JP2006192511A - Wave removal polishing method - Google Patents

Wave removal polishing method Download PDF

Info

Publication number
JP2006192511A
JP2006192511A JP2005003644A JP2005003644A JP2006192511A JP 2006192511 A JP2006192511 A JP 2006192511A JP 2005003644 A JP2005003644 A JP 2005003644A JP 2005003644 A JP2005003644 A JP 2005003644A JP 2006192511 A JP2006192511 A JP 2006192511A
Authority
JP
Japan
Prior art keywords
polishing
polishing tool
workpiece
tool
workpiece surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005003644A
Other languages
Japanese (ja)
Inventor
Masaaki Satake
賢亮 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005003644A priority Critical patent/JP2006192511A/en
Publication of JP2006192511A publication Critical patent/JP2006192511A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wave removal polishing method effectively smoothing a wave and a surface roughness to a further long waveform without deforming the whole shape of a workpiece surface before machining. <P>SOLUTION: A change rate of a machining amount of a polishing tool in various positions on a workpiece surface per unit time is estimated under machining conditions that the diameter of a polishing tool is large and the machining amount on the workpiece surface is large, which are large merits for wave removal, a machining amount change rate map per unit time of the polishing tool is created, and machining parameters are corrected for uniformizing the machining amounts in the respective positions on the workpiece surface based on the map so as to effectively smooth the wave and the surface roughness to the further long wavelength without deforming the whole shape of the workpiece surface before the machining. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体、ガラス、セラミックス、金属単体又は金属酸化物の単結晶等の硬脆材料の表面を精密研磨加工(非球表面研磨)する研磨方法に関するものである。   The present invention relates to a polishing method for precisely polishing (aspherical surface polishing) the surface of a hard and brittle material such as a semiconductor, glass, ceramics, a single metal or a single crystal of a metal oxide.

従来、合成石英ガラス、低熱膨張ガラス、CVD−SiC材は高価であるにも拘らず、その物理化学特性が優れているために高エネルギー短波長光用のレンズ、ミラーとして採用されている。これらのレンズ、ミラーの形状としては、平面、球面等の単純な形状以外の非球面形状の要求も増してきている。これらの光学素子の代表的な構造として合成石英ガラス材を例に説明する。合成石英ガラス材を短波長光用のレンズとする工程は、最終形状に近い形状にする研削、そして、研削面の形状誤差、うねり、表面粗さ等を低減し表面品質を向上する研磨から成る。   Conventionally, synthetic quartz glass, low thermal expansion glass, and CVD-SiC materials are used as lenses and mirrors for high-energy short-wavelength light because of their excellent physicochemical characteristics despite their high cost. As the shape of these lenses and mirrors, there is an increasing demand for an aspherical shape other than a simple shape such as a flat surface or a spherical surface. As a typical structure of these optical elements, a synthetic quartz glass material will be described as an example. The process of making a synthetic quartz glass lens for short wavelength light consists of grinding to a shape close to the final shape and polishing to improve the surface quality by reducing the shape error, waviness, surface roughness, etc. of the grinding surface. .

研磨は、被加工物表面上を予め決められた研磨工具の走査パターン上で、小径で一定の研磨運動を行う研磨工具を被加工物表面に平行に接触させ、研磨工具の工具軸中心方向に荷重を与えながら連続的に走査させて順次加工点を研磨運動させることで行う。   For polishing, a polishing tool that performs a constant polishing motion with a small diameter is brought into contact with the workpiece surface parallel to the workpiece surface on a predetermined scanning pattern of the polishing tool on the workpiece surface, and is directed in the direction of the tool axis center of the polishing tool. This is performed by continuously scanning while applying a load and sequentially moving the machining points.

ここで研磨に用いる小径な研磨工具には図1(特許文献1)に示すように、ポリシャ31cを保持するためのポリシャ支持部材31aに設けられた凸球面31dと加工力を加えるための荷重軸39の端部の研磨工具支持部材33に設けられた案内部35aとにより、少なくとも3個の互いに間隔をおいて配列された球35b…を挟み、凸球面31dの中心点がポリシャ支持部材31aに保持されたポリシャ31cの研磨面の中心点Oに一致するように構成する。このように、ポリシャ31cの揺動に伴うモーメントの発生による姿勢変化(被加工面の工具のある位置の曲率半径の球面を仮定して、その球面に研磨工具の研磨面が沿って揺動するときの工具のピッチング方向の姿勢変化)を原理上無視できる構成が提案されている。   Here, as shown in FIG. 1 (Patent Document 1), a small polishing tool used for polishing has a convex spherical surface 31d provided on a polisher support member 31a for holding a polisher 31c and a load shaft for applying a processing force. Between the guide portions 35a provided on the polishing tool support member 33 at the end of 39, at least three spheres 35b arranged at intervals are sandwiched, and the center point of the convex spherical surface 31d becomes the polisher support member 31a. The polisher 31c is held so as to coincide with the center point O of the polishing surface. In this way, the posture change due to the generation of a moment accompanying the swing of the polisher 31c (assuming a spherical surface with a radius of curvature at a certain position of the tool on the surface to be processed, the polishing surface of the polishing tool swings along the spherical surface. A configuration has been proposed in which the change in the attitude of the tool in the pitching direction at the time can be ignored in principle.

実際の研磨に際しては、被加工物表面全域について形状計測を行い、誤差量の多い所を長時間研磨するような研磨工具の滞留時間分布を算出し、前述の研磨工具を被加工物表面上を前述の所定の滞留時間分布を実現するように走査させ、酸化セリウム、酸化ジルコニウム微粉、又はダイアモンド微粉等の研磨剤を水に分散した研磨液を介在させるものが一般的である。   During actual polishing, shape measurement is performed on the entire surface of the work piece, and the dwell time distribution of the polishing tool is calculated so that a place with a large amount of error is polished for a long time. In general, scanning is performed so as to realize the predetermined residence time distribution described above, and a polishing liquid in which an abrasive such as cerium oxide, zirconium oxide fine powder, or diamond fine powder is dispersed in water is interposed.

この工程により、非参考文献1にも報告されているように、研磨工具の径より十分波長が長い形状誤差は、滞留時間分布を制御することで修正加工し、逆に研磨工 具の径より十分波長が短いうねり、表面粗さは、研磨工具の一定の研磨運動により平滑化していた。   By this process, as reported in Non-Reference 1, the shape error whose wavelength is sufficiently longer than the diameter of the polishing tool is corrected by controlling the residence time distribution, and conversely from the diameter of the polishing tool. Waves with a sufficiently short wavelength and surface roughness were smoothed by a constant polishing motion of the polishing tool.

特開平07−75952号公報JP 07-75952 A 精密工学会誌 Vil.62No.3(1996) P408 412Journal of Japan Society for Precision Engineering Vil.62No.3 (1996) P408 412

しかし、この工程では研磨工具の径付近の波長を持つうねりは、修正加工することも平滑化することもできず、加工後の被加工物表面上に残ってしまうという問題がある。そのため、各々目的とする修正加工、若しくは平滑化する形状誤差、うねり、表面粗さの波長及び能率の異なる複数の工程を組み合せて、被加工物表面を目標とする精度に仕上げる。中でもうねり、表面粗さを向上させることを目的とした工程では、被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さをより長い波長まで、且つ、より効果的に平滑化することが必要となる。   However, in this process, waviness having a wavelength in the vicinity of the diameter of the polishing tool cannot be corrected or smoothed, and remains on the processed workpiece surface. Therefore, the target surface of the workpiece is finished to a target accuracy by combining a plurality of processes with different target correction processing or smoothing shape error, waviness, surface roughness wavelength and efficiency. In the process aiming at improving the surface roughness, the undulation and surface roughness can be smoothed more effectively to a longer wavelength without destroying the overall shape of the workpiece surface. It is necessary to do.

プレストンの経験式によれば、研磨の加工量は研磨工具面が被加工物表面に与える研磨圧力と相対速度の積に比例する。図1の研磨工具を例に、研磨工具と被加工物表面が接触している領域での、研磨圧力、相対速度、加工量の分布を図2に示す。ここで、研磨工具の単位時間当たりの加工量は、研磨工具と被加工物表面が接触している領域での加工量の分布を積分した値に比例する。   According to Preston's empirical formula, the amount of polishing is proportional to the product of the polishing pressure applied to the workpiece surface by the polishing tool surface and the relative speed. Taking the polishing tool of FIG. 1 as an example, FIG. 2 shows the distribution of polishing pressure, relative speed, and processing amount in a region where the polishing tool and the workpiece surface are in contact with each other. Here, the processing amount per unit time of the polishing tool is proportional to the value obtained by integrating the processing amount distribution in the region where the polishing tool and the workpiece surface are in contact with each other.

研磨圧力の分布は、研磨工具面の形状と被加工物表面の形状の差によって変化する。実加工中は研磨工具面の形状は一定であるが、被加工物表面の形状が非球面形状の場合、被加工物表面上の各位置で研磨工具が接触する被加工物表面の局所的な形状が変化するため、研磨圧力の分布も変化する。   The distribution of the polishing pressure varies depending on the difference between the shape of the polishing tool surface and the shape of the workpiece surface. During actual machining, the shape of the polishing tool surface is constant, but when the shape of the workpiece surface is aspherical, the surface of the workpiece surface where the polishing tool contacts at each position on the workpiece surface is localized. Since the shape changes, the polishing pressure distribution also changes.

研磨荷重は、一定の力を発生させる例えばエアシリンダのような機構と、研磨工具の自重により、発生させる。研磨工具面を被加工物表面に平行に接触させるよう傾斜させた場合、研磨荷重方向に働く自重成分が変化し、研磨荷重が変化する。そのため、被加工物表面の各位置の傾斜角度により、研磨圧力の分布が変化する。   The polishing load is generated by a mechanism such as an air cylinder that generates a constant force and the weight of the polishing tool. When the polishing tool surface is tilted so as to be in parallel with the workpiece surface, the self-weight component acting in the polishing load direction changes and the polishing load changes. Therefore, the distribution of the polishing pressure varies depending on the inclination angle of each position on the workpiece surface.

研磨工具の一定の研磨運動は、自転運動である。実加工中の相対速度の分布は被加工物表面上全域で一定で、研磨工具中心を0として、周辺部に向かうに連れて直線的に増加する分布を持つ。   The constant polishing movement of the polishing tool is a rotation movement. The distribution of the relative speed during actual machining is constant over the entire surface of the workpiece, and has a distribution that increases linearly toward the periphery with the polishing tool center being zero.

そのため、被加工物表面上の各位置で、相対速度の分布は変化しないが、研磨圧力の分布は変化するため、研磨工具の単位時間当たりの加工量が変化する。結果として加工前の被加工物表面の全体的な形状を、Kの加工により大きく崩してしまうという問題点がある。   For this reason, the distribution of the relative speed does not change at each position on the surface of the workpiece, but the distribution of the polishing pressure changes, so that the processing amount per unit time of the polishing tool changes. As a result, there is a problem that the overall shape of the surface of the workpiece before processing is greatly destroyed by the processing of K.

研磨工具の径が大きくなるほど、より長い波長のうねりまで、研磨工具の一定の研磨運動により平滑化できると効果が期待できる。   As the diameter of the polishing tool increases, the effect can be expected when the polishing tool can be smoothed by a constant polishing motion up to a longer wavelength wave.

又、被加工物表面上での加工量が大きくなるほど、うねり、表面粗さは平滑化できると期待できる。   Further, it can be expected that the waviness and the surface roughness can be smoothed as the amount of processing on the surface of the workpiece increases.

しかし、一方デメリットとして、研磨工具の径が大きくなるほど、前述の被加工物表面上の各位置の研磨工具の単位時間当たりの加工量の変化率は大きくなる。又、被加工物表面上での加工量が大きくなるほど、被加工物表面の全体的の形状は大きく崩してしまうという問題がある。   However, as a disadvantage, as the diameter of the polishing tool increases, the change rate of the processing amount per unit time of the polishing tool at each position on the surface of the workpiece increases. Further, there is a problem in that the overall shape of the workpiece surface is greatly destroyed as the amount of processing on the workpiece surface increases.

そこで、本発明では、うねり除去に対してはメリットの大きい、研磨工具の径が大きく、被加工物表面上での加工量が大きい加工条件で、被加工物表面上の各位置の研磨工具の単位時間当たりの加工量の変化率を予測し、その予測値に基づいて被加工物表面上の各位置で加工パラメータに補正を加えることで、加工前の被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さをより長い波長まで、且つ、より効果的に平滑化するうねり除去研磨方法を提供することを目的とする。   Therefore, in the present invention, the polishing tool at each position on the workpiece surface has a large merit for removing waviness, the machining tool has a large diameter and a large machining amount on the workpiece surface. By predicting the rate of change of the machining amount per unit time and correcting the machining parameters at each position on the workpiece surface based on the predicted value, the overall shape of the workpiece surface before machining can be obtained. It is an object of the present invention to provide a swell removal polishing method that smoothes swell and surface roughness to a longer wavelength without breaking down and more effectively.

上述した課題を解決し、目的を達成するために、本発明に係るうねり除去研磨方法は、被加工物表面上を予め決められた研磨工具の走査パターン上で、小径で一定の研磨運動を行う研磨工具を、研磨工具の工具軸中心方向に荷重を与えながら連続的に走査させて、順次加工点を研磨運動しながら被加工物を研磨する研磨装置であって、研磨工具の単位時間当たりの加工量が一定として、研磨工具を一定の速度で走査し、被加工物表面上の全領域を均等な加工量で研磨することで、加工前の被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さを平滑化することを目的とする研磨方法において、うねり除去に対してはメリットの大きい、研磨工具の径が大きく、被加工物表面上での加工量が大きい加工条件で、被加工物表面上の各位置の研磨工具の単位時間当たりの加工量の変化率を予測し、研磨工具の単位時間当たりの加工量変化率マップを作成し、このマップに基づいて被加工物表面上の各位置で加工量が均一になるように、加工パラメータに補正を加えることで、加工前の被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さをより長い波長まで、且つ、より効果的に平滑化することを特徴とする。   In order to solve the above-described problems and achieve the object, the waviness removal polishing method according to the present invention performs a constant polishing motion with a small diameter on a scanning pattern of a predetermined polishing tool on the surface of a workpiece. A polishing apparatus for continuously polishing a polishing tool while applying a load in the direction of the center of the tool axis of the polishing tool, and polishing a workpiece while polishing a processing point sequentially. The entire shape of the surface of the workpiece before processing is destroyed by scanning the polishing tool at a constant speed and polishing the entire area on the surface of the workpiece with a uniform processing amount, assuming that the processing amount is constant. In the polishing method aiming at smoothing the undulation and surface roughness, there are great merits for undulation removal, the diameter of the polishing tool is large, and the processing conditions are large on the workpiece surface On the workpiece surface. Predict the rate of change of the processing amount per unit time of the polishing tool, create a processing rate change rate map per unit time of the polishing tool, and based on this map, the processing amount at each position on the workpiece surface By correcting the machining parameters so that they are uniform, the undulation and surface roughness can be smoothed to a longer wavelength and more effectively without breaking the overall shape of the workpiece surface before machining. It is characterized by becoming.

又、本発明に係るうねり除去研磨方法は、先ず、研磨工具を被加工物表面上の各位置で、実加工と同様の条件で接触させた場合の、研磨工具面が被加工物表面に与える研磨圧力の分布を汎用ツールによる接触解析シミュレーションより求め、次いで研磨工具の一定の研磨運動から研磨工具面が被加工物表面に与える相対速度の分布を求め、この研磨圧力の分布と相対速度の分布を掛け算して、研磨工具面と被加工物表面が接触する領域における加工量の分布に比例する研磨圧力と相対速度の積の分布を求め、この研磨圧力と相対速度の積の分布を、研磨工具面と被加工物表面が接触する領域で積分して、研磨工具の単位時間当たりの加工量に比例する研磨圧力と相対速度の積の分布の積分値を求め、或る基準とする条件(例えば、研磨工具面と被加工物表面が共に平面で、研磨工具面の法線ベクトルが鉛直方向)の研磨圧力と相対速度の積の分布の積分値で、求められた被加工物表面上の各位置の研磨圧力と相対速度の積の分布の積分値を割り算することで、被加工物表面上の各位置の研磨工具の単位時間当たりの加工量の変化率を予測することを特徴とする。   In the waviness removal polishing method according to the present invention, first, the polishing tool surface is given to the workpiece surface when the polishing tool is brought into contact with each position on the workpiece surface under the same conditions as the actual machining. The distribution of the polishing pressure is obtained from a contact analysis simulation using a general-purpose tool, and then the distribution of the relative speed that the polishing tool surface gives to the workpiece surface is determined from the constant polishing motion of the polishing tool. To obtain the product distribution of the polishing pressure and relative speed proportional to the work volume distribution in the area where the polishing tool surface and the workpiece surface are in contact with each other. By integrating in the region where the tool surface and the workpiece surface contact, the integral value of the distribution of the product of the polishing pressure and the relative speed proportional to the processing amount per unit time of the polishing tool is obtained, and a certain standard condition ( For example, polishing tool surface The workpiece pressure is the integral value of the product of the product of the polishing pressure and the relative velocity of the workpiece surface both flat and the normal vector of the polishing tool surface in the vertical direction). By dividing the integral value of the product distribution of the relative speed, the change rate of the processing amount per unit time of the polishing tool at each position on the workpiece surface is predicted.

又、本発明に係るうねり除去研磨方法は、最初の均一に設定されている被加工物表面の各位置の研磨工具を走査する速度を示す滞留時間を、前述の予測された被加工物表面上の各位置の研磨工具の単位時間あたりの加工量の変化率で割り算し、研磨工具の単位時間当たりの加工量と研磨工具の滞留時間の積で示される被加工物表面上での加工量が被加工物表面全域で均一になるようにすることで、被加工物表面上の各位置の加工パラメータを補正することを特徴とする。   Further, the waviness removal polishing method according to the present invention provides a dwell time on the above-mentioned predicted workpiece surface, which indicates a speed at which the polishing tool is scanned at each position on the workpiece surface that is initially set uniformly. Divide by the rate of change of the processing amount per unit time of the polishing tool at each position, and the processing amount on the workpiece surface indicated by the product of the processing amount per unit time of the polishing tool and the residence time of the polishing tool is The processing parameters at each position on the workpiece surface are corrected by being uniform over the entire surface of the workpiece.

本発明によれば、うねり除去に対してはメリットの大きい、研磨工具の径が大きく、被加工物表面上での加工量が大きい加工条件でも、加工前の被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さをより長い波長まで、且つ、より効果的に平滑化することで、より高精度な精密研磨加工(非球表面研磨)を実現する。   According to the present invention, the overall shape of the surface of the workpiece before processing is great even under processing conditions in which the diameter of the polishing tool is large and the amount of processing on the surface of the workpiece is large, which is advantageous for removing waviness. By smoothing the swell and the surface roughness to a longer wavelength and more effectively without breaking down, more accurate precision polishing (aspheric surface polishing) is realized.

先ず、本発明のうねり除去研磨方法を実施するための研磨装置について図3に基づいて説明する。図3(a)は本発明の研磨装置の一実施形態を示す斜視図である。   First, a polishing apparatus for carrying out the swell removal polishing method of the present invention will be described with reference to FIG. FIG. 3A is a perspective view showing an embodiment of the polishing apparatus of the present invention.

図3(a)において、50はベッドであり、ベッド50上にはベッド50に対して相対的にy方向に往復移動可能なyテーブル52が取り付けられている。54はyテーブル52の移動を駆動するためのモータであり、モータ54にはエンコーダ56が付設されており、エンコーダ56によりyテーブル52のy方向移動量が検出される。yテーブル52上にはyテーブル52に対して直交方向に相対的に往復移動可能なxテーブル58が取り付けられている。60はxテーブル58の移動を駆動するためのモータであり、モータ60にはエンコーダ62が付設されており、エンコーダ62によりxテーブル58のx方向移動量が検出される。   In FIG. 3A, reference numeral 50 denotes a bed, and a y table 52 that can reciprocate in the y direction relative to the bed 50 is attached on the bed 50. Reference numeral 54 denotes a motor for driving the movement of the y table 52, and an encoder 56 is attached to the motor 54. The encoder 56 detects the amount of movement in the y direction of the y table 52. Mounted on the y table 52 is an x table 58 that can reciprocate relative to the y table 52 in the orthogonal direction. Reference numeral 60 denotes a motor for driving the movement of the x table 58, and an encoder 62 is attached to the motor 60, and the amount of movement in the x direction of the x table 58 is detected by the encoder 62.

xテーブル58上には研磨槽64が固設されている。研磨槽64中には支持体66が固定されており、支持体66には軸68により被研磨物保持体70が取り付けられている。保持体70はL字形状を成しており、その垂直面部分に軸68が接続されている。軸68はx軸方向を向いていて、従って、保持体70はx軸の回りに回動可能である。支持体66にはモータ72が取り付けられており、その駆動回転軸は軸68に結合されている。モータ72にはエンコーダ73が付設されており、エンコーダ73によりx軸回りの傾斜角(回動量)が検出される。又、保持体70上には回転テーブル71が設置されており、該回転テーブルは不図示のモータ、エンコーダにより回転駆動及び回転位置の検出がなされる。   A polishing tank 64 is fixed on the x table 58. A support 66 is fixed in the polishing tank 64, and an object holding body 70 is attached to the support 66 by a shaft 68. The holding body 70 has an L shape, and a shaft 68 is connected to a vertical surface portion thereof. The shaft 68 faces the x-axis direction, and therefore the holding body 70 can be rotated around the x-axis. A motor 72 is attached to the support 66, and its drive rotation shaft is coupled to a shaft 68. An encoder 73 is attached to the motor 72, and the encoder 73 detects an inclination angle (rotation amount) around the x axis. A rotary table 71 is installed on the holding body 70, and the rotary table is rotationally driven and a rotational position is detected by a motor and an encoder (not shown).

一方、xテーブル58には研磨槽64の外側にコラム74が固定されている。コラム74には上下方向、即ちz方向のガイド76が形成されており、ガイド76に沿って上下方向に往復移動可能なように研磨工具ヘッド保持体78が取り付けられている。保持体78には研磨ヘッド80が支持されている。研磨ヘッド80は、図3(b)に示すように、回転軸81を保持し、回転軸81の下端に小径工具である円形の工具面を有する研磨工具84が保持されている。回転軸81は、図示しない駆動手段によって回転駆動され、回転軸81に保持された研磨工具84を自転させる。回転軸81の中心線を工具軸中心線Tとする。研磨工具84は、図示しないエアシリンダ等により発生された荷重に工具の自重を加えた研磨荷重が、回転軸81を介して被加工物100に当接される。   On the other hand, a column 74 is fixed to the x table 58 outside the polishing tank 64. The column 74 is formed with a guide 76 in the vertical direction, that is, in the z direction, and a polishing tool head holding body 78 is attached so as to reciprocate in the vertical direction along the guide 76. A polishing head 80 is supported on the holding body 78. As shown in FIG. 3B, the polishing head 80 holds a rotating shaft 81, and a polishing tool 84 having a circular tool surface that is a small-diameter tool is held at the lower end of the rotating shaft 81. The rotating shaft 81 is rotationally driven by a driving unit (not shown) to rotate the polishing tool 84 held on the rotating shaft 81. The center line of the rotation shaft 81 is defined as a tool axis center line T. In the polishing tool 84, a polishing load obtained by adding the weight of the tool to a load generated by an air cylinder (not shown) or the like is brought into contact with the workpiece 100 via the rotating shaft 81.

保持体78にはモータ86が取り付けられており、その駆動回転軸は研磨ヘッド80に接続されていて、研磨ヘッド80のy軸回りの回動を駆動することができる。モータ86にはエンコーダ87が付設されており、エンコーダ87によりy軸回りの傾斜角(回動量)が検出される。   A motor 86 is attached to the holding body 78, and its drive rotation shaft is connected to the polishing head 80, and can drive the rotation of the polishing head 80 about the y-axis. The motor 86 is provided with an encoder 87, and the encoder 87 detects an inclination angle (rotation amount) about the y axis.

88は保持体78をガイド76に沿って上下方向(Z方向)に移動させるための駆動手段たるモータであり、モータ88にはエンコーダ89が付設されており、エンコーダ89により保持体78のZ方向移動量が検出される。   Reference numeral 88 denotes a motor as a driving means for moving the holding body 78 in the vertical direction (Z direction) along the guide 76. The motor 88 is provided with an encoder 89, and the encoder 89 attaches the holding body 78 in the Z direction. The amount of movement is detected.

上述した研磨装置を用いて研磨を行う際には、回転テーブル71上に被加工物100を積載固定する。被加工物100は適切な前加工により所定の表面粗さ、形状精度に仕上げられているものとする。又、研磨槽64中には研磨液102が適当量注入されている。   When performing polishing using the above-described polishing apparatus, the workpiece 100 is stacked and fixed on the rotary table 71. It is assumed that the workpiece 100 is finished with a predetermined surface roughness and shape accuracy by appropriate pre-processing. An appropriate amount of polishing liquid 102 is injected into the polishing tank 64.

92は制御装置であり、エンコーダ56,62からのyテーブル移動量及びxテーブル移動量、回転テーブル71の位置を検出するエンコーダからの回転テーブル回転量が入力され、その値から、実行指令プログラムに従って工具中心が順に各加工点へ移動するように、モータ54,60、エアシリンダ88、不図示の回転テーブルのモータへ信号を出力する。本実施形態においては、加工点の移動方向(走査方向)をx軸方向へ一致させておく。モータ更に各加工点において、エンコーダ73,87によりx軸回り、y軸回りの回動量が入力され、研磨工具の被加工物表面に対する傾斜角に合致する回動量をモータ72,86に出力する。そして、研磨ヘッド80中の不図示の研磨ヘッド駆動モータ及び/又はその動きを代換するモータを駆動し、揺動方向に揺動させて実行指令プログラムに従って各加工点で決められた時間工具を滞留させ、次の加工点に順に走査させて被加工物表面全体を研磨する。   Reference numeral 92 denotes a control device which receives the y table movement amount and the x table movement amount from the encoders 56 and 62, and the rotation table rotation amount from the encoder that detects the position of the rotation table 71. Signals are output to the motors 54 and 60, the air cylinder 88, and a motor of a rotary table (not shown) so that the tool center moves to each machining point in order. In the present embodiment, the moving direction (scanning direction) of the machining point is made to coincide with the x-axis direction. Further, at each machining point, rotation amounts about the x-axis and y-axis are input by the encoders 73 and 87, and the rotation amounts matching the inclination angle of the polishing tool with respect to the workpiece surface are output to the motors 72 and 86. Then, a polishing head drive motor (not shown) in the polishing head 80 and / or a motor that replaces the movement of the polishing head 80 are driven to swing in the swing direction, and a time tool determined at each processing point according to the execution command program. The entire surface of the workpiece is polished by staying and sequentially scanning to the next processing point.

次に、研磨装置を駆動するための実行指令プログラムの算出方法を、図4のフローチャートを参照しながら説明する。又、被加工物表面の各位置の研磨工具の単位時間当たりの加工量の変化率マップの導出方法の詳細を図5に示す。   Next, a method for calculating an execution command program for driving the polishing apparatus will be described with reference to the flowchart of FIG. Further, FIG. 5 shows details of a method for deriving a change rate map of the machining amount per unit time of the polishing tool at each position on the workpiece surface.

先ず、被加工面の設計形状式、走査パターン、被加工物表面の目標とする加工量、基準とする条件での研磨工具の単位時間当たりの加工量を制御装置92のメモリ上に予め記憶させておく。   First, the design shape formula of the workpiece surface, the scanning pattern, the target machining amount of the workpiece surface, and the machining amount per unit time of the polishing tool under the reference conditions are stored in advance in the memory of the control device 92. Keep it.

記憶手段から被加工面の設計形状式を呼び出し、被加工面の設計形状曲面を算出し、メモリ上に(x,y,z)の三次元データとして記憶させる。このとき、x,yは、走査パターンから導き出した工具の加工位置(送りピッチ)とし、xy平面上に通常等間隔に配置する。又、被加工物表面全領域を均一の加工量で研磨する際の加工量と、研磨工具の単位時間当たりの加工量の変化率を求める際のある基準とする条件(例えば、研磨工具面と被加工物表面が共に平面で、研磨工具面の法線ベクトルが鉛直方向)での研磨工具の単位時間当たりの加工量から、各加工点における工具の移動速度を表す滞留時間を算出し、記憶手段に記憶させておく。   The design shape formula of the work surface is called from the storage means, the design shape curved surface of the work surface is calculated, and is stored as (x, y, z) three-dimensional data on the memory. At this time, x and y are the machining positions (feed pitch) of the tool derived from the scanning pattern, and are arranged at regular intervals on the xy plane. In addition, the processing amount when polishing the entire surface of the workpiece with a uniform processing amount, and the condition used as a reference for determining the rate of change of the processing amount per unit time of the polishing tool (for example, the polishing tool surface and Calculate and store the dwell time representing the moving speed of the tool at each machining point from the machining amount per unit time of the polishing tool when the workpiece surfaces are both flat and the normal vector of the polishing tool surface is vertical. It is memorized in the means.

次いで、被加工物表面の各位置の研磨工具の単位時間当たりの加工量の変化率マップを導出する。   Next, a change rate map of the machining amount per unit time of the polishing tool at each position on the workpiece surface is derived.

接触解析が行える汎用シミュレーションツールを用いて、図5に示すポリシャ支持部材201a、弾性体201b、ポリシャ201cのみから成る研磨工具201と、被加工物表面202のみから成るシミュレーションモデルを構築する。このモデルは、研磨工具を位置、姿勢を変化させて、研磨工具を被加工物表面上の上記各加工点に接触させた際の、研磨荷重と研磨工具が接触する領域での被加工物表面の形状から、研磨工具が被加工物表面に接触させた際の圧力の分布を、研磨工具が被加工物表面に与える研磨圧力の分布として出力できる。   Using a general-purpose simulation tool capable of performing contact analysis, a simulation model including only the polishing tool 201 including only the polisher support member 201a, the elastic body 201b, and the polisher 201c illustrated in FIG. This model shows the workpiece surface in the area where the polishing load and the polishing tool come into contact when the polishing tool is brought into contact with each processing point on the workpiece surface by changing the position and posture of the polishing tool. From this shape, the pressure distribution when the polishing tool is brought into contact with the workpiece surface can be output as the distribution of the polishing pressure applied to the workpiece surface by the polishing tool.

このモデルを用いて、前記各加工点の研磨圧力の分布を求める。研磨工具の一定の研磨運動から、研磨工具が被加工物表面に与える相対速度の分布を求める。前記各加工点の研磨圧力の分布に相対速度の分布を掛け算して、研磨工具が被加工物表面に接触する領域内での加工量の分布に比例する、研磨圧力と相対速度の積の分布を求める。この前記各加工点の研磨圧力と相対速度の積の分布を、研磨工具が被加工物表面に接触する領域内で積分して、研磨工具の単位時間当たりの加工量に比例する、研磨圧力と相対速度の積の分布の積分値を求める。この前記各加工点の研磨圧力と相対速度の積の分布の積分値を、前述のある基準とする条件(例えば、研磨工具面と被加工物表面が共に平面で、研磨工具面の法線ベクトルが鉛直方向)での値で割り算して、被加工物表面の各位置の研磨工具の単位時間当たりの加工量の変化率マップを導出する。   Using this model, the distribution of the polishing pressure at each processing point is obtained. From the constant polishing motion of the polishing tool, the distribution of the relative speed that the polishing tool gives to the workpiece surface is determined. The distribution of the product of the polishing pressure and the relative speed, which is proportional to the distribution of the processing amount in the region where the polishing tool is in contact with the workpiece surface by multiplying the distribution of the polishing pressure at each processing point by the distribution of the relative speed. Ask for. The distribution of the product of the polishing pressure and the relative speed at each processing point is integrated in a region where the polishing tool contacts the workpiece surface, and is proportional to the processing amount per unit time of the polishing tool; Find the integral value of the product distribution of relative speed. The integrated value of the distribution of the product of the polishing pressure and the relative speed at each processing point is a condition based on the above-mentioned reference (for example, the polishing tool surface and the workpiece surface are both flat, and the normal vector of the polishing tool surface Is divided by the value in the vertical direction) to derive a change rate map of the machining amount per unit time of the polishing tool at each position on the surface of the workpiece.

制御装置92のメモリ上に記憶手段から各加工点における工具の移動速度を示す滞留時間を呼び出し、同加工点における被加工物表面の各位置の研磨工具の単位時間当たりの加工量の変化率を前記マップより呼び出す。   The dwell time indicating the moving speed of the tool at each machining point is called from the storage means on the memory of the control device 92, and the rate of change of the machining amount per unit time of the polishing tool at each position on the workpiece surface at the machining point is obtained. Called from the map.

加工点ごとに呼び出された滞留時間を、被加工物表面の各位置の研磨工具の単位時間当たりの加工量の変化率で割り算し、再び記憶手段に記憶させておく。   The dwell time called for each processing point is divided by the change rate of the processing amount per unit time of the polishing tool at each position on the surface of the workpiece, and stored again in the storage means.

最後に制御装置の記憶手段に記憶させた、走査パターン及び各加工点の三次元データ、各加工点での滞留時間から工具の速度を設定し、加工時に加工装置を制御する実行指令プログラムを作成し、前述した研磨装置をこの実行指令プログラムに従って駆動することで、加工前の被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さをより長い波長まで、且つ、より効果的に平滑化する高精度な精密研磨加工(非球表面研磨)を実現する。   Finally, set the speed of the tool from the scanning pattern, 3D data of each machining point, and the dwell time at each machining point stored in the storage means of the control device, and create an execution command program to control the machining device during machining By driving the above-described polishing apparatus according to this execution command program, the waviness and surface roughness can be increased to a longer wavelength and more effective without destroying the overall shape of the workpiece surface before processing. Realize high-precision precision polishing (non-spherical surface polishing) that smoothes the surface.

本発明の実施例を以下に示す。   Examples of the present invention are shown below.

軸対称の非球面形状を、従来の各加工点における研磨工具の単位時間当たりの加工量が一定とした場合と、本発明による研磨工具の単位時間当たりの加工量の変化率を予測し、滞留時間に補正を加えた場合を比較して示す。   Axisymmetric aspherical shape, when the machining amount per unit time of the polishing tool at each machining point in the past is constant, and the rate of change of the machining amount per unit time of the polishing tool according to the present invention is predicted to stay The case where correction is added to time is shown in comparison.

対象とした光学素子は、光線有効径160mm、凹面の非球面であり、非球面量は約1.8mmである。   The target optical element has a light beam effective diameter of 160 mm, a concave aspheric surface, and the aspheric amount is about 1.8 mm.

研磨工具の径はφ25mmであり、研磨工具の一定の研磨運動は自転運動であり、その速度は20Hzであり、研磨荷重は750gfである。   The diameter of the polishing tool is φ25 mm, the constant polishing motion of the polishing tool is a rotation motion, the speed is 20 Hz, and the polishing load is 750 gf.

計算の結果、研磨工具の単位時間当たりの加工量の変化率は最大で基準とする条件(研磨工具面と被加工物表面が共に平面で、研磨工具面の法線ベクトルが鉛直方向)の1.32倍となった。半径方向の各加工位置の研磨工具の単位時間当たりの加工量の変化率マップを図7に示す。   As a result of the calculation, the rate of change of the processing amount per unit time of the polishing tool is 1 at the maximum (the polishing tool surface and the workpiece surface are both flat and the normal vector of the polishing tool surface is vertical). It was 32 times. FIG. 7 shows a change rate map of the machining amount per unit time of the polishing tool at each machining position in the radial direction.

従来の各加工点における研磨工具の単位時間当たりの加工量が一定とした場合の加工前後の被加工物表面の差形状を図8、本発明による研磨工具の単位時間あたりの加工量の変化率を予測し、滞留時間に補正を加えた場合の加工前後の被加工物表面の差形状を図9に示す。   FIG. 8 shows the difference in shape of the workpiece surface before and after processing when the processing amount per unit time of the polishing tool at each conventional processing point is constant. FIG. 8 shows the change rate of the processing amount per unit time of the polishing tool according to the present invention. FIG. 9 shows a difference shape on the surface of the workpiece before and after machining when the dwell time is predicted and the dwell time is corrected.

加工前の全体的な形状を全く崩していない場合は、被加工物表面上の各位置での加工量は均一となるため、この差形状は平面に近いほど好ましい。   When the overall shape before processing is not destroyed at all, the amount of processing at each position on the surface of the workpiece is uniform, so the difference shape is preferably closer to a plane.

両者を比較した結果、図8の従来の方法における加工前後の被加工物表面の差形状は、図6に示した研磨工具の単位時間当たりの加工量の変化率マップに良く似たプロファイルを持つ凸面形状となった。被加工物表面の各位置での加工量の最大値、最小値の差は約420nmと大きい。   As a result of comparing both, the difference shape of the workpiece surface before and after machining in the conventional method of FIG. 8 has a profile very similar to the change rate map of the machining amount per unit time of the polishing tool shown in FIG. It became a convex shape. The difference between the maximum value and the minimum value of the processing amount at each position on the workpiece surface is as large as about 420 nm.

一方、図9の本発明の方法による加工前後の被加工物表面の差形状は、従来の方法と同様に、図6に示した研磨工具の単位時間当たりの加工量の変化率マップに良く似たプロファイルを持つ凸面形状となったものの、被加工物表面の各位置での加工量の最大値、最小値の差は約200nmと、従来の方法に比べて小さくなっていることが確認できる。   On the other hand, the difference shape of the workpiece surface before and after machining by the method of the present invention in FIG. 9 is similar to the change rate map of the machining amount per unit time of the polishing tool shown in FIG. It can be confirmed that the difference between the maximum value and the minimum value of the processing amount at each position on the surface of the workpiece is about 200 nm, which is smaller than the conventional method.

又、被加工物表面のうねりと表面粗さに対しても、本発明による方法は、従来の方法と同様の高い平滑化の効果が発揮されていることが確認できた。   It was also confirmed that the method according to the present invention exhibited the same smoothing effect as the conventional method with respect to the waviness and surface roughness of the workpiece surface.

研磨工具の構成図である。It is a block diagram of a polishing tool. 研磨圧力、相対速度と加工量の関係図である。It is a related figure of grinding pressure, relative speed, and processing amount. 研磨装置の斜視図である。It is a perspective view of a polish device. 実行指令プログラムの算出方法を示す図である。It is a figure which shows the calculation method of an execution command program. 研磨工具の単位時間当たりの加工量の変化率マップの導出方法を示す図である。It is a figure which shows the derivation | leading-out method of the change rate map of the processing amount per unit time of an abrasive tool. 研磨工具のシミュレーションモデルを示す図である。It is a figure which shows the simulation model of an abrasive tool. 研磨工具の単位時間当たりの加工量の変化率マップである。It is a change rate map of the processing amount per unit time of an abrasive tool. 従来方法の形状崩れを示す図である。It is a figure which shows the shape collapse of the conventional method. 本発明の方法の形状崩れを示す図である。It is a figure which shows the shape collapse of the method of this invention.

符号の説明Explanation of symbols

50 ベッド
52 yテーブル
56 エンコダ
58 xテーブル
60 モータ
62 エンコーダ
64 研磨槽
66 支持体
70 保持体
71 回転テーブル
80 研磨ヘッド
81 回転軸
84 研磨工具
87 エンコーダ
88 モータ
50 bed 52 y table 56 encoder 58 x table 60 motor 62 encoder 64 polishing tank 66 support 70 holding body 71 rotating table 80 polishing head 81 rotating shaft 84 polishing tool 87 encoder 88 motor

Claims (3)

被加工物表面上を予め決められた研磨工具の走査パターン上で、小径で一定の研磨運動を行う研磨工具を、研磨工具の工具軸中心方向に荷重を与えながら連続的に走査させて、順次加工点を研磨運動しながら被加工物を研磨する研磨装置であって、研磨工具の単位時間当たりの加工量が一定として、研磨工具を一定の速度で走査し、被加工物表面上の全領域を均等な加工量で研磨することで、加工前の被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さを平滑化することを目的とする研磨方法において、
研磨工具の径が大きく、被加工物表面上での加工量が大きい加工条件で、被加工物表面上の各位置の研磨工具の単位時間当たりの加工量の変化率を予測し、その予測値に基づいて被加工物表面上の各位置で加工パラメータに補正を加えることで、加工前の被加工物表面の全体的な形状を崩すことなく、うねり、表面粗さをより長い波長まで、且つ、より効果的に平滑化することを特徴とするうねり除去研磨方法。
A polishing tool that performs a constant polishing motion with a small diameter on the workpiece surface on a predetermined polishing tool scanning pattern is continuously scanned while applying a load in the direction of the center of the tool axis of the polishing tool. A polishing device that polishes a workpiece while polishing a processing point, and the entire amount on the surface of the workpiece is scanned by scanning the polishing tool at a constant speed with a constant processing amount of the polishing tool per unit time. In the polishing method aimed at smoothing the undulation and surface roughness without breaking the overall shape of the workpiece surface before processing, by polishing with a uniform processing amount,
Predict the rate of change of the machining amount per unit time of the polishing tool at each position on the workpiece surface under machining conditions where the diameter of the abrasive tool is large and the machining amount on the workpiece surface is large. By correcting the processing parameters at each position on the workpiece surface based on the above, undulation, surface roughness to a longer wavelength without breaking the overall shape of the workpiece surface before processing, and A waviness removal polishing method characterized by smoothing more effectively.
被加工物表面上の各位置の研磨工具の単位時間当たりの加工量の変化率を、被加工物表面上の各位置で、実加工と同様の条件で、研磨工具を被加工物表面に接触させた場合の、研磨工具面が被加工物表面に与える研磨圧力の分布から予測することを特徴とする請求項1記載のうねり除去研磨方法。   The rate of change of the processing amount per unit time of the polishing tool at each position on the workpiece surface is contacted with the workpiece surface at each position on the workpiece surface under the same conditions as actual machining. 2. The undulation removal polishing method according to claim 1, wherein the polishing tool surface is predicted from the distribution of polishing pressure applied to the surface of the workpiece when the polishing tool surface is applied. 被加工物表面上の各位置の加工パラメータの補正を、予測された研磨工具の単位時間当たりの加工量の変化率に基づいて、研磨工具を走査する速度を変化させることで行うことを特徴とする請求項1記載のうねり除去研磨方法。   The correction of the processing parameters at each position on the workpiece surface is performed by changing the scanning speed of the polishing tool based on the predicted change rate of the processing amount per unit time of the polishing tool. The swell removal polishing method according to claim 1.
JP2005003644A 2005-01-11 2005-01-11 Wave removal polishing method Withdrawn JP2006192511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003644A JP2006192511A (en) 2005-01-11 2005-01-11 Wave removal polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003644A JP2006192511A (en) 2005-01-11 2005-01-11 Wave removal polishing method

Publications (1)

Publication Number Publication Date
JP2006192511A true JP2006192511A (en) 2006-07-27

Family

ID=36798968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003644A Withdrawn JP2006192511A (en) 2005-01-11 2005-01-11 Wave removal polishing method

Country Status (1)

Country Link
JP (1) JP2006192511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658811A (en) * 2020-12-18 2021-04-16 中国人民解放军国防科技大学 Method for controlling error effect of CCOS (complementary color operating System) shape modification edge
CN114871886A (en) * 2021-12-18 2022-08-09 华海清科股份有限公司 Wafer processing method, system and terminal equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658811A (en) * 2020-12-18 2021-04-16 中国人民解放军国防科技大学 Method for controlling error effect of CCOS (complementary color operating System) shape modification edge
CN112658811B (en) * 2020-12-18 2022-05-24 湖南省产业技术协同创新研究院 Method for controlling CCOS (computer-controlled optical operating System) shape-modifying edge error effect
CN114871886A (en) * 2021-12-18 2022-08-09 华海清科股份有限公司 Wafer processing method, system and terminal equipment
CN114871886B (en) * 2021-12-18 2024-02-02 华海清科股份有限公司 Wafer processing method, system and terminal equipment

Similar Documents

Publication Publication Date Title
KR101155055B1 (en) Raster cutting technology for ophthalmic lenses
KR100644144B1 (en) A polishing machine and method
JP6000643B2 (en) Workpiece processing method, and optical element, mold, and semiconductor substrate processed by the processing method
JP5610800B2 (en) Optical element manufacturing method
JP3890186B2 (en) Polishing method, optical element and mold for molding optical element
JP4576255B2 (en) Tool whetstone shape creation method
JPH0253557A (en) Method and device for working non-spherical body
JPH0929598A (en) Processing device for aspheric surface shape object
JP4668872B2 (en) Grinding method and grinding apparatus
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP4702765B2 (en) Vibration polishing method and apparatus
Liao et al. Deterministic measurement and correction of the pad shape in full-aperture polishing processes
JP2006192511A (en) Wave removal polishing method
JP2005279902A (en) Polishing device and polishing method
JP4906043B2 (en) Polishing method
JP3652163B2 (en) Polishing method
JP2011020241A (en) Polishing method
KR100805524B1 (en) Apparatus and method for grinding and polishing without tilting axis
JP2011036974A (en) Polishing method and polishing device
JP4743649B2 (en) Curved surface polishing apparatus and curved surface polishing method
JP2001334460A (en) Polishing method
JP4027171B2 (en) Polishing method
JP2000237931A (en) Curved surface working method
JP2009090414A (en) Spherical surface grinding method for lens
JP2005161410A (en) Curved surface polishing device and curved surface polishing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401