JP2012232898A - Tool with high strength diamond film - Google Patents

Tool with high strength diamond film Download PDF

Info

Publication number
JP2012232898A
JP2012232898A JP2012180829A JP2012180829A JP2012232898A JP 2012232898 A JP2012232898 A JP 2012232898A JP 2012180829 A JP2012180829 A JP 2012180829A JP 2012180829 A JP2012180829 A JP 2012180829A JP 2012232898 A JP2012232898 A JP 2012232898A
Authority
JP
Japan
Prior art keywords
diamond
diamond film
tool
boron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012180829A
Other languages
Japanese (ja)
Inventor
Sadao Takeuchi
貞雄 竹内
Takeshi Yokozawa
毅 横澤
Kenji Tamaoki
賢次 玉置
Yoshikazu Teranishi
義一 寺西
Seiji Kataoka
征二 片岡
Tadao Kato
忠郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2012180829A priority Critical patent/JP2012232898A/en
Publication of JP2012232898A publication Critical patent/JP2012232898A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tool with a high strength diamond film of polycrystal-single crystal and a coated tool which are excellent in fracture strength and wear resistance by improving resistance to fracture and can be subjected to polishing processing mainly comprising electric processing, such as electric discharge machining.SOLUTION: In a tool coated with a polycrystalline diamond film or/and a single crystal diamond tool, the fracture strength is improved by doping boron in a film-like diamond by a gas phase method.

Description

本発明は高強度ダイヤモンド膜工具に関するものである。   The present invention relates to a high-strength diamond film tool.

ダイヤモンドは全物質中で最高の硬度を有しており、古くから工具として利用されてきた。特に精密加工用の単結晶ダイヤモンドバイトは、最も鋭利な切れ刃が要求され、ダイヤモンド以外の素材で代替えすることが不可能である。このため、天然や高温高圧合成による単結晶ダイヤモンドをシャンクにろう付けした切削バイトが用いられている。しかし、天然品は耐欠損性にばらつきがあり、高濃度の窒素を含む高温高圧合成製品は耐磨耗性が劣るという問題がある。   Diamond has the highest hardness among all materials and has been used as a tool for a long time. In particular, single crystal diamond tools for precision machining require the sharpest cutting edge, and cannot be replaced with materials other than diamond. For this reason, a cutting tool in which single crystal diamond by natural or high temperature / high pressure synthesis is brazed to a shank is used. However, natural products have variations in fracture resistance, and high-temperature and high-pressure synthetic products containing a high concentration of nitrogen have a problem of poor wear resistance.

また、気相法による多結晶ダイヤモンド膜をコーティングしたドリル、エンドミル、切削インサートが市販されている。特に最近になり、カーボンファイバーの加工用途が急増し加工コスト低減のためにダイヤモンド膜の寿命向上が切望されている。ダイヤモンド膜をコーティングした工具の寿命はアブレッシブ摩耗により下地基板の露出に至る。ダイヤモンドのような硬脆材料の場合、アブレッシブ摩耗といえども、ミクロ的には微小チッピングが主体である。また被加工材に内在する介在物等に起因する偶発的な衝撃が原因で膜が破壊することも良く知られている。すなわちダイヤモンド膜を工具に応用する場合、膜自身の耐欠損性を向上させることで工具寿命は増大できると考えられる。 In addition, drills, end mills and cutting inserts coated with a polycrystalline diamond film by a vapor phase method are commercially available. In particular, recently, the use of carbon fibers has increased rapidly, and the life of diamond films has been eagerly improved in order to reduce processing costs. The life of a tool coated with a diamond film leads to exposure of the underlying substrate due to abrasive wear. In the case of a hard and brittle material such as diamond, micro chipping is mainly used on the micro level even though it is abrasive wear. It is also well known that the film breaks due to accidental impact caused by inclusions and the like inherent in the workpiece. That is, when a diamond film is applied to a tool, it is considered that the tool life can be increased by improving the fracture resistance of the film itself.

しかしながら気相法によるダイヤモンドコーティング工具については、下地基板となる超硬合金の付着力を高めるという観点からの研究報告・特許は非常に多いものの、素材としてのダイヤモンド膜の強度向上という観点からの取り組みはほとんど成されていないのが現状である。   However, as for diamond coating tools by the vapor phase method, although there are very many research reports and patents from the viewpoint of increasing the adhesion of cemented carbide as the underlying substrate, efforts from the viewpoint of improving the strength of the diamond film as a material Is currently not made.

また、たとえば、環境負荷低減に関する要求を満足するために、潤滑油を使用しないプレス加工、すなわちドライプレス加工に対するニーズが高まっている。ダイヤモンドの摩擦係数は0.05と極めて低くドライプレスの実現には、ダイヤモンドコーテッド金型の使用が不可欠であると考えられている。   In addition, for example, in order to satisfy the demand for reducing the environmental load, there is an increasing need for press working without using lubricating oil, that is, dry press working. Diamond has a very low friction coefficient of 0.05, and it is considered that the use of a diamond-coated mold is indispensable for realizing a dry press.

しかしながらプレス加工は、断続的な衝撃荷重を繰返し受けることが特徴であり、耐欠損性に優れるダイヤモンド膜が必要になる。さらに、プレス加工用金型は、鏡面に仕上げることが不可欠であるために、ダイヤモンド膜特有の凹凸面を研磨する技術も必要である。すなわち、ドライプレス加工を実現するためには、耐欠損性に優れるダイヤモンド膜の合成技術とダイヤモンド膜の研磨技術を確立する必要がある
このような現状において、出願人らは、単結晶ダイヤモンドにおいて高強度ダイヤモンド膜の合成技術(出願番号:2004−317959)やダイヤモンド膜の効率的な研磨技術(出願番号:2004−314637)提案している。しかしながら、上記ドライプレス加工に対する現場技術者のニーズを満たすまでに至っていないのが実情である。
However, press working is characterized by being repeatedly subjected to intermittent impact loads, and a diamond film having excellent fracture resistance is required. Furthermore, since it is indispensable for the press mold to have a mirror finish, a technique for polishing the irregular surface peculiar to the diamond film is also required. In other words, in order to realize dry press processing, it is necessary to establish a diamond film synthesis technique and a diamond film polishing technique that are excellent in fracture resistance. A high-strength diamond film synthesis technique (application number: 2004-317959) and a diamond film efficient polishing technique (application number: 2004-314637) have been proposed. However, the actual situation is that it does not meet the needs of field engineers for the dry press processing.

特開2006−123137号公報JP 2006-123137 A 特開2005−231022号公報JP 2005-231022 A

本発明の目的とするところは、耐欠損性を向上させることで破壊強度と耐摩耗性に優れ、かつ放電加工等の電気加工を主体とした研磨加工が可能な多結晶・単結晶の高強度ダイヤモンド膜工具やコーティング工具を提供することにある。
なお、本発明において、「工具」とは物体を切削除去する手段としての工具のほか、塑性加工用の各種ダイス、すなわち打ち抜きダイス・ポンチ、絞りダイス、引抜きダイスなどの優れた耐欠損性と耐摩耗性が要求される各種金型類、摺動部材や耐摩耗部材と称されるもの含む概念とする。
The object of the present invention is to improve the fracture resistance and to improve the fracture strength and wear resistance, and to provide high strength of polycrystalline / single crystal that can be polished mainly by electrical machining such as electric discharge machining. It is to provide diamond film tools and coating tools.
In the present invention, the “tool” means not only a tool as a means for cutting and removing an object but also various dies for plastic working, that is, excellent fracture resistance and resistance to punching dies and punches, drawing dies, drawing dies and the like. The concept includes various molds that require wear, and what are called sliding members and wear-resistant members.

上記目的を達成するために本発明は多結晶ダイヤモンド膜をコーティングした工具、または/および単結晶ダイヤモンド工具において、気相法による膜状ダイヤモンドにボロンをドーピングすることで破壊強度を向上させたことを基本的特徴としている。
また本発明の他の特徴は、さらにボロン添加による導電性付与により電気加工を可能にしたことにある。
また本発明の他の特徴は、ボロンをドーピングし破壊強度を向上させた高強度ダイヤモンド工具をダイヤモンドの研磨に用いることにした。
In order to achieve the above-described object, the present invention is to improve the fracture strength of a tool coated with a polycrystalline diamond film and / or a single crystal diamond tool by doping boron into a film-like diamond formed by a vapor phase method. Basic features.
Another feature of the present invention is that electroworking is made possible by imparting conductivity by adding boron.
Another feature of the present invention is that a high-strength diamond tool doped with boron to improve the fracture strength is used for polishing diamond.

本発明では、気相法でダイヤモンド膜を合成する際に、合成雰囲気中にボロンを含むガスを積極的に導入することでボロンドープダイヤモンド膜を得るものである。適量のボロンが添加されたダイヤモンド膜の破壊強度は向上し、かつ電気伝導性も付与できることから、放電加工により膜表面の凹凸の研磨が可能な耐欠損性に優れるダイヤモンド膜を得ることができる。なお、このような高強度ダイヤモンドにより、通常の天然ダイヤモンドを研磨加工等効率よく行うことも可能となる。また、ボロンドーピングに付随するコストは数十円から数百円のオーダーとなり通常のコーティングコストに占める割合は数%程度と極めてリーズナブルにダイヤモンド膜の機能向上を図ることができる。   In the present invention, when a diamond film is synthesized by a vapor phase method, a boron-doped diamond film is obtained by positively introducing a gas containing boron into the synthesis atmosphere. Since the fracture strength of a diamond film to which an appropriate amount of boron is added can be improved and electrical conductivity can be imparted, a diamond film having excellent fracture resistance capable of polishing irregularities on the film surface by electric discharge machining can be obtained. Note that such high-strength diamonds can be used to efficiently perform normal natural diamond polishing and the like. Further, the cost associated with boron doping is on the order of several tens of yen to several hundreds of yen, and the ratio to the normal coating cost is about several percent, and the function of the diamond film can be improved extremely reasonably.

合成雰囲気中のボロン濃度を変化させて合成した多結晶ダイヤモンド膜のラマンスペクトルを対比して示す説明図である。It is explanatory drawing which compares and shows the Raman spectrum of the polycrystalline diamond film synthesize | combined by changing the boron density | concentration in synthetic | combination atmosphere. 合成雰囲気中のボロン濃度を変化させて合成した多結晶ダイヤモンド膜の電気抵抗の測定結果を示す線図である。It is a diagram which shows the measurement result of the electrical resistance of the polycrystalline diamond film synthesize | combined by changing the boron density | concentration in synthetic | combination atmosphere. 合成雰囲気中のボロン濃度を変化させて合成し結晶性の向上が認められた多結晶ダイヤモンド膜のヘルツ破壊応力の測定結果を示す線図である。It is a diagram showing the measurement result of Hertz fracture stress of a polycrystalline diamond film synthesized by changing the boron concentration in the synthesis atmosphere and improved in crystallinity. (a)は本発明の合成後のボロンドープダイヤモンド膜の顕微鏡写真、(b)は、(a)の膜に放電加工を行った結果を示す顕微鏡写真である。(A) is a photomicrograph of the boron-doped diamond film after synthesis of the present invention, and (b) is a photomicrograph showing the result of electric discharge machining on the film of (a).

本発明は、気相法でダイヤモンド膜を合成する際に、合成雰囲気中にボロンを含むガスを積極的に導入することでボロンドープダイヤモンド膜を得るものである。
本発明を実施するダイヤモンドの合成方法、およびボロンドープ源については、特別な制約は無い。一般に広く知られているマイクロ波プラズマ法、熱フィラメント法、燃焼炎法等いずれの合成方法でも可能である。
また、ボロンドープ源としてはジボラン:B2H6等のボロンを含むガスの場合は直接反応容器に供給できる。トリメチルボロン:B(CH3)3
、トリメトキシボロン:B(OCH3)3等の液体材料であれば水素で希釈して供給することが可能である。ホウ酸等の固体原料はエタノールやアセトン等に溶解して水素をキャリアガスとして供給する等いずれの原料を用いることも可能である。
また、ボロンを合成雰囲気中に供給することで、ダイヤモンド膜の付着力、合成速度当には何らの悪影響を及ぼすことはない。したがって、既存の付着力向上のための基板処理、核発生密度向上のための基板処理等を併用することが可能である。
In the present invention, when a diamond film is synthesized by a vapor phase method, a boron-doped diamond film is obtained by positively introducing a gas containing boron into the synthesis atmosphere.
There are no particular restrictions on the method of synthesizing the diamond embodying the present invention and the boron doping source. Any generally known synthesis method such as a microwave plasma method, a hot filament method, or a combustion flame method can be used.
As a boron doping source, a gas containing boron such as diborane: B 2 H 6 can be directly supplied to the reaction vessel. Trimethylboron: B (CH 3 ) 3
Liquid materials such as trimethoxyboron: B (OCH 3 ) 3 can be supplied after being diluted with hydrogen. As the solid raw material such as boric acid, it is possible to use any raw material such as dissolving hydrogen in ethanol or acetone and supplying hydrogen as a carrier gas.
Further, by supplying boron into the synthesis atmosphere, there is no adverse effect on the adhesion of the diamond film and the synthesis speed. Therefore, it is possible to use the existing substrate processing for improving adhesion, substrate processing for improving the nucleus generation density, and the like.

本発明の一例を挙げると、高温高圧法で合成したIb型ダイヤモンド上に、熱フィラメント法によりホモエピタキシャル成長(成長面は100面)させる。ボロンのドーピングは、水素で希釈したトリメチルボロンをチャンバー内に供給する。
ダイヤモンドの原料はCHメタンを用い、供給するB/C(ボロン炭素)の割合を所定の範囲として、所望の膜厚たとえば10〜60μmを合成する。合成条件の一例を挙げると、基板温度:900℃、合成圧力:50torr,水素濃度:150secm、メタン流量:1.5secm、ボロン濃度:500〜27200ppmのごとくである。
As an example of the present invention, homoepitaxial growth (growth surface is 100) is performed by hot filament method on Ib type diamond synthesized by high temperature and high pressure method. Boron doping supplies trimethylboron diluted with hydrogen into the chamber.
A diamond raw material is CH 4 methane, and a desired film thickness, for example, 10 to 60 μm is synthesized with a ratio of supplied B / C (boron carbon) being within a predetermined range. An example of the synthesis conditions is as follows: substrate temperature: 900 ° C., synthesis pressure: 50 torr, hydrogen concentration: 150 secm, methane flow rate: 1.5 secm, boron concentration: 500-27200 ppm.

ダイヤモンド膜中に含まれるボロンの同定は、特殊な分析が必要で一般的ではない。ボロン含有量とラマン分光分析により得られるダイヤモンドピークの半価幅と強い相関を有することから半価幅で評価するのが好適である。
図1に合成雰囲気中のボロン濃度を変化させて合成した多結晶ダイヤモンド膜のラマンスペクトルを対比して示す。なお、このときのダイヤモンドピーク(1332cm-1)の半価幅は、0ppmの場合で6.74cm-1であったのに対して、1000ppmで5.42cm-1、2200ppmで6.21cm-1、4400ppmで11.62cm-1となった。半価幅の減少は結晶性が向上したことを意味している。
Identification of boron contained in the diamond film is not common because it requires special analysis. Since it has a strong correlation with the boron content and the half-value width of the diamond peak obtained by Raman spectroscopic analysis, it is preferable to evaluate by the half-value width.
Fig. 1 shows a comparison of Raman spectra of polycrystalline diamond films synthesized by changing the boron concentration in the synthesis atmosphere. Incidentally, the half-value width of the diamond peak at this time (1332 cm -1) is that the there was a 6.74cm -1 in the case of 0ppm, 5.42cm -1 in 1000ppm, 6.21cm -1 in 2200 ppm, in 4400ppm It was 11.62 cm- 1 . The decrease in the half width means that the crystallinity is improved.

図2は合成雰囲気中のボロン濃度を変化させて合成した各種多結晶ダイヤモンド膜の電気抵抗の測定結果を示す。ボロンを含まない場合は30000Ω以上を示し絶縁体的特性を示したものが、1000ppmで1.5Ω/cmを示し、4400pmで0.5Ω/cmまで低下しており、良好な電気伝導性が得られていることがわかる。すなわち、ボロン濃度を1000ないし2200ppmで合成したダイヤモンド膜は、ノンドープに比較して、結晶性が向上し(半価幅が小さくなり)、かつ良好な電気伝導性を示すことがわかる。   FIG. 2 shows the measurement results of electrical resistance of various polycrystalline diamond films synthesized by changing the boron concentration in the synthesis atmosphere. When it does not contain boron, it shows 30000Ω or more and has an insulating characteristic, but it shows 1.5Ω / cm at 1000ppm and drops to 0.5Ω / cm at 4400pm, and good electrical conductivity is obtained. I understand that. That is, it can be seen that a diamond film synthesized with a boron concentration of 1000 to 2200 ppm has improved crystallinity (smaller half-value width) and better electrical conductivity than non-doped.

図3は結晶性の向上が認められたボロン濃度を変化させて合成した各種多結晶ダイヤモンド膜のヘルツ破壊強度の測定結果を示す。ヘルツ破壊強度は、たとえば、先端半径0.2mmのダイヤモンド圧子を用いて行うもので、ここでは2400ppmで合成したダイヤモンド膜が最も高い破壊強度を示した。
すなわち、ダイヤモンドの原料である炭素に対して1000ないし2500ppmのボロンを合成雰囲気中に添加して合成したダイヤモンドは、結晶性の向上によりノンドープに比べて20%程度破壊強度が向上し、かつ数Ω/cmという良好な電気伝導性を兼ね備えていることがわかる。
FIG. 3 shows the measurement results of Hertz fracture strength of various polycrystalline diamond films synthesized by changing the boron concentration where improvement in crystallinity was recognized. For example, the Hertz fracture strength is measured using a diamond indenter having a tip radius of 0.2 mm. Here, a diamond film synthesized at 2400 ppm showed the highest fracture strength.
In other words, diamond synthesized by adding 1000 to 2500 ppm of boron to the carbon that is the raw material of diamond in the synthesis atmosphere has improved fracture strength by about 20% compared to non-doped due to improved crystallinity, and several Ω It can be seen that it has a good electrical conductivity of / cm.

なお、多結晶ダイヤモンド膜を複雑形状を有する各種工具にコーティングした場合、測定場所によりラマンピークの半価幅は大きく異なることが知られている。例えばドリルのような形状においては、半価幅は4.2〜8.5cm-1の範囲を示す。
このような現状に鑑みて、本発明におけるボロンドープダイヤモンド膜は、好ましくは、ボロンをドーピングしない場合をベースにボロン添加により半価幅が減少し、かつ電気抵抗が数10Ω/cm以下、好ましくは数Ω/cm以下の条件を満たすことが望ましい。
It is known that when a polycrystalline diamond film is coated on various tools having complicated shapes, the half-value width of the Raman peak varies greatly depending on the measurement location. For example, in the shape like a drill, the half width is in the range of 4.2 to 8.5 cm −1 .
In view of such a current situation, the boron-doped diamond film in the present invention is preferably based on the case where boron is not doped. It is desirable to satisfy the condition of several Ω / cm or less.

熱フィラメントCVD法においてダイヤモンドの原料にメタンを用いた条件に水素で希釈したトリメチルボロンを供給した。
合成雰囲気中のボロン濃度(C/B)は2500ppmとした。基板にはK10相当の超硬合金を用い、約12時間の合成を行うことで、厚さ12μmのボロンドープダイヤモンド膜を合成した。電気抵抗は1.5Ω/cmであった。このダイヤモンド膜について、通常の放電加工機を用いて直径3mmの銅電極を用いて放電加工を行った。
この放電加工結果を図4に示す。合成後のボロンドーピングダイヤモンド膜表面には、特有の凹凸面が認められるのに対して、通常の放電加工機を用いて直径3mmの銅電極を用いて放電加工を行った結果、放電加工後のボロンドーピングダイヤモンド膜表面は平滑化されていることがわかる。すなわち、数Ω/cm程度の電気抵抗を示すダイヤモンド膜を電気加工により加工可能であることが実証されている。
Trimethylboron diluted with hydrogen was supplied under the condition that methane was used as a raw material for diamond in the hot filament CVD method.
The boron concentration (C / B) in the synthesis atmosphere was 2500 ppm. A boron-doped diamond film with a thickness of 12 μm was synthesized by using a cemented carbide equivalent to K10 for the substrate and synthesizing for about 12 hours. The electric resistance was 1.5Ω / cm. This diamond film was subjected to electric discharge machining using a copper electrode having a diameter of 3 mm using an ordinary electric discharge machine.
The electric discharge machining result is shown in FIG. The surface of the boron-doped diamond film after synthesis has a unique uneven surface, but as a result of electric discharge machining using a 3 mm diameter copper electrode using an ordinary electric discharge machine, It can be seen that the boron-doped diamond film surface is smoothed. That is, it has been demonstrated that a diamond film having an electric resistance of about several Ω / cm can be processed by electric processing.

本発明は、ドライプレス加工用の絞りダイス、引抜きダイス、打抜きダイス・ポンチ等のプレス金型、切削、旋削、彫刻などの除去加工用各種工具や、耐摩耗用の摺動部品などに好適である。
The present invention is suitable for press dies such as drawing dies, drawing dies, punching dies and punches for dry press processing, various removal tools such as cutting, turning, engraving, and sliding parts for wear resistance. is there.

Claims (2)

多結晶ダイヤモンド膜または単結晶ダイヤモンド膜をコーティングした、ダイヤモンド研磨用の高強度ダイヤモンド膜工具において、気相法によるダイヤモンド膜にボロンをドーピングすることで破壊強度を向上させたことを特徴とする高強度ダイヤモンド膜工具。   A high-strength diamond film tool for diamond polishing coated with a polycrystalline diamond film or a single-crystal diamond film. Diamond film tool. ボロン添加による導電性付与により電気加工を可能にした請求項1に記載の高強度ダイヤモンド膜工具。
The high-strength diamond film tool according to claim 1, wherein electrical processing is enabled by imparting conductivity by adding boron.
JP2012180829A 2012-08-17 2012-08-17 Tool with high strength diamond film Pending JP2012232898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012180829A JP2012232898A (en) 2012-08-17 2012-08-17 Tool with high strength diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012180829A JP2012232898A (en) 2012-08-17 2012-08-17 Tool with high strength diamond film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008131617A Division JP5261690B2 (en) 2008-05-20 2008-05-20 High-strength diamond film tool

Publications (1)

Publication Number Publication Date
JP2012232898A true JP2012232898A (en) 2012-11-29

Family

ID=47433608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012180829A Pending JP2012232898A (en) 2012-08-17 2012-08-17 Tool with high strength diamond film

Country Status (1)

Country Link
JP (1) JP2012232898A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967195A (en) * 1995-08-25 1997-03-11 Matsushita Electric Works Ltd Production of diamond crystal
JPH10146703A (en) * 1996-07-31 1998-06-02 De Beers Ind Diamond Div Ltd Cvd diamond layer
JP2004155653A (en) * 1993-03-10 2004-06-03 Sumitomo Electric Ind Ltd Diamond polishing method
JP2004538230A (en) * 2001-08-08 2004-12-24 アポロ ダイアモンド,インコーポレイティド System and method for producing synthetic diamond
JP2005500489A (en) * 2001-08-16 2005-01-06 エレメント シックス リミテッド Components with bearing or wear-resistant surfaces
JP2007230807A (en) * 2006-02-28 2007-09-13 Allied Material Corp Method of producing diamond product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004155653A (en) * 1993-03-10 2004-06-03 Sumitomo Electric Ind Ltd Diamond polishing method
JPH0967195A (en) * 1995-08-25 1997-03-11 Matsushita Electric Works Ltd Production of diamond crystal
JPH10146703A (en) * 1996-07-31 1998-06-02 De Beers Ind Diamond Div Ltd Cvd diamond layer
JP2004538230A (en) * 2001-08-08 2004-12-24 アポロ ダイアモンド,インコーポレイティド System and method for producing synthetic diamond
JP2005500489A (en) * 2001-08-16 2005-01-06 エレメント シックス リミテッド Components with bearing or wear-resistant surfaces
JP2007230807A (en) * 2006-02-28 2007-09-13 Allied Material Corp Method of producing diamond product

Similar Documents

Publication Publication Date Title
JP5261690B2 (en) High-strength diamond film tool
EP2607307B1 (en) Process for production of polycrystalline diamond
JP6196646B2 (en) Cemented carbide body and method
Zhang et al. Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRP
JP5176621B2 (en) Amorphous carbon coated tool
Almeida et al. Nanocrystalline CVD diamond coatings for drilling of WC-Co parts
CN104053517A (en) Diamond-coated tool
Martinho et al. Cutting forces and wear analysis of Si3N4 diamond coated tools in high speed machining
CN101608533A (en) Drill bit of impregnated with diamond film and preparation method thereof
Wang et al. Tribological performance and wear mechanism of smooth ultrananocrystalline diamond films
Uhlmann et al. Influence of grain size on the wear behavior of CVD diamond coatings in micro-EDM
KR20160087889A (en) Polycrystalline chemical vapour deposited diamond tool parts and methods of fabricating, mounting, and using the same
CN109641286A (en) Hard coating layer plays the surface-coated cutting tool of excellent chipping resistance and peel resistance
Wang et al. Fabrication, tribological properties and cutting performances of high-quality multilayer graded MCD/NCD/UNCD coated PCB end mills
Wang et al. Approach for polishing diamond coated complicated cutting tool: abrasive flow machining (AFM)
US20200094364A1 (en) Use of a diamond layer doped with foreign atoms to detect the degree of wear of an undoped diamond function layer of a tool
JP5379934B2 (en) Diamond coated tool and method of manufacturing the same
Liang et al. High speed continuous and interrupted dry turning of A390 Aluminum/Silicon Alloy using nanostructured diamond coated WC–6 wt.% cobalt tool inserts by MPCVD
Lin et al. CVD diamond coated drawing dies: a review
JP2012232898A (en) Tool with high strength diamond film
Kuzin et al. Performance of channel cutters with ceramic plates in machining quenched steel.
Gaydaychuk et al. High temperature tribology of heavily boron doped diamond films against steel
JP2013111711A (en) Cutting tool made of diamond-coated cemented carbide excellent in toughness and wear resistance
Wang et al. The Abrasion resistance and adhesion of HFCVD boron and silicon-doped diamond films on WC–Co drawing dies
JP6040698B2 (en) Diamond-coated cemented carbide drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909