートルオーダーの等方性多結晶ダイヤモンドを合成した。このナノ多結晶ダイヤモンド(NPD:Nano-Polycrystalline Diamond)から、レーザ加工により、5mm□×2mmtの板材を切り出して、研磨用試料を作製した。
<Preparation of polishing sample diamond>
High-purity graphite is used as raw material, and isotropic and high-temperature treatment is performed at 15GPa-2200 ° C using an ultra-high pressure / high-temperature generator to synthesize isotropic polycrystalline diamond that does not contain any binder and has a grain size of nanometer order. did. From this nano-polycrystalline diamond (NPD), a 5 mm □ × 2 mmt plate material was cut out by laser processing to prepare a polishing sample.

<研磨盤の作製>
以下の実施例1〜8及び比較例1、2においては、得られた酸化物を含有する材料をφ10〜50mm×3mmtに成形し、平坦度・面粗さを調整して研磨盤を作製した。
この研磨盤を先端がφ50mmで、クランプ部分がφ30mm×60mmの逆T字型金属製円筒ホルダの先端に接合し、研削機の砥石軸にクランプできるようにした。研磨盤の盤面は、クランプ軸に対する垂直度1μm以下かつ、平面度1μm以下に固定砥粒及び、遊離砥粒による研削加工により整えた。
<研磨試験>
研磨試料のクランプ部は下台にエアシリンダーによる研削荷重制御機構を設け、研磨中の研磨盤への試料の押しつけ荷重が一定となるように制御した。
研磨盤は3000rpmで回転させ、試料は200gfの一定荷重で5mm□の面をそれぞれの研磨盤で約10分間研磨した。
<Production of polishing machine>
In the following Examples 1 to 8 and Comparative Examples 1 and 2, the obtained oxide-containing material was molded into φ10 to 50 mm × 3 mmt, and the flatness and surface roughness were adjusted to prepare a polishing disc. .
This polishing machine was joined to the tip of an inverted T-shaped metal cylindrical holder having a tip of φ50 mm and a clamp portion of φ30 mm × 60 mm so that it could be clamped to the grinding wheel shaft of a grinding machine. The surface of the polishing disk was prepared by grinding with fixed abrasive grains and loose abrasive grains so that the perpendicularity to the clamp axis was 1 μm or less and the flatness was 1 μm or less.
<Polishing test>
The clamp portion of the polished sample was provided with a grinding load control mechanism using an air cylinder on the lower base, and controlled so that the load of pressing the sample against the polishing disk during polishing was constant.
The polishing disk was rotated at 3000 rpm, and the sample was polished at a constant load of 200 gf for 5 mm □ with each polishing disk for about 10 minutes.

<評価方法>
(研磨速度)
研磨後の試料について、摩耗量(板厚の減少量)を試料厚みの測定により求めた。
その結果を表1に、後述する比較例3に示す汎用されている焼結ダイヤモンドを用いた場合の摩耗量を基準値(=1)とした場合の相対比較値で示した。この値は研磨速度の相対比較値を示すものである。
<Evaluation method>
(Polishing speed)
About the sample after grinding | polishing, the abrasion loss (decrease amount of plate | board thickness) was calculated | required by measurement of sample thickness.
The results are shown in Table 1 as relative comparison values when the wear amount when using a general-purpose sintered diamond shown in Comparative Example 3 described later is used as a reference value (= 1). This value shows a relative comparison value of the polishing rate.

(表面粗さRa)
作製した研磨盤について、表面粗さ(Ra)を原子間力顕微鏡(AFM:SII社製 Nano Navi II )により測定した。
(Surface roughness Ra)
About the produced polishing disk, surface roughness (Ra) was measured with an atomic force microscope (AFM: Nano Navi II manufactured by SII).

(研磨面表面粗さRa)
研磨後の試料について、表面粗さ(Ra)を原子間力顕微鏡(AFM:SII社製 Nano Navi II )により測定した。
(Polished surface roughness Ra)
About the sample after grinding | polishing, surface roughness (Ra) was measured with the atomic force microscope (AFM: Nano Navi II by SII).

(研磨面平坦度)
研磨後の試料の表面平坦度を表面粗さ計を用いた平坦度測定方法により求めた。
(軟化点)
JIS R 3103−1:2001に規定される方法により測定した。
(Flatness of polished surface)
The surface flatness of the sample after polishing was determined by a flatness measurement method using a surface roughness meter.
(Softening point)
It was measured by the method defined in JIS R 3103: 1: 2001.

[実施例1]
アルミナ原料粉末にAlB粉末及び、TiコーティングしたcBN砥粒を所定の比率に秤量し、メタノールを分散媒としてアルミナ製ボールとポットを用いてボールミルを用いて1時間混合を行った後に、真空エバポレーターを用いてメタノールを除去して、100℃で乾燥させ、150メッシュのふるいを通して混合粉末を得た。その後、この混合粉末を超硬カプセルに充填して5GPa−1400℃で超高圧高温処理を行うことにより、酸化物を80体積%含有する焼結体を得た。得られた焼結体は研削後、砥粒サイズ2−4μmのダイヤモンドでラッピングを行い、所定の面粗さを持つ研磨盤とした。
[Example 1]
After weighing AlB 2 powder and Ti-coated cBN abrasive grains to the alumina raw material powder to a predetermined ratio, mixing with an alumina ball and pot using methanol as a dispersion medium for 1 hour using a ball mill, a vacuum evaporator The methanol was removed using and dried at 100 ° C. to obtain a mixed powder through a 150 mesh sieve. Then, this mixed powder was filled into a cemented carbide capsule and subjected to ultrahigh pressure and high temperature treatment at 5 GPa-1400 ° C. to obtain a sintered body containing 80% by volume of oxide. The obtained sintered body was ground and lapped with diamond having an abrasive grain size of 2-4 μm to obtain a polishing machine having a predetermined surface roughness.

[実施例2]
引上げ法によって作成されたサファイア単結晶体を研磨盤として使用した。引上げ法は、イリジウムるつぼに高純度アルミナ原料を所定量チャージして、融点である2,040℃以上に加熱して融液状態にし、所定方位の結晶面を有するサファイア単結晶の種をゆっくり下げて融液に浸漬し、数mm/hrの速度で引き上げ、1インチの直径の単結晶に成長させるものである。引き上げ後に、ゆっくり温度を室温まで下げて単結晶体を冷やし、さらに結晶に残っている熱歪を低減するためにアニール処理を行った。得られた単結晶体は研削後、砥粒サイズ4−6μmcBN砥粒でラッピングを行い、所定の面粗さを持つ研磨盤とした。
[Example 2]
A sapphire single crystal produced by the pulling method was used as a polishing disk. In the pulling method, a predetermined amount of high-purity alumina raw material is charged into an iridium crucible and heated to a melting point of 2,040 ° C. or higher to be in a molten state, and the seed of a sapphire single crystal having a crystal plane in a predetermined orientation is slowly lowered. Then, it is immersed in the melt and pulled up at a rate of several mm / hr to grow into a single crystal having a diameter of 1 inch. After the pulling, the temperature was slowly lowered to room temperature to cool the single crystal, and an annealing treatment was performed in order to reduce thermal strain remaining in the crystal. The obtained single crystal was ground and lapped with an abrasive grain size of 4-6 μmcBN to obtain a polishing machine having a predetermined surface roughness.

[実施例3]
アルミナ原料粉末を150メッシュのふるいを通して造粒粉末を得た。その後、この粉末は、カーボン型に充填し、通電加熱焼結法にて1700℃で焼結した。焼結条件は酸素雰囲気(0.1MPa)、プレス圧力は30MPaとした。得られた焼結体は研削後、砥粒サイズ4−6μmcBN砥粒でラッピングを行い、所定の面粗さを持つ研磨盤とした。
[Example 3]
The alumina raw material powder was passed through a 150 mesh sieve to obtain granulated powder. Thereafter, this powder was filled in a carbon mold and sintered at 1700 ° C. by an electric heating and sintering method. The sintering conditions were an oxygen atmosphere (0.1 MPa) and the press pressure was 30 MPa. The obtained sintered body was ground and lapped with an abrasive grain size of 4-6 μmcBN to obtain a polishing machine having a predetermined surface roughness.

[実施例4]
アルミナ原料粉末にTiO粉末を所定の比率に秤量し、メタノールを分散媒としてアルミナ製ボールとポットを用いてボールミルを用いて1時間混合を行った後に、真空エバポレーターを用いてメタノールを除去して、100℃で乾燥させ、150メッシュのふるいを通して混合粉末を得た。その後、この混合粉末は、カーボン型に充填し、通電加熱焼結法にて1700℃で焼結した。焼結条件は酸素雰囲気(0.1MPa)、プレス圧力は30MPaとした。得られた焼結体は研削後、砥粒サイズ4−6μmcBN砥粒でラッピングを行い、所定の面粗さを持つ研磨盤とした。
[Example 4]
TiO 2 powder is weighed in a predetermined ratio to the alumina raw material powder, and after mixing for 1 hour using a ball mill using an alumina ball and pot with methanol as a dispersion medium, the methanol is removed using a vacuum evaporator. , Dried at 100 ° C., and mixed powder was obtained through a 150-mesh sieve. Thereafter, the mixed powder was filled in a carbon mold and sintered at 1700 ° C. by an electric heating and sintering method. The sintering conditions were an oxygen atmosphere (0.1 MPa) and the press pressure was 30 MPa. The obtained sintered body was ground and lapped with an abrasive grain size of 4-6 μmcBN to obtain a polishing machine having a predetermined surface roughness.

[実施例5]
アルミナ原料粉末にZrO粉末を所定の比率に秤量し、メタノールを分散媒としてアルミナ製ボールとポットを用いてボールミルを用いて1時間混合を行った後に、真空エバポレーターを用いてメタノールを除去して、100℃で乾燥させ、150メッシュのふるいを通して混合粉末を得た。その後、この混合粉末は、カーボン型に充填し、通電加熱焼結法にて1600℃で焼結した。焼結条件は酸素雰囲気(0.1MPa)、プレス圧力は30MPaとした。得られた焼結体は研削後、砥粒サイズ4−6μmcBN砥粒でラッピングを行い、所定の面粗さを持つ研磨盤とした。
[Example 5]
ZrO 2 powder is weighed in a predetermined ratio to the alumina raw material powder, and after mixing for 1 hour using a ball mill with an alumina ball and pot using methanol as a dispersion medium, the methanol is removed using a vacuum evaporator. , Dried at 100 ° C., and mixed powder was obtained through a 150-mesh sieve. Then, this mixed powder was filled in a carbon mold and sintered at 1600 ° C. by an electric heating and sintering method. The sintering conditions were an oxygen atmosphere (0.1 MPa) and the press pressure was 30 MPa. The obtained sintered body was ground and lapped with an abrasive grain size of 4-6 μmcBN to obtain a polishing machine having a predetermined surface roughness.

[実施例6〜8]
直接法によって得られた石英母材を、カーボン型に充填し1800℃で成形した。成形条件は酸素雰囲気で0.05MPa。得られた合成石英体は、ラッピングにより所定の形状に成形した後、砥粒サイズ4−6μmcBN砥粒でラッピングを行い、所定の面粗さを持つ研磨盤とした。
[Examples 6 to 8]
The quartz base material obtained by the direct method was filled in a carbon mold and molded at 1800 ° C. Molding conditions are 0.05 MPa in an oxygen atmosphere. The obtained synthetic quartz body was shaped into a predetermined shape by lapping and then lapped with an abrasive grain size of 4-6 μmccBN to obtain a polishing machine having a predetermined surface roughness.

[比較例1]
原料粉末としてソーダガラス(NaaO−CaO−SiO)を用いた以外は実施例1と同様にして研磨盤を作製した。
得られた研磨盤を用いて実施例1と同様にして研磨試験、評価を行った。
[Comparative Example 1]
A polishing disk was produced in the same manner as in Example 1 except that soda glass (Naa 2 O—CaO—SiO 2 ) was used as the raw material powder.
A polishing test and an evaluation were performed in the same manner as in Example 1 using the obtained polishing disk.

[比較例2]
アルミナ原料粉末にAlB粉末及び、TiコーティングしたcBN砥粒を所定の比率に秤量し、メタノールを分散媒としてアルミナ製ボールとポットを用いてボールミルを用いて1時間混合を行った後に、真空エバポレーターを用いてメタノールを除去して、100℃で乾燥させ、150メッシュのふるいを通して混合粉末を得た。その後、この混合粉末を超硬カプセルに充填して5GPa−1400℃で超高圧高温処理を行うことにより、酸化物を20体積%を含有する焼結体を得た。得られた焼結体は研削後、砥粒サイズ2−4μmのダイヤモンドでラッピングを行い、所定の面粗さを持つ研磨盤とした。
得られた研磨盤を用いて実施例1と同様にして研磨試験、評価を行った。
[Comparative Example 2]
After weighing AlB 2 powder and Ti-coated cBN abrasive grains to the alumina raw material powder to a predetermined ratio, mixing with an alumina ball and pot using methanol as a dispersion medium for 1 hour using a ball mill, a vacuum evaporator The methanol was removed using and dried at 100 ° C. to obtain a mixed powder through a 150 mesh sieve. Thereafter, this mixed powder was filled into a cemented carbide capsule and subjected to ultrahigh pressure and high temperature treatment at 5 GPa-1400 ° C. to obtain a sintered body containing 20% by volume of oxide. The obtained sintered body was ground and lapped with diamond having an abrasive grain size of 2-4 μm to obtain a polishing machine having a predetermined surface roughness.
A polishing test and an evaluation were performed in the same manner as in Example 1 using the obtained polishing disk.

[比較例3]
研磨盤としてスカイフ研磨を行なうための鋳鉄製の研磨盤を用いた。
研磨材としては0.5〜2μmのダイヤモンド粒子を用いた。
また、研磨盤としてφ300mmのものを用い、2000rpmで回転させて研磨したことを除いては実施例1と同様にして研磨試験、評価を行った。
[Comparative Example 3]
A cast iron polishing machine for performing Skyf polishing was used as the polishing machine.
As the abrasive, diamond particles of 0.5 to 2 μm were used.
A polishing test and evaluation were performed in the same manner as in Example 1 except that a polishing disk having a diameter of 300 mm was used and the polishing was rotated at 2000 rpm.

[比較例4]
研磨盤としてメタルボンド砥石を用いた。
メタルボンド砥石は#3000−集中度125のものを用いた。
また、研磨盤としてφ300mmのものを用い、2000rpmで回転させて研磨したことを除いては実施例1と同様にして研磨試験、評価を行った。
評価結果を表1に示した。
[Comparative Example 4]
A metal bond grindstone was used as a polishing machine.
A metal bond grindstone having a # 3000-concentration of 125 was used.
A polishing test and evaluation were performed in the same manner as in Example 1 except that a polishing disk having a diameter of 300 mm was used and the polishing was rotated at 2000 rpm.
The evaluation results are shown in Table 1.

Figure 2013052488
Figure 2013052488

上記表1に示された結果から、本発明の研磨方法は従来の研磨方法と比較して、非常に高速であり、かつ、従来方法による研磨面と同等の平坦度で研磨できることが分かる。   From the results shown in Table 1 above, it can be seen that the polishing method of the present invention is much faster than the conventional polishing method and can be polished with the same flatness as the polished surface of the conventional method.

Claims (6)

ダイヤモンドの研磨に用いられる研磨盤であって、ダイヤモンドと当接する研磨盤の研磨面が、酸化物を50体積%以上含み、押し込み硬度が500Kgf/cm以上である材料からなることを特徴とするダイヤモンド材料研磨用の研磨盤。 A polishing disk used for polishing diamond, wherein the polishing surface of the polishing disk in contact with diamond is made of a material containing 50% by volume or more of oxide and having an indentation hardness of 500 kgf / cm 2 or more. Polishing machine for polishing diamond materials. 前記酸化物がSi,Al,Ti,Cr及び、Zrからなる群より選ばれた1つ以上の元素の酸化物であることを特徴とする請求項1に記載のダイヤモンド材料研磨用の研磨盤。   2. The polishing machine for polishing diamond material according to claim 1, wherein the oxide is an oxide of one or more elements selected from the group consisting of Si, Al, Ti, Cr, and Zr. 前記研磨面の軟化点が1500℃以上であることを特徴とする請求項1または2に記載のダイヤモンド材料研磨用の研磨盤。   The polishing disk for polishing diamond material according to claim 1 or 2, wherein the polishing surface has a softening point of 1500 ° C or higher. 前記研磨面の線膨張率が1.0×10−6以下であることを特徴とする請求項1〜3のいずれかに記載のダイヤモンド材料研磨用の研磨盤。 The polishing disk for polishing diamond material according to any one of claims 1 to 3, wherein a linear expansion coefficient of the polishing surface is 1.0 x 10-6 or less. 前記研磨面の表面粗さ(Ra)が0.1μm以上10μm以下であることを特徴とする請求項1〜4のいずれかに記載のダイヤモンド材料研磨用の研磨盤。   The polishing disk for polishing diamond material according to any one of claims 1 to 4, wherein the surface roughness (Ra) of the polished surface is 0.1 µm or more and 10 µm or less. 請求項1〜5のいずれかに記載のダイヤモンド材料研磨用の研磨盤に、研磨すべきダイヤモンドを当接せしめ、両者を相対的に摺動させてダイヤモンドの表面を研磨することを特徴とするダイヤモンド材料の研磨方法。   A diamond for polishing a diamond material, wherein the diamond to be polished is brought into contact with the polishing disk for polishing a diamond material according to any one of claims 1 to 5, and the both surfaces are slid relative to each other to polish the diamond surface. Material polishing method.
JP2011193710A 2011-09-06 2011-09-06 Polishing machine for polishing diamond material and method of polishing diamond material Pending JP2013052488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193710A JP2013052488A (en) 2011-09-06 2011-09-06 Polishing machine for polishing diamond material and method of polishing diamond material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193710A JP2013052488A (en) 2011-09-06 2011-09-06 Polishing machine for polishing diamond material and method of polishing diamond material

Publications (1)

Publication Number Publication Date
JP2013052488A true JP2013052488A (en) 2013-03-21

Family

ID=48129941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193710A Pending JP2013052488A (en) 2011-09-06 2011-09-06 Polishing machine for polishing diamond material and method of polishing diamond material

Country Status (1)

Country Link
JP (1) JP2013052488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094485A (en) * 2015-11-16 2017-06-01 住友電気工業株式会社 Diamond polishing method, insulative grinder, method for manufacturing diamond cutting tool, and method for producing diamond
JP2020121367A (en) * 2019-01-30 2020-08-13 地方独立行政法人東京都立産業技術研究センター Diamond polishing device and diamond polishing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254753A (en) * 1993-03-01 1994-09-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Polishing method for cubic system boron nitride substrate
JPH1015791A (en) * 1996-07-09 1998-01-20 Komatsu Ltd Method for polishing diamond, method for producing grinding wheel used in the method and polishing apparatus using the method
JP2003073190A (en) * 2001-08-31 2003-03-12 Shoichi Shimada Diamond polishing method and device
JP2003211361A (en) * 2002-11-07 2003-07-29 National Institute Of Advanced Industrial & Technology Diamond polished body, single crystal diamond and diamond sintered body obtained by diamond polishing wheel
JP2007007683A (en) * 2005-06-29 2007-01-18 Sumitomo Heavy Ind Ltd Beam superposition device, and laser machining method
JP2007230807A (en) * 2006-02-28 2007-09-13 Allied Material Corp Method of producing diamond product
JP2007253244A (en) * 2006-03-20 2007-10-04 Kumamoto Technology & Industry Foundation Method and apparatus for polishing
JP2008105143A (en) * 2006-10-26 2008-05-08 Toyota Motor Corp Grinding wheel for polishing carbon allotrope and polishing method for carbon allotrope
JP2011177883A (en) * 2010-02-03 2011-09-15 Toyo Seikan Kaisha Ltd Polishing method for diamond surface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254753A (en) * 1993-03-01 1994-09-13 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Polishing method for cubic system boron nitride substrate
JPH1015791A (en) * 1996-07-09 1998-01-20 Komatsu Ltd Method for polishing diamond, method for producing grinding wheel used in the method and polishing apparatus using the method
JP2003073190A (en) * 2001-08-31 2003-03-12 Shoichi Shimada Diamond polishing method and device
JP2003211361A (en) * 2002-11-07 2003-07-29 National Institute Of Advanced Industrial & Technology Diamond polished body, single crystal diamond and diamond sintered body obtained by diamond polishing wheel
JP2007007683A (en) * 2005-06-29 2007-01-18 Sumitomo Heavy Ind Ltd Beam superposition device, and laser machining method
JP2007230807A (en) * 2006-02-28 2007-09-13 Allied Material Corp Method of producing diamond product
JP2007253244A (en) * 2006-03-20 2007-10-04 Kumamoto Technology & Industry Foundation Method and apparatus for polishing
JP2008105143A (en) * 2006-10-26 2008-05-08 Toyota Motor Corp Grinding wheel for polishing carbon allotrope and polishing method for carbon allotrope
JP2011177883A (en) * 2010-02-03 2011-09-15 Toyo Seikan Kaisha Ltd Polishing method for diamond surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094485A (en) * 2015-11-16 2017-06-01 住友電気工業株式会社 Diamond polishing method, insulative grinder, method for manufacturing diamond cutting tool, and method for producing diamond
JP2020121367A (en) * 2019-01-30 2020-08-13 地方独立行政法人東京都立産業技術研究センター Diamond polishing device and diamond polishing method

Similar Documents

Publication Publication Date Title
Zhang et al. A novel approach of mechanical chemical grinding
Zhang et al. Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding
CN107207364B (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
KR102186023B1 (en) Abrasive particles having a unique morphology
CN103079766B (en) The abrasive article of bonding and forming method
WO2008117883A1 (en) Synthetic grindstone
PT2234760E (en) Multifunction abrasive tool with hybrid bond
JP2018505839A (en) Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
CN106757333A (en) A kind of preparation method of the direct Synthesis pure phase polycrystalline diamond of DLC
CN105088339A (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool, and method for producing polycrystalline diamond body
US20030091826A1 (en) Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby
GB2522316A (en) Polycrystalline chemical vapour deposited diamond tool parts and methods of fabricating, mounting, and using the same
Xu et al. An efficient titanium-containing corundum wheel for grinding CVD diamond films
Li et al. Using the thermochemical corrosion method to prepare porous diamonds
Harano et al. Cutting performance of nano-polycrystalline diamond
JP5432610B2 (en) Diamond polycrystal
JP2013052488A (en) Polishing machine for polishing diamond material and method of polishing diamond material
CN102658529A (en) Method for preparing nano particles by nano grinding through superfine abrasive particles
JP3717046B2 (en) Diamond polishing wheel, diamond polishing method, and diamond polishing composite wheel
Kong et al. Investigation on preparation of composite vitrified bonding ultrafine diamond grinding wheel and machining of PcBN inserts
JP6421905B1 (en) Diamond polycrystalline body and tool provided with the same
CN103203453A (en) Grinding wheel manufacturing method of edge-sharpening single crystal diamond tool
CN1947947A (en) Method for mfg. abrasion wheel for flattening milling large dimension diamond diaphragm
WO2023142579A1 (en) Chemical-mechanical combined machining method for silicon carbide surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160427