JPH08323604A - Abrasive method for sic, and manufacture of optical element - Google Patents

Abrasive method for sic, and manufacture of optical element

Info

Publication number
JPH08323604A
JPH08323604A JP13426595A JP13426595A JPH08323604A JP H08323604 A JPH08323604 A JP H08323604A JP 13426595 A JP13426595 A JP 13426595A JP 13426595 A JP13426595 A JP 13426595A JP H08323604 A JPH08323604 A JP H08323604A
Authority
JP
Japan
Prior art keywords
polishing
abrasive grains
sic
abrasive
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13426595A
Other languages
Japanese (ja)
Inventor
Manabu Ando
学 安藤
Tadahiro Shimazaki
忠弘 嶋▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13426595A priority Critical patent/JPH08323604A/en
Publication of JPH08323604A publication Critical patent/JPH08323604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To form an extremely smooth surface, by abrading SiC by using abrasive liquid containing a diamond abrasive grain having a specific range mean grain diameter. CONSTITUTION: A polycrystal diamond abrasive grain, having a mean grain diameter of 1μm (1-3μm) of 0.025wt.% (0.2wt.% or less), is put into purified water of 2 liter to be stirred, and a hexametaphosphoric acid sodium fine powder, as dispersant, of 2wt. parts (1-2 wt. parts) is added to a diamond abrasive grain of 100wt. parts in abrasive liquid to obtain abrasive liquid 7. Both of an abrasive pan 1 having a pitch surface 6 having a penetration of 15 (5-20) and an article 2 to be worked retained by an article to be worked holder 3 are dipped into a vessel 8 filled with the abrasion liquid 7 to abrade CVD-SiC material. While an abrasive pan rotating shaft 9 is rotated at 7rpm, an oscillation shaft 4 for supporting the article 2 is oscillated at 5 cycles/minute. Abrasion pressure is 30KPa (66Kpa or less). Consequently, an extremely smooth surface, having a surface roughness of 0.15nm RMS, can be obtained without a pit and an abrasive passing trace on a surface to be worked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SiC(炭化珪素)材
の表面を研磨する方法に関し、更に詳しくはCVD−S
iC(CVD法により形成されたSiC)から成る表面
を有するミラー光学素子等を研磨して高精度な表面を形
成するのに非常に適した研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing the surface of a SiC (silicon carbide) material, more specifically CVD-S.
The present invention relates to a polishing method very suitable for polishing a mirror optical element or the like having a surface made of iC (SiC formed by a CVD method) to form a highly accurate surface.

【0002】[0002]

【従来の技術】従来よりCVD−SiC材は、高価であ
るにもかかわらず、その物理特性が優れているので高エ
ネルギー短波長光用のミラーとして採用されている。こ
れらのミラーの形状は、通常は平面、シリンドリカル
面、球面、トロイダル面などの単純な形状である。これ
らの光学素子の代表的な製造法は、β−SiCの燒結体
基板を研削により最終形状にする工程、その基板にCV
D法によりαまたはβ−SiC緻密質膜を形成する工
程、その面を再び研削で形状創成する工程、そして研磨
により形状誤差、うねり、表面粗さなどを低減し表面品
質を向上し、ミラーを仕上げる工程から成る。
2. Description of the Related Art Conventionally, a CVD-SiC material is used as a mirror for high-energy short-wavelength light because of its excellent physical properties despite its high price. The shape of these mirrors is usually a simple shape such as a flat surface, a cylindrical surface, a spherical surface, or a toroidal surface. A typical manufacturing method of these optical elements is a step of grinding a sintered substrate of β-SiC into a final shape, and CV is applied to the substrate.
The step of forming an α or β-SiC dense film by the D method, the step of forming the surface by grinding again, and the polishing to reduce the shape error, waviness, surface roughness, etc. to improve the surface quality and to improve the mirror. It consists of a finishing process.

【0003】この最終工程(仕上げ工程)においては、
例えば、ミラー素材とほぼ同径の大きさ研磨皿(シリン
ドリカル面を創成しようとする場合にはそのシリンドリ
カル面と同じ曲率半径を持ち、凹凸が逆の研磨皿)をC
VD−SiCミラー基板と相対運動をさせ、酸化クロム
微粉、シリカ微粉、ダイアモンド微粉などの研磨剤を水
に分散した研磨液を介在させて研磨を行い、所定の曲率
のシリンドリカル面を鏡面に仕上げていく。平面を研磨
する場合は、通常はミラー素材よりも大きな平面の研磨
皿を用いる。研磨装置としては、平面または球面を研磨
する場合は通常の横振り研磨機が用いられ、シリンドリ
カル、トロイダルなどの非軸対称形状の面を研磨する場
合は、下軸と上軸が各々独立して直交方向に揺動するシ
リンドリカル研磨機が用いられる。
In this final step (finishing step),
For example, a polishing dish having a diameter approximately the same as that of the mirror material (in the case of trying to create a cylindrical surface, a polishing dish having the same radius of curvature as the cylindrical surface, and the unevenness being opposite) is C
It is moved relative to the VD-SiC mirror substrate, and polishing is performed by interposing a polishing liquid in which a polishing agent such as chromium oxide fine powder, silica fine powder, and diamond fine powder is dispersed in water, and a cylindrical surface having a predetermined curvature is mirror-finished. Go. When polishing a flat surface, a flat polishing dish larger than the mirror material is usually used. As a polishing device, a normal oscillating polishing machine is used when polishing a flat surface or a spherical surface, and when polishing a surface having a non-axisymmetric shape such as a cylindrical or toroidal shape, the lower axis and the upper axis are independent of each other. A cylindrical polishing machine that swings in the orthogonal direction is used.

【0004】[0004]

【発明が解決しようとする課題】これらのミラーでは形
状精度も重要であるが、それと同時に表面粗さ0.3n
mRMS程度の超平滑な表面が望まれる。しかし、表面
粗さについてはその創成機構が十分に解明されておら
ず、例えば、「精密工学会1994年度秋季大会講演予
稿集553〜554頁」に報告されている様に、表面粗
さRa0.4nm、Rmax 4nm程度迄の平滑面しか得
られていない。
In these mirrors, the shape accuracy is important, but at the same time, the surface roughness is 0.3n.
A super smooth surface of the order of mRMS is desired. However, with respect to the surface roughness, the generation mechanism thereof has not been sufficiently elucidated. Only smooth surfaces up to about 4 nm and Rmax of 4 nm are obtained.

【0005】従来技術においては、超平滑な表面粗さが
要求されるSiC光学素子を加工する場合は、仕上げの
研磨に習熟した加工者が、コロイダルシリカ、酸化クロ
ム、ダイアモンドなどの研磨剤を研磨面の状態を観察し
ながら細かく条件を変更し、研磨加工し対処していた。
しかし、この方法では加工時間が長く、加工コストも高
いものとなる。更に、従来技術では、表面粗さ0.5〜
2nmRMS程度の平滑面は時間をかければ形成可能で
あっても、例えば短波長光学素子として要求されること
が多くなった超平滑面(表面粗さ0.3nmRMS以下
程度)を確実に得ることは困難であった。
In the prior art, when processing an SiC optical element which requires ultra-smooth surface roughness, a processor who is skilled in finishing polishing polishes an abrasive such as colloidal silica, chromium oxide or diamond. While observing the state of the surface, the conditions were finely changed, and polishing was performed to deal with it.
However, this method requires a long processing time and a high processing cost. Furthermore, in the prior art, the surface roughness is 0.5 to
Even if a smooth surface of about 2 nm RMS can be formed over time, for example, it is possible to reliably obtain an ultra smooth surface (surface roughness of about 0.3 nm RMS or less) which is often required as a short wavelength optical element. It was difficult.

【0006】本発明の目的は、表面粗さ0.3nmRM
S程度の超平滑な表面を形成できるSiCの研磨方法お
よび光学素子の製造方法を提供することにある。
The object of the present invention is to obtain a surface roughness of 0.3 nm RM.
An object of the present invention is to provide a SiC polishing method and an optical element manufacturing method capable of forming an ultra-smooth surface of about S.

【0007】[0007]

【課題を解決するための手段】上記目的は、以下の本発
明により達成できる。
The above object can be achieved by the present invention described below.

【0008】平均粒径が1〜3μmのダイアモンド砥粒
を含む研磨液を用いることを特徴とするSiCの研磨方
法。
A method for polishing SiC, characterized in that a polishing liquid containing diamond abrasive grains having an average particle diameter of 1 to 3 μm is used.

【0009】SiCから成る表面を有する光学素子の製
造方法において、平均粒径が1〜3μmのダイアモンド
砥粒を含む研磨液を用いて研磨する工程を有することを
特徴とする光学素子の製造方法。
A method for manufacturing an optical element having a surface made of SiC, comprising a step of polishing with a polishing liquid containing diamond abrasive grains having an average particle diameter of 1 to 3 μm.

【0010】[0010]

【作用】本発明は、平均粒径が1〜3μmのダイアモン
ド砥粒を含む研磨液を用いることを特徴とする。この研
磨液を用い、例えばCVD−SiC材を被加工面とほぼ
同じ大きさの全面皿研磨工具により球面を研磨した場合
は、被加工面に、ピットの発生、砥粒通過痕の発現など
の研磨面悪化要因が発生せず、高い信頼性で高精度で均
一な超平滑球面が得られる。したがって、細かく研磨条
件を変更し研磨面の状態を観察しながら研磨加工を進め
る必要も無くなり、作業が非常に容易になる。また、研
磨条件を一定にしておけるので、加工能率も向上し、加
工コストも低減できる。
The present invention is characterized by using a polishing liquid containing diamond abrasive grains having an average grain size of 1 to 3 μm. When this polishing liquid is used to polish a spherical surface of a CVD-SiC material with a full-face dish polishing tool of approximately the same size as the surface to be processed, pits are generated on the surface to be processed, and abrasive grain passage marks are generated. It is possible to obtain a highly reliable, highly accurate and uniform super-smooth spherical surface without causing a deterioration factor of the polished surface. Therefore, it becomes unnecessary to finely change the polishing conditions and to carry out the polishing process while observing the state of the polished surface, and the work becomes very easy. Further, since the polishing conditions can be kept constant, the processing efficiency can be improved and the processing cost can be reduced.

【0011】また、例えばCVD−SiC材を被加工面
よりも小さな研磨工具により非球面ミラーを研磨する場
合も、同様にピット、砥粒通過痕などを防止でき、高い
信頼性で高精度で均一な超平滑非球面が得られる。ま
た、本発明は、研磨液と研磨工具材料の設定のみにより
良好な結果が得られるので、被加工面の形状によらずに
実施できる汎用性の高い方法である。
Further, for example, when aspherical mirrors are polished from a CVD-SiC material with a polishing tool smaller than the surface to be processed, pits, abrasive grain passing marks, etc. can be similarly prevented and highly reliable and highly uniform. A super smooth aspherical surface is obtained. Further, the present invention is a highly versatile method that can be carried out regardless of the shape of the surface to be processed, since good results can be obtained only by setting the polishing liquid and the polishing tool material.

【0012】本発明者らの知見によると、高脆性多結晶
材料であるCVD−SiCの研磨時の主たる表面粗さの
悪化要因は、各結晶面ごとの硬度差に由来するピットの
発生(結晶粒のうち硬度の低い部分が選択的に研磨除去
されモザイク状のピットが発生する)と、砥粒通過痕の
発現である。
According to the knowledge of the present inventors, the main reason for the deterioration of surface roughness during polishing of CVD-SiC, which is a highly brittle polycrystalline material, is that pits (crystals) are caused by the difference in hardness between crystal faces. The low hardness portion of the grain is selectively removed by polishing to generate mosaic pits) and the appearance of abrasive grain passage marks.

【0013】従来法においては、被加工面とほぼ同じ大
きさの全面研磨工具を用いた場合には、ある程度の大き
な研磨除去レートで加工することが研磨悪化要因の対策
として経験的に知られていた。しかし、上述の様に表面
粗さの悪化要因はピットまたは砥粒通過痕にあり、研磨
除去レートを大きくすることは、被加工面に対する研磨
剤の材料除去作用を大きくすることにほかならず、これ
により被研磨面には砥粒通過痕の発現が増し、表面粗さ
が粗い状態に仕上がってしまう。また、研磨除去レート
を下げると砥粒通過痕の発現を防止できるが、研磨面に
ピットが発生してしまう。したがって、従来法の様に経
験的に知られた研磨除去レートの調整のみでは、十分な
超平滑面が得られなかったと考えられる。
In the conventional method, when a full-scale polishing tool having substantially the same size as the surface to be processed is used, it is empirically known as a countermeasure against the deterioration factor of polishing that the polishing is carried out at a relatively large polishing removal rate. It was However, as described above, the reason for the deterioration of the surface roughness is pits or abrasive grain passage marks, and increasing the polishing removal rate is nothing but increasing the material removal action of the abrasive on the surface to be processed. As a result, the appearance of abrasive grain passage marks increases on the surface to be polished, and the surface roughness is finished. Further, if the polishing removal rate is lowered, the appearance of abrasive grain passage traces can be prevented, but pits are generated on the polished surface. Therefore, it is considered that a sufficient super smooth surface could not be obtained only by adjusting the polishing removal rate known empirically as in the conventional method.

【0014】そこで本発明者らは、超平滑面を容易に得
られる研磨方法を見出すべく研磨条件等に関し種々検討
し、その結果本発明を完成するに至った。以下、この検
討の為に行った実験のうち、代表的なものを挙げて説明
する。
Therefore, the present inventors have made various studies on polishing conditions and the like in order to find out a polishing method that can easily obtain an ultra-smooth surface, and have completed the present invention as a result. Hereinafter, of the experiments conducted for this study, representative ones will be described.

【0015】<実験1:ダイアモンド砥粒の平均粒径に
関する検討>従来技術において、例えば石英ガラスの超
平滑研磨の場合は、研磨液に分散させている砥粒の平均
粒径が小さければ小さいほど表面粗さが良好であること
が知られている。これに対し本発明者らは、CVD−S
iCの超平滑研磨を行なう場合は、単に砥粒の粒径が小
さければ良いわけではなく、砥粒としてダイアモンドを
用いその平均粒径を特定の範囲にすべき事を、以下の実
験の結果等から知見した。
<Experiment 1: Study on Average Particle Size of Diamond Abrasive Grains> In the prior art, for example, in the case of ultra-smooth polishing of quartz glass, the smaller the average particle size of the abrasive grains dispersed in the polishing liquid, the smaller the average particle size. It is known that the surface roughness is good. On the other hand, the present inventors have found that the CVD-S
When performing iC ultra-smooth polishing, it is not necessary that the grain size of the abrasive grains is simply small, and that diamond should be used as the abrasive grains and the average grain size should be within a specific range. I found out from.

【0016】まず、直径50mm厚さ10mmのCVD
−SiC材のテストピース5枚を従来の方法でなるべく
良好な表面粗さに平面研磨し、非接触型の表面粗さ測定
器により平均的な表面粗さを測定して記録した。
First, CVD with a diameter of 50 mm and a thickness of 10 mm
-Five test pieces of SiC material were flat-polished to a surface roughness as good as possible by a conventional method, and an average surface roughness was measured and recorded by a non-contact type surface roughness measuring device.

【0017】次に、精製水2リットルに、.平均粒径
0.25μm、.平均粒径0.5μm、.平均粒径
1μm、.平均粒径3μm、.平均粒径5μmの5
種類の多結晶ダイアモンド砥粒を0.025重量%攪拌
した5種類の各研磨液を用い、被加工面よりも小さな研
磨工具によりテストピース上を部分的に研磨加工した。
研磨条件は、工具径を16mm、工具に使用したピッチ
の針入度を15、研磨圧力を25KPa、工具の揺動を
±4mmで5Hzとした。工具は揺動と直交方向に0.
53mm/secで16mm区間を往復走査させた。
Next, to 2 liters of purified water ,. The average particle size is 0.25 μm ,. Average particle size 0.5 μm ,. Average particle size 1 μm ,. Average particle size 3 μm ,. 5 with an average particle size of 5 μm
The test piece was partially polished by a polishing tool smaller than the surface to be processed, using each of the five types of polishing liquids obtained by stirring 0.025% by weight of polycrystalline diamond abrasive grains of each type.
The polishing conditions were such that the tool diameter was 16 mm, the penetration of the pitch used for the tool was 15, the polishing pressure was 25 KPa, and the tool oscillation was ± 4 mm and 5 Hz. The tool should move in the direction perpendicular to the swing.
Reciprocal scanning was performed in a 16 mm section at 53 mm / sec.

【0018】この研磨の結果、の平均粒径0.25μ
mのダイアモンド砥粒による研磨では研磨面のモザイク
化(ピットの発生)による表面粗さの悪化が顕著であ
り、90分後の表面粗さが0.75nmRMSであっ
た。の平均粒径0.5μmのダイアモンド砥粒による
研磨では研磨面のモザイク化による表面粗さの悪化は所
々で見られ、90分後の表面粗さが0.4nmRMSで
あった。の平均粒径1μm、の平均粒径3μmのダ
イアモンド砥粒による研磨では研磨面の超平滑化が進
み、90分後の表面粗さが0.2nmRMSであった。
ただし、の平均粒径3μmの場合は、砥粒の沈殿現象
が生じる傾向にあるので長時間の加工時には注意を要す
る。の平均粒径5μmのダイアモンド砥粒による研磨
では研磨面に砥粒通過痕の発現が増し、研磨面のモザイ
ク化は見られないが表面粗さは90分後で0.4nmR
MSであり、砥粒の沈殿現象が顕著に生じた。また参考
までに、平均粒径6μmのダイアモンド砥粒でも研磨を
試みたが、工具のピッチの摩耗が生じ、本実験の条件で
は工具の寿命が短く不適当であった。これらのうち、代
表的な砥粒の平均粒径3点(0.25μm、1μm、3
μm)の結果を図1にグラフとして示す。
As a result of this polishing, the average particle size of 0.25 μm
In the polishing with the diamond abrasive grains of m, the deterioration of the surface roughness due to mosaicization of the polished surface (generation of pits) was remarkable, and the surface roughness after 90 minutes was 0.75 nm RMS. In polishing with diamond abrasive grains having an average particle diameter of 0.5 μm, deterioration of the surface roughness due to mosaicization of the polished surface was observed in some places, and the surface roughness after 90 minutes was 0.4 nm RMS. In polishing with diamond abrasive grains having an average grain size of 1 μm and an average grain size of 3 μm, the super smoothing of the polished surface proceeded, and the surface roughness after 90 minutes was 0.2 nm RMS.
However, when the average particle size is 3 μm, the precipitation phenomenon of the abrasive grains tends to occur, so caution is required during long-time processing. In the case of polishing with diamond abrasive grains having an average particle diameter of 5 μm, the appearance of abrasive grain passing traces on the polished surface is increased, and mosaicing of the polished surface is not observed, but the surface roughness is 0.4 nmR after 90 minutes.
It was MS, and the precipitation phenomenon of the abrasive grains remarkably occurred. For reference, polishing was also attempted with diamond abrasive grains having an average grain size of 6 μm, but the tool pitch was worn and the tool life was short and inappropriate under the conditions of this experiment. Among these, typical abrasive grains have an average particle size of 3 points (0.25 μm, 1 μm, 3
μm) results are shown as a graph in FIG.

【0019】以上の結果から、CVD−SiCの超平滑
研磨を行なう場合、研磨液中のダイアモンド砥粒の平均
粒径に因り、砥粒通過痕の発現による研磨面の悪化と研
磨面のモザイク化による表面粗さの悪化の頻度が異なる
ことが確認でき、同時に合理的に超平滑面を得る為には
平均粒径範囲を1μm〜3μmにすべきことが確認でき
た。
From the above results, when performing ultra-smooth polishing of CVD-SiC, deterioration of the polishing surface due to the appearance of abrasive grain passage marks and mosaicization of the polishing surface due to the average particle diameter of the diamond abrasive grains in the polishing liquid It was confirmed that the frequency of deterioration of the surface roughness due to was different, and at the same time, it was confirmed that the average particle size range should be 1 μm to 3 μm in order to reasonably obtain a super smooth surface.

【0020】<実験2:研磨圧力に関する検討>従来技
術において、例えば石英ガラスの超平滑研磨の場合は、
研磨圧力は表面粗さにあまり影響しないことが知られて
いる。これに対し本発明者らは、CVD−SiCの超平
滑研磨を行なう場合は、研磨圧力と表面粗さに相関関係
が有ることを、以下の実験の結果等から知見した。
<Experiment 2: Study on Polishing Pressure> In the prior art, for example, in the case of ultra-smooth polishing of quartz glass,
It is known that polishing pressure has little effect on surface roughness. On the other hand, the present inventors have found from the results of the following experiments that the polishing pressure and the surface roughness have a correlation when performing ultra-smooth polishing of CVD-SiC.

【0021】実験1と同様の条件で、ただし、ダイアモ
ンド砥粒の平均粒径を1μmとし、研磨圧力を、.1
2KPa、.25KPa、.45KPa、.66
KPaの4種にして研磨加工を行なった。
Under the same conditions as in Experiment 1, except that the average grain size of the diamond abrasive grains was 1 μm and the polishing pressure was. 1
2 KPa ,. 25 KPa ,. 45 KPa ,. 66
Polishing was performed using four types of KPa.

【0022】この研磨の結果を図2にグラフとして示
す。の12KPaの場合は、表面粗さの向上にかかる
時間は長く、120分で0.3nmRMS程度となっ
た。の25KPa、の45KPaの場合は、表面粗
さは速やかに向上しており、90分の加工で0.3nm
RMS程度となり、超平滑研磨が順調に進んだ。の6
6KPaでは初期的には表面粗さは向上するが0.5n
mRMS程度まで向上した後で表面粗さの悪化が始ま
り、研磨面のモザイク化による表面粗さの悪化が顕著な
ことをノルマルスキー顕微鏡観察で確認した。
The result of this polishing is shown as a graph in FIG. In the case of 12 KPa, it took a long time to improve the surface roughness, and it was about 0.3 nm RMS in 120 minutes. In the case of 25 KPa and 45 KPa, the surface roughness is rapidly improved, and it is 0.3 nm after 90 minutes of processing.
The RMS level was reached, and super smooth polishing proceeded smoothly. Of 6
At 6 KPa, the surface roughness improves initially, but 0.5n
It was confirmed by the normalski microscope observation that the deterioration of the surface roughness started after the improvement to about mRMS and the deterioration of the surface roughness due to the mosaicization of the polished surface was remarkable.

【0023】以上の結果から、CVD−SiCの超平滑
研磨を行なう場合、研磨圧力の程度に因り表面粗さの向
上の程度が異なることが確認でき、同時に良好な結果を
与える研磨圧力範囲が、本実験の条件下では25〜45
KPaであることが確認できた。
From the above results, it can be confirmed that when performing ultra-smooth polishing of CVD-SiC, the degree of improvement in surface roughness differs depending on the degree of polishing pressure, and at the same time, the polishing pressure range that gives good results is 25 to 45 under the conditions of this experiment
It was confirmed to be KPa.

【0024】<実験3:ピッチの針入度に関する検討>
従来技術において、例えば石英ガラスの超平滑研磨の場
合は、研磨工具のピッチ材は軟らかいほど得られる表面
粗さは平滑となることが知られている。これに対し本発
明者らは、CVD−SiCの超平滑研磨を行なう場合
は、単にピッチ材が軟らかいと良いわけではなく、特定
範囲の針入度のピッチが好適であることを以下の実験の
結果等から知見した。
<Experiment 3: Examination on Penetration of Pitch>
In the prior art, for example, in the case of ultra-smooth polishing of quartz glass, it is known that the softer the pitch material of the polishing tool, the smoother the surface roughness obtained. On the other hand, when performing ultra-smooth polishing of CVD-SiC, the present inventors do not necessarily want only the pitch material to be soft, and the following experiment shows that a pitch with a penetration of a specific range is suitable. We found it from the results.

【0025】実験1と同様の条件で、ただし、ダイアモ
ンド砥粒の平均粒径を1μmとし、ピッチの針入度(針
入度は数値が小さい方が固い)を、.2、.5、
.15、.20、.25、の5種にして研磨加工
を行なった。
Under the same conditions as in Experiment 1, except that the diamond abrasive grains had an average particle size of 1 μm and the pitch penetration (the smaller the penetration, the harder the hardness was). 2 ,. 5,
. 15 ,. 20 ,. Polishing was carried out with 5 types of No. 25 and No. 25.

【0026】この研磨の結果、の針入度2の場合は、
ピッチ材を固くすると表面粗さは初期値に対して悪化し
た。これをノルマルスキー顕微鏡観察すると研磨面に砥
粒通過痕の発現が多かった。の針入度5の場合は、表
面粗さは向上しており、90分の加工で0.3nmRM
S程度となった。すなわち、超平滑研磨が順調に進ん
だ。これをノルマルスキー顕微鏡観察すると研磨面には
若干の砥粒通過痕の発現があった。の針入度15、
の針入度20の場合は、表面粗さは順調に向上し0.2
nmRMS程度に達した。これをノルマルスキー顕微鏡
観察すると研磨面は平滑化されていた。の針入度25
の場合は、研磨面のモザイク化が発生し始めており、表
面粗さは0.4nmRMS程度であった。
As a result of this polishing, in the case of needle penetration of 2,
When the pitch material was hardened, the surface roughness deteriorated with respect to the initial value. When this was observed with a Normalski microscope, many abrasive grain passage marks were found on the polished surface. In case of the penetration degree of 5, the surface roughness is improved, and it is 0.3 nm RM after 90 minutes of processing.
It became about S. That is, super smooth polishing proceeded smoothly. When this was observed with a Normalski microscope, some traces of passage of abrasive grains were found on the polished surface. Penetration of 15,
With a penetration of 20, the surface roughness improved steadily to 0.2
It reached about nmRMS. When this was observed with a Normalski microscope, the polished surface was smoothed. Penetration of 25
In the case of No. 4, mosaicing of the polished surface had begun to occur, and the surface roughness was about 0.4 nm RMS.

【0027】以上の結果から、CVD−SiCの超平滑
研磨を行なう場合、ピッチの針入度(ピッチ材料の硬
度)は5〜20程度が望ましいことが確認できた。
From the above results, it was confirmed that the pitch penetration (hardness of the pitch material) is preferably about 5 to 20 when performing ultra-smooth polishing of CVD-SiC.

【0028】<実験4:ダイアモンド砥粒の結晶性に関
する検討>本発明者らは、CVD−SiCの超平滑研磨
を行なう場合、ダイアモンド砥粒は単結晶よりも多結晶
のものが好適であることを、以下の実験の結果等から知
見した。
<Experiment 4: Examination of Crystallinity of Diamond Abrasive Grains> The inventors of the present invention have found that when performing ultra-smooth polishing of CVD-SiC, the diamond abrasive grains are preferably polycrystalline rather than single crystal. Was found from the results of the following experiments.

【0029】実験1と同様の条件で、ただし、ダイアモ
ンド砥粒の平均粒径を1μmとし、その砥粒を、.単
結晶ダイアモンド砥粒、.多結晶ダイアモンド砥粒、
の2種にして研磨加工を行なった。
Under the same conditions as in Experiment 1, except that the diamond abrasive grains had an average particle diameter of 1 μm, Single crystal diamond abrasive grains ,. Polycrystalline diamond abrasive grains,
And polishing was performed.

【0030】この研磨の結果、の単結晶ダイアモンド
砥粒の場合は、表面粗さは約0.3nmRMSD程度ま
では速やかに向上するが、その後の向上速度は遅かっ
た。これをノルマスキー顕微鏡観察すると、研磨面に砥
粒通過痕の発現が見られた。の多結晶ダイアモンド砥
粒の場合は、表面粗さは向上しており、90分の加工で
0.2nmRMS程度となった。すなわち、超平滑研磨
が順調に進んでいた。これをノルマスキー顕微鏡観察す
ると研磨面は平滑化されていた。
As a result of this polishing, in the case of the single crystal diamond abrasive grain, the surface roughness was rapidly improved up to about 0.3 nm RMSD, but the rate of improvement thereafter was slow. When this was observed with a Normaski microscope, the appearance of abrasive grain passage marks was observed on the polished surface. In the case of the polycrystalline diamond abrasive grain of No. 3, the surface roughness was improved, and it was about 0.2 nm RMS after 90 minutes of processing. That is, ultra-smooth polishing proceeded smoothly. When this was observed with a Normaski microscope, the polished surface was smoothed.

【0031】以上の結果から、CVD−SiCの超平滑
研磨を行なう場合、ダイアモンド砥粒の結晶構造に因
り、表面粗さの向上の程度が異なることが確認でき、同
時に多結晶ダイアモンドの方が良好な結果を与えること
が確認できた。
From the above results, it can be confirmed that the degree of improvement in the surface roughness is different due to the crystal structure of the diamond abrasive grains when performing ultra-smooth polishing of CVD-SiC, and at the same time, the polycrystalline diamond is better. It was confirmed that it gave good results.

【0032】実験1〜4で得られた結果は、以下の理由
に基づくものと考えられる。
The results obtained in Experiments 1 to 4 are considered to be based on the following reasons.

【0033】CVD−SiC材は、ヌープ硬度2800
〜3500の非常に硬い材料であり、化学的にも共有結
合が強く安定な材料である。したがって、被加工性が悪
く、従来より難加工材料として知られている。このSi
Cをダイアモンド砥粒で研磨する場合は、両者が共に共
有結合が強く安定な材料なので、純粋に機械的なカッテ
イングの集積により研磨除去が進む。また、一般には適
度な粘弾性特性のピッチが研磨に用いられるので、砥粒
はピッチに保持されて(埋まって)SiC表面上を研磨
運動する。このとき、両者に硬度差があまり無いので砥
粒には切れ味が必要になるが、砥粒がピッチに保持され
ているので、その切れ味は砥粒の粒径に依存すると考え
られる(ピッチ面からの砥粒突き出し量が切れ味を支配
する)。砥粒の粒径が大き過ぎると砥粒突き出し量が大
きくなり、砥粒通過痕の発現が増し、超平滑面は得られ
ない。これは、SiC以外の光学材料を研磨する場合と
同様であり、砥粒の粒径は小さい方がより平滑な表面粗
さが得られる。ただしSiCを研磨する場合は、実験1
に示した様に粒径をただ単に小さくすれば良いわけでは
ない。これは、砥粒の粒径が小さ過ぎると突き出し量が
不十分となり、高硬度で多結晶のCVD−SiCの各結
晶に対し均一なカッティングが困難となり、CVD−S
iCの多結晶体の中で相対的に硬度の低い結晶のみを除
去する現象(研磨面のモザイク化)が生じるからであ
る。この様な点から、本発明の様に、適切な砥粒の平均
粒径の設定、すなわちダイアモンド砥粒の平均粒径を適
切な範囲(1μm〜3μm)とした場合に、超平滑面が
得られると考えられる。
The CVD-SiC material has a Knoop hardness of 2800.
It is a very hard material of ~ 3500, and is a material having a strong chemical covalent bond and stability. Therefore, it has poor workability and is conventionally known as a difficult-to-process material. This Si
When C is polished with diamond abrasive grains, both of them are materials with strong covalent bonds and stable, and therefore polishing removal proceeds by purely mechanical cutting accumulation. In addition, since a pitch having an appropriate viscoelastic property is generally used for polishing, the abrasive grains are held (embedded) at the pitch to perform polishing motion on the SiC surface. At this time, since there is not much difference in hardness between the two, the abrasive grains need sharpness, but since the abrasive grains are held at the pitch, it is considered that the sharpness depends on the grain size of the abrasive grains (from the pitch surface). The amount of protrusion of the abrasive grain controls the sharpness). If the particle size of the abrasive grains is too large, the amount of protrusion of the abrasive grains will increase, the appearance of abrasive grain passage marks will increase, and a super smooth surface cannot be obtained. This is similar to the case of polishing an optical material other than SiC, and the smaller the grain size of the abrasive grains, the smoother the surface roughness can be obtained. However, when polishing SiC, Experiment 1
As shown in, it is not necessary to simply reduce the particle size. This is because if the grain size of the abrasive grains is too small, the amount of protrusion becomes insufficient, and it becomes difficult to uniformly cut each crystal of high hardness and polycrystalline CVD-SiC.
This is because a phenomenon (mosaicization of the polished surface) of removing only the crystal having relatively low hardness in the polycrystal of iC occurs. From these points, an ultra-smooth surface is obtained when the average grain size of the abrasive grains is set appropriately, that is, when the average grain size of the diamond abrasive grains is set in an appropriate range (1 μm to 3 μm) as in the present invention. It is thought to be done.

【0034】また、この砥粒の平均粒径は、更に研磨圧
力、ピッチ材料の硬度、砥粒の結晶性等とも相関関係を
有する。例えば、研磨圧力が高過ぎる場合は、砥粒のピ
ッチへの埋め込みが促進され、結果としてより小径な砥
粒を用いたのと同様の作用を奏する。この点から、研磨
圧力は66KPa以下が望ましい。更に、実験2で示し
た様に、25〜45KPa程度が最適である。また例え
ば、ピッチ材料の硬度が低過ぎたり高過ぎたりすると、
砥粒のピッチへの埋め込み程度へ影響が及ぶ。この点か
ら、ピッチの針入度の範囲は、実験3で示した様に、5
〜20程度が好ましい。また例えば、砥粒が単結晶ダイ
アモンドを用いる場合は、研磨中に破砕が生じ易く、こ
の結果曲率半径の小さいエッジがSiC表面を走査する
ことになり、被研磨面に砥粒通過痕の発現が頻繁に見ら
れる傾向にある。一方、多結晶ダイアモンドを用いる場
合は、劈開面を持たず強靱であることから、適切な砥平
均粒径を選択すれば砥粒通過痕は生じない。この点か
ら、実験4で示した様に、多結晶ダイアモンドを用いる
ことが好ましい。
The average grain size of the abrasive grains also has a correlation with the polishing pressure, the hardness of the pitch material, the crystallinity of the abrasive grains, and the like. For example, when the polishing pressure is too high, the embedding of the abrasive grains in the pitch is promoted, and as a result, the same effect as that of using the smaller-diameter abrasive grains is exhibited. From this point, the polishing pressure is preferably 66 KPa or less. Further, as shown in Experiment 2, about 25 to 45 KPa is optimal. Also, for example, if the hardness of the pitch material is too low or too high,
The degree of embedding of abrasive grains in the pitch is affected. From this point, the range of pitch penetration is 5 as shown in Experiment 3.
It is preferably about 20. Further, for example, when the single crystal diamond is used as the abrasive grains, crushing is likely to occur during polishing, and as a result, an edge having a small radius of curvature scans the SiC surface, and thus the abrasive grain passage marks are generated on the surface to be polished. It tends to be seen frequently. On the other hand, when polycrystalline diamond is used, since it does not have a cleavage plane and is tough, an abrasive grain passage mark will not occur if an appropriate abrasive average grain size is selected. From this point, as shown in Experiment 4, it is preferable to use polycrystalline diamond.

【0035】また、一般に、全面皿を用いた平面や球面
の液中研磨を行なう場合は、加工に数十時間を要するの
で、ダイアモンド砥粒の沈殿が生じる場合がある。これ
を防止する目的から、砥粒の平均粒径は1〜3μmが望
ましく、更に実験1〜4における様に1μmが好まし
い。また同じ理由から、研磨液中のダイアモンド砥粒の
量は0.2重量%以下が望ましく、更に実験1〜4にお
ける様に0.025重量%程度が好ましい。また同様に
研磨液中の分散性を安定させる目的から、研磨液中に分
散剤を添加することが望ましい。
In general, when polishing a flat surface or a spherical surface in a liquid using a flat plate, it takes several tens of hours for processing, so that diamond abrasive grains may precipitate. For the purpose of preventing this, the average particle size of the abrasive grains is preferably 1 to 3 μm, and more preferably 1 μm as in Experiments 1 to 4. For the same reason, the amount of diamond abrasive grains in the polishing liquid is preferably 0.2% by weight or less, more preferably about 0.025% by weight as in Experiments 1 to 4. Similarly, for the purpose of stabilizing the dispersibility in the polishing liquid, it is desirable to add a dispersant to the polishing liquid.

【0036】小径工具を用いた非球面の超平滑研磨を行
なう場合は、前述の全面皿を用いる平面や球面の研磨よ
りも更に砥粒の分散安定性を保つことが必要である。こ
の点からも、研磨液中には分散剤を添加することが望ま
しい。この分散剤としては、例えばヘキサメタリン酸ナ
トリウムが望ましい。また、分散剤の添加量としては、
研磨液中の研磨剤100重量部に対して1〜2重量部が
望ましい。分散剤を添加することにより、砥粒の沈殿を
防ぎ、長時間の研磨加工でも安定した除去が行える。ま
た、研磨液の溶媒としては通常は水、好ましくは精製水
を用いる。
When performing ultra-smooth polishing of an aspherical surface using a small-diameter tool, it is necessary to maintain the dispersion stability of abrasive grains more than that of the above-described polishing of a flat surface or spherical surface using a full-face dish. From this point as well, it is desirable to add a dispersant to the polishing liquid. As the dispersant, for example, sodium hexametaphosphate is desirable. Further, as the amount of the dispersant added,
1 to 2 parts by weight is desirable with respect to 100 parts by weight of the polishing agent in the polishing liquid. By adding a dispersant, the precipitation of abrasive grains can be prevented and stable removal can be achieved even during long-term polishing. The solvent for the polishing liquid is usually water, preferably purified water.

【0037】また、CVD−SiCで非球面ミラーを加
工する場合には、被加工ミラーよりも小径な研磨工具を
用いた形状修正研磨法が用いられていたが、従来技術で
は、研磨面のモザイク化(ピットの発生)、砥粒通過痕
の発現などが恒常的に生じ、これら被加工物表面の欠陥
のために要求される品質を満足できない。この様な問題
は研磨砥粒や研磨圧量の設定が適切でなく、小さ過ぎる
砥平均粒径と高過ぎる研磨圧力が研磨面を悪化させてい
たからと考えられる。一方、本発明によれば、小径工具
を用いた非球面の超平滑研磨加工を行なう場合でも、前
もって研磨液を被研磨剤材料であるSiCに適切な構成
とし、適切な研磨加圧力とピッチ材料を工具に用いるこ
とで、良好な研磨面が得られ、従来技術では満足な品質
の非球面加工が行えなかった非球面に対しても、超平滑
で研磨面に欠陥のない良好な研磨加工が行える。
When processing an aspherical mirror by CVD-SiC, a shape-correction polishing method using a polishing tool having a diameter smaller than that of the mirror to be processed has been used. The formation of pits, the appearance of abrasive grain passage marks, etc. constantly occur, and the quality required due to these defects on the surface of the workpiece cannot be satisfied. It is considered that such a problem is because the setting of the polishing abrasive grains and the polishing pressure amount is not proper, and the average particle diameter of the abrasive particles which is too small and the polishing pressure which is too high deteriorates the polishing surface. On the other hand, according to the present invention, even when performing ultra-smooth polishing of an aspherical surface using a small-diameter tool, the polishing liquid is made to have an appropriate configuration in advance for SiC that is the material to be polished, and an appropriate polishing pressure and pitch material A good polished surface can be obtained by using as a tool, and even for aspherical surfaces that could not be processed with satisfactory quality in the conventional technology, it is possible to perform excellent smoothing with no defects on the polished surface. You can do it.

【0038】本発明でいうダイアモンド砥粒の「平均粒
径」とは、Stokesの流体抵抗則に基づく沈降法や
遠心沈降法等による粒度分布測定法により得られた値、
いわゆるストークス径である。この測定法は、ダイアモ
ンド砥粒を媒質(純水)中に均一に分散させ、その後の
砥粒の沈降状態を媒質を横切る光線の透過率の変化によ
り計測するものである。以下の実施例においては、島津
製作所製の島津遠心沈降式粒度分布測定装置SA−CP
3型を用いて計測した。
The "average particle size" of the diamond abrasive grains referred to in the present invention is a value obtained by a particle size distribution measuring method such as a sedimentation method based on the Stokes fluid resistance law or a centrifugal sedimentation method.
This is the so-called Stokes diameter. In this measuring method, diamond abrasive grains are uniformly dispersed in a medium (pure water), and the subsequent sedimentation state of the abrasive grains is measured by a change in the transmittance of a light beam that traverses the medium. In the following examples, Shimadzu's Shimadzu centrifugal sedimentation type particle size distribution analyzer SA-CP is used.
It measured using the 3rd type.

【0039】この装置では、媒質の上表面から一定の位
置での試料液(ダイアモンド砥粒の懸濁液)の濃度変化
を沈降開始時点からの経過時間と共に測定することで、
そのときに濃度変化を生じさせた粒子の割合を求める。
これは、粒子の質量(大きさ)と、沈降速度には以下の
関係が有り、沈降開始時点からの経過時間と、ある高さ
の濃度変化(光の透過率の変化から求める)から粒子の
質量分布が算出できることによる。
In this apparatus, the concentration change of the sample liquid (suspension of diamond abrasive grains) at a fixed position from the upper surface of the medium is measured along with the elapsed time from the start of sedimentation,
At that time, the ratio of the particles causing the concentration change is obtained.
This is because the mass (size) of the particle and the sedimentation velocity have the following relationship, and the time of the sedimentation start time and the change in concentration at a certain height (determined from the change in light transmittance) This is because the mass distribution can be calculated.

【0040】[0040]

【数1】 u:粒子の沈降速度 θ:粒子が一定距離沈降するのに要する時間 ρp :粒子密度 ρl :媒質密度 η:媒質の粘性係数 ω:回転角速度 β:回転角加速度 R:回転中心から粒子までの距離 Dp :ストークスの粒子径[Equation 1] u: Settling velocity of particles θ: Time required for particles to settle for a certain distance ρ p : Particle density ρ l : Medium density η: Viscosity coefficient of medium ω: Rotational angular velocity β: Rotational angular acceleration R: From rotation center to particle Distance D p : Stokes particle size

【0041】[0041]

【実施例】以下、本発明を実施例により更に詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0042】<実施例1>直径50mm厚さ10mmの
CVDーSiC材でエキシマレーザ用ミラー素子を以下
の様にして研磨加工した。この用途には、片面を超平滑
な平面に研磨して表面粗さ0.2nmRMS以下にする
ことが求められ、研磨面上にピット、スクラッチ、潜傷
の発現、そして曇といった欠陥が存在してはならない。
<Example 1> A mirror element for an excimer laser was polished by a CVD-SiC material having a diameter of 50 mm and a thickness of 10 mm as follows. For this application, it is required to polish one surface to an ultra smooth surface so as to have a surface roughness of 0.2 nm RMS or less, and there are defects such as pits, scratches, latent scratches, and fog on the polished surface. Don't

【0043】まず前加工として、CVD−SiC材を従
来の方法でなるべく良好な表面粗さに平面研磨した。次
に、精製水2リットルに平均粒径1μmの多結晶ダイア
モンド砥粒を0.025重量%入れて攪拌し、分散剤と
してヘキサメタリン酸ナトリウム微粉末を研磨液中のダ
イアモンド砥粒100重量部に対し2重量部加え、24
時間攪拌して研磨液を得た。
First, as a preprocessing, the CVD-SiC material was flat-polished to a surface roughness as good as possible by a conventional method. Next, 0.025% by weight of polycrystalline diamond abrasive grains having an average particle size of 1 μm was added to 2 liters of purified water and stirred, and sodium hexametaphosphate fine powder as a dispersant was added to 100 parts by weight of diamond abrasive grains in the polishing liquid. 2 parts by weight, 24
After stirring for a time, a polishing liquid was obtained.

【0044】この研磨液を用いて、図3に示す研磨装置
を用い、仕上げの研磨を実施した。すなわち、針入度1
5のピッチ面6を有する研磨皿1と被加工物ホルダ3に
保持された被加工物(ミラー材)2の両方を研磨液7を
満たした容器8内に没し、通常の横振り方式の研磨条件
よりもゆっくりした相対運動で研磨を進めた。研磨皿回
転軸9は不図示の回転機構により7rpmで回転させな
がら、被加工物2を支持する揺動軸4は不図示の揺動機
構により5サイクル/分で揺動させた。研磨圧力は不図
示の加圧力機構により30KPaとし、無人で16時間
研磨した。
Using this polishing solution, a final polishing was carried out using the polishing apparatus shown in FIG. That is, penetration 1
Both the polishing dish 1 having the pitch surface 6 of 5 and the workpiece (mirror material) 2 held by the workpiece holder 3 are submerged in the container 8 filled with the polishing liquid 7, and the normal horizontal swing method is used. Polishing proceeded with relative motion slower than the polishing conditions. The polishing dish rotation shaft 9 was rotated at 7 rpm by a rotation mechanism (not shown), while the swing shaft 4 supporting the workpiece 2 was swung at 5 cycles / minute by a swing mechanism (not shown). The polishing pressure was set to 30 KPa by a pressing mechanism (not shown), and polishing was performed unattended for 16 hours.

【0045】以上の研磨を実施した後の研磨面を観察し
たところ、被加工面にはピットの発生、加工時の砥粒通
過痕の発現などの研磨面の悪化は見られず、表面粗さ
0.15nmRMSの超平滑面が得られた。
When the polished surface after the above polishing was observed, no deterioration of the polished surface such as pits on the surface to be machined and development of abrasive grain passage marks during processing was observed, and the surface roughness An ultra-smooth surface of 0.15 nm RMS was obtained.

【0046】<実施例2>長さ750mm、幅100m
m、厚さ15mmのCVD−SiC材で軟X線用ミラー
素子を研磨加工した。形状は母線半径440m、子線2
00mmのトロイダルである。実施例1と同様に、この
用途には、表面を超平滑に研磨して表面粗さ0.2nm
MRS以下にすることが求められ、研磨面上にピット、
スクラッチ、そして曇といった欠陥が存在してはならな
い。
Example 2 Length 750 mm, Width 100 m
The mirror element for soft X-rays was polished with a CVD-SiC material having a thickness of 15 mm and a thickness of 15 mm. The busbar radius is 440m, and the shape is 2
It is a toroidal of 00 mm. As in Example 1, for this application, the surface was polished to a super smooth surface with a surface roughness of 0.2 nm.
It is required to be less than MRS, pits on the polished surface,
Defects such as scratches and fog should not be present.

【0047】まず前加工として、CVD−SiC材を従
来の方法でなるべく良好な表面粗さに研磨した。次に、
精製水40リットルに平均粒径3μmの多結晶ダイアモ
ンド砥粒を0.02重量%入れて攪拌し、分散剤として
ヘキサメタリン酸ナトリウム微粉末0.16g(研磨液
中のダイアモンド砥粒100重量部に対し2重量部)加
え、24時間攪拌して研磨液を得た。
First, as a pre-processing, the CVD-SiC material was polished to a surface roughness as good as possible by a conventional method. next,
0.02% by weight of polycrystalline diamond abrasive grains having an average particle diameter of 3 μm was added to 40 liters of purified water and stirred, and 0.16 g of sodium hexametaphosphate fine powder as a dispersant (based on 100 parts by weight of diamond abrasive grains in the polishing liquid). 2 parts by weight) and stirred for 24 hours to obtain a polishing liquid.

【0048】この研磨液を用いて、シリンドリカル研磨
機を用い、仕上げの研磨を実施した。図4は、このシリ
ンドリカル研磨機を示す模式図であり、(a)はその正
面図、(b)は側面図である。この研磨機は、被加工物
12と研磨工具11の両方をそれぞれの揺動クランク部
14、15により直交方向に揺動させることで研磨の相
対運動を得るものである。被加工物12は被加工物固定
具13により、ワークテーブル20に固定保持される。
また、研磨工具11のピッチ面16は被加工物12の加
工面と同様な形状で凹凸逆に整形され、被加工物12と
重なっている部分は接触している。また、ピッチ部の針
入度は20である。研磨液は、研磨液供給部(不図示)
から研磨液供給ノズル17により、研磨部に常時供給さ
れ、その後容器18の研磨液ドレン11から研磨液供給
部に戻される。
Using this polishing solution, final polishing was carried out using a cylindrical polishing machine. FIG. 4 is a schematic diagram showing this cylindrical polishing machine, (a) is a front view thereof, and (b) is a side view thereof. This polishing machine obtains relative motion of polishing by swinging both the workpiece 12 and the polishing tool 11 in the orthogonal direction by the swinging crank portions 14 and 15, respectively. The workpiece 12 is fixedly held on the work table 20 by the workpiece fixture 13.
Further, the pitch surface 16 of the polishing tool 11 has a shape similar to that of the processed surface of the work piece 12 and is shaped in a concavo-convex manner, and the portion overlapping the work piece 12 is in contact. The penetration of the pitch part is 20. The polishing liquid is supplied by a polishing liquid supply unit (not shown).
From the polishing liquid supply nozzle 17 to the polishing unit at all times, and then returned from the polishing liquid drain 11 of the container 18 to the polishing liquid supply unit.

【0049】本実施例における研磨条件は、被加工物1
2の載るワークテーブル20を17サイクル/分、研磨
工具11を支持する揺動クランク部15を20サイクル
/分で揺動させ、研磨荷重は研磨工具の自重とおもりに
より25KPaとした。そして、無人で16時間研磨し
た。
The polishing conditions in this example are as follows:
The work table 20 on which No. 2 is placed was oscillated at 17 cycles / minute, and the oscillating crank portion 15 supporting the polishing tool 11 was oscillated at 20 cycles / minute, and the polishing load was set to 25 KPa due to the weight of the polishing tool and the weight. Then, it was left unattended for 16 hours.

【0050】以上の研磨を実施した後に研磨面を観察し
たところ、被加工面にはピットの発生、前加工の砥粒通
過痕(潜傷)の発現、曇(研磨ヤケ)の発生などの研磨
面の悪化は見られず、表面粗さ0.15nmRMS程度
の超平滑面が得られた。
After observing the polished surface after the above-mentioned polishing, polishing such as pits on the surface to be processed, occurrence of abrasive grain passing traces (latent scratches) in pre-processing, generation of fog (polishing burn), etc. No deterioration of the surface was observed, and an ultra-smooth surface having a surface roughness of about 0.15 nm RMS was obtained.

【0051】<実施例3>次に、本発明の研磨方法によ
り、小径工具を用いて高精度な非球面を形成する場合の
実施例について詳細に説明する。
<Embodiment 3> Next, an embodiment in which a highly accurate aspherical surface is formed using a small-diameter tool by the polishing method of the present invention will be described in detail.

【0052】高精度な非球面を創成研磨する形状修正研
磨システムでは、まず被加工面の設計形状に対する誤差
形状を高精度な形状計測機を用いて測定し、被加工面に
ついての誤差形状マップを作成する。この誤差形状マッ
プと一定速度で揺動する小径工具の単位時間当たりの除
去量、除去形状を用いて残存誤差形状を最小にする様な
小径工具の被加工面上での滞留時間分布を計算する。こ
の滞留時間分布の計算はコンピュータ上で行われる。演
算の手法は一般的に、デコンボリューション法と呼ばれ
る。この演算はコンボリューション法(畳み込み積分
法)の逆演算であり、実際の除去をシミュレーションす
る方法が知られている。
In a shape correction polishing system for generating and polishing a highly accurate aspherical surface, first, an error shape with respect to the design shape of the surface to be processed is measured using a high accuracy shape measuring machine, and an error shape map for the surface to be processed is obtained. create. By using this error shape map, the removal amount per unit time of the small diameter tool that swings at a constant speed, and the removal shape, the residence time distribution on the work surface of the small diameter tool that minimizes the residual error shape is calculated. . The calculation of this residence time distribution is performed on a computer. The calculation method is generally called a deconvolution method. This operation is an inverse operation of the convolution method (convolutional integration method), and a method of simulating actual removal is known.

【0053】このシミュレーション法では誤差形状及び
小径工具の単位除去形状をそれぞれの規模の配列でマト
リクス表示し誤差形状マトリクス上で単位除去形状マト
リクスを予定の工具走査方向に沿って重ね合わせ、誤差
形状マトリクス要素から単位除去形状マトリクス要素を
それぞれ減算し、演算した全ての要素でマイナス値が生
じない場合(過大な除去が発生しない場合)、第三のマ
トリクスである滞留時間分布積算マトリクス(誤差形状
マトリクスと同規模の配列であり、初期的に、配列要素
全てが0となっている)のうち、現在の演算で単位除去
形状マトリクスの中心が乗っている要素に、単位時間1
を積算し、単位除去形状マトリクスを誤差形状マトリク
ス上で予定の工具走査方向に1要素ずらし、再び除去が
可能かの判断を行うことを繰り返し、全域で除去が行え
なくなるまで工具走査をシミュレートするものである。
得られた滞留時間分布マトリクスから、予定の工具走査
方向における工具走査速度を計算する。これは、例えば
誤差形状マトリクス(滞留時間分布マトリクス)の1要
素の大きさ(L2)から決まっている単位長さ(L)を
各滞留時間分布マトリクス要素に積算された単位時間
(N)(単位は例えば秒)で除すればよい。
In this simulation method, the error shape and the unit removal shape of the small-diameter tool are displayed in a matrix in an array of each scale, and the unit removal shape matrix is superimposed on the error shape matrix in the predetermined tool scanning direction to obtain the error shape matrix. The unit removal shape matrix element is subtracted from each element, and when a negative value does not occur in all calculated elements (when excessive removal does not occur), the third matrix is the residence time distribution integration matrix (error shape matrix and Of the arrays of the same scale, all the array elements are initially 0.) Among the elements in which the center of the unit removal shape matrix is present in the current calculation, the unit time 1
Is calculated, the unit removal shape matrix is shifted by one element in the planned tool scanning direction on the error shape matrix, and the determination as to whether removal is possible is repeated, and the tool scanning is simulated until the removal cannot be performed over the entire area. It is a thing.
The tool scanning speed in the predetermined tool scanning direction is calculated from the obtained residence time distribution matrix. This is, for example, a unit time (N) (unit: unit length (L) obtained by accumulating a unit length (L) determined from the size (L2) of one element of the error shape matrix (residence time distribution matrix) into each residence time distribution matrix element. Can be divided by, for example, seconds).

【0054】得られた工具走査速度のマトリクスにした
がい一定速度で揺動する工具が被加工面上でラスター走
査される。このとき、被加工物は研磨液中に固定保持さ
れ、研磨液中で小径工具によるラスター走査研磨が実施
される。
A tool that oscillates at a constant speed according to the obtained tool scanning speed matrix is raster-scanned on the work surface. At this time, the workpiece is fixedly held in the polishing liquid, and raster scanning polishing is performed in the polishing liquid with a small diameter tool.

【0055】本実施例の場合、被加工物は母線方向長さ
270mm、母線曲率半径490m、子線方向長さ70
mm、子線曲率半径2mのCVD−SiCトロイダルミ
ラー非球面ミラーである。16mmの小径工具が被加工
面全域を前述の計算の結果得られた滞留時間分布を実現
しながら走査するのに約12時間かかる。
In the case of this embodiment, the work piece has a length of 270 mm in the generatrix direction, a radius of curvature of the generatrix of 490 m, and a length of 70 in the sagittal direction.
It is a CVD-SiC toroidal mirror aspherical mirror having a diameter of 2 mm and a sagittal radius of curvature of 2 m. It takes about 12 hours for a 16 mm small diameter tool to scan the entire surface to be processed while realizing the residence time distribution obtained as a result of the above calculation.

【0056】本実施例で使用した研磨液は、精製水20
リットルに平均粒径1μmの多結晶ダイアモンド砥粒を
10g(0.05重量%)、分散剤としてヘキサメタリ
ン酸ナトリウム微粉末0.2g(研磨液中のダイアモン
ド砥粒100重量部に対し2重量部)加え、24時間攪
拌した後、もう24時間放置し、5μmのカートリッジ
フィルターを通過させて得たものである。この研磨液
は、研磨装置外のタンク中から研磨液供給ポンプにより
研磨部に供給され、機上では余分な研磨液がドレンポン
プにより研磨装置外のタンクへと排出される。
The polishing liquid used in this example is purified water 20.
10 g (0.05% by weight) of polycrystalline diamond abrasive grains having an average particle size of 1 μm per liter, 0.2 g of sodium hexametaphosphate fine powder as a dispersant (2 parts by weight per 100 parts by weight of diamond abrasive grains in the polishing liquid) In addition, it was obtained by stirring for 24 hours, then leaving it for another 24 hours, and passing it through a 5 μm cartridge filter. This polishing liquid is supplied to the polishing section from the tank outside the polishing device by the polishing liquid supply pump, and excess polishing liquid is discharged to the tank outside the polishing device on the machine by the drain pump.

【0057】この研磨液を用い、針入度が15で直径が
16mmのアスファルトピッチを使用した小径工具を研
磨圧力25KPa、走査方向に対して直交方向に5Hz
で±2mmの1軸揺動し、送りピッチ1mmでラスター
走査し、総加工時間約55時間/3パス研磨加工したと
ころ、予定通りの非球面形状を得た。
Using this polishing liquid, a small-diameter tool using an asphalt pitch having a penetration of 15 and a diameter of 16 mm is used at a polishing pressure of 25 KPa and at a frequency of 5 Hz in the direction orthogonal to the scanning direction.
After oscillating ± 2 mm for 1 axis and performing raster scanning with a feed pitch of 1 mm, a total processing time of about 55 hours / 3 pass polishing was performed, and an aspherical surface shape as planned was obtained.

【0058】以上の研磨を実施した後に研磨面を観察し
たところ、被加工面にはピットの発生、砥粒通過痕の発
現などの研磨面の悪化は見られず、表面粗さ0.16n
mRMS程度の超平滑面が得られた。
When the polished surface was observed after the above-described polishing, no deterioration of the polished surface such as pits and development of abrasive grain passage marks was observed on the surface to be processed, and the surface roughness was 0.16n.
An ultra smooth surface of about mRMS was obtained.

【0059】<実施例4>次に、本発明の研磨方法によ
り、NC装置により制御される研磨機により高精度な非
球面を形成する場合の実施例について詳細に説明する。
図5は本実施例による研磨装置30の動作フローを示す
図であり、図6は研磨装置30を示す図である。
<Embodiment 4> Next, an embodiment in the case of forming a highly accurate aspherical surface by a polishing machine controlled by an NC apparatus by the polishing method of the present invention will be described in detail.
FIG. 5 is a diagram showing an operation flow of the polishing apparatus 30 according to this embodiment, and FIG. 6 is a diagram showing the polishing apparatus 30.

【0060】本実施例においては、まず、被加工物36
(以下、ワークと称する)をワークチャックにセット
し、固定する(ステップS0)。このワーク形状によっ
て定めた測定走査パターン(データD1)で、計測開始
ポイントから開始して、計測範囲内のつづれ織り状の軌
跡である走査ラインを用い、形状測定を行う(ステップ
S1)。その結果得られたワーク形状データ(データD
4)から、あらかじめ求めておいた再現する誤差、すな
わちシステム誤差(データD2)を差し引き(ステップ
S2)、ワークの設計形状(データD3)をこれに当て
はめ(カーブフィット)、設計形状からの差、つまり誤
差形状(データD5)を求める(ステップS3)。
In this embodiment, first, the work piece 36 is processed.
(Hereinafter, referred to as a work) is set on the work chuck and fixed (step S0). With the measurement scanning pattern (data D1) determined by this work shape, the shape measurement is performed starting from the measurement start point and using the scan line which is a locus of a weaving weave shape within the measurement range (step S1). Resultant work shape data (data D
From 4), the previously obtained error to be reproduced, that is, the system error (data D2) is subtracted (step S2), the design shape (data D3) of the workpiece is fitted to this (curve fit), the difference from the design shape, That is, the error shape (data D5) is obtained (step S3).

【0061】次に、この誤差形状が目標精度に達してい
るかどうかを判定し(ステップS4)、既に目標精度に
達している場合には終了し、ワークを取り外す(ステッ
プS7)。まだ達していない場合には単位除去形状(デ
ータD6)と誤差形状から滞留時間分布を求める計算操
作であるデコンボリューション計算操作(ステップS
5)を行い、滞留時間分布(データD8)を得る。この
滞留時間分布と研磨走査パターン(データD7)と設計
形状(データD3)からNC研磨動作を行う(ステップ
S6)。その後、再びステップ1の形状測定に戻る。
Next, it is judged whether or not this error shape has reached the target accuracy (step S4), and if it has already reached the target accuracy, the process ends and the work is removed (step S7). If not yet reached, the deconvolution calculation operation (step S) is a calculation operation for obtaining the residence time distribution from the unit removal shape (data D6) and the error shape.
5) is performed to obtain a residence time distribution (data D8). The NC polishing operation is performed based on the residence time distribution, the polishing scan pattern (data D7), and the design shape (data D3) (step S6). Then, the shape measurement of step 1 is performed again.

【0062】図7にステップS6のNC研磨動作に関す
る動作フローを示す。
FIG. 7 shows an operation flow relating to the NC polishing operation of step S6.

【0063】まず、研磨準備としてYテーブル32を研
磨加工部Pに移動させ、最初の研磨位置において、チル
ティング装置40を下降させて研磨ヘッド50をワーク
に接触させる。次に現在位置から滞留時間分布(データ
D8)を用いて走査速度を決定する(ステップS1
9)。次にその走査速度と走査パターン(データD7)
から同期時間ΔT後の走査位置を計算する(ステップS
20)。次に走査が終了したか判定し(ステップS2
1)、終了していない場合には設計形状(データD3)
から研磨位置、姿勢を計算し(ステップS22)、工具
位置、すなわち前述したセンサの出力値Dの距離だけワ
ーク法線方向の位置を補正し(ステップ23)、X,
Y,θ,Z1,Z2,Z3の6軸の目標位置を計算し
(ステップS24)、下位コンピュータにその目標位置
を送信する(ステップS25)。下位コンピュータは送
信された6軸の目標位置にしたがって前述した方法によ
り、6軸を同期的に移動させ(ステップS26)、工具
位置、すなわちセンサの出力値Dを上位コンピュータに
送信する(ステップ18)。
First, in preparation for polishing, the Y table 32 is moved to the polishing section P, and the tilting device 40 is lowered at the first polishing position to bring the polishing head 50 into contact with the work. Next, the scanning speed is determined from the current position using the residence time distribution (data D8) (step S1).
9). Next, its scanning speed and scanning pattern (data D7)
The scanning position after the synchronization time ΔT is calculated from (step S
20). Next, it is determined whether the scanning is completed (step S2
1), if not finished, design shape (data D3)
The polishing position and the attitude are calculated from (step S22), and the tool position, that is, the position in the work normal direction by the distance of the output value D of the sensor described above is corrected (step 23), and X,
The six-axis target positions of Y, θ, Z1, Z2, and Z3 are calculated (step S24), and the target positions are transmitted to the subordinate computer (step S25). The lower-level computer synchronously moves the 6-axis according to the method described above according to the transmitted target position of the 6-axis (step S26), and transmits the tool position, that is, the output value D of the sensor to the upper-level computer (step 18). .

【0064】本実施例の場合、被加工物は母線方向長さ
270mm、母線曲率半径490m、子線方向長さ70
mm、子線曲率半径2mのCVD−SiCトロイダルミ
ラー非球面ミラーである。
In the case of this embodiment, the workpiece has a length of 270 mm in the generatrix direction, a radius of curvature of 490 m in the generatrix, and a length of 70 in the sagittal direction.
It is a CVD-SiC toroidal mirror aspherical mirror having a diameter of 2 mm and a sagittal radius of curvature of 2 m.

【0065】まず、ワーク36をθテーブル34上のタ
ブ35内のワークチャックに取り付ける。このワークチ
ャックは、ワーク底面を真空吸引してワークを固定す
る。次に、Y軸に沿ってXYθテーブルを形状計測部M
に移動し、XYθテーブルを形状計測系の原点位置で止
める。また、θテーブル34はその回転の原点で固定さ
れる。次にワークの加工すべき面(以下、被加工面と称
する)の形状を図5に示した動作フローにしたがって計
測する。計測は各パラメータを入力し、計測開始指令を
入力することで開始する。このとき、入力するパラメー
タとしては、計測開始位置、終了位置、形状計測領域、
計測データ取込間隔、触針の走査速度、針圧などからな
る測定走査パターン(図5中のデータD1)、及び、被
加工面設計形状などである。
First, the work 36 is attached to the work chuck in the tab 35 on the θ table 34. This work chuck fixes the work by vacuum suctioning the bottom surface of the work. Next, the XYθ table is set along the Y-axis to the shape measuring unit M.
To stop the XYθ table at the origin position of the shape measuring system. Further, the θ table 34 is fixed at the origin of its rotation. Next, the shape of the surface of the workpiece to be machined (hereinafter referred to as the machined surface) is measured according to the operation flow shown in FIG. The measurement is started by inputting each parameter and inputting a measurement start command. At this time, the parameters to be input include the measurement start position, the end position, the shape measurement region,
The measurement data acquisition interval, the scanning speed of the stylus, the measurement scanning pattern (data D1 in FIG. 5) including the stylus pressure, and the design shape of the processed surface.

【0066】次に、前述したデコンボリューション(図
5中のステップS5)、すなわち修正研磨加工時に工具
を制御するための演算を行う。まず、被加工面の誤差形
状(図5中のデータD5)を上位コンピュータの演算領
域に読み込む。また、修正研磨で用いる研磨工具の単位
時間当たりの研磨除去形状(単位除去形状)(図5中デ
ータD6)を上位コンピュータの演算領域に読み込む。
Next, the above-described deconvolution (step S5 in FIG. 5), that is, the calculation for controlling the tool at the time of correction polishing is performed. First, the error shape of the surface to be processed (data D5 in FIG. 5) is read into the calculation area of the host computer. Further, the polishing removal shape (unit removal shape) per unit time (data D6 in FIG. 5) of the polishing tool used in the correction polishing is read into the calculation area of the host computer.

【0067】なお、この単位除去形状は、事前に被加工
面と同様な材質形状をもつテストピース上で、実際の修
正研磨で用いるのと同一の工具、研磨条件で既知の時間
一定の位置で研磨を行い、得られた研磨窪みを形状計測
し、それを単位時間当たりに換算することによって得ら
れる。このとき、例えば、既知の時間を600秒とし
て、単位時間を1秒とすれば、600秒の一定の位置の
研磨で得られた研磨窪みの深さを1/600倍すればよ
い。また、これら2つのデータ群はポイント当たり
(x,y,z)の3次元データで構成されている。x,
y,zについては等間隔のメッシュ状であり、zが誤差
データ、または単位除去形状の形状を表わす。上位コン
ピュータの演算領域に読み込まれたこれら2つのデータ
群を用いて被加工面上での工具の滞留時間分布をデコン
ボリューション演算する。
This unit removal shape is obtained in advance on a test piece having a material shape similar to that of the surface to be machined at a constant position for a known time under the same tool and polishing conditions as those used in the actual correction polishing. It is obtained by performing polishing, measuring the shape of the obtained polishing depression, and converting the shape per unit time. At this time, for example, if the known time is 600 seconds and the unit time is 1 second, the depth of the polishing recess obtained by polishing at a fixed position for 600 seconds may be multiplied by 1/600. Further, these two data groups are composed of three-dimensional data of (x, y, z) per point. x,
y and z are meshes with equal intervals, and z represents error data or a unit removal shape. By using these two data groups read in the calculation area of the host computer, the deconvolution calculation of the residence time distribution of the tool on the surface to be processed is performed.

【0068】この演算で得られた工具の滞留時間分布
(図5中データD8)とは、被加工面の修正研磨領域で
誤差形状を研磨除去するために必要な、各ポイントでの
工具の研磨時間を2次元的に表示したものである。すな
わち、これらの総和は被加工面の1回の修正研磨にかか
る総研磨時間を表わす。
The tool residence time distribution (data D8 in FIG. 5) obtained by this calculation means the tool polishing at each point necessary for polishing and removing the error shape in the corrected polishing region of the surface to be processed. It is a two-dimensional representation of time. That is, the sum of these represents the total polishing time required for one correction polishing of the surface to be processed.

【0069】次に、XYθテーブルを研磨加工部Pに移
動して、研磨加工部Pの原点で止める。研磨加工部Pの
Zチルトアームには1軸揺動式の研磨ヘッド50が取り
付けてあり、研磨ヘッド50の先端の工具保持部には直
径16mmのピッチ工具が固定されている。上位コンピ
ュータの指令により、研磨ヘッド50は指定された周波
数で揺動する。本実施例では揺動ストローク8mm、揺
動周波数5Hzである。これは、誤差形状の空間周波数
分布で、低周波数から中間周波数領域の誤差(形状誤
差、リップル)を除去するのに好適な条件である。ま
た、本実施例の研磨装置外に設けられた研磨液供給装置
(不図示)は、上位コンピュータの指令によりθテーブ
ル34上のタブ35内に研磨液を供給し、被加工面上を
研磨液で覆い、研磨が行える状態にする。
Next, the XYθ table is moved to the polishing processing section P and stopped at the origin of the polishing processing section P. The Z tilt arm of the polishing portion P is attached with a uniaxial swinging type polishing head 50, and a pitch tool having a diameter of 16 mm is fixed to the tool holding portion at the tip of the polishing head 50. The polishing head 50 oscillates at the designated frequency according to a command from the host computer. In this embodiment, the swing stroke is 8 mm and the swing frequency is 5 Hz. This is a preferable condition for removing an error (shape error, ripple) in the intermediate frequency region from a low frequency in the spatial frequency distribution of the error shape. Further, a polishing liquid supply device (not shown) provided outside the polishing device of this embodiment supplies the polishing liquid into the tab 35 on the θ table 34 in response to a command from the host computer, so that the surface of the workpiece is polished. Cover with and prepare for polishing.

【0070】上位コンピュータに修正研磨準備に指令を
入力すると、上位コンピュータは被加工面形状に関する
データと滞留時間分布を演算領域に読み込む。ここで、
上位コンピュータに研磨加工開始位置、工具の走査パタ
ーン、走査回数、滞留時間分布から得られた総研磨時間
の何%を実際に行うか入力する。本実施例では、工具の
走査パターンはつづれ織り状走査であり、走査回数は3
回とした。
When a command is input to the high-order computer for the correction polishing preparation, the high-order computer reads the data regarding the shape of the surface to be processed and the residence time distribution into the calculation area. here,
The polishing start position, the tool scanning pattern, the number of scans, and what percentage of the total polishing time obtained from the residence time distribution are input to the host computer. In the present embodiment, the scan pattern of the tool is a continuous weave scan, and the scan count is 3
It was time.

【0071】上位コンピュータに修正研磨開始を指令す
ると、前述のとおり、Xテーブル33、Yテーブル32
がそれぞれ移動し、被加工面の研磨開始位置にZチルト
アーム先端の工具が位置するようにして停止する。その
後、Zチルトアームが下降し、研磨ヘッド50内の研磨
工具の上下位置センサの信号が所定の値となったところ
でZチルトアームの下降を停止する。すなわち、工具が
被加工面に接触し、研磨ヘッド50内での工具の相対位
置が上昇したことを検知して、Zチルトアームの下降を
停止する。その後、研磨ヘッド50内の定圧装置20に
所定の研磨荷重を発生させる指令が送られ、ピッチ工具
は被研磨面の修正研磨開始位置に所定の研磨荷重で圧接
させられる。本実施例では研磨荷重は25KPaであ
る。
When the high-order computer is instructed to start the correction polishing, as described above, the X table 33 and the Y table 32 are used.
Respectively move and stop so that the tool at the tip of the Z tilt arm is positioned at the polishing start position of the surface to be processed. After that, the Z tilt arm descends, and when the signal from the vertical position sensor of the polishing tool in the polishing head 50 reaches a predetermined value, the Z tilt arm is stopped to descend. That is, it is detected that the tool has come into contact with the surface to be processed and the relative position of the tool within the polishing head 50 has risen, and the lowering of the Z tilt arm is stopped. After that, a command for generating a predetermined polishing load is sent to the constant pressure device 20 in the polishing head 50, and the pitch tool is pressed against the corrected polishing start position of the surface to be polished with a predetermined polishing load. In this embodiment, the polishing load is 25 KPa.

【0072】上位コンピュータは、所定の荷重に工具を
加圧したことを確認した後、研磨ヘッド50の揺動を始
め、修正研磨が開始される。研磨工具の走査はx,y軸
で行われるのは前述のとおりである。上位コンピュータ
では滞留時間分布のデータと、そのデータの各ポイント
x,yの間隔から、工具の走査速度を計算する。例え
ば、x,yのデータが1mm間隔であり、任意の位置
(x1,y1)での滞留時間が40secであり、その
25%を実際に加工し、走査回数が4回であるとする
と、この位置(x1,y1)の前後0.5mmの走査速
度V(x1,y1)は、V(x1,y1)=1/{(4
0×0.25)/4}=0.4(mm/sec)とな
る。このような演算を行いながら、前述したように上位
コンピュータは同期時間ΔT毎の各軸の目標座標を求
め、それを下位コンピュータに転送し、下位コンピュー
タが各軸を制御することで修正研磨は進行する。
After confirming that the tool has been pressed to a predetermined load, the host computer starts swinging the polishing head 50 to start the correction polishing. As described above, the scanning of the polishing tool is performed on the x and y axes. The host computer calculates the tool scanning speed from the data of the residence time distribution and the intervals between the points x and y of the data. For example, assuming that the x, y data is at 1 mm intervals, the residence time at any position (x1, y1) is 40 sec, 25% of that is actually processed, and the number of scans is 4, this The scanning speed V (x1, y1) 0.5 mm before and after the position (x1, y1) is V (x1, y1) = 1 / {(4
0 × 0.25) / 4} = 0.4 (mm / sec). While performing such a calculation, as described above, the host computer obtains the target coordinates of each axis for each synchronization time ΔT, transfers the target coordinates to the lower computer, and the lower computer controls each axis, so that the correction polishing progresses. To do.

【0073】第1回の修正研磨が終了した時点で、研磨
ヘッド50は上方に隔離され、研磨液はタブ35から抜
かれ、ワークを乾燥させる。その後、xyθテーブルを
形状計測部Mに移動させ、第2回の形状計測を行う。こ
の形状計測と修正研磨の交互の繰り返しは、ワークの形
状が設計形状に対する公差内に入ったかどうかの判断に
より終了もしくは継続となる。本加工の実施例ではこの
操作を3回繰り返し、平面形状精度PV0.06μmに
加工できた。この間、形状計測は300×100mmの
区間を1mmピッチに形状計測し、研磨加工は300×
100mmの区間を1mmピッチのラスター走査で行っ
た。
When the first correction polishing is completed, the polishing head 50 is isolated upward, the polishing liquid is drained from the tub 35, and the work is dried. After that, the xyθ table is moved to the shape measuring unit M, and the second shape measurement is performed. The alternate repetition of the shape measurement and the correction polishing is completed or continued depending on whether the shape of the work is within the tolerance with respect to the design shape. In this working example, this operation was repeated three times, and the flat shape accuracy PV could be processed to 0.06 μm. During this time, the shape is measured in the area of 300 × 100 mm at a pitch of 1 mm, and the polishing is 300 ×.
A 100 mm section was raster scanned with a 1 mm pitch.

【0074】本実施例で使用した研磨液は、実施例3で
使用したものと同じである。この研磨液を用い、針入度
が15のピッチを用い、研磨圧力は25KPaとし、走
査方向に対して直交方向に5Hzで±2mmの1軸揺動
し、送りピッチ1mmでラスター走査し、総加工時間約
55時間/3パス研磨加工したところ、予定通りの非球
面形状を得た。また被加工面にはピットの発生、砥粒通
過痕の発現などの研磨面の悪化は見られず表面粗さ0.
16nmRMS程度の超平滑面が得られた。
The polishing liquid used in this example is the same as that used in Example 3. Using this polishing liquid, using a pitch with a penetration of 15 and a polishing pressure of 25 KPa, oscillating ± 2 mm uniaxially at 5 Hz in the direction orthogonal to the scanning direction, and raster scanning at a feed pitch of 1 mm, Processing time Approximately 55 hours / 3-pass polishing processing resulted in the expected aspherical shape. No deterioration of the polished surface such as generation of pits or appearance of abrasive grain passage marks was observed on the surface to be processed, and the surface roughness was 0.
An ultra-smooth surface of about 16 nm RMS was obtained.

【0075】[0075]

【発明の効果】以上説明した本発明によれば、例えば高
脆性多結晶材料であるCVD−SiCを、ビットの発
生、砥粒通過痕の発現などの研磨面悪化現象を生じるこ
となく、高い信頼性で超平滑面(表面粗さ0.3nmR
MS以下)に研磨できる。更に、本発明は、球面、平
面、非球面に適用できる汎用性の高い方法である。
According to the present invention described above, for example, CVD-SiC, which is a highly brittle polycrystalline material, has high reliability without causing deterioration of the polishing surface such as generation of bits and appearance of abrasive grain passage marks. And super smooth surface (surface roughness 0.3nmR
It can be polished to MS or less). Furthermore, the present invention is a highly versatile method applicable to spherical surfaces, flat surfaces, and aspherical surfaces.

【0076】更に、細かく研磨条件を変更して研磨面の
状態を観察しながら研磨加工を進めるという従来の煩雑
な工程が必要無くなり、作業が容易になる。また、研磨
条件を一定にしておけるので加工能率も向上し、加工コ
ストも低減できる。
Further, the conventional complicated process of advancing the polishing process while finely changing the polishing conditions and observing the state of the polished surface is not required, and the work is facilitated. Further, since the polishing conditions can be kept constant, the processing efficiency can be improved and the processing cost can be reduced.

【0077】更に、研磨剤の沈澱も防止できる点から
も、10〜20時間といった長時間を要するCVD−S
iC材を小径工具で非球面研磨加工する場合に、特に有
効である。
Further, from the viewpoint of preventing the precipitation of the polishing agent, the CVD-S which requires a long time such as 10 to 20 hours.
This is particularly effective when the iC material is aspherically polished with a small diameter tool.

【図面の簡単な説明】[Brief description of drawings]

【図1】実験1の代表的な粒径3点の結果を示すグラフ
である。
FIG. 1 is a graph showing the results of Experiment 1 for three representative particle sizes.

【図2】検討例2の結果を示すグラフである。FIG. 2 is a graph showing the results of study example 2.

【図3】実施例1で用いた研磨機を示す図である。3 is a diagram showing a polishing machine used in Example 1. FIG.

【図4】実施例2で用いたシリンドリカル研磨機を示す
図である。
FIG. 4 is a view showing a cylindrical polishing machine used in Example 2.

【図5】実施例4による研磨装置の動作フローを示すフ
ローチャートである。
FIG. 5 is a flowchart showing an operation flow of a polishing apparatus according to a fourth embodiment.

【図6】実施例4に使用した研磨装置を示す図である。FIG. 6 is a view showing a polishing apparatus used in Example 4.

【図7】図5のステップS6のNC研磨動作に関する動
作フローを示すフローチャートである。
FIG. 7 is a flowchart showing an operation flow relating to the NC polishing operation of step S6 of FIG.

【符号の説明】 1 研磨皿 2 被加工面 6 研磨皿ピッチ面 7 研磨液 11 研磨工具 12 被加工物 17 研磨液供給ノズル 21 研磨液ドレイン 36 被加工物[Explanation of reference numerals] 1 polishing dish 2 surface to be processed 6 polishing dish pitch surface 7 polishing liquid 11 polishing tool 12 workpiece 17 polishing liquid supply nozzle 21 polishing liquid drain 36 workpiece

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が1〜3μmのダイアモンド砥
粒を含む研磨液を用いることを特徴とするSiCの研磨
方法。
1. A method of polishing SiC, which comprises using a polishing liquid containing diamond abrasive grains having an average grain size of 1 to 3 μm.
【請求項2】 針入度が5〜20のピッチを用いる請求
項1記載の研磨方法。
2. The polishing method according to claim 1, wherein a pitch having a penetration of 5 to 20 is used.
【請求項3】 研磨圧力が66KPa以下である請求項
1または2記載の研磨方法。
3. The polishing method according to claim 1, wherein the polishing pressure is 66 KPa or less.
【請求項4】 前記ダイアモンド砥粒が多結晶である請
求項1〜3の何れか一項記載の研磨方法。
4. The polishing method according to claim 1, wherein the diamond abrasive grains are polycrystalline.
【請求項5】 前記研磨液中のダイアモンド砥粒の量が
0.2重量%以下である請求項1〜4の何れか一項記載
の研磨方法。
5. The polishing method according to claim 1, wherein the amount of diamond abrasive grains in the polishing liquid is 0.2% by weight or less.
【請求項6】 前記研磨液は研磨剤100重量部に対し
て1〜2重量部の分散剤を更に含む請求項1〜5の何れ
か一項記載の研磨方法。
6. The polishing method according to claim 1, wherein the polishing liquid further contains 1 to 2 parts by weight of a dispersant with respect to 100 parts by weight of the polishing agent.
【請求項7】 SiCから成る表面を有する光学素子の
製造方法において、平均粒径が1〜3μmのダイアモン
ド砥粒を含む研磨液を用いて研磨する工程を有すること
を特徴とする光学素子の製造方法。
7. A method of manufacturing an optical element having a surface made of SiC, comprising the step of polishing with a polishing liquid containing diamond abrasive grains having an average particle diameter of 1 to 3 μm. Method.
【請求項8】 前記SiCから成る表面は、CVD法に
より形成されたである請求項7記載の光学素子の製造
方法。
8. The method of manufacturing an optical element according to claim 7, wherein the surface made of SiC is a film formed by a CVD method.
【請求項9】 前記平均粒径が1〜3μmのダイアモン
ド砥粒を含む研磨液を用いた研磨により、表面粗さ0.
3nmRMS以下の平滑面を形成する請求項7または8
記載の光学素子の製造方法。
9. A surface roughness of 0. 1 is obtained by polishing with a polishing liquid containing diamond abrasive grains having an average grain size of 1 to 3 μm.
9. A smooth surface having a thickness of 3 nm RMS or less is formed.
A method for manufacturing the optical element according to claim 1.
JP13426595A 1995-05-31 1995-05-31 Abrasive method for sic, and manufacture of optical element Pending JPH08323604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13426595A JPH08323604A (en) 1995-05-31 1995-05-31 Abrasive method for sic, and manufacture of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13426595A JPH08323604A (en) 1995-05-31 1995-05-31 Abrasive method for sic, and manufacture of optical element

Publications (1)

Publication Number Publication Date
JPH08323604A true JPH08323604A (en) 1996-12-10

Family

ID=15124264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13426595A Pending JPH08323604A (en) 1995-05-31 1995-05-31 Abrasive method for sic, and manufacture of optical element

Country Status (1)

Country Link
JP (1) JPH08323604A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022978A1 (en) * 1996-11-20 1998-05-28 Northrop Grumman Corporation Method of preparing silicon carbide wafers for epitaxial growth
EP0916750A1 (en) * 1997-11-17 1999-05-19 Nippon Pillar Packing Co. Ltd. Single crystal SiC and a method of producing the same
KR101303183B1 (en) * 2012-07-03 2013-09-09 한국기계연구원 3-d microstructure observation method of aluminum matrix composite
JP2013245260A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain-type wire
JP2013245126A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire
JP2017147407A (en) * 2016-02-19 2017-08-24 日本特殊陶業株式会社 Table for positioning stage and positioning method using the same
CN107971875A (en) * 2017-11-24 2018-05-01 中国建筑材料科学研究总院有限公司 A kind of multilayer polishing glue and its preparation method and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022978A1 (en) * 1996-11-20 1998-05-28 Northrop Grumman Corporation Method of preparing silicon carbide wafers for epitaxial growth
EP0916750A1 (en) * 1997-11-17 1999-05-19 Nippon Pillar Packing Co. Ltd. Single crystal SiC and a method of producing the same
JP2013245260A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain-type wire
JP2013245126A (en) * 2012-05-24 2013-12-09 Sumitomo Electric Ind Ltd Polycrystalline diamond abrasive grain and method for producing the same, slurry, and fixed abrasive grain type wire
KR101303183B1 (en) * 2012-07-03 2013-09-09 한국기계연구원 3-d microstructure observation method of aluminum matrix composite
JP2017147407A (en) * 2016-02-19 2017-08-24 日本特殊陶業株式会社 Table for positioning stage and positioning method using the same
CN107971875A (en) * 2017-11-24 2018-05-01 中国建筑材料科学研究总院有限公司 A kind of multilayer polishing glue and its preparation method and application
CN107971875B (en) * 2017-11-24 2019-09-06 中国建筑材料科学研究总院有限公司 A kind of multilayer polishing glue and its preparation method and application

Similar Documents

Publication Publication Date Title
EP0858381B1 (en) Deterministic magnetorheological finishing
Suzuki et al. Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold
Beaucamp et al. Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)
JP2001246539A (en) Grinding work method for non-axisymmetric aspherical mirror
WO1997014532A9 (en) Deterministic magnetorheological finishing
US20160325397A1 (en) Methods and Apparatus for Nanolapping
Alao et al. Surface finish prediction models for precision grinding of silicon
JPH08323604A (en) Abrasive method for sic, and manufacture of optical element
JP4702765B2 (en) Vibration polishing method and apparatus
Ando et al. Super-smooth surface polishing on aspherical optics
JP2002052451A (en) Polishing method, optical element and forming die for optical element
JP4906043B2 (en) Polishing method
Brown Preparation of ultrasmooth surfaces
JP2011036974A (en) Polishing method and polishing device
US20080125014A1 (en) Sub-aperture deterministric finishing of high aspect ratio glass products
Cheng Abrasive micromachining and microgrinding
JPH1086051A (en) Grinding method
JP2006192511A (en) Wave removal polishing method
JP3410213B2 (en) Method and apparatus for processing optical element for synchrotron radiation
Leistner et al. High-precision large-diameter single-crystal silicon spheres: their fabrication and measurements of sphericity
JP2003311587A (en) Method of calculating retention time
Saito et al. Abrasive Polishing of Optical Surfaces Using Plate Spring Polisher with Oscillation
JP3244384B2 (en) Polishing method
Takahashi et al. Quantifying the effects of tool and workpiece surface evolution during microgrinding of optical glasses
JP2004098242A (en) Method for polishing article, its polishing liquid, and method for manufacturing optical article

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041117