JP5416507B2 - Rotary cutting tool - Google Patents

Rotary cutting tool Download PDF

Info

Publication number
JP5416507B2
JP5416507B2 JP2009184615A JP2009184615A JP5416507B2 JP 5416507 B2 JP5416507 B2 JP 5416507B2 JP 2009184615 A JP2009184615 A JP 2009184615A JP 2009184615 A JP2009184615 A JP 2009184615A JP 5416507 B2 JP5416507 B2 JP 5416507B2
Authority
JP
Japan
Prior art keywords
diamond
particle size
average particle
rotary cutting
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009184615A
Other languages
Japanese (ja)
Other versions
JP2011036938A (en
Inventor
武 佐藤
佳津子 山本
均 角谷
直大 戸田
豊 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2009184615A priority Critical patent/JP5416507B2/en
Publication of JP2011036938A publication Critical patent/JP2011036938A/en
Application granted granted Critical
Publication of JP5416507B2 publication Critical patent/JP5416507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Milling Processes (AREA)
  • Drilling Tools (AREA)

Description

本発明は、ドリル、エンドミル、フライス、フライカット等の回転切削工具に関する。   The present invention relates to a rotary cutting tool such as a drill, an end mill, a milling cutter, and a fly cutting.

従来、ドリル等の回転切削工具の材質として超硬合金が用いられてきたが(特許文献1参照)、耐摩耗性及び耐折損性が劣ることから、各種ダイヤモンド素材が検討されてきた。しかし、単結晶ダイヤモンド(特許文献2参照)はその結晶方位に依存して摩耗量が異なることから(偏摩耗)、使用時間の経過にともない目的の穴あけ個数が得られないといった寿命問題がある。例えば(111)面と(100)面ではその摩耗量は大幅に異なる。また、へき開性のためか、使用途中で折れるという問題もある。   Conventionally, cemented carbide has been used as a material for rotary cutting tools such as drills (see Patent Document 1), but various diamond materials have been studied due to poor wear resistance and breakage resistance. However, since single crystal diamond (see Patent Document 2) has a different wear amount depending on the crystal orientation (uneven wear), there is a problem in life that the desired number of holes cannot be obtained with the lapse of use time. For example, the amount of wear differs greatly between the (111) plane and the (100) plane. Another problem is that it may break during use, probably due to cleavage.

一方、上記の偏摩耗対策として、焼結ダイヤモンドを用いる場合がある(特許文献3参照)。焼結ダイヤモンドはダイヤモンド粒子をコバルト等の金属結合材を用いて焼結しており、ダイヤモンド粒子間にはその金属結合材が存在している。しかし、金属結合材部分はダイヤモンド粒子よりも軟らかいため短時間で摩耗が進行する。結合材が減少すればダイヤモンド粒子の脱落も起こり、目的の穴あけ個数が得られないといった寿命問題がある。   On the other hand, sintered diamond may be used as a countermeasure against the above-mentioned uneven wear (see Patent Document 3). Sintered diamond is obtained by sintering diamond particles using a metal binder such as cobalt, and the metal binder exists between the diamond particles. However, since the metal binder portion is softer than the diamond particles, the wear proceeds in a short time. If the binder is reduced, diamond particles may fall off, resulting in a problem that the desired number of holes cannot be obtained.

また、金属結合材を含まない多結晶ダイヤモンドとして、CVD法(化学気相蒸着法)で超硬製ドリルの表面にダイヤモンド薄膜をコーティングする方法がある(特許文献4参照)。しかしこのダイヤモンドは薄膜のためか摩耗寿命が短く、また、粒子間結合力が小さいので摩耗寿命が短いといった問題点がある。   In addition, there is a method in which a diamond thin film is coated on the surface of a cemented carbide drill by a CVD method (chemical vapor deposition method) as polycrystalline diamond that does not include a metal binder (see Patent Document 4). However, this diamond has a problem that it has a short wear life because it is a thin film, and has a short wear life because of its small interparticle bonding force.

特開2004−230481号公報Japanese Patent Application Laid-Open No. 2004-230481 特開2003−127019号公報Japanese Patent Laid-Open No. 2003-127019 特開2006−198743号公報JP 2006-198743 A 特開平8−155947号公報JP-A-8-155947

本発明は、回転切削工具において、従来の単結晶ダイヤモンドや金属結合材を含むダイヤモンド焼結体を用いた回転切削工具よりも耐摩耗性及び耐折損性の優れた回転切削工具を提供することを目的とする。   It is an object of the present invention to provide a rotary cutting tool that has superior wear resistance and breakage resistance compared to conventional rotary cutting tools that use a single-crystal diamond or a diamond sintered body containing a metal binder. Objective.

本発明者らは、回転切削工具材料として、コバルト等の金属結合材を含まないダイヤモンド多結晶体であって、該ダイヤモンド多結晶体を構成するダイヤモンド焼結粒子の平均粒径が50nmより大きく2500nm未満であり、純度が99%以上であり、かつ、焼結体粒径のD90粒径が(平均粒径+0.9×平均粒径)以下で構成されるダイヤモンド多結晶体を用いることにより、耐摩耗性及び耐折損性の優れた回転切削工具が得られることを見出して本発明を完成した。   The inventors of the present invention provide a diamond polycrystalline body that does not contain a metal binder such as cobalt as a rotary cutting tool material, and the average particle diameter of the diamond sintered particles constituting the diamond polycrystalline body is larger than 50 nm and 2500 nm. By using a diamond polycrystalline body having a purity of 99% or more and a sintered body particle size of D90 particle size of (average particle size + 0.9 × average particle size) or less, The present invention was completed by finding that a rotary cutting tool having excellent wear resistance and breakage resistance can be obtained.

すなわち、本件発明は以下に記載するとおりの回転切削工具である。
(1)超高圧高温下で非ダイヤモンド型炭素から焼結助剤や触媒の添加なしに変換焼結されて得られたダイヤモンド多結晶体であって、該ダイヤモンド多結晶体を構成するダイヤモンド焼結粒子の平均粒径が50nmより大きく2500nm未満であり、純度が99%以上であり、かつ、ダイヤモンドのD90粒径が(平均粒径+平均粒径×0.9)以下である多結晶ダイヤモンドからなることを特徴とする回転切削工具。
(2)前記ダイヤモンドのD90粒径が(平均粒径+平均粒径×0.7)以下であることを特徴とする(1)に記載の回転切削工具。
(3)前記ダイヤモンドのD90粒径が(平均粒径+平均粒径×0.5)以下であることを特徴とする(1)又は(2)に記載の回転切削工具。
(4)前記ダイヤモンド多結晶体の硬度が100GPa以上であることを特徴とする(1)〜(3)のいずれかに記載の回転切削工具。
(5)前記多結晶ダイヤモンドで形成した回転工具直径範囲がΦ0.010mmからΦ500mmを特長とする、(1)〜(4)のいずれかに記載の回転切削工具。
That is, this invention is a rotary cutting tool as described below.
(1) A diamond polycrystalline body obtained by converting and sintering non-diamond-type carbon from a non-diamond type carbon without addition of a sintering aid or a catalyst under ultrahigh pressure and high temperature, and the diamond sintering constituting the diamond polycrystalline body From polycrystalline diamond in which the average particle size of the particles is greater than 50 nm and less than 2500 nm, the purity is 99% or more, and the diamond D90 particle size is (average particle size + average particle size × 0.9) or less. A rotary cutting tool characterized by comprising:
(2) The rotary cutting tool according to (1), wherein the diamond has a D90 particle size of (average particle size + average particle size × 0.7) or less.
(3) The rotary cutting tool according to (1) or (2), wherein the diamond has a D90 particle size of (average particle size + average particle size × 0.5) or less.
(4) The rotary cutting tool according to any one of (1) to (3), wherein the diamond polycrystal has a hardness of 100 GPa or more.
(5) The rotary cutting tool according to any one of (1) to (4), wherein a rotary tool diameter range formed of the polycrystalline diamond is characterized by Φ0.010 mm to Φ500 mm.

本発明の回転切削工具によれば、従来の単結晶ダイヤモンドや金属結合材を含むダイヤモンド焼結体を用いた回転切削工具に比べて耐摩耗性及び耐折損性の優れた回転切削工具を得ることができる。それら工具形状としてドリル、エンドミル、フライス、フライカットに適用できる。   According to the rotary cutting tool of the present invention, it is possible to obtain a rotary cutting tool having excellent wear resistance and breakage resistance as compared with conventional rotary cutting tools using a single crystal diamond or a diamond sintered body containing a metal binder. Can do. These tool shapes can be applied to drills, end mills, mills and fly cuts.

まず、本発明に係る回転切削工具を構成するダイヤモンド多結晶体について以下に詳述する。
本発明の回転切削工具の材料である、コバルト等の金属結合材を含まない実質的にダイヤモンド単相(純度99%以上)のダイヤモンド多結晶体は、原料の黒鉛(グラファイト)やグラッシーカーボン、アモルファスカーボンなどの非ダイヤモンド型炭素を超高圧高温下(温度1800〜2600℃、圧力12〜25GPa)で、触媒や溶媒なしに直接的にダイヤモンドに変換させ、同時に焼結させることによって得ることができる。この様にして得られた多結晶ダイヤモンドからなる回転切削工具には単結晶ダイヤモンドを用いた回転切削工具に見られる様な偏摩耗は起こらない。
First, the diamond polycrystal which comprises the rotary cutting tool which concerns on this invention is explained in full detail below.
The material of the rotary cutting tool of the present invention, which is substantially a diamond single phase (purity of 99% or more) that does not contain a metal binder such as cobalt, is a raw material graphite (graphite), glassy carbon, amorphous It can be obtained by converting non-diamond carbon such as carbon into diamond directly under a super-high pressure and high temperature (temperature 1800 to 2600 ° C., pressure 12 to 25 GPa) without a catalyst or a solvent and simultaneously sintering. In the rotary cutting tool made of polycrystalline diamond thus obtained, uneven wear as seen in the rotary cutting tool using single crystal diamond does not occur.

高純度グラファイトを出発物質として、12GPa以上、2200℃以上の超高圧高温下における間接加熱による直接変換焼結により、緻密で高純度な多結晶ダイヤモンドを得る方法は例えば下記の文献に開示されている。
文献1:SEIテクニカルレビュー165(2004)68(角谷ら)
文献2:特開2007−22888号公報
文献3:特開2003−292397号公報
A method for obtaining dense and high-purity polycrystalline diamond by direct conversion sintering by indirect heating at a high pressure and high temperature of 12 GPa or more and 2200 ° C. or more using high-purity graphite as a starting material is disclosed in, for example, the following documents: .
Reference 1: SEI Technical Review 165 (2004) 68 (Kakutani et al.)
Literature 2: JP 2007-22888 A Literature 3: JP 2003-292397 A

上記の各文献に記載の方法で得られるダイヤモンドで回転切削工具を製作しその耐摩耗性及び耐折損性を調べると、文献1記載のものは平均粒径の約10倍程度の異常成長粒があるためか、また文献2に記載のものは添加した粗い原料から変換した粗粒ダイヤモンドを含むためか、先ずその大きな粒子部分で摩耗が極端に進行することがわかった。その結果、回転切削工具が折れる等の問題点がある。そこで、耐摩耗性及び耐折損性の優れた回転切削工具を得るためには、極端に摩耗する部分を無くすことが必要で、その為には、焼結体粒径の粒径分布を制御することが必要であることがわかった。そこで、粒径分布を制御した回転切削工具を製作すると、極端に摩耗する粒子は無くなり、耐摩耗性及び耐折損性の優れる工具を得ることができた。
また、文献3に記載のものも文献1と同様の製造方法であるためか、異常粒成長があり文献1記載のものと同様の問題がある。
When a rotary cutting tool is manufactured with diamond obtained by the method described in each of the above documents and the wear resistance and breakage resistance are examined, the one described in Document 1 has abnormally grown grains about 10 times the average grain size. It is found that the wear of the large particle portion is extremely advanced because of the existence of the coarse diamond converted from the added coarse raw material. As a result, there is a problem that the rotary cutting tool is broken. Therefore, in order to obtain a rotary cutting tool with excellent wear resistance and breakage resistance, it is necessary to eliminate the extremely worn portion, and for that purpose, the particle size distribution of the sintered body particle size is controlled. I found that it was necessary. Therefore, when a rotary cutting tool with a controlled particle size distribution was produced, there were no extremely worn particles, and a tool with excellent wear resistance and breakage resistance could be obtained.
Moreover, because the one described in Document 3 is the same manufacturing method as Document 1, there is abnormal grain growth and there is a problem similar to that described in Document 1.

上記の問題は、回転切削工具の材料として、平均粒径が50nmより大きく2500nm未満であり、純度が99%以上であり、かつ、焼結体粒径のD90粒径を(平均粒径+0.9×平均粒径)以下としたダイヤモンド多結晶体をとして用いることにより解決することができ、前記のダイヤモンド多結晶体を用いた回転切削工具によれば耐摩耗性及び耐折損性の優れた工具を得ることができる。これはダイヤモンド多結晶体の焼結粒子のD90粒径を(平均粒径+0.9×平均粒径)以下とすることにより、異常摩耗が抑止されるためである。
本発明における平均粒径はTEM(透過型電子顕微鏡)を用いた測定による数平均粒子径である。
平均粒径及びD90粒径は、出発原料の粒径や焼結条件を制御することにより制御することができる。
The above problems are that the average particle size is greater than 50 nm and less than 2500 nm, the purity is 99% or more, and the D90 particle size of the sintered body particle size is (average particle size + 0. 9 × average particle diameter) or less can be used as a polycrystalline diamond, and according to the rotary cutting tool using the polycrystalline diamond, a tool having excellent wear resistance and breakage resistance Can be obtained. This is because abnormal wear is suppressed by setting the D90 particle size of the sintered particles of the polycrystalline diamond to (average particle size + 0.9 × average particle size) or less.
The average particle diameter in the present invention is a number average particle diameter measured by using a TEM (transmission electron microscope).
The average particle size and the D90 particle size can be controlled by controlling the particle size and sintering conditions of the starting material.

ダイヤモンド多結晶体において、平均粒径の数値とD90粒径の数値とが上記の関係を満たす場合を具体的な数値で示すと次の通りである。
例1:平均粒径60nmの場合、D90粒径は114nm以下
例2:平均粒径100nmの場合、D90粒径は190nm以下
例3:平均粒径500nmの場合、D90粒径は950nm以下
また、D90粒径が(平均粒径+0.7×平均粒径)以下であることがより好ましく、D90粒径が(平均粒径+0.5×平均粒径)以下であることが更に好ましい。
一方、平均粒径が50nm以下及び2500nm以上の場合、硬度が100GPa未満となり、短時間で摩耗が進行するため、耐摩耗性及び耐折損性の優れた工具は得られない。
In the diamond polycrystal, the case where the numerical value of the average particle diameter and the numerical value of the D90 particle diameter satisfy the above relationship is shown as a specific numerical value as follows.
Example 1: When the average particle size is 60 nm, the D90 particle size is 114 nm or less. Example 2: When the average particle size is 100 nm, the D90 particle size is 190 nm or less. Example 3: When the average particle size is 500 nm, the D90 particle size is 950 nm or less. The D90 particle size is more preferably (average particle size + 0.7 × average particle size) or less, and the D90 particle size is further preferably (average particle size + 0.5 × average particle size) or less.
On the other hand, when the average particle size is 50 nm or less and 2500 nm or more, the hardness is less than 100 GPa, and wear progresses in a short time, so that a tool with excellent wear resistance and breakage resistance cannot be obtained.

回転切削工具を構成するダイヤモンド多結晶体の硬度は100GPa以上であることが好ましい。ダイヤモンド多結晶体の硬度が100GPa未満であると回転切削工具の寿命が短くなる。   The hardness of the polycrystalline diamond constituting the rotary cutting tool is preferably 100 GPa or more. When the hardness of the polycrystalline diamond is less than 100 GPa, the life of the rotary cutting tool is shortened.

本発明に係る回転切削工具の実施形態の例を以下に示す。
まず、測定・評価方法について説明する。
Examples of embodiments of the rotary cutting tool according to the present invention are shown below.
First, the measurement / evaluation method will be described.

<平均粒径、D90粒径>
本発明における原料黒鉛焼成体中のグラファイト粒子及びダイヤモンド多結晶体中のダイヤモンド焼結粒子のD50粒径(平均粒径)及びD90粒径は透過型電子顕微鏡により倍率10〜50万倍で写真撮影像を元にして画像解析を実施することで得られる。
以下にその詳細方法を示す。
まず、透過型電子顕微鏡で撮影した撮影像を元に焼結体を構成する結晶粒の粒径分布を測定する。具体的には、画像解析ソフト(例えば、Scion Corporation社製、ScionImage)を用いて、個々の粒子を抽出し、抽出した粒子を2値化処理して各粒子の面積(S)を算出する。そして、各粒子の粒径(D)を、同じ面積を有する円の直径(D=2√(S/π))として算出する。
次に、上記で得られた粒径分布をデータ解析ソフト(例えば、OriginLab社製Origin、Parametric Technology社製Mathchad等)によって処理し、D50粒径、D90粒径を算出する。
以下に記載する実施例、比較例では透過型電子顕微鏡として日立製作所製H−9000を用いた。
<Average particle diameter, D90 particle diameter>
The D50 particle size (average particle size) and D90 particle size of the graphite particles in the raw graphite fired body and the diamond sintered particles in the present invention are photographed at a magnification of 100,000 to 500,000 with a transmission electron microscope. Obtained by performing image analysis based on the image.
The detailed method is shown below.
First, the particle size distribution of the crystal grains constituting the sintered body is measured based on a photographed image taken with a transmission electron microscope. Specifically, individual particles are extracted using image analysis software (for example, ScionImage, manufactured by Scion Corporation), and the extracted particles are binarized to calculate the area (S) of each particle. Then, the particle size (D) of each particle is calculated as the diameter of a circle having the same area (D = 2√ (S / π)).
Next, the particle size distribution obtained above is processed with data analysis software (for example, Origin manufactured by OriginLab, Mathchad manufactured by Parametric Technology, etc.) to calculate D50 particle size and D90 particle size.
In Examples and Comparative Examples described below, H-9000 manufactured by Hitachi, Ltd. was used as a transmission electron microscope.

<硬度>
実施例、比較例においては、硬度測定はヌープ圧子を用いて測定荷重を4.9Nとして実施した。
<工具形状と加工条件>
工具形状としては、ドリル形状を採用した。工具回転数としては、100〜5万回転数/分、工具送り速度は0.2μm/回転以上で行った。
<Hardness>
In the examples and comparative examples, the hardness was measured using a Knoop indenter with a measurement load of 4.9N.
<Tool shape and machining conditions>
A drill shape was adopted as the tool shape. The tool rotation speed was 100 to 50,000 rotations / minute, and the tool feed speed was 0.2 μm / rotation or more.

[実施例1]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が100nmでかつD90粒径が(平均粒径+0.9×平均粒径)以下の180nmである黒鉛(グラファイト)を準備した。これを原料として、ダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が200nmでかつD90粒径が370nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は110GPaと非常に高いものであった。得られた多結晶体でドリル径がΦ1mmの回転切削工具を作製した。このドリルを用いて、厚さが1mmの超硬板に穴を開けて、その耐摩耗性及び耐折損性を調査した。
加工条件は、回転数4000回転数/分、送り速度2μm/回転で実施した。
比較材料として超硬合金(WC−Co)、単結晶ダイヤモンド、焼結ダイヤモンド(Co結合材)、超硬合金製基材(WC−Co)にCVDダイヤモンド薄膜をコートしたCVD多結晶ダイヤを用いて実施例1と同様の回転切削工具を作製し、このドリルを用いて、厚さが1mmの超硬板に穴を開けて、実施例1と同様にその耐摩耗性及び耐折損性を調査した。
その結果を表1に示す。表1に示すように、従来の材料に比べて本発明の材質が優れることが分かった。
[比較例]
[Example 1]
As non-diamond carbon as a raw material for diamond, graphite (graphite) having an average particle diameter of 100 nm and a D90 particle diameter of 180 nm or less (average particle diameter + 0.9 × average particle diameter) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under pressure conditions where diamond was thermodynamically stable. As a result, a polycrystalline diamond having an average particle size of 200 nm and a D90 particle size of 370 nm was obtained. The hardness of the polycrystalline diamond thus obtained was as extremely high as 110 GPa. A rotary cutting tool having a drill diameter of Φ1 mm was produced from the obtained polycrystal. Using this drill, a hole was made in a cemented carbide plate having a thickness of 1 mm, and the wear resistance and breakage resistance were investigated.
The processing conditions were as follows: the number of revolutions was 4000 revolutions / minute, and the feed rate was 2 μm / revolution.
As a comparative material, using a CVD polycrystalline diamond in which a CVD diamond thin film is coated on a cemented carbide (WC-Co), single crystal diamond, sintered diamond (Co binder), cemented carbide substrate (WC-Co). A rotary cutting tool similar to that in Example 1 was prepared, and a drill was drilled into a 1 mm-thick carbide plate using this drill, and the wear resistance and breakage resistance were investigated in the same manner as in Example 1. .
The results are shown in Table 1. As shown in Table 1, it was found that the material of the present invention was superior to the conventional material.
[Comparative example]

Figure 0005416507
Figure 0005416507

実施例2〜7として次の材料を作製した。
[実施例2]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が110nmでかつD90粒径が(平均粒径+0.7×平均粒径)以下の175nmである黒鉛(グラファイト)を準備した。これを原料として、ダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が230nmでかつD90粒径が380nmのダイヤモンド多結晶体を得た。
The following materials were produced as Examples 2-7.
[Example 2]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle diameter of 110 nm and a D90 particle diameter of 175 nm or less (average particle diameter + 0.7 × average particle diameter) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under pressure conditions where diamond was thermodynamically stable. As a result, a polycrystalline diamond having an average particle size of 230 nm and a D90 particle size of 380 nm was obtained.

[実施例3]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が95nmでかつD90粒径が(平均粒径+0.5×平均粒径)以下の135nmである黒鉛(グラファイト)を準備した。これを原料として、ダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が180nmでかつD90粒径が260nmのダイヤモンド多結晶体を得た。
[Example 3]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle size of 95 nm and a D90 particle size of 135 nm or less (average particle size + 0.5 × average particle size) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under pressure conditions where diamond was thermodynamically stable. As a result, a polycrystalline diamond having an average particle size of 180 nm and a D90 particle size of 260 nm was obtained.

[実施例4]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が30nmでかつD90粒径が(平均粒径+0.5×平均粒径)以下の40nmである黒鉛(グラファイト)を準備した。これを原料として、ダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が55nmでかつD90粒径が80nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は105GPaと非常に高いものであった。
[Example 4]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle size of 30 nm and a D90 particle size of 40 nm or less (average particle size + 0.5 × average particle size) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under pressure conditions where diamond was thermodynamically stable. As a result, a polycrystalline diamond having an average particle size of 55 nm and a D90 particle size of 80 nm was obtained. The hardness of the polycrystalline diamond thus obtained was as extremely high as 105 GPa.

[実施例5]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が30nmでかつD90粒径が(平均粒径+0.5×平均粒径)以下の40nmである黒鉛(グラファイト)を準備した。これを原料として、実施例9よりも長時間かけてダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が560nmでかつD90粒径が830nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は120GPaと非常に高いものであった。
[Example 5]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle size of 30 nm and a D90 particle size of 40 nm or less (average particle size + 0.5 × average particle size) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under a pressure condition in which diamond was thermodynamically stable over a longer time than Example 9. As a result, a polycrystalline diamond having an average particle size of 560 nm and a D90 particle size of 830 nm was obtained. The hardness of the polycrystalline diamond thus obtained was as extremely high as 120 GPa.

[実施例6]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が30nmでかつD90粒径が(平均粒径+0.5×平均粒径)以下の40nmである黒鉛(グラファイト)を準備した。これを原料として、実施例9よりも長時間かけてダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が1100nmでかつD90粒径が1600nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は112GPaと非常に高いものであった。
[Example 6]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle size of 30 nm and a D90 particle size of 40 nm or less (average particle size + 0.5 × average particle size) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under a pressure condition in which diamond was thermodynamically stable over a longer time than Example 9. As a result, a polycrystalline diamond having an average particle diameter of 1100 nm and a D90 particle diameter of 1600 nm was obtained. The hardness of the polycrystalline diamond thus obtained was as extremely high as 112 GPa.

[実施例7]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が30nmでかつD90粒径が(平均粒径+0.5×平均粒径)以下の40nmである黒鉛(グラファイト)を準備した。これを原料として、実施例9よりも長時間かけてダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が2400nmでかつD90粒径が3500nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は102GPaと非常に高いものであった。
上記実施例2〜7で得たダイヤモンド多結晶体について実施例1と同様にして試験をしたところ、実施例1と同様に良好な10穴を形成することができた。
[Example 7]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle size of 30 nm and a D90 particle size of 40 nm or less (average particle size + 0.5 × average particle size) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under a pressure condition in which diamond was thermodynamically stable over a longer time than Example 9. As a result, a polycrystalline diamond having an average particle size of 2400 nm and a D90 particle size of 3500 nm was obtained. The hardness of the polycrystalline diamond thus obtained was as extremely high as 102 GPa.
When the diamond polycrystals obtained in Examples 2 to 7 were tested in the same manner as in Example 1, 10 good holes could be formed in the same manner as in Example 1.

上記実施例1〜7についての原料及びダイヤモンド多結晶体についてのデータを表2に示す。
表2に上記実施例及び比較例におけるダイヤモンド多結晶体の焼結粒子の平均粒径、D90粒径、係数(K)、硬度及び摩耗寿命の各数値を示した。なお、係数(K)は次式(1)で定義されるものである。
D90粒径=平均粒径+平均粒径×K ・・・(1)
Table 2 shows data on the raw materials and diamond polycrystals of Examples 1 to 7.
Table 2 shows numerical values of the average particle diameter, the D90 particle diameter, the coefficient (K), the hardness, and the wear life of the sintered particles of the polycrystalline diamond in the above examples and comparative examples. The coefficient (K) is defined by the following equation (1).
D90 particle size = average particle size + average particle size × K (1)

比較例1〜3として次の材料を作製した。
[比較例1]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が100nmでかつD90粒径が(平均粒径+1.1×平均粒径)程度の210nmである黒鉛(グラファイト)を準備した。これを原料として、ダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が200nmでかつD90粒径が400nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は112GPaと非常に高いものであった。
The following materials were produced as Comparative Examples 1-3.
[Comparative Example 1]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle diameter of 100 nm and a D90 particle diameter of about 210 nm (average particle diameter + 1.1 × average particle diameter) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under pressure conditions where diamond was thermodynamically stable. As a result, a polycrystalline diamond having an average particle size of 200 nm and a D90 particle size of 400 nm was obtained. The hardness of the polycrystalline diamond thus obtained was as extremely high as 112 GPa.

[比較例2]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が20nmでかつD90粒径が(平均粒径+0.9×平均粒径)程度の37nmである黒鉛(グラファイト)を準備した。これを原料として、ダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が45nmでかつD90粒径が80nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は95GPaと若干柔らかいものであった。
[Comparative Example 2]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle size of 20 nm and a D90 particle size of about 37 nm (average particle size + 0.9 × average particle size) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under pressure conditions where diamond was thermodynamically stable. As a result, a polycrystalline diamond having an average particle size of 45 nm and a D90 particle size of 80 nm was obtained. The hardness of the polycrystalline diamond thus obtained was 95 GPa and was slightly soft.

[比較例3]
ダイヤモンドの原料となる非ダイヤモンド型炭素として、その平均粒径が100nmでかつD90粒径が(平均粒径+0.9×平均粒径)程度の180nmである黒鉛(グラファイト)を準備した。これを原料として、長時間ダイヤモンドが熱力学的に安定である圧力条件下において直接的にダイヤモンドに変換焼結させた。これにより、平均粒径が2700nmでかつD90粒径が3900nmのダイヤモンド多結晶体を得た。この様にして得られたダイヤモンド多結晶体の硬度は91GPaと若干柔らかいものであった。
上記比較例1〜3についての原料及びダイヤモンド多結晶体についてのデータを表2に示す。
上記比較例1〜3で得たダイヤモンド多結晶体について実施例1と同様にして試験をしたところ、良好に10穴を形成することはできなかった。
[Comparative Example 3]
As non-diamond carbon used as a raw material for diamond, graphite (graphite) having an average particle diameter of 100 nm and a D90 particle diameter of approximately 180 nm (average particle diameter + 0.9 × average particle diameter) was prepared. Using this as a raw material, it was directly converted and sintered into diamond under pressure conditions where diamond was thermodynamically stable for a long time. As a result, a polycrystalline diamond having an average particle diameter of 2700 nm and a D90 particle diameter of 3900 nm was obtained. The hardness of the polycrystalline diamond thus obtained was 91 GPa and was slightly soft.
Table 2 shows data on the raw materials and polycrystalline diamond for Comparative Examples 1-3.
When the diamond polycrystals obtained in Comparative Examples 1 to 3 were tested in the same manner as in Example 1, 10 holes could not be formed satisfactorily.

Figure 0005416507
Figure 0005416507

本発明におけるダイヤモンド多結晶体は従来の単結晶ダイヤモンドや金属結合材を含むダイヤモンド焼結体に比べて耐摩耗性及び耐折損性に優れているため、このダイヤモンド多結晶体を用いた本発明の回転切削工具はドリル、エンドミル、フライス、フライカット等の回転切削工具として好適に使用できる。   Since the polycrystalline diamond in the present invention is superior in wear resistance and breakage resistance compared to the conventional single crystal diamond and the diamond sintered body containing the metal binder, the polycrystalline diamond in the present invention using the polycrystalline diamond is used. The rotary cutting tool can be suitably used as a rotary cutting tool such as a drill, an end mill, a milling cutter, and a fly cutting.

Claims (5)

超高圧高温下で非ダイヤモンド型炭素から焼結助剤や触媒の添加なしに変換焼結されて得られたダイヤモンド多結晶体であって、該ダイヤモンド多結晶体を構成するダイヤモンド焼結粒子の平均粒径が50nmより大きく2500nm未満であり、純度が99%以上であり、かつ、ダイヤモンドのD90粒径が(平均粒径+平均粒径×0.9)以下である多結晶ダイヤモンドからなることを特徴とする回転切削工具。   A diamond polycrystalline body obtained by converting and sintering non-diamond type carbon under an ultrahigh pressure and high temperature without adding a sintering aid or a catalyst, and an average of the diamond sintered particles constituting the diamond polycrystalline body It is made of polycrystalline diamond having a particle size of greater than 50 nm and less than 2500 nm, a purity of 99% or more, and a diamond D90 particle size of (average particle size + average particle size × 0.9) or less. A featured rotary cutting tool. 前記ダイヤモンドのD90粒径が(平均粒径+平均粒径×0.7)以下であることを特徴とする請求項1に記載の回転切削工具。   The rotary cutting tool according to claim 1, wherein the diamond has a D90 particle size of (average particle size + average particle size x 0.7) or less. 前記ダイヤモンドのD90粒径が(平均粒径+平均粒径×0.5)以下であることを特徴とする請求項1又は2に記載の回転切削工具。   The rotary cutting tool according to claim 1 or 2, wherein the diamond has a D90 particle size of (average particle size + average particle size x 0.5) or less. 前記ダイヤモンド多結晶体の硬度が100GPa以上であることを特徴とする請求項1〜3のいずれかに記載の回転切削工具。   The rotary cutting tool according to any one of claims 1 to 3, wherein the diamond polycrystal has a hardness of 100 GPa or more. 前記多結晶ダイヤモンドで形成した回転工具直径範囲がΦ0.010mmからΦ500mmを特長とする、請求項1〜4のいずれかに記載の回転切削工具。   The rotary cutting tool according to any one of claims 1 to 4, wherein a diameter range of the rotary tool formed of the polycrystalline diamond is Φ0.010 mm to Φ500 mm.
JP2009184615A 2009-08-07 2009-08-07 Rotary cutting tool Active JP5416507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184615A JP5416507B2 (en) 2009-08-07 2009-08-07 Rotary cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009184615A JP5416507B2 (en) 2009-08-07 2009-08-07 Rotary cutting tool

Publications (2)

Publication Number Publication Date
JP2011036938A JP2011036938A (en) 2011-02-24
JP5416507B2 true JP5416507B2 (en) 2014-02-12

Family

ID=43765259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184615A Active JP5416507B2 (en) 2009-08-07 2009-08-07 Rotary cutting tool

Country Status (1)

Country Link
JP (1) JP5416507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458559B2 (en) * 2015-03-06 2019-01-30 住友電気工業株式会社 Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
CN114260453A (en) * 2021-12-24 2022-04-01 郑州新亚复合超硬材料有限公司 High-performance diamond compact and manufacturing process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4275896B2 (en) * 2002-04-01 2009-06-10 株式会社テクノネットワーク四国 Polycrystalline diamond and method for producing the same
JP5076300B2 (en) * 2005-10-04 2012-11-21 住友電気工業株式会社 High hardness diamond polycrystal
RU2581397C2 (en) * 2008-02-06 2016-04-20 Сумитомо Электрик Индастриз, Лтд. Polycrystalline diamond

Also Published As

Publication number Publication date
JP2011036938A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
EP3257829B1 (en) Cubic boron nitride polycrystal, cutting tool, wear resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
JP5466506B2 (en) Diamond polycrystal
EP2752398B1 (en) Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
EP3351520B1 (en) Method for producing diamond polycrystal and, diamond polycrystal
WO2016143391A1 (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool and method for producing polycrystalline diamond body
CN105019026A (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
TWI704105B (en) Diamond polycrystal and tool including same
JPH07315989A (en) Production of diamond coated member
JP5096307B2 (en) Wire drawing dies
CN111233476A (en) Binder-free polycrystalline diamond material and preparation method thereof
JP5416507B2 (en) Rotary cutting tool
TWI690488B (en) Diamond polycrystal and tool including same
US11814293B2 (en) Diamond polycrystal, tool including diamond polycrystal, and method of producing diamond polycrystal
JP2020011887A (en) Diamond polycrystal body and industrial tool equipped with the same
JP5289829B2 (en) Polycrystalline diamond dresser
JP2020011886A (en) Diamond polycrystal body and industrial tool equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250