JP2007230807A - Method of producing diamond product - Google Patents

Method of producing diamond product Download PDF

Info

Publication number
JP2007230807A
JP2007230807A JP2006052549A JP2006052549A JP2007230807A JP 2007230807 A JP2007230807 A JP 2007230807A JP 2006052549 A JP2006052549 A JP 2006052549A JP 2006052549 A JP2006052549 A JP 2006052549A JP 2007230807 A JP2007230807 A JP 2007230807A
Authority
JP
Japan
Prior art keywords
diamond
polishing
copper
product
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006052549A
Other languages
Japanese (ja)
Inventor
Masahiro Higuchi
誠宏 樋口
Shoichi Shimada
尚一 島田
Kazushi Obata
一志 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2006052549A priority Critical patent/JP2007230807A/en
Publication of JP2007230807A publication Critical patent/JP2007230807A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a diamond product less in surface defects even if a diamond shape is complicated when the diamond product having the single crystal diamond is produced. <P>SOLUTION: When a diamond is polished, the diamond is mechanically polished, and thereafter, microcracks in the surface of the diamond is removed by bringing a copper plate, on which copper oxide is formed by heating in atmosphere, into static contact with the diamond, and keeping the contact state for a prescribed time to wear the diamond. Thereby, a high quality diamond product can be produced. The surface roughness of the copper plate is preferably not larger than the surface roughness of the mechanically polished diamond. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、形状精度が高く、表面欠陥の少ないダイヤモンド製品の製造方法に関する。   The present invention relates to a method for producing a diamond product having high shape accuracy and few surface defects.

ダイヤモンド製品の一つであるダイヤモンド工具で、ダイヤモンドに切刃を形成する場合、ダイヤモンド砥石を使ったり、スカイフ盤とダイヤモンドとの間に遊離砥粒を供給して研磨を行うなどの方法により加工を行う。   When using a diamond tool, which is one of the diamond products, to form a cutting edge on diamond, it can be processed by using a diamond grindstone or polishing by supplying loose abrasive grains between the Skyf machine and diamond. Do.

しかし、ダイヤモンド砥石を使う方法では、加工時に大きな力が作用するため、CVDダイヤモンドなどでは基板からダイヤモンドが剥離する問題が生じやすく、チッピングや欠けも生じやすいため、高精度な加工を行うのが容易ではない。また、遊離砥粒を供給して行う方法では、高精度に加工できるが、加工能率が低いという問題がある。   However, in the method using a diamond grindstone, since a large force acts during processing, problems such as CVD diamond are likely to cause the diamond to peel from the substrate, and chipping and chipping are also likely to occur, making it easy to perform high-precision processing. is not. In addition, the method of supplying loose abrasive grains can be processed with high accuracy, but has a problem of low processing efficiency.

これを解決する方法として、ダイヤモンドの熱化学的な損耗を利用し金属とダイヤモンドとを連続的に接触させて相対運動させながら研磨を行う方法が提案されている。(例えば、特許文献1参照)   As a method for solving this, there has been proposed a method in which polishing is performed by making a metal and diamond continuously contact each other and making a relative motion by utilizing thermochemical wear of diamond. (For example, see Patent Document 1)

特開2003−73190号公報JP 2003-73190 A

単結晶ダイヤモンドの加工においても、上記と同様にダイヤモンド砥石やスカイフ盤による加工が行われているが、この方法はダイヤモンド表面にマイクロクラックを生じさせてしまう。マイクロクラックの発生は、工具切刃の強度を低下させるため、チッピングが発生しやすくなり、その結果工具の寿命を短くするという問題がある。また、上記特許文献1に記載の金属とダイヤモンドとを相対運動させる方法では、創成されるダイヤモンド製品の形状が相対運動によって制限を受ける、ダイヤモンドの保持に特別な工夫が必要となる、さらには振動が生じやすいなどの理由から、形状精度の高いダイヤモンド製品の多量生産が困難であるという問題が生じている。
このようなことから、本発明は形状が複雑で、表面欠陥の少ないダイヤモンド製品の製造方法を提案するものである。
In the processing of single crystal diamond, processing with a diamond grindstone or skyf machine is performed in the same manner as described above, but this method causes micro cracks on the diamond surface. The occurrence of microcracks reduces the strength of the tool cutting edge, and therefore tends to cause chipping, resulting in a problem of shortening the tool life. Further, in the method of relative movement of the metal and diamond described in Patent Document 1, the shape of the diamond product to be created is limited by the relative motion, special measures are required for holding the diamond, and vibration For example, the problem is that it is difficult to mass-produce diamond products with high shape accuracy.
For this reason, the present invention proposes a method for producing a diamond product having a complicated shape and few surface defects.

本発明のダイヤモンド製品の製造方法の特徴は、単結晶ダイヤモンドを有するダイヤモンド製品の製造方法であって、
前記ダイヤモンドを機械研磨する工程と、
前記ダイヤモンドに大気中で加熱されて酸化銅が形成された銅板を静的に接触させ、所定時間その状態を保持してダイヤモンドを摩耗させる工程、とを有することである。
A feature of the method for producing a diamond product of the present invention is a method for producing a diamond product having single crystal diamond,
Mechanically polishing the diamond;
A step of statically contacting a copper plate on which copper oxide is formed by heating the diamond in the atmosphere, and maintaining the state for a predetermined time to wear the diamond.

また、前記銅板の表面粗さは、機械研磨されたダイヤモンドの表面粗さ以下であることが望ましい。   The surface roughness of the copper plate is preferably equal to or less than the surface roughness of mechanically polished diamond.

本発明のダイヤモンド製品の製造方法によれば、単結晶ダイヤモンドの研磨を行うにあたり、複雑な形状であっても研磨が容易であり、一度に多数のダイヤモンド製品の研磨も可能であるので、極めて生産能率が高い。また、機械研磨により発生したマイクロクラックを除去することができるので、信頼性の高いダイヤモンド製品の製造が可能になる。特に、工具などのダイヤモンド製品では、マイクロクラックが大幅に除去されるので、耐チッピングに優れた、寿命の長い工具が製造される。   According to the method for manufacturing a diamond product of the present invention, when polishing single crystal diamond, it is easy to polish even if it has a complicated shape, and a large number of diamond products can be polished at one time. High efficiency. In addition, since microcracks generated by mechanical polishing can be removed, a highly reliable diamond product can be manufactured. Particularly in diamond products such as tools, since microcracks are greatly removed, a tool having a long life and excellent chipping resistance is produced.

本発明におけるダイヤモンドの研磨は、機械研磨の後工程で実施し、マイクロクラックの除去を行って、ダイヤモンド製品の信頼性を高めることを目的に、多数のダイヤモンドを同時に熱化学的に研磨する。これにより、製品1個当たりの熱化学研磨時間を短くできる。また、熱化学研磨を行う際には、ダイヤモンドと銅板との間に相対運動を与えずに、銅とダイヤモンドとの熱化学的作用のみによりダイヤモンドを摩耗させるので、所要の形状精度も容易に達成される。   The polishing of diamond in the present invention is performed in a post-mechanical polishing step, and a large number of diamonds are simultaneously thermochemically polished for the purpose of removing microcracks and improving the reliability of the diamond product. Thereby, the thermochemical polishing time per product can be shortened. Also, when performing thermochemical polishing, the diamond is worn only by the thermochemical action of copper and diamond without giving relative motion between the diamond and the copper plate, so the required shape accuracy is easily achieved. Is done.

本発明において行う熱化学研磨は、以下の原理に基づくものである。図1は銅および炭素の酸化反応における酸素1mol当たりの標準自由エネルギーの変化ΔG°を温度の関数として表したエリンガム図である。図の温度範囲において、すべてのエリンガム線のΔG°は負であるので、銅では、
2Cu+O=2CuO または 4Cu+O=2CuO
炭素では、
2C+O=2CO または C+O=CO
の酸化反応が起こる。また、炭素の酸化物のΔG°は銅の酸化物のΔG°より小さいので、炭素の酸化物は銅の酸化物に比べて安定である。それゆえ、酸化されていない炭素が銅の酸化物と接触すると、それから酸素を奪って炭素が酸化し、相手を還元することになる。すなわち、銅とダイヤモンドの界面付近に酸素があれば、銅が酸化し、それをダイヤモンドが還元するという酸化還元反応の原理に基づいて、ダイヤモンド工具を研磨するものである。
The thermochemical polishing performed in the present invention is based on the following principle. FIG. 1 is an Ellingham diagram showing the standard free energy change ΔG ° per mole of oxygen in the oxidation reaction of copper and carbon as a function of temperature. In the temperature range of the figure, ΔG ° of all Ellingham lines is negative, so in copper,
2Cu + O 2 = 2CuO or 4Cu + O 2 = 2CuO 2
In carbon,
2C + O 2 = 2CO or C + O 2 = CO 2
Oxidation reaction occurs. Further, since ΔG ° of the carbon oxide is smaller than ΔG ° of the copper oxide, the carbon oxide is more stable than the copper oxide. Therefore, when non-oxidized carbon comes into contact with copper oxide, it deprives oxygen and oxidizes the carbon, reducing the partner. That is, if there is oxygen near the interface between copper and diamond, the diamond tool is polished based on the principle of oxidation-reduction reaction in which copper is oxidized and diamond is reduced.

ここで、上記の原理による熱化学研磨性能を明らかにするために、323〜523Kの範囲の温度で加熱した銅板にダイヤモンド試料を1Nの荷重で押し付けた状態で、一定時間そのまま保持して熱化学研磨を行った。このとき、研磨量は先端半径5μmのダイヤモンド球圧子を取り付けた微小圧縮試験機でダイヤモンド試料に予めリングクラックを発生させておき、研磨前後のリングクラックの深さの差から求めた。また、熱化学研磨によってダイヤモンド表面のマイクロクラックが除去されたことを確認するために、上記の試験機を用いてダイヤモンド試料のHertz強度を調べた。   Here, in order to clarify the thermochemical polishing performance based on the above-described principle, the diamond sample is pressed against a copper plate heated at a temperature in the range of 323 to 523 K with a load of 1 N, and held for a certain period of time to perform thermochemistry. Polishing was performed. At this time, the polishing amount was obtained from a difference in the depth of the ring crack before and after polishing by previously generating a ring crack in the diamond sample with a micro compression tester equipped with a diamond ball indenter having a tip radius of 5 μm. In addition, in order to confirm that microcracks on the diamond surface were removed by thermochemical polishing, the Hertz strength of the diamond sample was examined using the above tester.

図2に研磨量と加熱時間の関係を示す。この図より、ダイヤモンドを加熱した酸化銅と接触させるだけで数10nm程度研磨できることがわかる。図3に研磨速度(単位時間当たりの研磨量)と加熱温度の関係を示す。両者の間にはアレニウスの関係が成立し、その直線関係の勾配から、銅との熱化学作用に基づくダイヤモンドの摩耗の活性化エネルギーは218kJ/molと算出される。523Kにおける炭素の酸化反応の自由エネルギー変化と銅の酸化反応の自由エネルギー変化の差より、酸化銅のダイヤモンドによる還元反応の自由エネルギー変化は133kJ/molと得られる。この自由エネルギー変化とダイヤモンドの摩耗の活性化エネルギーがオーダー的に合うので、ダイヤモンドの摩耗は上記の熱化学的作用によるものであると考えられる。   FIG. 2 shows the relationship between the polishing amount and the heating time. From this figure, it can be seen that polishing can be performed on the order of several tens of nanometers simply by bringing diamond into contact with heated copper oxide. FIG. 3 shows the relationship between the polishing rate (polishing amount per unit time) and the heating temperature. The Arrhenius relationship is established between the two, and the activation energy of diamond wear based on the thermochemical action with copper is calculated as 218 kJ / mol from the gradient of the linear relationship. From the difference between the free energy change of the carbon oxidation reaction and the free energy change of the copper oxidation reaction at 523 K, the free energy change of the reduction reaction of copper oxide by diamond is obtained as 133 kJ / mol. Since this free energy change and the activation energy of diamond wear are in order, it is considered that diamond wear is due to the above-mentioned thermochemical action.

図4はダイヤモンド試料を銅粉末と接触させて加熱した場合、およびダイヤモンド試料と加熱した銅板を接触させて熱化学研磨を行った場合のダイヤモンドのHertz強度の変化を示している。ダイヤモンドを銅粉末中で加熱した場合、加熱時間が長くなると、ダイヤモンド表面に先在するマイクロクラックが進展し、ダイヤモンドの微小破壊強度は低下する。これに対して、ダイヤモンドを加熱した銅板と接触させた場合、加熱時間が短い期間では、ダイヤモンドの微小破壊強度はクラックの進展によりいったん減少する。しかし、ある加熱時間以上では、ダイヤモンド表面に先在していたマイクロクラックが、ダイヤモンド表面の摩耗とともに除去されるため、微小破壊強度は増加する。   FIG. 4 shows changes in the Hertz intensity of the diamond when the diamond sample is heated while being brought into contact with the copper powder, and when the diamond sample and the heated copper plate are brought into contact with each other and thermochemical polishing is performed. When diamond is heated in copper powder, if the heating time is increased, microcracks pre-existing on the surface of the diamond develop and the microfracture strength of the diamond decreases. On the other hand, when the diamond is brought into contact with a heated copper plate, the microfracture strength of the diamond once decreases due to the progress of cracks in a period in which the heating time is short. However, after a certain heating time or more, microcracks existing on the diamond surface are removed along with wear of the diamond surface, so that the microfracture strength increases.

以上のようなことから、ある一定時間以上の熱化学研磨を行うことでダイヤモンドの表面に存在するマイクロクラックを除去することが可能であると言える。ただし、熱化学研磨の研磨速度は低いため、機械研磨との組合せにより、効率的な研磨を行う必要がある。   From the above, it can be said that microcracks existing on the surface of diamond can be removed by performing thermal chemical polishing for a certain period of time or longer. However, since the polishing rate of thermochemical polishing is low, it is necessary to perform efficient polishing in combination with mechanical polishing.

以上の原理に基づき加工されたダイヤモンド製品の性能を確認するため、ダイヤモンド切削工具を製作して、超精密切削加工を行った。図5に熱化学研磨を行う際の概要を示す。本発明の製造方法によるダイヤモンド工具として、ダイヤモンド砥石およびスカイフ盤により機械研磨を行ったダイヤモンド工具のすくい面(100)面を、温度523Kに加熱した銅板に1Nの荷重Fで押し付け、この状態で6時間熱化学研磨を行った。また、比較のため、上記の熱化学研磨を行っていない点を除き上記と同じダイヤモンド工具(以下、比較例と記す)を用いて超精密切削加工を行い、両者の耐損耗性と寿命を比較した。   In order to confirm the performance of diamond products processed based on the above principle, a diamond cutting tool was manufactured and ultra-precision cutting was performed. FIG. 5 shows an outline when performing thermochemical polishing. As a diamond tool according to the manufacturing method of the present invention, a rake face (100) surface of a diamond tool mechanically polished with a diamond grindstone and a Skyf machine is pressed against a copper plate heated to a temperature of 523 K with a load F of 1 N. Time thermal chemical polishing was performed. For comparison, except that the above-mentioned thermochemical polishing is not performed, ultra-precision cutting is performed using the same diamond tool as above (hereinafter referred to as a comparative example), and the wear resistance and life of both are compared. did.

以上のようにして製作したダイヤモンド工具を用いて、無酸素銅ディスクを切削速度15.6m/s、切込み6.7μm、送り3μm/revの条件で乾式により正面切削を行った。   Using the diamond tool manufactured as described above, an oxygen-free copper disk was subjected to front cutting by a dry method under conditions of a cutting speed of 15.6 m / s, a cutting depth of 6.7 μm, and a feed of 3 μm / rev.

ダイヤモンド工具の寿命の判定は、本出願人が提案した特開2005−125480号に記載の方法により行った。すなわち、以下の方法による。切削過程で切削抵抗とAEを測定し、それぞれパワースペクトル解析と振幅分布解析を行う。そして、切削抵抗については、周波数fに対してべき乗則分布するスペクトル密度S(f)∝1/fβのスペクトル指数βを、AEについては、振幅aに対してべき乗則分布するAE事象率N∝a−mのスケーリング指数mを評価して、スペクトル指数β>1かつスケーリング指数m<2なる基準を用いて、工具の寿命を判定した。 Judgment of the life of a diamond tool was performed by the method described in Japanese Patent Application Laid-Open No. 2005-125480 proposed by the applicant. That is, according to the following method. Cutting resistance and AE are measured in the cutting process, and power spectrum analysis and amplitude distribution analysis are performed respectively. For the cutting resistance, the spectral index β of the spectral density S (f) ∝1 / f β with power law distribution with respect to the frequency f, and with respect to AE, the AE event rate N with power law distribution with respect to the amplitude a. It evaluates the scaling exponent m of .alpha.a -m, using spectral exponent beta> 1 and scaling exponent m <2 becomes a reference, to determine the tool life.

図6にスペクトル指数βの切削距離に対する変化を示す。すくい面のクレータ摩耗と境界摩耗の進行につれて、スペクトル指数βは次第に大きくなり、やがて1を越すことがわかる。これは切削抵抗の変動がランダムから自己相似的に遷移したことを表し、工具寿命が近いことを示唆している。また、図7はスケーリング指数mの切削距離に対する変化を表している。この図において、スケーリング指数mが2より小さくなるときが見られる。これはチッピングが発生したことを示唆している。また、同図において、本発明のダイヤモンド工具の方が比較例のダイヤモンド工具に比較して、チッピングの発生が少ないことが認められる。このことから、熱化学研磨によって切れ刃近傍のマイクロクラックが除去され、耐チッピング性が向上していることがわかる。また、前述の工具寿命基準に従い工具寿命を比較すると、本発明の熱化学研磨法で仕上げられたダイヤモンド工具の寿命距離は485kmであり、比較例の機械研磨法で仕上げられたダイヤモンド工具の寿命距離は345kmであるので、寿命距離が約40%延びている。したがって、機械研磨後に熱化学研磨を行うことにより、チッピングの発生が抑制され、工具の寿命を大幅に延ばせることは明らかである。   FIG. 6 shows the change of the spectral index β with respect to the cutting distance. It can be seen that as the crater wear and boundary wear of the rake face progress, the spectral index β gradually increases and eventually exceeds 1. This indicates that the variation in cutting force has changed from random to self-similar, suggesting that the tool life is close. FIG. 7 shows the change of the scaling index m with respect to the cutting distance. In this figure, it can be seen that the scaling index m is smaller than 2. This suggests that chipping has occurred. Further, in the same figure, it can be seen that the diamond tool of the present invention generates less chipping than the diamond tool of the comparative example. From this, it can be seen that microcracks near the cutting edge are removed by thermochemical polishing and chipping resistance is improved. Further, when the tool life is compared according to the above-mentioned tool life criteria, the life distance of the diamond tool finished by the thermochemical polishing method of the present invention is 485 km, and the life distance of the diamond tool finished by the mechanical polishing method of the comparative example. Is 345 km, so the life span is extended by about 40%. Therefore, it is clear that the occurrence of chipping can be suppressed and the tool life can be greatly extended by performing the thermal chemical polishing after the mechanical polishing.

銅および炭素の酸化反応における標準自由エネルギーの変化量を示す図。The figure which shows the variation | change_quantity of the standard free energy in the oxidation reaction of copper and carbon. 研磨量と加熱時間の関係を示す図。The figure which shows the relationship between grinding | polishing amount and heating time. 研磨速度と加熱温度の関係を示す図。The figure which shows the relationship between polishing rate and heating temperature. ダイヤモンドのHertz強度と加熱時間の関係を示す図。The figure which shows the relationship between the Hertz intensity | strength of a diamond, and heating time. 熱化学研磨装置の概要を示す図。The figure which shows the outline | summary of a thermochemical polishing apparatus. スペクトル指数βの切削距離に対する変化を示す図。The figure which shows the change with respect to the cutting distance of the spectrum index | exponent (beta). スケーリング指数mの切削距離に対する変化を示す図。The figure which shows the change with respect to the cutting distance of the scaling index | exponent m.

符号の説明Explanation of symbols

1 ダイヤモンド工具
2 銅板
3 ヒータ
1 Diamond tool 2 Copper plate 3 Heater

Claims (2)

単結晶ダイヤモンドを有するダイヤモンド製品の製造方法であって、
前記ダイヤモンドを機械研磨する工程と、
大気中で加熱されて酸化銅が形成された銅板を前記ダイヤモンドに静的に接触させ、所定時間その状態を保持してダイヤモンドを摩耗させる工程、
とを有することを特徴とするダイヤモンド製品の製造方法。
A method for producing a diamond product having single crystal diamond,
Mechanically polishing the diamond;
A step of statically contacting the diamond with a copper plate formed with copper oxide heated in the atmosphere, and maintaining the state for a predetermined time to wear the diamond;
A method for producing a diamond product, comprising:
前記銅板の表面粗さは、機械研磨されたダイヤモンドの表面粗さ以下であることを特徴とする請求項1に記載のダイヤモンド製品の製造方法。   The method for producing a diamond product according to claim 1, wherein the copper plate has a surface roughness equal to or less than a surface roughness of the mechanically polished diamond.
JP2006052549A 2006-02-28 2006-02-28 Method of producing diamond product Pending JP2007230807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052549A JP2007230807A (en) 2006-02-28 2006-02-28 Method of producing diamond product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052549A JP2007230807A (en) 2006-02-28 2006-02-28 Method of producing diamond product

Publications (1)

Publication Number Publication Date
JP2007230807A true JP2007230807A (en) 2007-09-13

Family

ID=38551783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052549A Pending JP2007230807A (en) 2006-02-28 2006-02-28 Method of producing diamond product

Country Status (1)

Country Link
JP (1) JP2007230807A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280421A (en) * 2008-05-20 2009-12-03 Sadao Takeuchi Tool with high strength diamond film
CN102531676A (en) * 2012-03-03 2012-07-04 哈尔滨工业大学 Method for performing vacuum thermochemical corrosion on natural diamond cutter based on nano copper oxide
JP2012232898A (en) * 2012-08-17 2012-11-29 Sadao Takeuchi Tool with high strength diamond film
JP2013052488A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd Polishing machine for polishing diamond material and method of polishing diamond material
DE102013216475A1 (en) 2012-08-31 2014-03-06 Japan Aviation Electronics Industry, Limited INORGANIC SOLID-SOLVENT MATERIAL AND CUTTING TOOL
GB2514105A (en) * 2013-05-12 2014-11-19 Andrew David Irving System and method for processing a diamond material work-piece
EP2813304A2 (en) 2013-05-20 2014-12-17 Japan Aviation Electronics Industry Limited Edge tool
EP2985368A4 (en) * 2013-04-09 2016-12-14 Sumitomo Electric Industries Single crystal diamond and diamond tool

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280421A (en) * 2008-05-20 2009-12-03 Sadao Takeuchi Tool with high strength diamond film
JP2013052488A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd Polishing machine for polishing diamond material and method of polishing diamond material
CN102531676A (en) * 2012-03-03 2012-07-04 哈尔滨工业大学 Method for performing vacuum thermochemical corrosion on natural diamond cutter based on nano copper oxide
JP2012232898A (en) * 2012-08-17 2012-11-29 Sadao Takeuchi Tool with high strength diamond film
DE102013216475A1 (en) 2012-08-31 2014-03-06 Japan Aviation Electronics Industry, Limited INORGANIC SOLID-SOLVENT MATERIAL AND CUTTING TOOL
JP2014047115A (en) * 2012-08-31 2014-03-17 Japan Aviation Electronics Industry Ltd Inorganic solid material and cutter tool
US9999983B2 (en) 2012-08-31 2018-06-19 Japan Aviation Electronics Industry, Limited Chipping-proof inorganic solid-state material and chipping-proof edge tool
EP2985368A4 (en) * 2013-04-09 2016-12-14 Sumitomo Electric Industries Single crystal diamond and diamond tool
US9963801B2 (en) 2013-04-09 2018-05-08 Sumitomo Electric Industries, Ltd. Single crystal diamond and diamond tool
WO2014184508A1 (en) 2013-05-12 2014-11-20 Irving Andrew David Method for processing a diamond material work-piece
GB2514105B (en) * 2013-05-12 2017-07-26 David Irving Andrew Methods for processing a surface of a diamond article
GB2514105A (en) * 2013-05-12 2014-11-19 Andrew David Irving System and method for processing a diamond material work-piece
EP2813304A2 (en) 2013-05-20 2014-12-17 Japan Aviation Electronics Industry Limited Edge tool

Similar Documents

Publication Publication Date Title
JP2007230807A (en) Method of producing diamond product
JP5888827B2 (en) Dicing apparatus and dicing method
JP6412538B2 (en) Dicing machine
Chen et al. Development of a grinding–drilling technique for holing optical grade glass
CN104400567B (en) A kind of super mirror polishing method of metallic plate
CN102729144A (en) Milling processing device with substitute
Bandyopadhyay et al. The effect of ELID grinding on the flexural strength of silicon nitride
CN107953148A (en) It is a kind of based on the sapphire wafer polishing method for including neodymium compound mild abrasives fixation grinding tool
Guan et al. Non-contact grinding/thinning of silicon carbide wafer by pure EDM using a rotary cup wheel electrode
JP2016196085A (en) Working grindstone
JP2019022936A (en) Work processing device
JP2009178770A (en) Method of machining mold member, method of producing the same, extrusion die, method for production of extruding material, and extruding material
Tawakoli et al. Dressing of grinding wheels
CN105108608B (en) Hard brittle material super-smooth surface adaptive machining method
JP2018103356A (en) Blade processing device and blade processing method
Ball et al. Electrolytically assisted ductile-mode diamond grinding of BK7 and SF10 optical glasses
Tawakoli et al. Theoretical and experimental investigation of intermittent grinding of SiC with a segmented grinding wheel
TWI602667B (en) Scoring wheel and its manufacturing method
JP6253206B2 (en) Blade processing apparatus and blade processing method
Chen et al. Study of an on-line precision microgroove generating process on silicon wafer using a developed ultra-thin diamond wheel-tool
JP2018047551A (en) Workpiece processing device and workpiece processing method
JP2009056517A (en) Method and tool for truing diamond wheel
Huang et al. Wear of a brazed diamond grinding wheel with diamonds precovered by brazing alloy
Zhao et al. Deformation analysis of micro/nano indentation and diamond grinding on optical glasses
JP2005246504A (en) Method of suppressing wear of diamond tool in specular cutting of copper