JP2013245126A - Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire - Google Patents

Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire Download PDF

Info

Publication number
JP2013245126A
JP2013245126A JP2012118606A JP2012118606A JP2013245126A JP 2013245126 A JP2013245126 A JP 2013245126A JP 2012118606 A JP2012118606 A JP 2012118606A JP 2012118606 A JP2012118606 A JP 2012118606A JP 2013245126 A JP2013245126 A JP 2013245126A
Authority
JP
Japan
Prior art keywords
polycrystalline diamond
abrasive grains
diamond abrasive
diamond
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012118606A
Other languages
Japanese (ja)
Other versions
JP6098044B2 (en
Inventor
Kazuhiro Ikeda
和寛 池田
Hitoshi Sumiya
均 角谷
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012118606A priority Critical patent/JP6098044B2/en
Publication of JP2013245126A publication Critical patent/JP2013245126A/en
Application granted granted Critical
Publication of JP6098044B2 publication Critical patent/JP6098044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide diamond abrasive grains having a longer lifetime than the lifetime of a conventional abrasive grains and a method for producing the same, slurry including the diamond abrasive grains, and fixed abrasive grain type wire.SOLUTION: Polycrystalline diamond abrasive grains consist of a polycrystalline diamond including no binder, a crystal grain size (maximum length) of the polycrystalline diamond is less than 1 μm, and an average secondary particle diameter of the polycrystalline diamond abrasive grains is 1 to 200 μm. A production method of the polycrystalline diamond abrasive grains includes a step to sinter a carbon material at a pressure of 12 GPa or more and a temperature of 1,500°C or more without using any binder to convert the carbon material directly into diamond and obtain the polycrystalline diamond having a crystal grain size of <1 μm, and a step to work the polycrystalline diamond in such a way that an average secondary particle diameter thereof gets to be 1 to 200 μm.

Description

この発明は、多結晶ダイヤモンドを用いた砥粒およびその製造方法、スラリー、並びに固定砥粒式ワイヤに関し、特に、ナノサイズの結晶粒を持つ多結晶ダイヤモンド砥粒およびその製造方法、スラリー、並びに固定砥粒式ワイヤに関する。   TECHNICAL FIELD The present invention relates to abrasive grains using polycrystalline diamond, a manufacturing method thereof, slurry, and a fixed abrasive wire, and more particularly, polycrystalline diamond abrasive grains having nano-sized crystal grains, a manufacturing method thereof, slurry, and fixing. The present invention relates to an abrasive wire.

従来、研磨用ダイヤモンド砥粒としては、天然ダイヤモンドや人工の単結晶ダイヤモンドを粉砕したものが用いられている。   Conventionally, as diamond grains for polishing, those obtained by pulverizing natural diamond or artificial single crystal diamond have been used.

ダイヤモンド砥粒の寿命や研磨性能を左右する要因として、不純物量、砥粒の硬度、劈開性等を挙げることができる。しかし、天然ダイヤモンドや人工単結晶ダイヤモンドの不純物量、硬度、劈開性等を向上させるのは困難である。特に、ダイヤモンド砥粒のサイズが数μm〜数十μmと微小な場合には、劈開性や結晶の異方性が砥粒の寿命に与える影響が大きく、結果的に寿命は制限される傾向にあった。   Factors that affect the life and polishing performance of diamond abrasive grains include the amount of impurities, the hardness of the abrasive grains, and the cleavage property. However, it is difficult to improve the impurity amount, hardness, cleavage, etc. of natural diamond and artificial single crystal diamond. In particular, when the size of the diamond abrasive grains is as small as several μm to several tens of μm, the effect of cleavage and crystal anisotropy on the life of the abrasive grains is large, and as a result, the life tends to be limited. there were.

一方、多結晶ダイヤモンドは、劈開性の点では優れているものの、一般に結合剤、焼結助剤、触媒等を用いて作製されるため、不純物量が多く、高温での硬度特性が低下する。また、結合剤等の含有量が多いほど耐磨耗性が低下することも一般的に知られている。このため、結合剤等を含む多結晶ダイヤモンドも、砥粒として十分な硬度特性や耐摩耗性を有しておらず、従来の多結晶ダイヤモンドで作製した砥粒の寿命も制限される傾向にあった。   On the other hand, although polycrystalline diamond is excellent in terms of cleavage, it is generally produced using a binder, a sintering aid, a catalyst, and the like, so that the amount of impurities is large and hardness characteristics at high temperatures are reduced. It is also generally known that the wear resistance decreases as the content of a binder or the like increases. For this reason, polycrystalline diamond containing a binder or the like does not have sufficient hardness characteristics and wear resistance as abrasive grains, and there is a tendency that the life of abrasive grains made of conventional polycrystalline diamond is limited. It was.

なお、ダイヤモンド砥粒については、例えば特開2010−201514号公報や、特開平9−132771号公報等に記載されている。   The diamond abrasive grains are described in, for example, JP 2010-201514 A and JP 9-132771 A.

特開2010−201514号公報JP 2010-201514 A 特開平9−132771号公報Japanese Patent Laid-Open No. 9-132771

多結晶ダイヤモンド砥粒の用途の一例として、ダイヤモンド砥粒を芯線に固着したワイヤーソーを挙げることができる。該ワイヤーソーを用いて、半導体等を切断することができるが、近年、半導体のワイヤカットにおいて、インゴットの大型化や、硬質のSiC、AlN、GaN等のワイドギャップ半導体の加工機会が増加している。これに伴い、従来よりも長寿命な砥粒が求められている。ダイヤモンド砥粒の他の用途についても、同様の傾向が見られる。   An example of the use of polycrystalline diamond abrasive grains is a wire saw in which diamond abrasive grains are fixed to a core wire. Semiconductors and the like can be cut using the wire saw, but in recent years, ingots for semiconductors have been increased in size and processing opportunities for wide gap semiconductors such as hard SiC, AlN, and GaN have increased. Yes. Accordingly, there is a demand for abrasive grains that have a longer life than conventional ones. Similar trends are seen for other uses of diamond abrasive.

本発明は、上記のような課題に鑑みなされたものであり、従来の砥粒よりも長寿命なダイヤモンド砥粒およびその製造方法、該ダイヤモンド砥粒を備えたスラリー、並びに固定砥粒式ワイヤを提供することを目的とする。   The present invention has been made in view of the problems as described above. Diamond abrasive grains having a longer lifetime than conventional abrasive grains and a method for producing the same, slurry provided with the diamond abrasive grains, and fixed abrasive wire are provided. The purpose is to provide.

本発明に係る多結晶ダイヤモンド砥粒は、結合剤を含まない多結晶ダイヤモンドからなり、該多結晶ダイヤモンドの結晶粒径は1μm未満であり、多結晶ダイヤモンド砥粒の平均二次粒子径は1μm以上200μm以下である。   The polycrystalline diamond abrasive grain according to the present invention is made of polycrystalline diamond containing no binder. The polycrystalline diamond grain diameter is less than 1 μm, and the average secondary particle diameter of the polycrystalline diamond abrasive grain is 1 μm or more. 200 μm or less.

ここで、「多結晶ダイヤモンドの結晶粒径」とは、走査型電子顕微鏡(Scaning Electron Microscope(SEM))や透過型電子顕微鏡(Transmission Electron Microscope(TEM))等の顕微鏡で直接観察して測定した、多結晶ダイヤモンドを構成する個々の単結晶粒子、すなわち一次粒子の外径(最も長い部分)をいう。   Here, the “crystal grain size of the polycrystalline diamond” was measured by directly observing with a microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). , The individual single crystal particles constituting the polycrystalline diamond, that is, the outer diameter (longest part) of the primary particles.

また、「多結晶ダイヤモンド砥粒の平均二次粒子径」とは、SEMやTEM等の顕微鏡で直接観察し、測定した多結晶ダイヤモンド砥粒を構成する個々の多結晶粒、すなわち二次粒子の外径の平均値をいう。   The “average secondary particle diameter of the polycrystalline diamond abrasive grains” means the individual polycrystalline grains constituting the measured polycrystalline diamond abrasive grains, that is, the secondary diamond grains, which are directly observed with a microscope such as SEM or TEM. The average value of outer diameter.

上記多結晶ダイヤモンド中の不可避不純物濃度は、0.01質量%以下であるのが好ましい。上記多結晶ダイヤモンド砥粒は、スラリーや固定砥粒式ワイヤに用いることができる。   The concentration of inevitable impurities in the polycrystalline diamond is preferably 0.01% by mass or less. The polycrystalline diamond abrasive can be used for slurry and fixed abrasive wire.

本発明に係る多結晶ダイヤモンド砥粒の製造方法は、炭素材料を、12GPa以上の圧力、1500℃以上の温度で結合剤を用いずに焼結してダイヤモンドに直接的に変換し、1μm未満の結晶粒径を有する多結晶ダイヤモンドを得る工程と、多結晶ダイヤモンドを、平均二次粒子径が1μm以上200μm以下となるよう加工する工程とを備える。   In the method for producing polycrystalline diamond abrasive grains according to the present invention, a carbon material is directly converted into diamond by sintering without using a binder at a pressure of 12 GPa or higher and a temperature of 1500 ° C. or higher, and less than 1 μm. A step of obtaining polycrystalline diamond having a crystal grain size, and a step of processing the polycrystalline diamond so that the average secondary particle size is 1 μm or more and 200 μm or less.

上記炭素材料は、気相合成法によって準備されるのが好ましい。上記多結晶ダイヤモンドを加工する工程において、金属、セラミック、またはそれらの複合体を多結晶ダイヤモンドに衝突させることで、上記多結晶ダイヤモンドを粉砕してもよい。   The carbon material is preferably prepared by a gas phase synthesis method. In the step of processing the polycrystalline diamond, the polycrystalline diamond may be pulverized by colliding a metal, ceramic, or a composite thereof with the polycrystalline diamond.

本発明に係る多結晶ダイヤモンド砥粒は、結合剤を含まない多結晶ダイヤモンドからなり、該多結晶ダイヤモンドの結晶粒径が1μm未満であるため、従来の砥粒よりも長寿命化することができる。   The polycrystalline diamond abrasive grain according to the present invention is made of polycrystalline diamond containing no binder, and since the polycrystalline diamond has a crystal grain size of less than 1 μm, it can have a longer life than conventional abrasive grains. .

本発明に係る多結晶ダイヤモンド砥粒の製造方法では、炭素材料を、12GPa以上の圧力、1500℃以上の温度で結合剤を用いずに焼結してダイヤモンドに直接的に変換し、該多結晶ダイヤモンドを加工するので、上記のようなダイヤモンド砥粒を作製することができる。従って、従来の砥粒よりも長寿命な多結晶ダイヤモンド砥粒を作製することができる。   In the method for producing polycrystalline diamond abrasive grains according to the present invention, the carbon material is directly converted into diamond by sintering without using a binder at a pressure of 12 GPa or higher and a temperature of 1500 ° C. or higher. Since diamond is processed, diamond abrasive grains as described above can be produced. Therefore, polycrystalline diamond abrasive grains having a longer life than conventional abrasive grains can be produced.

本発明の実施の形態に係る多結晶ダイヤモンド砥粒の製造方法において、砥粒に加工する前のナノ多結晶ダイヤモンドの組織の一例を示す図である。It is a figure which shows an example of the structure | tissue of the nano polycrystalline diamond before processing into an abrasive grain in the manufacturing method of the polycrystalline diamond abrasive grain which concerns on embodiment of this invention.

以下、本発明の実施の形態について説明する。本実施の形態に係る多結晶ダイヤモンド砥粒は、結晶粒径(最大長さ)が1μm未満の多結晶ダイヤモンド(一次粒子。以下、「ナノ多結晶ダイヤモンド」と称する)からなる。該ナノ多結晶ダイヤモンド砥粒(二次粒子)の平均二次粒子径が1μm以上200μm程度である。   Embodiments of the present invention will be described below. The polycrystalline diamond abrasive according to the present embodiment is made of polycrystalline diamond (primary particles; hereinafter referred to as “nanopolycrystalline diamond”) having a crystal grain size (maximum length) of less than 1 μm. The nanopolycrystalline diamond abrasive grains (secondary particles) have an average secondary particle diameter of about 1 μm or more and about 200 μm.

上記ナノ多結晶ダイヤモンドは、例えば、基材上に気相合成等により形成された黒鉛に、高温高圧下で熱処理を施すことにより作製可能である。黒鉛は、一体の固体であり、結晶化部分を含むものであってもよい。上記ナノ多結晶ダイヤモンドおよび黒鉛は、任意の形状、厚みとすることが考えられる。例えば、ナノ多結晶ダイヤモンドおよび黒鉛を平板状の形状としてもよい。   The nano-polycrystalline diamond can be produced, for example, by subjecting graphite formed on a substrate by vapor phase synthesis or the like to heat treatment under high temperature and high pressure. Graphite is an integral solid and may include a crystallized portion. The nano-polycrystalline diamond and graphite may have an arbitrary shape and thickness. For example, nano-polycrystalline diamond and graphite may have a flat shape.

上記ナノ多結晶ダイヤモンドは、結合剤、焼結助剤、触媒等を実質的に含まない。このナノ多結晶ダイヤモンドは、不純物量も極めて少なく、粒径が1μm未満である結晶粒同士が互いに強固に直接結合したものであり、緻密で空隙の極めて少ない結晶組織を有している。図1に、本実施の形態に係る多結晶ダイヤモンド砥粒の作製用に使用可能なナノ多結晶ダイヤモンドの組織の一例を示す。図1に示すように、上記ナノ多結晶ダイヤモンドでは、微細なダイヤモンド結晶粒同士が直接結合している。また、各結晶粒の大きさや形状のばらつきも小さく、結晶粒間の空隙も少ない。   The nano-polycrystalline diamond is substantially free of binders, sintering aids, catalysts and the like. The nano-polycrystalline diamond has a very small amount of impurities, crystal grains having a grain size of less than 1 μm, and is directly bonded to each other, and has a dense crystal structure with very few voids. FIG. 1 shows an example of the structure of nano-polycrystalline diamond that can be used for producing polycrystalline diamond abrasive grains according to the present embodiment. As shown in FIG. 1, in the nano-polycrystalline diamond, fine diamond crystal grains are directly bonded to each other. In addition, variations in size and shape of each crystal grain are small, and there are few voids between crystal grains.

なお、ナノ多結晶ダイヤモンドの結晶粒径は1μm未満であれば、各結晶粒間である程度のバラツキを含んでもよい。しかし、ナノ多結晶ダイヤモンドの結晶粒間の結合力の観点から、結晶粒径のばらつきは小さい方が好ましい。   In addition, as long as the crystal grain diameter of nano-polycrystalline diamond is less than 1 μm, there may be some variation between the crystal grains. However, from the viewpoint of the bonding strength between the crystal grains of nano-polycrystalline diamond, it is preferable that the variation in crystal grain size is small.

上記ナノ多結晶ダイヤモンドが有する優れた特性を維持しながら、ナノ多結晶ダイヤモンドを所望の二次粒子に加工することで、劈開性を実質的に有さず、かつ、高硬度で耐摩耗性に優れた多結晶ダイヤモンド砥粒を得ることができる。このとき、平均二次粒子径は、ミクロンオーダーとする。具体的には、1μm以上200μm以下とするのが好ましい。平均二次粒子径を1μm以上としたのは、1μmより小さい場合、ナノ多結晶ダイヤモンドはそれぞれ単独の単結晶のような性質を示し、多結晶体としてのメリットである等方性を生かすことができないためである。平均二次粒子径を200μm以下としたのは、平均二次粒子径が200μmより大きい場合、多結晶ダイヤモンド砥粒の強度が低下すると同時に、砥粒としては、研磨面の粗さが大きすぎてしまうためである。なお、上記多結晶ダイヤモンド砥粒は、平均二次粒子径が1μm以上200μm以下の範囲である限りにおいて、二次粒子径が1μm未満や200μm以上の多結晶ダイヤモンド砥粒を含んでいてもよい。   While maintaining the excellent characteristics of the nano-polycrystalline diamond, the nano-polycrystalline diamond is processed into the desired secondary particles, so that it has substantially no cleaving property, and has high hardness and wear resistance. Excellent polycrystalline diamond abrasive grains can be obtained. At this time, the average secondary particle diameter is set to a micron order. Specifically, it is preferably 1 μm or more and 200 μm or less. The average secondary particle size is set to 1 μm or more. When the average secondary particle size is smaller than 1 μm, nano-polycrystalline diamond exhibits properties like a single crystal, and can take advantage of the isotropic property of a polycrystalline body. This is because it cannot be done. The average secondary particle size is set to 200 μm or less because when the average secondary particle size is larger than 200 μm, the strength of the polycrystalline diamond abrasive grains is reduced, and at the same time, the abrasive surface is too rough. It is because it ends. The polycrystalline diamond abrasive grains may contain polycrystalline diamond abrasive grains having a secondary particle diameter of less than 1 μm or 200 μm or more as long as the average secondary particle diameter is in the range of 1 μm to 200 μm.

本実施の形態に係る多結晶ダイヤモンド砥粒は、窒素、水素、酸素、硼素、シリコン、結晶粒の成長を促進するような遷移金属等の不純物濃度(以下「不純物濃度」と称する)が0.01質量%以下であるのが好ましい。つまり、不純物濃度が、SIMS(Secondary Ion Mass Spectrometry)分析での検出限界程度である。また、遷移金属については、ICP(Inductively Coupled Plasma)分析やSIMS分析における検出限界程度である。上述のように、黒鉛を用いて多結晶ダイヤモンド砥粒を作製する場合には、該黒鉛の不純物濃度は、0.01質量%以下とするのが好ましい。   The polycrystalline diamond abrasive according to the present embodiment has an impurity concentration (hereinafter referred to as “impurity concentration”) of nitrogen, hydrogen, oxygen, boron, silicon, transition metal or the like that promotes the growth of crystal grains. The content is preferably 01% by mass or less. That is, the impurity concentration is about the limit of detection in SIMS (Secondary Ion Mass Spectrometry) analysis. Moreover, about a transition metal, it is a detection limit grade in ICP (Inductively Coupled Plasma) analysis and SIMS analysis. As described above, when producing polycrystalline diamond abrasive grains using graphite, the impurity concentration of the graphite is preferably 0.01% by mass or less.

このように、黒鉛中の不純物量をSIMS分析やICP分析での検出限界レベルにまで低下させることで、該黒鉛を用いてナノ多結晶ダイヤモンドを作製した場合に、極めて高純度のナノ多結晶ダイヤモンドを作製することができる。また、SIMS分析やICP分析での検出限界より若干多い不純物を含む黒鉛を用いた場合でも、従来と比較すると格段に優れた特性の多結晶ダイヤモンドが得られる。   Thus, by reducing the amount of impurities in graphite to a detection limit level in SIMS analysis and ICP analysis, when nanopolycrystalline diamond is produced using the graphite, extremely high purity nanopolycrystalline diamond Can be produced. Further, even when graphite containing impurities slightly larger than the detection limit in SIMS analysis or ICP analysis is used, polycrystalline diamond having significantly superior characteristics can be obtained compared to the conventional case.

上記高純度のナノ多結晶ダイヤモンドでは、全体にわたって不純物濃度が極めて低くなる。また、該ナノ多結晶ダイヤモンドには、従来のような不純物の偏析も見られず、いずれの部分の不純物濃度も極めて低く、結晶粒界における不純物の濃度も、0.01質量%以下程度である。このように結晶粒界における不純物濃度が極めて低いことから、結晶粒界での結晶粒の滑りを抑制することができ、結晶粒同士の結合を強化することができる。それにより、多結晶ダイヤモンドのヌープ硬度を高くすることができる。また、結晶粒の異常成長をも効果的に抑制することができ、結晶粒径のバラツキも低減することができる。   The high-purity nanopolycrystalline diamond has an extremely low impurity concentration throughout. Further, the nano-polycrystalline diamond does not show segregation of impurities as in the prior art, the impurity concentration in any part is extremely low, and the impurity concentration at the crystal grain boundary is about 0.01% by mass or less. . As described above, since the impurity concentration at the crystal grain boundary is extremely low, slip of the crystal grain at the crystal grain boundary can be suppressed, and the bond between the crystal grains can be strengthened. Thereby, the Knoop hardness of the polycrystalline diamond can be increased. In addition, abnormal growth of crystal grains can be effectively suppressed, and variations in crystal grain size can be reduced.

上記高純度のナノ多結晶ダイヤモンドの優れた特性を維持しながら、ナノ多結晶ダイヤモンドを所望の平均二次粒子径に加工することで、従来の砥粒よりも長寿命の多結晶ダイヤモンド砥粒を得ることができる。これにより、本実施の形態に係る多結晶ダイヤモンド砥粒は、硬質なSiC、AlN、GaN等のワイドギャップ半導体の加工に対しても、従来の砥粒より長寿命化することができる。   While maintaining the excellent properties of the above-mentioned high-purity nano-polycrystalline diamond, nano-polycrystalline diamond is processed into a desired average secondary particle size, so that polycrystalline diamond abrasive grains with a longer life than conventional abrasive grains can be obtained. Can be obtained. Thereby, the polycrystalline diamond abrasive grains according to the present embodiment can have a longer life than conventional abrasive grains even when processing wide gap semiconductors such as hard SiC, AlN, and GaN.

次に、本実施の形態に係る多結晶ダイヤモンド砥粒の製造方法について説明する。本実施の形態に係る多結晶ダイヤモンド砥粒は、炭素材料を、高温高圧下(例えば、12GPa以上の圧力、1500℃以上の温度)で結合剤を用いずに焼結してダイヤモンドに直接的に変換し、1μm未満の結晶粒径を有するナノ多結晶ダイヤモンドを得た後、該ナノ多結晶ダイヤモンドを加工することで作製できる。   Next, a method for producing polycrystalline diamond abrasive grains according to the present embodiment will be described. The polycrystalline diamond abrasive according to the present embodiment directly sinters carbon material with diamond by sintering without using a binder under high temperature and high pressure (for example, pressure of 12 GPa or more, temperature of 1500 ° C. or more). The nanopolycrystalline diamond having a crystal grain size of less than 1 μm is obtained after the conversion, and then the nanopolycrystalline diamond can be processed.

上記の炭素材料の一例として、例えば、真空チャンバ内に導入した炭化水素ガスを1500℃以上3000℃以下程度の温度で熱分解して基材上に形成した、黒鉛を挙げることができる。このとき、真空チャンバ内の真空度は、20〜100Torr程度とすればよい。それにより、気相の炭化水素から直接基材上に、多結晶である固相の黒鉛を形成することができる。また、炭化水素ガスの純度を高めることで、不純物量の極めて少ない黒鉛を基材上に作製することができる。例えば、真空チャンバ内に導入した99.99%以上の純度の炭化水素ガスを1500℃以上3000℃以下程度の温度で熱分解して基材上に形成した黒鉛は、不純物濃度を0.01質量%以下とすることができる。なお、炭化水素ガスとしては、メタンガスを使用することが好ましい。   As an example of the carbon material, for example, graphite formed on a substrate by pyrolyzing a hydrocarbon gas introduced into a vacuum chamber at a temperature of about 1500 ° C. to 3000 ° C. can be given. At this time, the degree of vacuum in the vacuum chamber may be about 20 to 100 Torr. Thereby, the solid-phase graphite which is polycrystalline can be formed directly on the base material from the gas phase hydrocarbon. Further, by increasing the purity of the hydrocarbon gas, graphite with a very small amount of impurities can be produced on the substrate. For example, graphite formed on a substrate by pyrolyzing a hydrocarbon gas having a purity of 99.99% or more introduced into a vacuum chamber at a temperature of about 1500 ° C. to 3000 ° C. has an impurity concentration of 0.01 mass. % Or less. Note that methane gas is preferably used as the hydrocarbon gas.

黒鉛を基材上に作製する際には、真空チャンバ内に設置した基材を1500℃以上の温度に加熱する。加熱方法としては周知の手法を採用することができる。たとえば、基材を直接あるいは間接的に1500℃以上の温度に加熱可能なヒータを真空チャンバに設置することが考えられる。   When producing graphite on a base material, the base material installed in the vacuum chamber is heated to a temperature of 1500 ° C. or higher. A well-known method can be adopted as the heating method. For example, it is conceivable to install a heater in the vacuum chamber that can directly or indirectly heat the substrate to a temperature of 1500 ° C. or higher.

黒鉛作製用の基材としては、1500℃から3000℃程度の温度に耐え得る材料であればいかなる固相材料であってもよい。具体的には、金属、無機セラミック材料、炭素材料を基材として使用可能である。黒鉛中への不純物混入を抑制するという観点からは、上記基材を炭素で構成することが好ましい。固相の炭素材料としてはダイヤモンドや黒鉛を挙げることができる。黒鉛を基材として使用する場合、上述の手法で作製した不純物量の極めて少ない黒鉛を基材として使用することが好ましい。   As a base material for producing graphite, any solid phase material may be used as long as it can withstand a temperature of about 1500 ° C. to 3000 ° C. Specifically, a metal, an inorganic ceramic material, or a carbon material can be used as a base material. From the viewpoint of suppressing impurities from being mixed into graphite, it is preferable that the substrate is made of carbon. Examples of the solid-state carbon material include diamond and graphite. When using graphite as a base material, it is preferable to use graphite with an extremely small amount of impurities prepared by the above-mentioned method as the base material.

なお、基材の材料としてダイヤモンドや黒鉛のような炭素材料を使用する場合、基材の少なくとも表面を炭素材料で構成すればよい。たとえば、基材の表面のみを炭素材料で構成し、基材の残りの部分を炭素材料以外の材料で構成してもよく、基材全体を炭素材料で構成してもよい。   When a carbon material such as diamond or graphite is used as the material for the base material, at least the surface of the base material may be composed of the carbon material. For example, only the surface of the substrate may be composed of a carbon material, the remaining portion of the substrate may be composed of a material other than the carbon material, and the entire substrate may be composed of a carbon material.

炭素材料としての黒鉛の結晶粒径は、本実施の形態のナノ多結晶ダイヤモンドの合成がマルテンサイト変態ではないため、特に制限はない。   The crystal grain size of graphite as the carbon material is not particularly limited because the synthesis of the nanopolycrystalline diamond of the present embodiment is not a martensitic transformation.

次に、基材上に作製した上記黒鉛を、温度1500℃以上、圧力12GPa以上の条件下で焼結し、ダイヤモンドに直接的に変換する。これにより、結合剤、焼結助剤、触媒等を実質的に含まないナノ多結晶ダイヤモンドが得られる。該ナノ多結晶ダイヤモンドは、結晶粒同士が互いに直接結合し、緻密で空隙の極めて少ない結晶組織を有するため、優れた硬度特性を有するものとなる。   Next, the graphite produced on the substrate is sintered under conditions of a temperature of 1500 ° C. or higher and a pressure of 12 GPa or higher, and is directly converted into diamond. Thereby, nano-polycrystalline diamond substantially free of binder, sintering aid, catalyst and the like can be obtained. The nano-polycrystalline diamond has excellent hardness characteristics because the crystal grains are directly bonded to each other, and has a dense and extremely small crystal structure.

また、変換後のナノ多結晶ダイヤモンドに含まれる不純物濃度は、上記黒鉛の不純物濃度と同程度となるため、上記黒鉛の不純物濃度は0.01質量%以下とするのが好ましい。これによりナノ多結晶ダイヤモンドの不純物濃度も0.01質量%以下とすることができるため、より優れた硬度特性を有することができることが分かった。   Moreover, since the impurity concentration contained in the nanopolycrystalline diamond after conversion is approximately the same as the impurity concentration of the graphite, the impurity concentration of the graphite is preferably 0.01% by mass or less. As a result, the impurity concentration of the nano-polycrystalline diamond can be reduced to 0.01% by mass or less, and it has been found that more excellent hardness characteristics can be obtained.

ナノ多結晶ダイヤモンドの合成には、一軸性の圧力を加えてもよく、等方的な圧力を加えてもよい。しかし、等方的な圧力によって、結晶粒径や、結晶の異方性の程度を揃えるという観点から、静水圧下での合成が好ましい。これにより、結晶粒径や結晶の異方性の程度が揃ったナノ多結晶ダイヤモンドを作製することができ、結晶粒間の結合をより強くすることができる。   In synthesizing nanopolycrystalline diamond, uniaxial pressure may be applied or isotropic pressure may be applied. However, synthesis under hydrostatic pressure is preferred from the viewpoint of aligning the crystal grain size and the degree of crystal anisotropy with isotropic pressure. As a result, nano-polycrystalline diamond having a uniform crystal grain size and crystal anisotropy can be produced, and the bond between crystal grains can be further strengthened.

次に、先の工程で合成したナノ多結晶ダイヤモンドを、加工して多結晶ダイヤモンド砥粒とする。このとき、該ナノ多結晶ダイヤモンドが有する優れた特性を維持可能な加工であれば、任意の加工を採用できる。例えば、金属、セラミックまたはそれらの複合体をナノ多結晶ダイヤモンドに衝突させて、粉砕してもよい。衝突に用いる金属としては、例えばステンレス(SUS)を使用できる。また、衝突に用いる金属、セラミックまたはそれらの複合体の形状としては、任意の形状を採用でき、例えば球状でもよい。このとき、多結晶ダイヤモンド砥粒の平均二次粒子径が1μm以上200μm以下となるよう加工することができ、さらに所望の平均二次粒子径を有するように、衝突の条件を選択することもできる。例えば、衝突回数を減らすことで、平均二次粒子径の大きい多結晶ダイヤモンド砥粒を得ることができる。   Next, the nano-polycrystalline diamond synthesized in the previous step is processed into polycrystalline diamond abrasive grains. At this time, any processing can be adopted as long as the excellent characteristics of the nano-polycrystalline diamond can be maintained. For example, a metal, a ceramic, or a composite thereof may be collided with nano-polycrystalline diamond and pulverized. For example, stainless steel (SUS) can be used as the metal used for the collision. In addition, as the shape of the metal, ceramic, or composite thereof used for the collision, any shape can be adopted, for example, a spherical shape may be used. At this time, the polycrystalline diamond abrasive grains can be processed to have an average secondary particle diameter of 1 μm or more and 200 μm or less, and the collision conditions can be selected so as to have a desired average secondary particle diameter. . For example, polycrystalline diamond abrasive grains having a large average secondary particle diameter can be obtained by reducing the number of collisions.

上記多結晶ダイヤモンド砥粒は、平均二次粒子径が1μm以上200μm以下の範囲である限りにおいて、二次粒子径が1μm未満や200μm以上の多結晶ダイヤモンド砥粒を含んでいてもよい。また、本実施の形態に係る多結晶ダイヤモンド砥粒の製造方法は、ふるい等により、砥粒に用いるナノ多結晶ダイヤモンドの二次粒子径を選択する工程を備えてもよい。これにより、多結晶ダイヤモンド砥粒の二次粒子径を所望の範囲内に揃えることができるため、多結晶ダイヤモンド砥粒による加工品質を向上できる。   The polycrystalline diamond abrasive grains may contain polycrystalline diamond abrasive grains having a secondary particle diameter of less than 1 μm or 200 μm or more as long as the average secondary particle diameter is in the range of 1 μm to 200 μm. Moreover, the method for producing polycrystalline diamond abrasive grains according to the present embodiment may include a step of selecting the secondary particle diameter of nano-polycrystalline diamond used for the abrasive grains by sieving or the like. Thereby, since the secondary particle diameter of a polycrystalline diamond abrasive grain can be arrange | positioned in the desired range, the processing quality by a polycrystalline diamond abrasive grain can be improved.

以上のように、本実施の形態に係る多結晶ダイヤモンド砥粒の製造方法によれば、上記のようなナノ多結晶タイヤモンドを加工することで、多結晶ダイヤモンド砥粒を作製しているので、従来の砥粒よりも長寿命な多結晶ダイヤモンド砥粒を得ることができる。   As described above, according to the method for producing polycrystalline diamond abrasive grains according to the present embodiment, the polycrystalline diamond abrasive grains are produced by processing the nanopolycrystalline tiremond as described above. Polycrystalline diamond abrasive grains having a longer life than conventional abrasive grains can be obtained.

なお、本発明における多結晶ダイヤモンド砥粒の平均二次粒子径は、TEM等の顕微鏡像に基づいて、多結晶ダイヤモンド砥粒を構成する個々の多結晶粒(二次粒子)の粒径分布から、D50粒子径として算出する。具体的には、倍率10〜50万倍で観察したTEM(例えば、日立製作所製「H−9000」)の像から、画像解析プログラム(例えば、Scion Corporation社製「ScionImage」)を用いて個々の粒子を抽出し、抽出した粒子を2値化処理して個々の粒子の面積(S)を算出する。該個々の粒子の面積(S)と同じ面積を有する円の直径(2√(S/π))として個々の粒子径(D)を算出し、粒子径の頻度分布を得る。該粒子径の頻度分布を、データ解析プログラム(OriginLab社製「Origin」,Parametric Technology社製「Mathchad」等)によって処理し、累積50%での粒子径(D50粒子径)を算出し、これを平均二次粒子径とする。   In addition, the average secondary particle diameter of the polycrystalline diamond abrasive grains in the present invention is based on the particle size distribution of the individual polycrystalline grains (secondary particles) constituting the polycrystalline diamond abrasive grains based on a microscope image such as TEM. , D50 particle diameter is calculated. Specifically, from an image of a TEM (for example, “H-9000” manufactured by Hitachi, Ltd.) observed at a magnification of 100 to 500,000 times, each image is analyzed using an image analysis program (for example, “ScionImage” manufactured by Scion Corporation). The particles are extracted, and the extracted particles are binarized to calculate the area (S) of each particle. The individual particle diameter (D) is calculated as the diameter (2√ (S / π)) of a circle having the same area as the area (S) of each individual particle to obtain a frequency distribution of the particle diameter. The particle size frequency distribution is processed by a data analysis program (“Origin” manufactured by OriginLab, “Mathchad” manufactured by Parametric Technology, etc.), and a particle size at 50% cumulative (D50 particle size) is calculated. The average secondary particle size is used.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

気相合成法により形成した、水素、酸素、窒素、ホウ素といった不可避不純物の濃度が0.01質量%以下の黒鉛を温度2100℃、圧力16GPaの条件下で、直接多結晶ダイヤモンドに変更した。この多結晶ダイヤモンドの結晶粒径は各々10〜100nm程度の大きさであり、各結晶粒同士が直接結合していることを走査型電子顕微鏡(SEM)により確認した。   Graphite having a concentration of inevitable impurities such as hydrogen, oxygen, nitrogen, and boron of 0.01% by mass or less formed by a vapor phase synthesis method was directly changed to polycrystalline diamond under the conditions of a temperature of 2100 ° C. and a pressure of 16 GPa. The polycrystalline diamond has a crystal grain size of about 10 to 100 nm, and it was confirmed by a scanning electron microscope (SEM) that the crystal grains were directly bonded to each other.

このナノ多結晶ダイヤモンドのヌープ硬度は120GPaであった。該ナノ多結晶ダイヤモンドに、SUS球を、1秒間に20回、合計18000回衝突させて取り出し、ナノ多結晶ダイヤモンドの粒子を得た。該ナノ多結晶ダイヤモンドの粒子をふるいによって1μm以上のものに選別し、平均二次粒子径100μmの多結晶ダイヤモンド砥粒を作製した。さらに該多結晶ダイヤモンド砥粒を水に分散させてスラリーとし、該スラリーを塗布した砥石を作製した。   This nanopolycrystalline diamond had a Knoop hardness of 120 GPa. SUS spheres were made to collide with the nano-polycrystalline diamond 20 times per second for a total of 18000 times to obtain nano-polycrystalline diamond particles. The nano-polycrystalline diamond particles were screened to 1 μm or more by sieving to produce polycrystalline diamond abrasive grains having an average secondary particle diameter of 100 μm. Further, the polycrystalline diamond abrasive grains were dispersed in water to form a slurry, and a grindstone coated with the slurry was produced.

上記砥石で、立方晶ホウ化窒素をラッピングしたところ、従来のダイヤモンド砥粒を用いた場合と比較して、ラッピングレートは2倍になり、砥粒の寿命は3倍以上延びることが確認できた。ラッピング条件は、加重300g/cm2、回転数60rpm、スラリー噴射時間10秒、スラリー噴射間隔50秒とした。 When lapping cubic nitrogen boride with the above-mentioned grindstone, it was confirmed that the lapping rate was doubled compared to the case of using conventional diamond abrasive grains and the life of the abrasive grains was extended by 3 times or more. . The lapping conditions were a load of 300 g / cm 2 , a rotation speed of 60 rpm, a slurry injection time of 10 seconds, and a slurry injection interval of 50 seconds.

気相合成法により形成した、水素、酸素、窒素、ホウ素といった不可避不純物の濃度が0.01質量%以下の黒鉛を温度2200℃、圧力16GPaの条件下で、直接多結晶ダイヤモンドに変更した。この多結晶ダイヤモンドの結晶粒径は各々10〜100nm程度の大きさであり、各結晶粒同士が直接結合していることを走査型電子顕微鏡(SEM)により確認した。   Graphite having a concentration of inevitable impurities such as hydrogen, oxygen, nitrogen, and boron of 0.01% by mass or less formed by a vapor phase synthesis method was directly changed to polycrystalline diamond under the conditions of a temperature of 2200 ° C. and a pressure of 16 GPa. The polycrystalline diamond has a crystal grain size of about 10 to 100 nm, and it was confirmed by a scanning electron microscope (SEM) that the crystal grains were directly bonded to each other.

このナノ多結晶ダイヤモンドのヌープ硬度は120GPaであった。該ナノ多結晶ダイヤモンドに、SUS球を、1秒間に20回、合計18000回衝突させて取り出し、ナノ多結晶ダイヤモンドの粒子を得た。該ナノ多結晶ダイヤモンドの粒子をふるいによって1μm以上のものに選別し、平均二次粒子径100μmの多結晶ダイヤモンド砥粒を作製した。さらに該多結晶ダイヤモンド砥粒をワイヤに固着し、固定砥粒ワイヤを作製した。   This nanopolycrystalline diamond had a Knoop hardness of 120 GPa. SUS spheres were made to collide with the nano-polycrystalline diamond 20 times per second for a total of 18000 times to obtain nano-polycrystalline diamond particles. The nano-polycrystalline diamond particles were screened to 1 μm or more by sieving to produce polycrystalline diamond abrasive grains having an average secondary particle diameter of 100 μm. Further, the polycrystalline diamond abrasive grains were fixed to the wire to produce a fixed abrasive wire.

上記固定砥粒ワイヤで、立方晶ホウ化窒素をカットしたところ、従来のダイヤモンド砥粒を用いた場合と比較して、切削速度は2倍になり、砥粒の寿命は3倍以上延びることが確認できた。   When cubic nitrogen boride was cut with the above-mentioned fixed abrasive wire, the cutting speed was doubled compared to the case of using conventional diamond abrasive grains, and the life of the abrasive grains was extended by 3 times or more. It could be confirmed.

気相合成法により形成した、水素、酸素、窒素、ホウ素といった不可避不純物の濃度が0.01質量%以下の黒鉛を温度2100℃、圧力16GPaの条件下で、直接多結晶ダイヤモンドに変更した。この多結晶ダイヤモンドの結晶粒径は各々10〜100nm程度の大きさであり、各結晶粒同士が直接結合していることを走査型電子顕微鏡(SEM)により確認した。   Graphite having a concentration of inevitable impurities such as hydrogen, oxygen, nitrogen, and boron of 0.01% by mass or less formed by a vapor phase synthesis method was directly changed to polycrystalline diamond under the conditions of a temperature of 2100 ° C. and a pressure of 16 GPa. The polycrystalline diamond has a crystal grain size of about 10 to 100 nm, and it was confirmed by a scanning electron microscope (SEM) that the crystal grains were directly bonded to each other.

このナノ多結晶ダイヤモンドのヌープ硬度は120GPaであった。該ナノ多結晶ダイヤモンドに、SUS球を、1秒間に20回、合計18000回衝突させて取り出し、ナノ多結晶ダイヤモンドの粒子を得た。該ナノ多結晶ダイヤモンドの粒子をふるいによって20μm以下のものに選別し、平均二次粒子径10μmの多結晶ダイヤモンド砥粒を作製した。さらに該多結晶ダイヤモンド砥粒を水に分散させてスラリーとし、該スラリーを塗布した砥石を作製した。   This nanopolycrystalline diamond had a Knoop hardness of 120 GPa. SUS spheres were made to collide with the nano-polycrystalline diamond 20 times per second for a total of 18000 times to obtain nano-polycrystalline diamond particles. The nano-polycrystalline diamond particles were screened to 20 μm or less to produce polycrystalline diamond abrasive grains having an average secondary particle diameter of 10 μm. Further, the polycrystalline diamond abrasive grains were dispersed in water to form a slurry, and a grindstone coated with the slurry was produced.

上記砥石で、立方晶ホウ化窒素を実施例1と同条件でラッピングしたところ、従来のダイヤモンド砥粒を用いた場合と比較して、ラッピングレートは2倍になり、砥粒の寿命は3倍以上延びることが確認できた。   When the above-described grindstone was used to wrap cubic nitrogen boride under the same conditions as in Example 1, the lapping rate was doubled and the life of the abrasive grains was tripled compared to the case of using conventional diamond abrasive grains. It has been confirmed that it extends as described above.

気相合成法により形成した、水素、酸素、窒素、ホウ素といった不可避不純物の濃度が0.01質量%以下の黒鉛を温度2200℃、圧力16GPaの条件下で、直接多結晶ダイヤモンドに変更した。この多結晶ダイヤモンドの結晶粒径は各々10〜100nm程度の大きさであり、各結晶粒同士が直接結合していることを走査型電子顕微鏡(SEM)により確認した。   Graphite having a concentration of inevitable impurities such as hydrogen, oxygen, nitrogen, and boron of 0.01% by mass or less formed by a vapor phase synthesis method was directly changed to polycrystalline diamond under the conditions of a temperature of 2200 ° C. and a pressure of 16 GPa. The polycrystalline diamond has a crystal grain size of about 10 to 100 nm, and it was confirmed by a scanning electron microscope (SEM) that the crystal grains were directly bonded to each other.

このナノ多結晶ダイヤモンドのヌープ硬度は120GPaであった。該ナノ多結晶ダイヤモンドに、SUS球を、1秒間に20回、合計18000回衝突させて取り出し、ナノ多結晶ダイヤモンドの粒子を得た。該ナノ多結晶ダイヤモンドの粒子をふるいによって10μm以上のものに選別し、平均二次粒子径100μmの多結晶ダイヤモンド砥粒を作製した。さらに該多結晶ダイヤモンド砥粒をワイヤに固着し、固定砥粒ワイヤを作製した。   This nanopolycrystalline diamond had a Knoop hardness of 120 GPa. SUS spheres were made to collide with the nano-polycrystalline diamond 20 times per second for a total of 18000 times to obtain nano-polycrystalline diamond particles. The nano-polycrystalline diamond particles were screened to a size of 10 μm or more to produce polycrystalline diamond abrasive grains having an average secondary particle size of 100 μm. Further, the polycrystalline diamond abrasive grains were fixed to the wire to produce a fixed abrasive wire.

上記固定砥粒ワイヤで、立方晶ホウ化窒素をカットしたところ、従来のダイヤモンド砥粒を用いた場合と比較して、切削速度は2倍になり、砥粒の寿命は3倍以上延びることが確認できた。   When cubic nitrogen boride was cut with the above-mentioned fixed abrasive wire, the cutting speed was doubled compared to the case of using conventional diamond abrasive grains, and the life of the abrasive grains was extended by 3 times or more. It could be confirmed.

気相合成法により形成した、水素、酸素、窒素、ホウ素といった不可避不純物の濃度が0.01質量%以下の黒鉛を温度2100℃、圧力20GPaの条件下で、直接多結晶ダイヤモンドに変更した。この多結晶ダイヤモンドの結晶粒径は各々10〜100nm程度の大きさであり、各結晶粒同士が直接結合していることを走査型電子顕微鏡(SEM)により確認した。   Graphite having a concentration of inevitable impurities such as hydrogen, oxygen, nitrogen, and boron of 0.01% by mass or less formed by a vapor phase synthesis method was directly changed to polycrystalline diamond under conditions of a temperature of 2100 ° C. and a pressure of 20 GPa. The polycrystalline diamond has a crystal grain size of about 10 to 100 nm, and it was confirmed by a scanning electron microscope (SEM) that the crystal grains were directly bonded to each other.

このナノ多結晶ダイヤモンドのヌープ硬度は120GPaであった。該ナノ多結晶ダイヤモンドに、SUS球を、1秒間に20回、合計18000回衝突させて取り出し、ナノ多結晶ダイヤモンドの粒子を得た。該ナノ多結晶ダイヤモンドを100μmのふるいに掛け選別した、平均二次粒子径100μmの多結晶ダイヤモンド砥粒を作製した。さらに該多結晶ダイヤモンド砥粒を水に分散させてスラリーとし、該スラリーを塗布した砥石を作製した。   This nanopolycrystalline diamond had a Knoop hardness of 120 GPa. SUS spheres were made to collide with the nano-polycrystalline diamond 20 times per second for a total of 18000 times to obtain nano-polycrystalline diamond particles. Polycrystalline diamond abrasive grains having an average secondary particle diameter of 100 μm were prepared by screening the nanopolycrystalline diamond through a 100 μm sieve. Further, the polycrystalline diamond abrasive grains were dispersed in water to form a slurry, and a grindstone coated with the slurry was produced.

上記砥石で、立方晶ホウ化窒素を実施例1と同条件でラッピングしたところ、従来のダイヤモンド砥粒を用いた場合と比較して、ラッピングレートは2倍になり、砥粒の寿命は3倍以上延びることが確認できた。   When the above-described grindstone was used to wrap cubic nitrogen boride under the same conditions as in Example 1, the lapping rate was doubled and the life of the abrasive grains was tripled compared to the case of using conventional diamond abrasive grains. It has been confirmed that it extends as described above.

気相合成法により形成した、水素、酸素、窒素、ホウ素といった不可避不純物の濃度が0.01質量%以下の黒鉛を温度2200℃、圧力20GPaの条件下で、直接多結晶ダイヤモンドに変更した。この多結晶ダイヤモンドの結晶粒径は各々10〜100nm程度の大きさであり、各結晶粒同士が直接結合していることを走査型電子顕微鏡(SEM)により確認した。   Graphite having a concentration of inevitable impurities such as hydrogen, oxygen, nitrogen, and boron of 0.01% by mass or less formed by a vapor phase synthesis method was directly changed to polycrystalline diamond under the conditions of a temperature of 2200 ° C. and a pressure of 20 GPa. The polycrystalline diamond has a crystal grain size of about 10 to 100 nm, and it was confirmed by a scanning electron microscope (SEM) that the crystal grains were directly bonded to each other.

このナノ多結晶ダイヤモンドのヌープ硬度は120GPaであった。該ナノ多結晶ダイヤモンドに、SUS球を、1秒間に20回、合計18000回衝突させて取り出し、ナノ多結晶ダイヤモンドの粒子を得た。これを100μmのふるいに掛けて選別した、平均二次粒子径100μmの多結晶ダイヤモンド砥粒を作製した。さらに該多結晶ダイヤモンド砥粒をワイヤに固着し、固定砥粒ワイヤを作製した。   This nanopolycrystalline diamond had a Knoop hardness of 120 GPa. SUS spheres were made to collide with the nano-polycrystalline diamond 20 times per second for a total of 18000 times to obtain nano-polycrystalline diamond particles. Polycrystalline diamond abrasive grains having an average secondary particle diameter of 100 μm were prepared by screening through a 100 μm sieve. Further, the polycrystalline diamond abrasive grains were fixed to the wire to produce a fixed abrasive wire.

上記固定砥粒ワイヤで、立方晶ホウ化窒素をカットしたところ、従来のダイヤモンド砥粒を用いた場合と比較して、切削速度は2倍になり、砥粒の寿命は3倍以上延びることが確認できた。   When cubic nitrogen boride was cut with the above-mentioned fixed abrasive wire, the cutting speed was doubled compared to the case of using conventional diamond abrasive grains, and the life of the abrasive grains was extended by 3 times or more. It could be confirmed.

なお、上記の実施例において比較対象とした従来のダイヤモンド砥粒は、単結晶ダイヤモンド砥粒である。これをスラリーとして実施例1と同じラッピング条件で立方晶窒化ホウ素を研磨したときのラッピングレートは1μm/hであった。また、従来のダイヤモンド砥粒を固着させてワイヤーソーとし、立方晶窒化ホウ素を切削したときの切削速度は140μm/minであった。   In addition, the conventional diamond abrasive grain made into the comparison object in said Example is a single crystal diamond abrasive grain. When the cubic boron nitride was polished under the same lapping conditions as in Example 1 as a slurry, the lapping rate was 1 μm / h. In addition, when a conventional diamond abrasive grain was fixed to form a wire saw and cubic boron nitride was cut, the cutting speed was 140 μm / min.

以上の実施例では、結晶粒径が10〜100nm程度の高硬度のナノ多結晶ダイヤモンドを粉砕して得られた、平均二次粒子径1〜100μmの多結晶ダイヤモンド砥粒が、従来のダイヤモンド砥粒と比較して、3倍以上も長寿命であることが確認できた。しかし、実施例以外の条件であっても、特許請求の範囲に記載の範囲であれば、同等の特性を有する多結晶ダイヤモンド砥粒を作製できるものと考えられる。   In the above examples, polycrystalline diamond abrasive grains having an average secondary particle diameter of 1 to 100 μm obtained by pulverizing high-hardness nanopolycrystalline diamond having a crystal grain diameter of about 10 to 100 nm are obtained by conventional diamond grinding. It was confirmed that the lifetime was three times longer than that of the grains. However, even under conditions other than the Examples, it is considered that polycrystalline diamond abrasive grains having equivalent characteristics can be produced as long as they are within the scope of the claims.

以上のように本発明の実施の形態および実施例について説明を行ったが、上述の実施の形態および実施例を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態および実施例に限定されるものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。   Although the embodiments and examples of the present invention have been described above, various modifications can be made to the above-described embodiments and examples. Further, the scope of the present invention is not limited to the above-described embodiments and examples. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (7)

結合剤を含まない多結晶ダイヤモンドからなる多結晶ダイヤモンド砥粒であって、
前記多結晶ダイヤモンドの結晶粒径は1μm未満であり、
平均二次粒子径が1μm以上200μm以下である、多結晶ダイヤモンド砥粒。
A polycrystalline diamond abrasive grain made of polycrystalline diamond containing no binder,
The polycrystalline diamond has a crystal grain size of less than 1 μm,
Polycrystalline diamond abrasive grains having an average secondary particle diameter of 1 μm or more and 200 μm or less.
前記多結晶ダイヤモンド中の不可避不純物濃度は、0.01質量%以下である、請求項1に記載の多結晶ダイヤモンド砥粒。   The polycrystalline diamond abrasive according to claim 1, wherein an inevitable impurity concentration in the polycrystalline diamond is 0.01% by mass or less. 請求項1または請求項2に記載の多結晶ダイヤモンド砥粒を用いた、スラリー。   A slurry using the polycrystalline diamond abrasive grain according to claim 1. 請求項1または請求項2に記載の多結晶ダイヤモンド砥粒を固定した、固定砥粒式ワイヤ。   A fixed abrasive wire to which the polycrystalline diamond abrasive grain according to claim 1 or 2 is fixed. 炭素材料を、12GPa以上の圧力、1500℃以上の温度で結合剤を用いずに焼結してダイヤモンドに直接的に変換し、1μm未満の結晶粒径を有する多結晶ダイヤモンドを得る工程と、
前記多結晶ダイヤモンドを、平均二次粒子径が1μm以上200μm以下となるよう加工する工程とを備える、多結晶ダイヤモンド砥粒の製造方法。
Sintering the carbon material at a pressure of 12 GPa or higher and a temperature of 1500 ° C. or higher without using a binder to directly convert it to diamond to obtain polycrystalline diamond having a crystal grain size of less than 1 μm;
And a step of processing the polycrystalline diamond so that the average secondary particle diameter is 1 μm or more and 200 μm or less.
前記炭素材料は、気相合成法によって準備される、請求項5に記載の多結晶ダイヤモンド砥粒の製造方法。   The method for producing polycrystalline diamond abrasive grains according to claim 5, wherein the carbon material is prepared by a vapor phase synthesis method. 前記多結晶ダイヤモンドを加工する工程において、
金属、セラミック、またはそれらの複合体を前記多結晶ダイヤモンドに衝突させることで、前記多結晶ダイヤモンドを粉砕する、請求項5または請求項6に記載の多結晶ダイヤモンド砥粒の製造方法。
In the step of processing the polycrystalline diamond,
The method for producing polycrystalline diamond abrasive grains according to claim 5 or 6, wherein the polycrystalline diamond is pulverized by colliding a metal, a ceramic, or a composite thereof with the polycrystalline diamond.
JP2012118606A 2012-05-24 2012-05-24 Method for producing polycrystalline diamond abrasive grains Active JP6098044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118606A JP6098044B2 (en) 2012-05-24 2012-05-24 Method for producing polycrystalline diamond abrasive grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118606A JP6098044B2 (en) 2012-05-24 2012-05-24 Method for producing polycrystalline diamond abrasive grains

Publications (2)

Publication Number Publication Date
JP2013245126A true JP2013245126A (en) 2013-12-09
JP6098044B2 JP6098044B2 (en) 2017-03-22

Family

ID=49845189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118606A Active JP6098044B2 (en) 2012-05-24 2012-05-24 Method for producing polycrystalline diamond abrasive grains

Country Status (1)

Country Link
JP (1) JP6098044B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105856078A (en) * 2016-04-19 2016-08-17 南京航空航天大学 Preparation method and use of self-sharpening sintered abrasive material
CN107866740A (en) * 2016-09-26 2018-04-03 江信有限公司 Silicon glomerocryst sinter and its manufacture method
CN108437244A (en) * 2018-03-22 2018-08-24 山东大学 Free-fixed grain composite fret saw cutting method of photovoltaic polycrystalline silicon battery plate
CN109701447A (en) * 2019-03-07 2019-05-03 吉林大学 A method of the low pressure of no catalyst prepares nano polycrystal diamond
CN112678817A (en) * 2021-01-08 2021-04-20 南方科技大学 Preparation method of millimeter polycrystalline diamond

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110936284B (en) * 2018-09-21 2021-09-10 邵丙璜 Grinding method of semiconductor wafer

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393694A (en) * 1989-09-06 1991-04-18 Sumitomo Electric Ind Ltd Production of abrasive grain
JPH0483525A (en) * 1990-07-24 1992-03-17 Sumitomo Coal Mining Co Ltd Preparation of diamond grinding particles
JPH08323604A (en) * 1995-05-31 1996-12-10 Canon Inc Abrasive method for sic, and manufacture of optical element
JP2002274825A (en) * 2001-03-19 2002-09-25 Matsushita Electric Ind Co Ltd Method for producing graphite powder
JP2004131336A (en) * 2002-10-11 2004-04-30 Sumitomo Electric Ind Ltd Diamond polycrystal and its production method
JP2004174680A (en) * 2002-11-28 2004-06-24 Kanai Hiroaki Fixed abrasive grain type saw wire and its abrasive grain fixing method
WO2007001031A1 (en) * 2005-06-29 2007-01-04 Nippon Kayaku Kabushiki Kaisha Process for producing fine diamond and fine diamond
JP2007055819A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd High-hardness polycrystalline diamond and process for producing the same
JP2009007248A (en) * 2008-08-15 2009-01-15 Sumitomo Electric Ind Ltd Diamond polycrystal body
JP2009067610A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd High-hardness diamond polycrystalline body and method for producing the same
JP2009067609A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd High purity diamond polycrystalline body and method of manufacturing the same
JP2010131698A (en) * 2008-12-04 2010-06-17 Akita Univ Saw wire and method of manufacturing the same
JP2011040427A (en) * 2009-08-06 2011-02-24 Yamaguchi Seiken Kogyo Kk Abrasive composition
JP2011150865A (en) * 2010-01-21 2011-08-04 Hitachi Maxell Energy Ltd Negative electrode material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
JP2012066979A (en) * 2010-09-27 2012-04-05 Sumitomo Electric Ind Ltd High-hardness, electrically conductive polycrystalline diamond and method for producing the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393694A (en) * 1989-09-06 1991-04-18 Sumitomo Electric Ind Ltd Production of abrasive grain
JPH0483525A (en) * 1990-07-24 1992-03-17 Sumitomo Coal Mining Co Ltd Preparation of diamond grinding particles
JPH08323604A (en) * 1995-05-31 1996-12-10 Canon Inc Abrasive method for sic, and manufacture of optical element
JP2002274825A (en) * 2001-03-19 2002-09-25 Matsushita Electric Ind Co Ltd Method for producing graphite powder
JP2004131336A (en) * 2002-10-11 2004-04-30 Sumitomo Electric Ind Ltd Diamond polycrystal and its production method
JP2004174680A (en) * 2002-11-28 2004-06-24 Kanai Hiroaki Fixed abrasive grain type saw wire and its abrasive grain fixing method
WO2007001031A1 (en) * 2005-06-29 2007-01-04 Nippon Kayaku Kabushiki Kaisha Process for producing fine diamond and fine diamond
JP2007055819A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd High-hardness polycrystalline diamond and process for producing the same
JP2009067610A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd High-hardness diamond polycrystalline body and method for producing the same
JP2009067609A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd High purity diamond polycrystalline body and method of manufacturing the same
JP2009007248A (en) * 2008-08-15 2009-01-15 Sumitomo Electric Ind Ltd Diamond polycrystal body
JP2010131698A (en) * 2008-12-04 2010-06-17 Akita Univ Saw wire and method of manufacturing the same
JP2011040427A (en) * 2009-08-06 2011-02-24 Yamaguchi Seiken Kogyo Kk Abrasive composition
JP2011150865A (en) * 2010-01-21 2011-08-04 Hitachi Maxell Energy Ltd Negative electrode material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
JP2012066979A (en) * 2010-09-27 2012-04-05 Sumitomo Electric Ind Ltd High-hardness, electrically conductive polycrystalline diamond and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105856078A (en) * 2016-04-19 2016-08-17 南京航空航天大学 Preparation method and use of self-sharpening sintered abrasive material
CN105856078B (en) * 2016-04-19 2017-11-07 南京航空航天大学 A kind of self-sharpening sintered abrasive grain preparation method and purposes
CN107866740A (en) * 2016-09-26 2018-04-03 江信有限公司 Silicon glomerocryst sinter and its manufacture method
CN108437244A (en) * 2018-03-22 2018-08-24 山东大学 Free-fixed grain composite fret saw cutting method of photovoltaic polycrystalline silicon battery plate
CN109701447A (en) * 2019-03-07 2019-05-03 吉林大学 A method of the low pressure of no catalyst prepares nano polycrystal diamond
CN109701447B (en) * 2019-03-07 2021-05-07 吉林大学 Method for preparing nano polycrystalline diamond under low pressure without catalyst
CN112678817A (en) * 2021-01-08 2021-04-20 南方科技大学 Preparation method of millimeter polycrystalline diamond

Also Published As

Publication number Publication date
JP6098044B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6098044B2 (en) Method for producing polycrystalline diamond abrasive grains
JP5891639B2 (en) Polycrystalline diamond and manufacturing method thereof, scribe tool, scribe wheel, dresser, rotary tool, water jet orifice, wire drawing die, and cutting tool
JP5028800B2 (en) High hardness conductive diamond polycrystal and method for producing the same
CN110318030B (en) Self-supporting superfine nanocrystalline diamond thick film
JP5070688B2 (en) High hardness diamond polycrystal and method for producing the same
WO2007011019A1 (en) High-hardness polycrystalline diamond and process for producing the same
WO2012023473A9 (en) Diamond polycrystal and process for production thereof
AU2009237260A1 (en) Super-hard enhanced hard-metals
JP2018505839A (en) Polycrystalline cubic boron nitride (PcBN) containing microcrystalline cubic boron nitride (CBN) and fabrication method
WO2013015348A1 (en) Polycrystalline diamond, manufacturing method therefor, scribe tool, scribe wheel, dresser, rotary tool, water-jet orifice, wire drawing die, cutting tool, and electron source
JP4203900B2 (en) Polycrystalline diamond and method for producing the same
CN106006644A (en) Preparation method of nano boron carbide powder
JP2021073158A (en) Friable ceramic-bonded diamond composite particle, and method of producing the same
CN103561911A (en) Super-hard structure, tool element and method of making same
JP5674009B2 (en) High hardness conductive diamond polycrystal and method for producing the same
US10703636B2 (en) Composite polycrystal and method for manufacturing the same
WO2017073293A1 (en) Polycrystalline composite
JP6047925B2 (en) Polycrystalline diamond abrasives and method for producing the same, slurry, and fixed abrasive wire
JP6019751B2 (en) Polycrystalline diamond abrasives and method for producing the same, slurry, and fixed abrasive wire
JP5672483B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP2009007248A (en) Diamond polycrystal body
JP6015129B2 (en) Polycrystalline diamond abrasives and method for producing the same, slurry, and fixed abrasive wire
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
JP5909804B1 (en) Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same
JP2015209369A (en) Composite sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250