JP2000237931A - Curved surface working method - Google Patents

Curved surface working method

Info

Publication number
JP2000237931A
JP2000237931A JP11041688A JP4168899A JP2000237931A JP 2000237931 A JP2000237931 A JP 2000237931A JP 11041688 A JP11041688 A JP 11041688A JP 4168899 A JP4168899 A JP 4168899A JP 2000237931 A JP2000237931 A JP 2000237931A
Authority
JP
Japan
Prior art keywords
tool
curved surface
workpiece
curvature
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041688A
Other languages
Japanese (ja)
Inventor
Hidetoshi Sakae
英利 寒河江
Kenichi Ichikawa
憲一 市川
Hiroyuki Endo
弘之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11041688A priority Critical patent/JP2000237931A/en
Publication of JP2000237931A publication Critical patent/JP2000237931A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and accurately work a free curved surface by previously working a dummy work having a circular cross section of the same curvature radius as the minimum curvature radius among the circular arc approximation, and deciding the tool feeding speed, the number of revolution of the tool and response condition of the load control. SOLUTION: Traverse direction is decided (step S01), and the locus of a tool contact point is obtained (step S102). Circular arc is approximated in each block, and the minimum curvature radius is obtained (step S103), and a dummy work having a cylinder surface, of which curvature radius is set at the minimum curvature radius, and made of the same raw material as a work is used to decide the tool feeding speed and the number of revolution of the tool as working condition for obtaining the satisfied surface roughness as a target in polishing of work (step S104). Tool feeding speed in each operation block is decided on the basis of a ratio of the approximate curvature radius to the minimum curvature radius in each operation block (step S108). Finally, the number N of revolution of the tool is decided (step S109).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、曲面加工方法に関
し、詳細には、曲面形状を光学部品として使用可能な鏡
面に仕上げる曲面加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved surface processing method, and more particularly to a curved surface processing method for finishing a curved surface into a mirror surface usable as an optical component.

【0002】[0002]

【従来の技術】従来、長手方向と短手方向にそれぞれ曲
率半径の異なるトーリックレンズ、断面が比円弧となる
変形トーリックレンズまたはその金型磨き加工法として
は、特開昭62−246467号公報に記載されている
ように、金型の研磨において、金型の周囲にこの金型の
周囲と同じ高さの補助型を嵌合し、研磨作業の開始、終
了あるいは加工方向の切換を前記補助型上で行わせる研
磨方法がある。すなわち、従来は、小径工具を一定の力
で押し付け、これを走査する研磨方式が広く用いられて
いる。
2. Description of the Related Art Conventionally, a toric lens having a different curvature radius in a longitudinal direction and a lateral direction, a deformed toric lens having a cross section of a specific circular arc, or a mold polishing method therefor is disclosed in Japanese Patent Application Laid-Open No. Sho 62-246467. As described, in the polishing of the mold, an auxiliary die having the same height as the periphery of the die is fitted around the die, and the start, end, or switching of the processing direction of the polishing operation is performed by the auxiliary die. There is a polishing method performed above. That is, in the related art, a polishing method in which a small-diameter tool is pressed with a constant force and scanned therewith is widely used.

【0003】このような従来の研磨方法においては、工
具の姿勢あるいは工具の回転軸が被加工面の法線に対し
て常に一定の角度をなすように制御することにより形状
精度を上げることができる。
In such a conventional polishing method, the accuracy of the shape can be improved by controlling the posture of the tool or the rotation axis of the tool so as to always make a constant angle with respect to the normal to the surface to be processed. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の曲面加工技術にあっては、形状精度を向上さ
せるために、工具の姿勢あるいは工具の回転軸が被加工
面の法線に対して常に一定の角度をなすように制御して
いる。
However, in such a conventional curved surface machining technique, in order to improve the shape accuracy, the position of the tool or the rotation axis of the tool is set with respect to the normal line of the surface to be processed. It is controlled so that it always makes a certain angle.

【0005】このような姿勢制御を行うと、確かに被加
工物の加工面の傾斜角に関わらず、加工点における研磨
工具の法線方向荷重を一定にすることができるが、この
ような姿勢制御を行うためには、工具荷重軸の他に、特
開平9−323252号公報に開示されているようなX
Y直交2軸、AB回転2軸というような4軸同時制御、
あるいは、特開平6−126607に開示されているよ
うなXY直交2軸、A回転1軸というような同時3軸制
御を行う必要がある。
By performing such an attitude control, the load in the normal direction of the polishing tool at the processing point can be made constant regardless of the inclination angle of the processing surface of the workpiece. In order to perform the control, in addition to the tool load axis, an X as disclosed in Japanese Patent Application Laid-Open No. 9-323252 is used.
4-axis simultaneous control such as Y orthogonal 2 axes, AB rotation 2 axes,
Alternatively, it is necessary to perform simultaneous three-axis control such as two axes of XY orthogonal and one axis of A rotation as disclosed in JP-A-6-126607.

【0006】ところが、4軸同時制御あるいは同時3軸
制御を行うと、装置が複雑化、大型化するとともに、こ
れらの装置を使用して、工具を走査し研磨加工や切削ま
たは研削加工を行うためには、NCプログラムが必要で
あるが、チルト動作と平行移動動作を同時に行う複雑な
プログラムを作成する必要があり、このような複雑なプ
ログラムを作成するには、専用のCAM(Computer Aid
ed Manufacturing)装置がないと、膨大な手間と作業時
間を必要とし、作業性が悪いとともに、コストが高くつ
くという問題があった。
However, when the simultaneous control of four axes or the simultaneous control of three axes is performed, the apparatus becomes complicated and large in size. In addition, these apparatuses are used to scan a tool to perform polishing, cutting, or grinding. Requires an NC program. However, it is necessary to create a complicated program that performs a tilt operation and a parallel movement operation at the same time. To create such a complicated program, a dedicated CAM (Computer Aid
Without ed Manufacturing), there was a problem that enormous labor and work time were required, workability was poor, and cost was high.

【0007】そこで、請求項1記載の発明は、被加工物
よりも小径の工具を軸心の回りに所定の工具回転数で回
転させながら工具の荷重を略一定にして所定の軌跡上を
所定の工具送り速度で走査させて曲面を加工するに際し
て、工具の被加工物の被加工面に対する接触軌跡を円弧
近似し、当該円弧近似のうち最小曲率半径と同じ曲率半
径の円弧断面を有するダミー加工物を予備加工して、工
具送り速度、工具回転数及び荷重制御の応答条件を決定
し、当該決定した工具送り速度、工具回転数及び荷重制
御の応答条件に基づいて被加工物を加工することによ
り、4軸制御などの複雑な装置と加工プログラムを用い
ることなく、工具荷重軸と直交2軸のNCテーブルで構
成される従来の簡単な曲面加工装置を用いて、安価に、
かつ、簡単に自由曲面を正確に加工することのできる曲
面加工方法を提供することを目的としている。
In view of the above, according to the first aspect of the present invention, while rotating a tool having a smaller diameter than the workpiece at a predetermined rotational speed around the axis, the load of the tool is made substantially constant and a predetermined locus is formed on a predetermined locus. When machining a curved surface by scanning at a tool feed speed of a tool, the contact locus of the tool with the workpiece is approximated by an arc, and the dummy machining having an arc cross section having the same radius of curvature as the minimum radius of curvature in the arc approximation. Preliminarily processing the object, determining the tool feed speed, tool rotation speed and load control response condition, and processing the workpiece based on the determined tool feed speed, tool rotation speed and load control response condition. Therefore, without using a complicated device such as four-axis control and a machining program, a conventional simple curved surface machining device composed of an NC table of two axes orthogonal to the tool load axis can be used at low cost.
Another object of the present invention is to provide a curved surface processing method capable of easily and accurately processing a free curved surface.

【0008】請求項2記載の発明は、被加工物よりも小
径の工具を軸心の回りに所定の工具回転数で回転させな
がら工具の荷重を略一定にして所定の軌跡上を所定の工
具送り速度で走査させて曲面を加工するに際して、工具
の被加工物の被加工面に対する接触軌跡を円弧近似し、
当該円弧近似のうち最小曲率半径を求め、各種曲率半径
の円弧断面を有するダミ−加工物を予め予備加工して決
定した工具送り速度、工具回転数及び荷重制御の応答条
件のデータベースから、最小曲率半径に基づいて工具送
り速度、工具回転数及び荷重制御の応答条件を読み出
し、当該読み出した工具送り速度、工具回転数及び荷重
制御の応答条件に基づいて被加工物を加工することによ
り、4軸制御などの複雑な装置と加工プログラムを用い
ることなく、工具荷重軸と直交2軸のNCテーブルで構
成される従来の簡単な曲面加工装置を用いて、工具送り
速度、工具回転数及び荷重制御の応答条件を速やかに決
定し、安価に、かつ、より一層簡単に自由曲面を正確に
加工することのできる曲面加工方法を提供することを目
的としている。
According to a second aspect of the present invention, while rotating a tool smaller in diameter than the workpiece at a predetermined tool rotation speed around the axis, the load of the tool is made substantially constant and a predetermined tool is moved on a predetermined trajectory. When scanning a curved surface by scanning at the feed rate, the contact trajectory of the tool with the workpiece to the workpiece surface is approximated by an arc,
From the arc approximation, the minimum radius of curvature is determined, and the minimum curvature is determined from a database of the tool feed speed, the tool rotation speed, and the response condition of load control determined by preliminarily preliminarily processing a dummy workpiece having an arc cross section of various curvature radii. By reading the tool feed speed, tool rotation speed and load control response condition based on the radius, and processing the workpiece based on the read tool feed speed, tool rotation speed and load control response condition, the 4-axis Without using complicated equipment such as control and machining programs, using a conventional simple curved surface machining device consisting of an NC table with two axes perpendicular to the tool load axis, tool feed speed, tool rotation speed and load control It is an object of the present invention to provide a curved surface processing method capable of quickly determining a response condition, and more accurately and easily processing a free-form surface at low cost.

【0009】請求項3記載の発明は、荷重制御の応答条
件として、工具の荷重制御のステップ指令値に対する立
ち上がり時間とオーバーシュート量を用いることによ
り、オペレータの習熟度に関わらず、工具送り速度を変
更せず、かつ、形状の劣化を抑制しつつ、加工を行い、
安価に、かつ、簡単に自由曲面を正確に加工することの
できる曲面加工方法を提供することを目的としている。
According to a third aspect of the present invention, the rise time and the overshoot amount with respect to the step command value of the load control of the tool are used as the response conditions of the load control. Processing without changing, while suppressing the deterioration of the shape,
It is an object of the present invention to provide a curved surface processing method capable of easily and accurately processing a free-form surface at low cost.

【0010】請求項4記載の発明は、最小曲率半径以外
の他の曲率半径の接触軌跡の工具送り速度を、当該接触
軌跡の曲率半径と最小曲率半径との比に基づいて決定す
ることにより、曲率半径の大きさに比例して工具送り速
度を速め、より加工能率の高い加工を行うとともに、不
要な高い周期の表面うねりに対する追従遅れを強めて、
表面うねりの除去性能を向上させ、より一層精度良く自
由曲面を加工することのできる曲面加工方法を提供する
ことを目的としている。
According to a fourth aspect of the present invention, a tool feed speed of a contact locus having a radius of curvature other than the minimum radius of curvature is determined based on a ratio between the radius of curvature of the contact locus and the minimum radius of curvature. The tool feed speed is increased in proportion to the radius of curvature to increase the machining efficiency, and to increase the delay in following unnecessary high-period surface undulations.
It is an object of the present invention to provide a curved surface processing method capable of improving a surface undulation removal performance and processing a free-form surface with higher accuracy.

【0011】請求項5記載の発明は、工具の走査とし
て、X軸方向またはY軸方向の直線動作と当該直線動作
を行うためのY軸方向またはX軸方向への所定幅の折り
返し動作とを行い、円弧近似を行う接触軌跡として、当
該折り返し動作を除いた1軸方向の直線動作のみの走査
の軌跡を採用することにより、同時2軸送りに比較して
機械的運動誤差を入りにくくして、汎用の精度の加工機
でより高精度な加工を行えるようにするとともに、研磨
工具を走査するNCプログラムをより簡単かつ短時間に
作成可能として、より一層安価に、かつ、簡単に自由曲
面を正確に加工することのできる曲面加工方法を提供す
ることを目的としている。
According to a fifth aspect of the present invention, the scanning of the tool includes a linear motion in the X-axis direction or the Y-axis direction and a folding operation of a predetermined width in the Y-axis direction or the X-axis direction for performing the linear motion. By adopting a scanning trajectory of only one-axis linear motion excluding the turning operation as a contact trajectory for performing circular arc approximation, it is possible to reduce a mechanical motion error as compared with simultaneous two-axis feeding. In addition to enabling general-purpose precision processing machines to perform higher-precision processing, NC programs for scanning polishing tools can be created more easily and in a shorter time, making free-form surfaces easier and cheaper. It is an object of the present invention to provide a curved surface processing method capable of processing accurately.

【0012】請求項6記載の発明は、工具の走査とし
て、X軸方向またはY軸方向の直線動作と当該直線動作
を行うためのY軸方向またはX軸方向への所定幅の折り
返し動作とを行い、工具の接触軌跡の円弧近似を、直線
動作軸と当該直線動作軸と直交し工具の被加工物の被加
工面への荷重付与軸とのなす面内に工具軌跡を投影し、
当該投影した工具軌跡を最小二乗法で近似して求めるこ
とにより、接触軌跡が工具荷重軸方向から見て曲がりを
生じるような場合にも、荷重制御の応答に対応した曲率
半径を容易かつ正確に求め、より一層正確に自由曲面を
加工することのできる曲面加工方法を提供することを目
的としている。
According to a sixth aspect of the present invention, the scanning of the tool includes a linear motion in the X-axis direction or the Y-axis direction and a folding operation of a predetermined width in the Y-axis direction or the X-axis direction for performing the linear motion. Performing the circular arc approximation of the contact trajectory of the tool, projecting the tool trajectory in a plane formed by a linear motion axis and an axis for applying a load to the work surface of the workpiece orthogonal to the linear motion axis,
By approximating the projected tool trajectory by the least square method, even when the contact trajectory bends when viewed from the tool load axis direction, the radius of curvature corresponding to the load control response can be easily and accurately determined. It is an object of the present invention to provide a curved surface processing method capable of processing a free-form surface more precisely.

【0013】請求項7記載の発明は、被加工物の被加工
面が凸曲面と凹曲面が混在する場合、工具軌跡を当該凸
曲面と凹曲面の変極点で分割し、凸曲面の工具軌跡と凹
曲面の工具軌跡のそれぞれについて円弧近似を行うこと
により、工具軌跡が凸の円弧と凹の円弧をなすような複
雑な自由曲面においても、高い形状精度の加工を行うこ
とのできる曲面加工方法を提供することを目的としてい
る。
According to a seventh aspect of the present invention, in the case where the workpiece surface of the workpiece includes both a convex curved surface and a concave curved surface, the tool trajectory is divided by the inflection points of the convex curved surface and the concave curved surface, and the tool trajectory of the convex curved surface is divided. Surface machining method that can perform high-shape precision machining even on a complex free-form surface where the tool path forms a convex arc and a concave arc by performing arc approximation for each of the tool trajectory and the concave curved surface. It is intended to provide.

【0014】請求項8記載の発明は、曲面加工方法を、
被加工物の被加工面の研磨加工に適用することにより、
4軸制御などの複雑な装置と加工プログラムを用いるこ
となく、研磨荷重軸と直交2軸のNCテーブルで構成さ
れる従来の簡単な曲面研磨装置を用いて、工具送り速
度、工具回転数及び荷重制御の応答条件を速やかに決定
し、安価に、かつ、より一層簡単に自由曲面を正確に研
磨加工することのできる曲面加工方法を提供することを
目的としている。
According to an eighth aspect of the present invention, there is provided a curved surface processing method comprising:
By applying to the polishing of the work surface of the work,
Without using a complicated device such as 4-axis control and a machining program, using a conventional simple curved surface polishing device composed of an NC table having two axes orthogonal to the polishing load axis, the tool feed speed, the number of rotations of the tool and the load are used. It is an object of the present invention to provide a curved surface processing method capable of quickly determining a control response condition and inexpensively and easily polishing a free-form surface more accurately.

【0015】請求項9記載の発明は、曲面加工方法を、
被加工物の被加工面の切削または研削加工に適用するこ
とにより、工具荷重軸の定寸の切り込み軸に置き換えた
加工機構成に容易に適用して、自由曲面の創成加工を高
精度に行い、表面うねりを抑制しつつ、高精度に切削ま
たは研削加工を行うことのできる曲面加工方法を提供す
ることを目的としている。
According to a ninth aspect of the present invention, there is provided a curved surface processing method comprising:
By applying to cutting or grinding of the work surface of the work piece, it can be easily applied to the processing machine configuration that is replaced with a cutting axis with a fixed size of the tool load axis, and the free-form surface can be created with high precision. It is another object of the present invention to provide a curved surface processing method capable of performing cutting or grinding with high accuracy while suppressing surface waviness.

【0016】[0016]

【課題を解決するための手段】請求項1記載の発明の曲
面加工方法は、被加工物よりも小径の工具を所定の軸心
の回りに所定の工具回転数で回転させながら工具の荷重
を略一定にして所定の軌跡上を所定の工具送り速度で走
査させて曲面を加工する曲面加工方法において、前記工
具の前記被加工物の被加工面に対する接触軌跡を円弧近
似し、当該円弧近似のうち最小曲率半径と同じ曲率半径
の円弧断面を有するダミー加工物を予備加工して、工具
送り速度、工具回転数及び荷重制御の応答条件を決定
し、当該決定した工具送り速度、工具回転数及び荷重制
御の応答条件に基づいて前記被加工物を加工することに
より、上記目的を達成している。
According to a first aspect of the present invention, there is provided a curved surface machining method, wherein a tool having a smaller diameter than a workpiece is rotated around a predetermined axis at a predetermined number of tool rotations to reduce a load of the tool. In a curved surface machining method of machining a curved surface by scanning a predetermined trajectory at a predetermined tool feed speed while maintaining a substantially constant, a contact trajectory of the tool with respect to a workpiece surface of the workpiece is circularly approximated, and the circular arc approximation is performed. Of these, a dummy workpiece having an arc cross section having the same radius of curvature as the minimum radius of curvature is preliminarily processed, and a tool feed speed, a tool rotation speed, and response conditions of load control are determined, and the determined tool feed speed, tool rotation speed and The above object is achieved by processing the workpiece based on a load control response condition.

【0017】上記構成によれば、被加工物よりも小径の
工具を軸心の回りに所定の工具回転数で回転させながら
工具の荷重を略一定にして所定の軌跡上を所定の工具送
り速度で走査させて曲面を加工するに際して、工具の被
加工物の被加工面に対する接触軌跡を円弧近似し、当該
円弧近似のうち最小曲率半径と同じ曲率半径の円弧断面
を有するダミー加工物を予備加工して、工具送り速度、
工具回転数及び荷重制御の応答条件を決定し、当該決定
した工具送り速度、工具回転数及び荷重制御の応答条件
に基づいて被加工物を加工するので、4軸制御などの複
雑な装置と加工プログラムを用いることなく、工具荷重
軸と直交2軸のNCテーブルで構成される従来の簡単な
曲面加工装置を用いて、安価に、かつ、簡単に自由曲面
を正確に加工することができる。
According to the above construction, while rotating the tool smaller in diameter than the workpiece at a predetermined tool rotation speed around the axis, the load of the tool is made substantially constant, and the predetermined tool feed speed is set on a predetermined trajectory. When machining a curved surface by scanning with a tool, the contact trajectory of the tool with the workpiece is approximated by a circular arc, and a dummy workpiece having an arc cross section having the same radius of curvature as the minimum radius of curvature of the circular arc approximation is preliminarily processed. And the tool feed rate,
The tool rotation speed and load control response conditions are determined, and the workpiece is processed based on the determined tool feed speed, tool rotation speed, and load control response conditions. Without using a program, a free-form surface can be accurately machined easily and inexpensively by using a conventional simple surface machining apparatus composed of an NC table having two axes perpendicular to the tool load axis.

【0018】請求項2記載の発明の曲面加工方法は、被
加工物よりも小径の工具を所定の軸心の回りに所定の工
具回転数で回転させながら工具の荷重を略一定にして所
定の軌跡上を所定の工具送り速度で走査させて曲面を加
工する曲面加工方法において、前記工具の前記被加工物
の被加工面に対する接触軌跡を円弧近似し、当該円弧近
似のうち最小曲率半径を求め、各種曲率半径の円弧断面
を有するダミ−加工物を予め予備加工して決定した工具
送り速度、工具回転数及び荷重制御の応答条件のデータ
ベースから、前記最小曲率半径に基づいて工具送り速
度、工具回転数及び荷重制御の応答条件を読み出し、当
該読み出した工具送り速度、工具回転数及び荷重制御の
応答条件に基づいて前記被加工物を加工することによ
り、上記目的を達成している。
According to a second aspect of the present invention, there is provided a curved surface machining method in which a tool having a smaller diameter than a workpiece is rotated around a predetermined axis at a predetermined number of tool revolutions while the load of the tool is kept substantially constant. In a curved surface machining method for machining a curved surface by scanning a trajectory at a predetermined tool feed speed, a contact trajectory of the tool with respect to a workpiece surface of the workpiece is circularly approximated, and a minimum radius of curvature of the circular arc approximation is obtained. From a database of tool feed speeds, tool rotation speeds and load control response conditions determined in advance by pre-machining a dummy workpiece having an arc cross section of various curvature radii, a tool feed speed, a tool based on the minimum radius of curvature, The above object has been achieved by reading the response conditions of the rotation speed and the load control and processing the workpiece based on the read tool feed speed, the tool rotation speed and the response conditions of the load control. There.

【0019】上記構成によれば、被加工物よりも小径の
工具を軸心の回りに所定の工具回転数で回転させながら
工具の荷重を略一定にして所定の軌跡上を所定の工具送
り速度で走査させて曲面を加工するに際して、工具の被
加工物の被加工面に対する接触軌跡を円弧近似し、当該
円弧近似のうち最小曲率半径を求め、各種曲率半径の円
弧断面を有するダミ−加工物を予め予備加工して決定し
た工具送り速度、工具回転数及び荷重制御の応答条件の
データベースから、最小曲率半径に基づいて工具送り速
度、工具回転数及び荷重制御の応答条件を読み出し、当
該読み出した工具送り速度、工具回転数及び荷重制御の
応答条件に基づいて被加工物を加工するので、4軸制御
などの複雑な装置と加工プログラムを用いることなく、
工具荷重軸と直交2軸のNCテーブルで構成される従来
の簡単な曲面加工装置を用いて、工具送り速度、工具回
転数及び荷重制御の応答条件を速やかに決定して、安価
に、かつ、より一層簡単に自由曲面を正確に加工するこ
とができる。
According to the above construction, while rotating the tool smaller in diameter than the workpiece at the predetermined tool rotation speed around the axis, the load of the tool is made substantially constant, and the predetermined tool feed speed is set on the predetermined trajectory. When machining a curved surface by scanning with a tool, the contact locus of the workpiece with the workpiece is approximated by an arc, the minimum radius of curvature is determined from the arc approximation, and a dummy workpiece having an arc cross section having various radii of curvature is obtained. The tool feed speed, the tool rotation speed and the response condition of the load control are read out based on the minimum radius of curvature from the database of the tool feed speed, the tool rotation speed and the response condition of the load control determined by preliminary machining in advance. Since the workpiece is machined based on the tool feed speed, tool rotation speed and load control response conditions, it does not require complicated equipment such as 4-axis control and machining programs,
Using a conventional simple curved surface processing device composed of a tool load axis and an NC table of two orthogonal axes, the tool feed speed, tool rotation speed and response conditions of load control are quickly determined, and inexpensively, and The free-form surface can be more accurately processed more easily.

【0020】上記各場合において、例えば、請求項3に
記載するように、前記曲面加工方法は、前記荷重制御の
応答条件として、前記工具の荷重制御のステップ指令値
に対する立ち上がり時間とオーバーシュート量を用いる
ものであってもよい。
In each of the above cases, for example, as set forth in claim 3, the curved surface machining method includes, as response conditions of the load control, a rise time and an overshoot amount with respect to a step command value of the load control of the tool. It may be used.

【0021】上記構成によれば、荷重制御の応答条件と
して、工具の荷重制御のステップ指令値に対する立ち上
がり時間とオーバーシュート量を用いているので、オペ
レータの習熟度に関わらず、工具送り速度を変更せず、
かつ、形状の劣化を抑制しつつ、加工を行うことがで
き、安価に、かつ、簡単に自由曲面を正確に加工するこ
とができる。
According to the above configuration, since the rise time and the overshoot amount with respect to the step command value of the load control of the tool are used as the response conditions of the load control, the tool feed speed is changed regardless of the skill level of the operator. Without
In addition, the processing can be performed while suppressing the deterioration of the shape, and the free-form surface can be accurately and easily processed at low cost.

【0022】また、例えば、請求項4に記載するよう
に、前記曲面加工方法は、前記最小曲率半径以外の他の
曲率半径の接触軌跡の工具送り速度を、当該接触軌跡の
曲率半径と前記最小曲率半径との比に基づいて決定する
ものであってもよい。
For example, in the curved surface machining method, the tool feed speed of a contact trajectory having a radius of curvature other than the minimum radius of curvature may be determined by changing the tool feed speed of the contact trajectory to the radius of curvature of the contact trajectory. It may be determined based on the ratio to the radius of curvature.

【0023】上記構成によれば、最小曲率半径以外の他
の曲率半径の接触軌跡の工具送り速度を、当該接触軌跡
の曲率半径と最小曲率半径との比に基づいて決定するの
で、曲率半径の大きさに比例して工具送り速度を速め、
より加工能率の高い加工を行うことができるとともに、
不要な高い周期の表面うねりに対する追従遅れを強め
て、表面うねりの除去性能を向上させることができ、よ
り一層精度良く自由曲面を加工することができる。
According to the above configuration, the tool feed speed of the contact locus having a radius of curvature other than the minimum radius of curvature is determined based on the ratio between the radius of curvature of the contact locus and the minimum radius of curvature. Increase the tool feed speed in proportion to the size,
Higher processing efficiency can be achieved, and
It is possible to enhance the follow-up delay with respect to unnecessary high-period surface undulations, improve the surface undulation removal performance, and process the free-form surface with higher accuracy.

【0024】さらに、例えば、請求項5に記載するよう
に、前記曲面加工方法は、前記工具の走査として、X軸
方向またはY軸方向の直線動作と当該直線動作を行うた
めのY軸方向またはX軸方向への所定幅の折り返し動作
とを行い、前記円弧近似を行う接触軌跡として、当該折
り返し動作を除いた1軸方向の前記直線動作のみの走査
の軌跡を採用するものであってもよい。
Further, for example, as set forth in claim 5, in the curved surface machining method, as the scanning of the tool, a linear motion in the X-axis direction or the Y-axis direction and a Y-axis direction for performing the linear motion. A trajectory of a predetermined width in the X-axis direction is performed, and as a contact trajectory for performing the circular arc approximation, a trajectory of only the linear motion in one axis direction excluding the wrapping operation may be adopted. .

【0025】上記構成によれば、工具の走査として、X
軸方向またはY軸方向の直線動作と当該直線動作を行う
ためのY軸方向またはX軸方向への所定幅の折り返し動
作とを行い、円弧近似を行う接触軌跡として、当該折り
返し動作を除いた1軸方向の直線動作のみの走査の軌跡
を採用しているので、同時2軸送りに比較して機械的運
動誤差を入りにくくして、汎用の精度の加工機でより高
精度な加工を行えるようにすることができるとともに、
研磨工具を走査するNCプログラムをより簡単かつ短時
間に作成することができ、より一層安価に、かつ、簡単
に自由曲面を正確に加工することができる。
According to the above arrangement, X is used as the tool scan.
A linear motion in the axial direction or the Y-axis direction and a folding operation of a predetermined width in the Y-axis direction or the X-axis direction for performing the linear motion are performed. Since the scanning trajectory of only the linear motion in the axial direction is adopted, it is possible to reduce the possibility of mechanical movement error compared to simultaneous two-axis feed, and to perform higher-precision processing with a general-purpose processing machine. Along with
An NC program for scanning the polishing tool can be created more easily and in a shorter time, and the free-form surface can be accurately and easily processed at a lower cost.

【0026】また、例えば、請求項6に記載するよう
に、前記曲面加工方法は、前記工具の走査として、X軸
方向またはY軸方向の直線動作と当該直線動作を行うた
めのY軸方向またはX軸方向への所定幅の折り返し動作
とを行い、前記工具の接触軌跡の円弧近似を、前記直線
動作軸と当該直線動作軸と直交し前記工具の前記被加工
物の被加工面への荷重付与軸とのなす面内に工具軌跡を
投影し、当該投影した工具軌跡を最小二乗法で近似して
求めるものであってもよい。
For example, in the curved surface machining method, as the scanning of the tool, a linear motion in an X-axis direction or a Y-axis direction and a Y-axis direction or a Y-axis direction for performing the linear motion. A folding operation of a predetermined width in the X-axis direction is performed, and a circular arc approximation of the contact trajectory of the tool is performed. The linear motion axis and the load on the workpiece surface of the workpiece that is orthogonal to the linear motion axis The tool trajectory may be projected in a plane formed by the application axis, and the projected tool trajectory may be approximated by the least square method.

【0027】上記構成によれば、工具の走査として、X
軸方向またはY軸方向の直線動作と当該直線動作を行う
ためのY軸方向またはX軸方向への所定幅の折り返し動
作とを行い、工具の接触軌跡の円弧近似を、直線動作軸
と当該直線動作軸と直交し工具の被加工物の被加工面へ
の荷重付与軸とのなす面内に工具軌跡を投影し、当該投
影した工具軌跡を最小二乗法で近似して求めているの
で、接触軌跡が工具荷重軸方向から見て曲がりを生じる
ような場合にも、荷重制御の応答に対応した曲率半径を
容易かつ正確に求めることができ、より一層正確に自由
曲面を加工することができる。
According to the above arrangement, X is used as the tool scan.
A linear motion in the axial direction or the Y-axis direction and a folding operation of a predetermined width in the Y-axis direction or the X-axis direction for performing the linear motion are performed. Since the tool trajectory is projected in a plane perpendicular to the operating axis and formed by a load applying axis to the work surface of the workpiece of the tool, and the projected tool trajectory is obtained by approximation by the least square method, contact Even when the trajectory bends when viewed from the tool load axis direction, the radius of curvature corresponding to the response of the load control can be easily and accurately obtained, and the free-form surface can be machined more accurately.

【0028】さらに、例えば、請求項7に記載するよう
に、前記曲面加工方法は、前記被加工物の被加工面が凸
曲面と凹曲面が混在する場合、前記工具軌跡を当該凸曲
面と凹曲面の変極点で分割し、凸曲面の工具軌跡と凹曲
面の工具軌跡のそれぞれについて前記円弧近似を行うも
のであってもよい。
Further, for example, as described in claim 7, in the curved surface machining method, when the surface to be machined of the workpiece has a mixture of a convex curved surface and a concave curved surface, the tool trajectory is defined by the convex curved surface and the concave curved surface. The curved surface may be divided at an inflection point, and the arc approximation may be performed on each of the tool trajectory of the convex surface and the tool trajectory of the concave surface.

【0029】上記構成によれば、被加工物の被加工面が
凸曲面と凹曲面が混在する場合、工具軌跡を当該凸曲面
と凹曲面の変極点で分割し、凸曲面の工具軌跡と凹曲面
の工具軌跡のそれぞれについて円弧近似を行っているの
で、工具軌跡が凸の円弧と凹の円弧をなすような複雑な
自由曲面においても、高い形状精度の加工を行うことが
できる。
According to the above configuration, when the workpiece surface of the workpiece has both a convex curved surface and a concave curved surface, the tool trajectory is divided by the inflection point of the convex curved surface and the concave curved surface, and the tool trajectory of the convex curved surface and the concave curved surface are divided. Since arc approximation is performed for each of the tool trajectories on a curved surface, machining with high shape accuracy can be performed even on a complicated free-form surface where the tool trajectory forms a convex arc and a concave arc.

【0030】また、例えば、請求項8に記載するよう
に、前記曲面加工方法は、前記被加工物の被加工面を研
磨加工するものであってもよい。
Further, for example, as set forth in claim 8, the curved surface processing method may include a step of polishing a surface to be processed of the workpiece.

【0031】上記構成によれば、曲面加工方法を、被加
工物の被加工面の研磨加工に適用しているので、4軸制
御などの複雑な装置と加工プログラムを用いることな
く、研磨荷重軸と直交2軸のNCテーブルで構成される
従来の簡単な曲面研磨装置を用いて、工具送り速度、工
具回転数及び荷重制御の応答条件を速やかに決定し、安
価に、かつ、より一層簡単に自由曲面を正確に研磨加工
することができる。
According to the above configuration, since the curved surface processing method is applied to the polishing of the processing surface of the workpiece, the polishing load axis can be reduced without using a complicated apparatus such as four-axis control and a processing program. The tool feed speed, tool rotation speed, and response conditions for load control are quickly determined using a conventional simple curved surface polishing machine composed of a two-axis NC table orthogonal to the axis. The free-form surface can be accurately polished.

【0032】さらに、例えば、請求項9に記載するよう
に、前記曲面加工方法は、前記被加工物の被加工面を切
削または研削加工するものであってもよい。
Further, for example, as set forth in claim 9, the curved surface processing method may include cutting or grinding the surface to be processed of the workpiece.

【0033】上記構成によれば、曲面加工方法を、被加
工物の被加工面の切削または研削加工に適用しているの
で、工具荷重軸の定寸の切り込み軸に置き換えた加工機
構成に容易に適用して、自由曲面の創成加工を高精度に
行うことができ、表面うねりを抑制しつつ、高精度に切
削または研削加工を行うことができる。
According to the above configuration, since the curved surface processing method is applied to the cutting or grinding of the surface to be processed of the workpiece, the processing machine can be easily replaced with a cutting shaft having a fixed dimension of the tool load axis. In this case, the free-form surface can be formed with high accuracy, and the cutting or grinding can be performed with high accuracy while suppressing the surface undulation.

【0034】[0034]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳細に説明する。なお、以下に述
べる実施の形態は、本発明の好適な実施の形態であるか
ら、技術的に好ましい種々の限定が付されているが、本
発明の範囲は、以下の説明において特に本発明を限定す
る旨の記載がない限り、これらの態様に限られるもので
はない。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. It should be noted that the embodiments described below are preferred embodiments of the present invention, and therefore, various technically preferable limitations are added. However, the scope of the present invention is not limited to the following description. The embodiments are not limited to these embodiments unless otherwise specified.

【0035】図1〜図10は、本発明の曲面加工方法の
一実施の形態を示す図であり、図1は、本発明の曲面加
工方法の一実施の形態を適用した研磨装置1の正面図で
ある。
FIGS. 1 to 10 are views showing one embodiment of a curved surface processing method of the present invention. FIG. 1 is a front view of a polishing apparatus 1 to which one embodiment of the curved surface processing method of the present invention is applied. FIG.

【0036】図1において、研磨装置1は、XY直交2
軸のNCテーブルをベースとしており、基台2上に図1
において紙面に垂直方向であるX軸方向に移動可能なX
軸テーブル3が載置されている。X軸テーブル3上に
は、図1において両矢印で示す左右方向であるY軸方向
に移動可能なY軸テーブル4が載置されており、Y軸テ
ーブル4上には、被加工物100が固定される。この被
加工物100は、レンズ、ミラー及びこれらの金型とな
るものである。
In FIG. 1, a polishing apparatus 1 has an XY orthogonal 2
Based on the NC table of the axis,
X that can be moved in the X-axis direction
The axis table 3 is placed. On the X-axis table 3, a Y-axis table 4 that can move in the Y-axis direction, which is the left-right direction indicated by a double-headed arrow in FIG. 1, is mounted. Fixed. The workpiece 100 is a lens, a mirror, and a mold for these.

【0037】基台2には、直動ガイド軸5がX軸及びY
軸に直角の方向であるZ軸方向(図1で上下方向)に延
在する状態で配設されており、直動ガイド軸5には、直
動ガイド6が移動可能に取り付けられている。直動ガイ
ド6には、スピンドル7が固定されており、スピンドル
7の先端には、工具8が取り換え可能に固定される。
On the base 2, a linear motion guide shaft 5 has an X axis and a Y axis.
The linear motion guide 6 is movably mounted on the linear motion guide shaft 5 so as to extend in the Z-axis direction (vertical direction in FIG. 1) which is a direction perpendicular to the axis. A spindle 7 is fixed to the linear guide 6, and a tool 8 is fixed to the tip of the spindle 7 so as to be replaceable.

【0038】工具8としては、例えば、図2に示すよう
に、研磨工具が用いられ、スピンドル7は、工具8をそ
の回転軸回りに回転駆動させる。
As the tool 8, for example, as shown in FIG. 2, a polishing tool is used, and the spindle 7 drives the tool 8 to rotate around its rotation axis.

【0039】上記直動ガイド6は、直動ガイド軸5に取
り付けられた加圧機構9により上下移動され、加圧機構
9が、スピンドル7に取り付けられた工具8に所定の研
磨荷重を付与する。直動ガイド6の加圧機構9と対向す
る位置には、ロードセル10が取り付けられており、ロ
ードセル10には、重り11が取り付けられている。そ
して、上記研磨荷重は、ロードセル10により検知さ
れ、研磨装置1は、この検知結果に基づいて加圧機構9
の駆動指令値を逐次決定して、研磨荷重をフィードバッ
ク制御する。
The linear guide 6 is moved up and down by a pressing mechanism 9 mounted on the linear guide shaft 5, and the pressing mechanism 9 applies a predetermined polishing load to the tool 8 mounted on the spindle 7. . A load cell 10 is attached to a position of the linear motion guide 6 facing the pressure mechanism 9, and a weight 11 is attached to the load cell 10. Then, the polishing load is detected by the load cell 10, and the polishing apparatus 1 presses the pressing mechanism 9 based on the detection result.
Are sequentially determined, and the polishing load is feedback-controlled.

【0040】すなわち、研磨装置1は、図3に示すよう
に、フィードバック制御方式として、PID(プロポー
ショナル・インテグラル・デリバティ)方式を採用して
いる。具体的には、工具加工圧力設定部20、PID調
節器21、空圧レギュレータ22、エアシリンダ23、
ロードセル10、工具8及び被加工物100と研磨荷重
をかけて、工具8により被加工物100を研磨加工す
る。PID調節器21、空圧レギュレータ22及びエア
シリンダ23は、加圧機構9に内蔵されており、PID
調節器21は、工具圧力設定部20に設定されている目
標指令値で空圧レギュレータ22を駆動して、エアシリ
ンダ23により直動ガイド6を移動させる。このときの
研磨荷重をロードセル10で検知して、このロードセル
10の検知結果に基づいて、PID調節器21が駆動指
令値をフィードバック制御し、空圧レギュレータ22及
びエアシリンダ23を駆動させて研磨荷重を制御する。
That is, as shown in FIG. 3, the polishing apparatus 1 employs a PID (proportional integral derivative) method as a feedback control method. Specifically, the tool processing pressure setting unit 20, the PID controller 21, the pneumatic regulator 22, the air cylinder 23,
A polishing load is applied to the load cell 10, the tool 8, and the workpiece 100, and the workpiece 8 is polished by the tool 8. The PID controller 21, the pneumatic regulator 22, and the air cylinder 23 are built in the
The adjuster 21 drives the pneumatic regulator 22 with the target command value set in the tool pressure setting unit 20 and moves the linear motion guide 6 by the air cylinder 23. The polishing load at this time is detected by the load cell 10, and based on the detection result of the load cell 10, the PID controller 21 feedback-controls the drive command value, and drives the pneumatic regulator 22 and the air cylinder 23 to perform the polishing load. Control.

【0041】次に、本実施の形態の作用を説明する。な
お、以下の説明では、球面形状の被加工物100に対
し、長方形領域の内側を研磨加工する場合を例に挙げ
て、説明する。
Next, the operation of the present embodiment will be described. In the following description, a case where the inside of a rectangular region is polished on the spherical workpiece 100 will be described as an example.

【0042】いま、図4に示すように、球面形状を有す
る被加工物100に対して、図4で破線で示す領域が研
磨領域101であるとすると、この研磨領域101は、
Z方向から見て、長方形の形状となっている。
Now, as shown in FIG. 4, assuming that a region shown by a broken line in FIG. 4 is a polishing region 101 with respect to a workpiece 100 having a spherical shape,
It has a rectangular shape when viewed from the Z direction.

【0043】上記図4に示すような被加工物100の研
磨領域101を研磨装置1で研磨加工を行う場合、研磨
装置1は、図5で実線矢印で示すように、Y軸方向の直
線動作と当該直線動作を行うためのX軸方向への所定幅
の折り返し動作103とを行い、図5に示すような軌跡
を描いて工具8を被加工物100の研磨領域101に接
触させて研磨を行う。この接触軌跡(以下、ツールパス
という。)102は、Z方向から見て略直線形状となる
走査線であり、研磨加工においては、前加工による加工
痕に直交する方向にとることが望ましい。そして、ツー
ルパス102は、直線走査動作と切り返し動作103で
構成されている。
When the polishing area 101 of the workpiece 100 as shown in FIG. 4 is polished by the polishing apparatus 1, the polishing apparatus 1 moves linearly in the Y-axis direction as shown by the solid arrows in FIG. And a turning operation 103 of a predetermined width in the X-axis direction for performing the linear operation, and the tool 8 is brought into contact with the polishing area 101 of the workpiece 100 in a trajectory as shown in FIG. Do. The contact trajectory (hereinafter, referred to as a tool path) 102 is a scanning line having a substantially linear shape when viewed from the Z direction. The tool path 102 includes a linear scanning operation and a switching operation 103.

【0044】そして、研磨装置1は、研磨加工を行うに
際し、まず、このツールパス102から切り返し動作1
03を削除して、走査動作の軌跡を円弧近似する。この
円弧近似は、図6に示すように示される。この円弧近似
を行う方法は、図6に示すように、Y軸方向である直線
動作軸と当該直線動作軸と直交し工具8の被加工物10
0(ダミーワーク200)の被加工面への荷重付与軸
(Z軸)とのなすYZ平面内に工具軌跡を投影し、当該
投影した工具軌跡を最小二乗法で近似して、近似円半径
を求める。
When performing the polishing process, the polishing apparatus 1 first performs a return operation 1 from the tool path 102.
03 is deleted, and the trajectory of the scanning operation is approximated by an arc. This arc approximation is shown as shown in FIG. As shown in FIG. 6, a method of performing this circular arc approximation is to use a linear motion axis in the Y-axis direction and a workpiece 10 of the tool 8 orthogonal to the linear motion axis.
The tool trajectory is projected on the YZ plane formed by the axis (Z axis) for applying a load to the workpiece surface of the workpiece 0 (dummy work 200), and the projected tool trajectory is approximated by the least-squares method to obtain an approximate circle radius. Ask.

【0045】この走査動作の軌跡の円弧近似において
は、被加工物100の研磨領域101が複雑な自由曲面
の場合、1つの走査線内に凸円弧と凹円弧が混在するこ
とがあるが、このような場合には、凸円弧と凹円弧の変
曲点で走査線を分離し、分離したそれぞれの走査線に対
して上記同様の円弧近似を行う。
In the arc approximation of the trajectory of the scanning operation, when the polishing area 101 of the workpiece 100 is a complicated free-form surface, a convex arc and a concave arc may be mixed in one scanning line. In such a case, the scanning lines are separated at the inflection points of the convex arc and the concave arc, and the same arc approximation is performed on each of the separated scanning lines.

【0046】いま、図6に示したような凸円弧で近似さ
れる走査線の場合、各走査線での近似円弧半径Rnの絶
対値を比較し、最小値となる最小近似円弧半径Rmin
をみつける。いま、図6では、R1<R2<R3・・・
・<Rnで、近似円弧半径R1が最小近似円弧半径Rm
inであるとする。
Now, in the case of a scanning line approximated by a convex arc as shown in FIG. 6, the absolute value of the approximate arc radius Rn of each scanning line is compared, and the minimum approximate arc radius Rmin which becomes the minimum value is obtained.
Find Now, in FIG. 6, R1 <R2 <R3.
When <Rn, the approximate arc radius R1 is the minimum approximate arc radius Rm
Let it be in.

【0047】次に、図7に示すように、上記見つけ出し
た最小近似円弧半径Rminである近似円弧半径R1を
曲率半径とするシリンダー形状を有し被加工物100と
同一素材のダミーワーク200を準備し、被加工物10
0の研磨において目標とする表面粗さが得られる研磨条
件を実験的に求める。
Next, as shown in FIG. 7, a dummy work 200 having the same material as the workpiece 100 and having a cylindrical shape having a curvature radius of the approximate arc radius R1 which is the minimum approximate arc radius Rmin found above is prepared. And the workpiece 10
Polishing conditions for obtaining a target surface roughness in polishing of 0 are experimentally obtained.

【0048】すなわち、図7に示すように、ダミーワー
ク200を研磨装置1のY軸テーブル4上に固定し、X
軸テーブル3、Y軸テーブル4、直動ガイド6の移動を
制御するとともに、研磨荷重を加圧機構9で制御して、
工具8によりダミーワーク200の研磨を、被加工物1
00の研磨において目標とする表面粗さに研磨して、当
該被加工物100の研磨目標の表面粗さに研磨する際の
研磨条件、すなわち、工具送り速度Fmin、工具回転
数Nmin及び研磨荷重Pを取得する。
That is, as shown in FIG. 7, the dummy work 200 is fixed on the Y-axis table 4 of the polishing apparatus 1 and
While controlling the movement of the axis table 3, the Y-axis table 4, and the linear guide 6, the polishing load is controlled by the pressing mechanism 9,
Polishing of the dummy work 200 with the tool 8
In the polishing of No. 00, polishing conditions for polishing to the target surface roughness of the workpiece 100 by polishing to the target surface roughness, that is, the tool feed speed Fmin, the tool rotation speed Nmin, and the polishing load P To get.

【0049】この研磨実験においては、工具荷重を発生
させる機構の制御系のパラメータを、安定状態の範疇で
鈍い応答に設定する。この鈍い応答とは、ステップ指定
値に対して立ち上がり時間が比較的大きく、オーバーシ
ュート量が比較的小さくなる状態に設定された応答状態
をいう。このステップ応答波形は、図8のように示さ
れ、立ち上がり時間は、目標値の10%〜90%に要す
る時間をいい、オーバーシュート量は、目標値に対する
行き過ぎ量の比率(%)をいう。
In this polishing experiment, the parameters of the control system of the mechanism for generating the tool load are set to a dull response in the category of the stable state. The dull response means a response state in which the rise time is relatively long with respect to the specified step value and the overshoot amount is relatively small. This step response waveform is shown in FIG. 8, where the rise time refers to the time required for 10% to 90% of the target value, and the overshoot amount refers to the ratio (%) of the overshoot amount to the target value.

【0050】上記研磨実験により目標とする表面粗さが
確保されると、形状の劣化を評価する。形状劣化の評価
では、ダミーワーク200は、シリンダ形状であり、そ
の横断面は円弧であるため、真円からのズレ量に注目し
て、評価する。なお、形状劣化の評価では、曲率半径の
減少については問題としない。
When the target surface roughness is secured by the above polishing experiment, the deterioration of the shape is evaluated. In the evaluation of shape deterioration, the dummy work 200 has a cylindrical shape, and its cross section is a circular arc. In the evaluation of shape deterioration, reduction of the radius of curvature does not matter.

【0051】形状劣化の評価結果は、図9のように示す
ことができ、図9においては、外周縁が深く除去され両
端がだれた状態となっている。このような形状の崩れ
は、研磨加工条件を変更することなく、荷重制御の応答
特性を調整することで、改善することができる。具体的
には、外周縁のダレについては、図8における立ち上が
り時間の調整を行うことにより改善することができ、頂
点部の乱れについては、オーバーシュート量の調整を行
うことにより改善することができる。また、表面のうね
りを除去するには、真円精度を崩さない範疇で、なるべ
く鈍い応答にすることが有効である。
The evaluation result of the shape deterioration can be shown in FIG. 9. In FIG. 9, the outer peripheral edge is deeply removed and both ends are sagged. Such shape collapse can be improved by adjusting the response characteristics of the load control without changing the polishing processing conditions. Specifically, the sagging of the outer peripheral edge can be improved by adjusting the rise time in FIG. 8, and the disturbance at the top can be improved by adjusting the overshoot amount. . Further, in order to remove the undulation on the surface, it is effective to make the response as dull as possible within a range where the roundness accuracy is not lost.

【0052】上記ダミーワーク200を用いた研磨実験
により、基本加工条件として、基本工具送り速度Fmi
n、基本工具回転数Nmin、研磨荷重Pを決定するこ
とができるとともに、研磨荷重制御系の調整(研磨荷重
Pの応答条件の設定)を行うことができる。
By a polishing experiment using the dummy work 200, a basic tool feed speed Fmi was set as a basic processing condition.
n, the basic tool rotation speed Nmin, and the polishing load P can be determined, and adjustment of the polishing load control system (setting of the response condition of the polishing load P) can be performed.

【0053】次に、上記最小曲率半径Rminと基本工
具送り速度Fminの関係に基づいて、図6に示した他
の曲率半径R2、R3、・・・、Rnを有する走査線パ
スの送り速度F2、F3、・・・、Fnを決定する。
Next, based on the relationship between the minimum radius of curvature Rmin and the basic tool feed speed Fmin, the feed speed F2 of the scanning line path having other radiuses of curvature R2, R3,..., Rn shown in FIG. , F3,..., Fn.

【0054】この場合、次式(1)の比率から導かれる
次式(2)に基づいて、工具送り速度F2、F3、・・
・、Fnを算出する。
In this case, based on the following equation (2) derived from the ratio of the following equation (1), the tool feed speeds F2, F3,.
・ Calculate Fn.

【0055】 Rmin:Fmin=Rn:Fn・・・(1) Fn=(Fmin×Rn)/Rmin・・・(2) すなわち、最小曲率半径Rmin以外の他の曲率半径R
2、R3、・・・、Rnの接触軌跡の工具送り速度F
2、F3、・・・、Fnを、当該接触軌跡の曲率半径R
2、R3、・・・、Rnと最小曲率半径Rminとの比
に基づいて決定する。
Rmin: Fmin = Rn: Fn (1) Fn = (Fmin × Rn) / Rmin (2) That is, the radius of curvature R other than the minimum radius of curvature Rmin
The tool feed speed F of the contact locus of 2, R3, ..., Rn
2, F3,..., Fn are defined as the radius of curvature R of the contact locus.
2, R3,..., Rn and the minimum radius of curvature Rmin.

【0056】このようにして基本曲率半径である最小曲
率半径Rminとは異なる曲率半径R2、R3、・・
・、Rnを有する被加工面に対しても、前形状を崩すこ
とのない研磨を行うことができる。
In this way, the radii of curvature R2, R3,... Different from the minimum radius of curvature Rmin, which is the basic radius of curvature, are set.
· Polishing can be performed on the surface to be processed having Rn without destroying the front shape.

【0057】最後に、各走査線の除去深さをそろえるた
めに、各走査線における工具回転数Nnを設定する。研
磨除去深さは、工具一回転あたりの送り量に略比例する
ため、次式(3)の比率から導かれる次式(4)に基づ
いて、工具回転数Nnを決定する。
Finally, the tool rotation speed Nn in each scanning line is set in order to make the removal depth of each scanning line uniform. Since the polishing removal depth is substantially proportional to the feed amount per one rotation of the tool, the tool rotation speed Nn is determined based on the following equation (4) derived from the ratio of the following equation (3).

【0058】 Fmin:Nmin=Fn:Nn・・・(3) Nn=(Nmin×Fn)/Fmin・・・(4) 上記手順を実行することにより、各走査線の研磨加工条
件である工具送り速度Fnと工具回転数Nnが決定され
る。そして、研磨荷重Pは、走査線によらず共通とす
る。
Fmin: Nmin = Fn: Nn (3) Nn = (Nmin × Fn) / Fmin (4) By executing the above procedure, the tool feed which is the polishing processing condition of each scanning line is performed. The speed Fn and the tool rotation speed Nn are determined. The polishing load P is common regardless of the scanning line.

【0059】上記研磨加工条件は、図10に示す手順に
より行う。すなわち、まず、トラバース方向を決定し
(ステップS101)、工具接触点の軌跡を求める(ス
テップS102)。次に、各区間を円弧で近似して、最
小曲率半径Rminを求め(ステップS103)、最小
曲率半径Rminを曲率半径とするシリンダ面を有し被
加工物100と同一素材のダミーワーク200に対して
表面粗さが被加工物100の研磨において目標とする表
面粗さを満足するような加工条件である工具送り速度F
min、工具回転数Nminを実験的に求める(ステッ
プS104)。
The polishing conditions are performed according to the procedure shown in FIG. That is, first, the traverse direction is determined (step S101), and the locus of the tool contact point is obtained (step S102). Next, each section is approximated by an arc to determine a minimum radius of curvature Rmin (step S103). For the dummy work 200 having the cylinder surface having the minimum radius of curvature Rmin as the radius of curvature, and made of the same material as the workpiece 100, Feed rate F, which is a processing condition such that the surface roughness satisfies the target surface roughness in polishing the workpiece 100
min and the tool rotation speed Nmin are experimentally obtained (step S104).

【0060】実験で研磨したダミーワーク200の前形
状(真円度)を崩してないかチェックし(ステップS1
05)、真円度を崩していないときには、実験的に求め
た加工条件を基本加工条件Fmin、Nminとして決
定する(ステップS106)。
It is checked whether or not the front shape (roundness) of the dummy work 200 polished in the experiment has been broken (step S1).
05), when the roundness is not broken, the processing conditions experimentally obtained are determined as basic processing conditions Fmin and Nmin (step S106).

【0061】実験で研磨したダミーワーク200の真円
度を崩しているときには、圧力制御系のゲインと減衰性
能を変化させ、真円度が維持されるように応答性を調整
して(ステップS107)、実験的に求めた加工条件を
基本加工条件Fmin、Nminとして決定する(ステ
ップS106)。
When the roundness of the polished dummy work 200 is broken in the experiment, the gain and damping performance of the pressure control system are changed to adjust the responsiveness so that the roundness is maintained (step S107). ), The experimentally determined processing conditions are determined as basic processing conditions Fmin and Nmin (step S106).

【0062】次に、各走査区間R2、R3、・・・、R
nでの近似曲率半径Rn(n=1、2、・・・、n)と
最小曲率半径Rminの比に基づき(Rmin:Rn=
Fmin:Fn)、各走査区間R2、R3、・・・、R
nでの工具送り速度Fn(n=1、2、・・・、n)を
決定する(ステップS108)。
Next, each scanning section R2, R3,.
n based on the ratio of the approximate radius of curvature Rn (n = 1, 2,..., n) to the minimum radius of curvature Rmin (Rmin: Rn =
Fmin: Fn), each scanning section R2, R3,.
The tool feed speed Fn at n (n = 1, 2,..., n) is determined (step S108).

【0063】最後に、各走査区間R2、R3、・・・、
Rnでの工具一回転あたりの工具送り量が等しくなるよ
うに、各走査区間R2、R3、・・・、Rnでの工具回
転数Nnを決定する(ステップS109)。
Finally, each scanning section R2, R3,.
The tool rotation speed Nn in each scanning section R2, R3,..., Rn is determined so that the tool feed amount per rotation of the tool at Rn becomes equal (step S109).

【0064】このようにして、研磨加工条件である工具
送り速度Fn、工具回転数Nn及び研磨荷重Pを決定す
ると、加工対象である被加工物100をY軸テーブル4
上に固定し、被加工物100の研磨を上記研磨加工条件
である工具送り速度Fn、工具回転数Nn、研磨荷重P
で研磨を行う。
When the tool feed speed Fn, the tool rotation speed Nn, and the polishing load P, which are the polishing processing conditions, are determined in this manner, the workpiece 100 to be processed is moved to the Y-axis table 4.
The workpiece 100 is polished with the tool feed speed Fn, the tool rotation speed Nn, and the polishing load P, which are the above polishing conditions.
Polishing.

【0065】このように、本実施の形態の曲面加工方法
は、工具8の被加工物100の被加工面(研磨領域)1
01に対する接触軌跡を円弧近似し、当該円弧近似のう
ち最小曲率半径R1と同じ曲率半径の円弧断面を有する
ダミー加工物(ダミーワーク)200を予備加工して、
工具送り速度、工具回転数及び荷重制御の応答条件を決
定し、当該決定した工具送り速度、工具回転数及び荷重
制御の応答条件に基づいて被加工物100を加工してい
る。
As described above, according to the curved surface processing method of the present embodiment, the processing surface (polishing region) 1 of the workpiece 100 of the tool 8 is
01 is approximated by an arc, and a dummy workpiece (dummy work) 200 having an arc cross section having the same radius of curvature as the minimum radius of curvature R1 in the arc approximation is preliminarily processed.
The tool feed speed, the tool rotation speed, and the response condition of the load control are determined, and the workpiece 100 is machined based on the determined tool feed speed, the tool rotation speed, and the response condition of the load control.

【0066】したがって、4軸制御などの複雑な装置と
加工プログラムを用いることなく、工具荷重軸と直交2
軸のNCテーブルで構成される従来の簡単な曲面加工装
置である研磨装置1を用いて、安価に、かつ、簡単に自
由曲面を正確に加工することができる。
Therefore, without using a complicated device such as four-axis control and a machining program, a tool orthogonal to the tool load axis can be used.
The free-form surface can be accurately and simply machined at low cost by using the polishing apparatus 1 which is a conventional simple curved-surface processing apparatus composed of a shaft NC table.

【0067】また、本実施の形態の曲面加工方法は、荷
重制御の応答条件として、工具8の荷重制御のステップ
指令値に対する立ち上がり時間とオーバーシュート量を
用いている。
Further, the curved surface machining method of the present embodiment uses a rise time and an overshoot amount with respect to a step command value of the load control of the tool 8 as a response condition of the load control.

【0068】したがって、オペレータの習熟度に関わら
ず、工具送り速度を変更せず、かつ、形状の劣化を抑制
しつつ、加工を行うことができ、安価に、かつ、簡単に
自由曲面を正確に加工することができる。
Therefore, irrespective of the skill level of the operator, the machining can be performed without changing the tool feed speed and while suppressing the deterioration of the shape. Can be processed.

【0069】さらに、本実施の形態の曲面加工方法は、
最小曲率半径Rmin以外の他の曲率半径R2、R3、
・・・、Rnの接触軌跡の工具送り速度F2、F3、・
・・、Fnを、当該接触軌跡の曲率半径R2、R3、・
・・、Rnと最小曲率半径Rminとの比に基づいて決
定している。
Further, the curved surface processing method of the present embodiment
Radius of curvature R2, R3 other than the minimum radius of curvature Rmin,
..., the tool feed speeds F2, F3, ... of the contact locus of Rn
.., Fn by the radii of curvature R2, R3,.
.. Are determined based on the ratio between Rn and the minimum radius of curvature Rmin.

【0070】したがって、曲率半径の大きさに比例して
工具送り速度を速め、より加工能率の高い加工を行うこ
とができるとともに、不要な高い周期の表面うねりに対
する追従遅れを強めて、表面うねりの除去性能を向上さ
せることができ、より一層精度良く自由曲面を加工する
ことができる。
Therefore, the tool feed speed can be increased in proportion to the radius of curvature to perform machining with higher machining efficiency, and the delay in following an unnecessary high-period surface undulation is increased, thereby increasing the surface undulation. The removal performance can be improved, and the free-form surface can be more accurately processed.

【0071】また、本実施の形態の曲面加工方法は、工
具8の走査として、Y軸方向の直線動作と当該直線動作
を行うためのX軸方向への所定幅の折り返し動作とを行
い、円弧近似を行う接触軌跡として、当該折り返し動作
を除いた1軸方向の直線動作のみの走査の軌跡を採用し
ている。
In the curved surface machining method according to the present embodiment, as the scanning of the tool 8, a linear motion in the Y-axis direction and a folding operation of a predetermined width in the X-axis direction for performing the linear motion are performed. As a contact trajectory for performing approximation, a trajectory of scanning of only a linear motion in one axial direction excluding the folding operation is employed.

【0072】したがって、同時2軸送りに比較して機械
的運動誤差を入りにくくして、汎用の精度の加工機でよ
り高精度な加工を行えるようにすることができるととも
に、研磨工具を走査するNCプログラムをより簡単かつ
短時間に作成することができ、より一層安価に、かつ、
簡単に自由曲面を正確に加工することができる。
Therefore, compared to simultaneous two-axis feed, mechanical motion errors are less likely to occur, so that a highly accurate machining can be performed with a general-purpose machining machine, and the polishing tool is scanned. NC programs can be created more easily and in a shorter time, at lower cost, and
A free-form surface can be easily processed accurately.

【0073】さらに、本実施の形態の曲面加工方法は、
工具8の接触軌跡の円弧近似を、直線動作軸(Y軸)と
当該直線動作軸と直交し工具8の被加工物100の被加
工面への荷重付与軸(X軸)とのなす面(YZ面)内に
工具軌跡を投影し、当該投影した工具軌跡を最小二乗法
で近似して求めている。
Further, the curved surface processing method of the present embodiment
The circular arc approximation of the contact trajectory of the tool 8 is defined by a plane (X axis) formed by a linear motion axis (Y axis) and a load application axis (X axis) orthogonal to the linear motion axis and applied to the work surface of the workpiece 100 of the tool 8. The tool trajectory is projected in the (YZ plane), and the projected tool trajectory is obtained by approximation using the least square method.

【0074】したがって、接触軌跡が工具荷重軸方向か
ら見て曲がりを生じるような場合にも、荷重制御の応答
に対応した曲率半径を容易かつ正確に求めることがで
き、より一層正確に自由曲面を加工することができる。
Therefore, even when the contact trajectory bends when viewed from the tool load axis direction, the radius of curvature corresponding to the response of the load control can be easily and accurately obtained, and the free-form surface can be more accurately formed. Can be processed.

【0075】また、本実施の形態の曲面加工方法は、被
加工物100の被加工面が凸曲面と凹曲面が混在する場
合、工具軌跡を当該凸曲面と凹曲面の変極点で分割し、
凸曲面の工具軌跡と凹曲面の工具軌跡のそれぞれについ
て円弧近似を行っている。
Further, according to the curved surface machining method of the present embodiment, when the workpiece surface of the workpiece 100 includes both a convex curved surface and a concave curved surface, the tool trajectory is divided by the inflection points of the convex curved surface and the concave curved surface.
Arc approximation is performed for each of the tool trajectory of the convex curved surface and the tool trajectory of the concave curved surface.

【0076】したがって、工具軌跡が凸の円弧と凹の円
弧をなすような複雑な自由曲面においても、高い形状精
度の加工を行うことができる。
Therefore, even on a complicated free-form surface where the tool path forms a convex arc and a concave arc, high-precision machining can be performed.

【0077】さらに、本実施の形態の曲面加工方法は、
被加工物の被加工面の研磨加工に適用しているので、4
軸制御などの複雑な装置と加工プログラムを用いること
なく、研磨荷重軸と直交2軸のNCテーブルで構成され
る従来の簡単な曲面研磨装置を用いて、工具送り速度、
工具回転数及び荷重制御の応答条件を速やかに決定し、
安価に、かつ、より一層簡単に自由曲面を正確に研磨加
工することができる。
Further, the curved surface processing method of the present embodiment
Since it is applied to the polishing of the work surface of the work,
Without using a complicated device such as axis control and a machining program, using a conventional simple curved surface polishing device composed of an NC table of two axes orthogonal to the polishing load axis, the tool feed speed,
Quickly determine tool rotation speed and load control response conditions,
The free-form surface can be accurately and precisely polished at low cost.

【0078】そして、上記手順と同じ手順で決定される
研磨加工条件を用いることにより、自由曲面に対しても
前形状を維持した均等研磨を2軸NCをベースとする加
工機で容易に実現することができる。
Then, by using the polishing processing conditions determined by the same procedure as described above, uniform polishing while maintaining the front shape even on a free-form surface can be easily realized by a processing machine based on a biaxial NC. be able to.

【0079】以上、本発明者によってなされた発明を好
適な実施の形態に基づき具体的に説明したが、本発明は
上記のものに限定されるものではなく、その要旨を逸脱
しない範囲で種々変更可能であることはいうまでもな
い。
Although the invention made by the inventor has been specifically described based on the preferred embodiments, the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the gist of the invention. It goes without saying that it is possible.

【0080】例えば、上記実施の形態においては、最小
曲率半径の円弧断面を有するダミ−加工物(ダミーワー
ク200)を予め予備加工して、工具送り速度、工具回
転数及び荷重制御の応答条件を決定しているが、予め各
種曲率半径の円弧断面を有するダミ−加工物を予備加工
して決定した工具送り速度、工具回転数及び荷重制御の
応答条件のデータベースを作成し、最小曲率半径を求め
ると、当該最小曲率半径に基づいてデータベースから工
具送り速度、工具回転数及び荷重制御の応答条件を読み
出して決定するようにしてもよい。
For example, in the above-described embodiment, a dummy workpiece (dummy work 200) having an arc cross section having a minimum radius of curvature is preliminarily machined to determine a tool feed speed, a tool rotation speed, and response conditions for load control. Although it has been determined, a database of the tool feed speed, the tool rotation speed, and the response condition of the load control determined by pre-processing a dummy workpiece having an arc cross section having various curvature radii is created, and the minimum radius of curvature is obtained. The tool feed speed, the tool rotation speed, and the response condition of the load control may be read from the database based on the minimum radius of curvature and determined.

【0081】このようにすると、工具送り速度、工具回
転数及び荷重制御の応答条件を速やかに決定して、安価
に、かつ、より一層簡単に自由曲面を正確に加工するこ
とができる。
In this way, the tool feed speed, the tool rotation speed, and the response condition of the load control can be quickly determined, and the free-form surface can be accurately and inexpensively machined more accurately.

【0082】また、上記実施の形態においては、被加工
物を研磨加工する場合に適用しているが、被加工物の被
加工面を切削または研削加工する場合にも、同様に適用
することができ、この場合、工具荷重軸の定寸の切り込
み軸に置き換えた加工機構成に容易に適用して、自由曲
面の創成加工を高精度に行うことができ、表面うねりを
抑制しつつ、高精度に切削または研削加工を行うことが
できる。
In the above embodiment, the present invention is applied to the case where the workpiece is polished. However, the present invention is also applicable to the case where the surface of the workpiece is cut or ground. In this case, it can be easily applied to the processing machine configuration in which the cutting axis of the fixed size of the tool load axis is replaced, and the free-form surface can be created with high precision. Can be cut or ground.

【0083】[0083]

【発明の効果】請求項1記載の発明の曲面加工方法によ
れば、被加工物よりも小径の工具を軸心の回りに所定の
工具回転数で回転させながら工具の荷重を略一定にして
所定の軌跡上を所定の工具送り速度で走査させて曲面を
加工するに際して、工具の被加工物の被加工面に対する
接触軌跡を円弧近似し、当該円弧近似のうち最小曲率半
径と同じ曲率半径の円弧断面を有するダミー加工物を予
備加工して、工具送り速度、工具回転数及び荷重制御の
応答条件を決定し、当該決定した工具送り速度、工具回
転数及び荷重制御の応答条件に基づいて被加工物を加工
するので、4軸制御などの複雑な装置と加工プログラム
を用いることなく、工具荷重軸と直交2軸のNCテーブ
ルで構成される従来の簡単な曲面加工装置を用いて、安
価に、かつ、簡単に自由曲面を正確に加工することがで
きる。
According to the method for machining a curved surface according to the first aspect of the present invention, the load of the tool is made substantially constant while the tool having a smaller diameter than the workpiece is rotated around the axis at a predetermined tool rotation speed. When processing a curved surface by scanning a predetermined trajectory at a predetermined tool feed speed, the contact trajectory of the tool with respect to the processing surface of the workpiece is circularly approximated, and the circular arc approximation has the same radius of curvature as the minimum radius of curvature. Preliminary machining of the dummy workpiece having an arc cross section determines the tool feed speed, tool rotation speed and load control response conditions, and based on the determined tool feed speed, tool rotation speed and load control response conditions, Since the workpiece is machined, the conventional simple curved surface machining device consisting of a tool load axis and a 2-axis orthogonal NC table can be used at low cost without using complicated equipment such as 4-axis control and machining programs. And easy It can be processed free-form surface accurately.

【0084】請求項2記載の発明の曲面加工方法によれ
ば、被加工物よりも小径の工具を軸心の回りに所定の工
具回転数で回転させながら工具の荷重を略一定にして所
定の軌跡上を所定の工具送り速度で走査させて曲面を加
工するに際して、工具の被加工物の被加工面に対する接
触軌跡を円弧近似し、当該円弧近似のうち最小曲率半径
を求め、各種曲率半径の円弧断面を有するダミ−加工物
を予め予備加工して決定した工具送り速度、工具回転数
及び荷重制御の応答条件のデータベースから、最小曲率
半径に基づいて工具送り速度、工具回転数及び荷重制御
の応答条件を読み出し、当該読み出した工具送り速度、
工具回転数及び荷重制御の応答条件に基づいて被加工物
を加工するので、4軸制御などの複雑な装置と加工プロ
グラムを用いることなく、工具荷重軸と直交2軸のNC
テーブルで構成される従来の簡単な曲面加工装置を用い
て、工具送り速度、工具回転数及び荷重制御の応答条件
を速やかに決定して、安価に、かつ、より一層簡単に自
由曲面を正確に加工することができる。
According to the curved surface machining method according to the second aspect of the present invention, the load of the tool is made substantially constant while rotating the tool having a smaller diameter than the workpiece around the axis at a predetermined number of rotations of the tool. When processing a curved surface by scanning the trajectory at a predetermined tool feed speed, the contact trajectory of the tool with respect to the processing surface of the workpiece is circularly approximated, the minimum radius of curvature of the circular arc approximation is obtained, and the various radii of curvature are calculated. From a database of tool feed speed, tool rotation speed and load control response conditions determined by pre-machining a dummy workpiece having an arc cross section, the tool feed speed, tool rotation speed and load control are determined based on the minimum radius of curvature. The response condition is read, and the read tool feed speed,
Since the workpiece is machined based on the tool rotation speed and the response conditions of the load control, the NC of the tool load axis and two axes orthogonal to the tool load axis can be used without using complicated equipment such as 4-axis control and a machining program.
Using a conventional simple curved surface processing device consisting of a table, the tool feed speed, tool rotation speed, and response conditions for load control are quickly determined, and a free-form surface can be accurately and accurately made at low cost. Can be processed.

【0085】請求項3記載の発明の曲面加工方法によれ
ば、荷重制御の応答条件として、工具の荷重制御のステ
ップ指令値に対する立ち上がり時間とオーバーシュート
量を用いているので、オペレータの習熟度に関わらず、
工具送り速度を変更せず、かつ、形状の劣化を抑制しつ
つ、加工を行うことができ、安価に、かつ、簡単に自由
曲面を正確に加工することができる。
According to the curved surface machining method of the present invention, since the rise time and the overshoot amount with respect to the step command value of the load control of the tool are used as the response conditions of the load control, the skill level of the operator can be improved. Regardless,
The machining can be performed without changing the tool feed speed and while suppressing the deterioration of the shape, and the free-form surface can be accurately and easily machined at low cost.

【0086】請求項4記載の発明の曲面加工方法によれ
ば、最小曲率半径以外の他の曲率半径の接触軌跡の工具
送り速度を、当該接触軌跡の曲率半径と最小曲率半径と
の比に基づいて決定するので、曲率半径の大きさに比例
して工具送り速度を速め、より加工能率の高い加工を行
うことができるとともに、不要な高い周期の表面うねり
に対する追従遅れを強めて、表面うねりの除去性能を向
上させることができ、より一層精度良く自由曲面を加工
することができる。
According to the curved surface machining method of the present invention, the tool feed speed of the contact locus having a radius of curvature other than the minimum radius of curvature is determined based on the ratio of the radius of curvature of the contact locus to the minimum radius of curvature. The tool feed speed can be increased in proportion to the radius of curvature to perform machining with higher machining efficiency.In addition, the following delay for unnecessary high-period surface waviness is strengthened, and surface waviness is reduced. The removal performance can be improved, and the free-form surface can be more accurately processed.

【0087】請求項5記載の発明の曲面加工方法によれ
ば、工具の走査として、X軸方向またはY軸方向の直線
動作と当該直線動作を行うためのY軸方向またはX軸方
向への所定幅の折り返し動作とを行い、円弧近似を行う
接触軌跡として、当該折り返し動作を除いた1軸方向の
直線動作のみの走査の軌跡を採用しているので、同時2
軸送りに比較して機械的運動誤差を入りにくくして、汎
用の精度の加工機でより高精度な加工を行えるようにす
ることができるとともに、研磨工具を走査するNCプロ
グラムをより簡単かつ短時間に作成することができ、よ
り一層安価に、かつ、簡単に自由曲面を正確に加工する
ことができる。
According to the curved surface machining method of the present invention, as the scanning of the tool, a linear motion in the X-axis direction or the Y-axis direction and a predetermined motion in the Y-axis direction or the X-axis direction for performing the linear motion. As the contact trajectory for performing the wrapping operation of the width and performing the arc approximation, the trajectory of the scanning of only the linear motion in the one axis direction excluding the wrapping operation is adopted.
Compared to axial feed, mechanical motion errors are less likely to be introduced, so that high-precision processing can be performed with a general-purpose processing machine, and the NC program for scanning the polishing tool can be made simpler and shorter. The free-form surface can be created in a short time, and the free-form surface can be accurately and easily processed at a lower cost.

【0088】請求項6記載の発明の曲面加工方法によれ
ば、工具の走査として、X軸方向またはY軸方向の直線
動作と当該直線動作を行うためのY軸方向またはX軸方
向への所定幅の折り返し動作とを行い、工具の接触軌跡
の円弧近似を、直線動作軸と当該直線動作軸と直交し工
具の被加工物の被加工面への荷重付与軸とのなす面内に
工具軌跡を投影し、当該投影した工具軌跡を最小二乗法
で近似して求めているので、接触軌跡が工具荷重軸方向
から見て曲がりを生じるような場合にも、荷重制御の応
答に対応した曲率半径を容易かつ正確に求めることがで
き、より一層正確に自由曲面を加工することができる。
According to the curved surface machining method of the present invention, as the scanning of the tool, a linear motion in the X-axis direction or the Y-axis direction and a predetermined motion in the Y-axis direction or the X-axis direction for performing the linear motion. The width of the tool is wrapped around, and the circular approximation of the contact trajectory of the tool is made in the plane formed by the linear motion axis and the axis that is orthogonal to the linear motion axis and that applies the load to the workpiece surface of the workpiece. Is calculated by approximating the projected tool trajectory by the least-squares method. Therefore, even when the contact trajectory bends when viewed from the tool load axis direction, the curvature radius corresponding to the response of the load control is obtained. Can be easily and accurately obtained, and the free-form surface can be more accurately processed.

【0089】請求項7記載の発明の曲面加工方法によれ
ば、被加工物の被加工面が凸曲面と凹曲面が混在する場
合、工具軌跡を当該凸曲面と凹曲面の変極点で分割し、
凸曲面の工具軌跡と凹曲面の工具軌跡のそれぞれについ
て円弧近似を行っているので、工具軌跡が凸の円弧と凹
の円弧をなすような複雑な自由曲面においても、高い形
状精度の加工を行うことができる。
According to the curved surface machining method of the present invention, when the surface to be machined of the workpiece has both a convex curved surface and a concave curved surface, the tool trajectory is divided by the inflection points of the convex curved surface and the concave curved surface. ,
Since arc approximation is performed for each of the tool trajectory of the convex curved surface and the tool trajectory of the concave curved surface, high-precision machining is performed even on a complicated free-form surface where the tool trajectory forms a convex circular arc and a concave circular arc. be able to.

【0090】請求項8記載の発明の曲面加工方法によれ
ば、曲面加工方法を、被加工物の被加工面の研磨加工に
適用しているので、4軸制御などの複雑な装置と加工プ
ログラムを用いることなく、研磨荷重軸と直交2軸のN
Cテーブルで構成される従来の簡単な曲面研磨装置を用
いて、工具送り速度、工具回転数及び荷重制御の応答条
件を速やかに決定し、安価に、かつ、より一層簡単に自
由曲面を正確に研磨加工することができる。
According to the curved surface processing method of the present invention, since the curved surface processing method is applied to the polishing of the surface to be processed of the workpiece, a complicated apparatus such as four-axis control and a processing program are used. Without using the N, N of two axes orthogonal to the polishing load axis
Using a conventional simple curved surface polishing device composed of a C table, the tool feed speed, tool rotation speed and response conditions for load control are quickly determined, and a free-form surface can be accurately and inexpensively more easily and accurately. Can be polished.

【0091】請求項9記載の発明の曲面加工方法によれ
ば、曲面加工方法を、被加工物の被加工面の切削または
研削加工に適用しているので、工具荷重軸の定寸の切り
込み軸に置き換えた加工機構成に容易に適用して、自由
曲面の創成加工を高精度に行うことができ、表面うねり
を抑制しつつ、高精度に切削または研削加工を行うこと
ができる。
According to the curved surface machining method of the ninth aspect, the curved surface machining method is applied to the cutting or grinding of the surface to be machined of the workpiece, so that the cutting shaft having a fixed dimension of the tool load axis. The present invention can be easily applied to a processing machine configuration that has been replaced with the above, and can perform free-form surface creation processing with high accuracy, and can perform high-precision cutting or grinding processing while suppressing surface undulations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の曲面加工方法の一実施の形態を適用し
た研磨装置の正面図。
FIG. 1 is a front view of a polishing apparatus to which an embodiment of a curved surface processing method according to the present invention is applied.

【図2】図1の工具及び被加工物部分の拡大斜視図。FIG. 2 is an enlarged perspective view of a tool and a workpiece of FIG. 1;

【図3】図1の研磨装置の制御ブロック図。FIG. 3 is a control block diagram of the polishing apparatus of FIG. 1;

【図4】曲面加工の対象となる被加工物の研磨領域部分
を拡大して示す斜視図。
FIG. 4 is an enlarged perspective view showing a polished region of a workpiece to be subjected to curved surface processing;

【図5】図4の被加工物の接触軌跡(ツールパス)を示
す図。
FIG. 5 is a diagram showing a contact locus (tool path) of a workpiece in FIG. 4;

【図6】図5のツールパスを円弧近似した状態を示す
図。
FIG. 6 is a view showing a state where the tool path of FIG. 5 is approximated by an arc;

【図7】研磨条件を決定するためにシリンダー形状のダ
ミーワークを実験研磨している状態を示すダミーワーク
と工具の拡大斜視図。
FIG. 7 is an enlarged perspective view of a dummy work and a tool showing a state in which a cylindrical dummy work is being experimentally polished to determine polishing conditions.

【図8】ステップ応答波形を示す図。FIG. 8 is a diagram showing a step response waveform.

【図9】ダミーワークの予備研磨の形状評価結果を示す
図。
FIG. 9 is a view showing a shape evaluation result of preliminary polishing of a dummy work.

【図10】研磨条件の決定手順を示すフローチャート。FIG. 10 is a flowchart showing a procedure for determining polishing conditions.

【符号の説明】[Explanation of symbols]

1 研磨装置 2 基台 3 X軸テーブル 4 Y軸テーブル 5 直動ガイド軸 6 直動ガイド 7 スピンドル 8 工具 9 加圧機構 10 ロードセル 11 重り 20 工具加工圧力設定部 21 PID調節器 22 空圧レギュレータ 23 エアシリンダ 100 被加工物 101 研磨領域 102 接触軌跡 103 切り返し動作 200 ダミーワーク DESCRIPTION OF SYMBOLS 1 Polishing apparatus 2 Base 3 X-axis table 4 Y-axis table 5 Linear guide shaft 6 Linear guide 7 Spindle 8 Tool 9 Pressurizing mechanism 10 Load cell 11 Weight 20 Tool processing pressure setting part 21 PID regulator 22 Pneumatic regulator 23 Air cylinder 100 Workpiece 101 Polishing area 102 Contact locus 103 Switching operation 200 Dummy work

フロントページの続き Fターム(参考) 3C001 KA01 KB07 TA05 TA06 3C049 AA03 AA11 AA16 AB01 AB06 BA01 BA02 BA04 BA05 BB02 BB08 BC01 BC02 CA01 CA03 CB01 CB05 Continuation of the front page F term (reference) 3C001 KA01 KB07 TA05 TA06 3C049 AA03 AA11 AA16 AB01 AB06 BA01 BA02 BA04 BA05 BB02 BB08 BC01 BC02 CA01 CA03 CB01 CB05

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】被加工物よりも小径の工具を所定の軸心の
回りに所定の工具回転数で回転させながら工具の荷重を
略一定にして所定の軌跡上を所定の工具送り速度で走査
させて曲面を加工する曲面加工方法において、前記工具
の前記被加工物の被加工面に対する接触軌跡を円弧近似
し、当該円弧近似のうち最小曲率半径と同じ曲率半径の
円弧断面を有するダミー加工物を予備加工して、工具送
り速度、工具回転数及び荷重制御の応答条件を決定し、
当該決定した工具送り速度、工具回転数及び荷重制御の
応答条件に基づいて前記被加工物を加工することを特徴
とする曲面加工方法。
1. A tool having a diameter smaller than that of a workpiece is rotated around a predetermined axis at a predetermined number of revolutions while the load of the tool is kept substantially constant, and a predetermined locus is scanned at a predetermined tool feed speed. In a curved surface machining method for machining a curved surface, a contact locus of the tool with respect to a surface to be machined of the workpiece is approximated by an arc, and a dummy workpiece having an arc cross section having the same radius of curvature as a minimum radius of curvature of the arc approximation. Preliminary machining, determine the tool feed rate, tool rotation speed and load control response conditions,
A curved surface machining method, wherein the workpiece is machined based on the determined tool feed speed, tool rotation speed, and response condition of load control.
【請求項2】被加工物よりも小径の工具を所定の軸心の
回りに所定の工具回転数で回転させながら工具の荷重を
略一定にして所定の軌跡上を所定の工具送り速度で走査
させて曲面を加工する曲面加工方法において、前記工具
の前記被加工物の被加工面に対する接触軌跡を円弧近似
し、当該円弧近似のうち最小曲率半径を求め、各種曲率
半径の円弧断面を有するダミ−加工物を予め予備加工し
て決定した工具送り速度、工具回転数及び荷重制御の応
答条件のデータベースから、前記最小曲率半径に基づい
て工具送り速度、工具回転数及び荷重制御の応答条件を
読み出し、当該読み出した工具送り速度、工具回転数及
び荷重制御の応答条件に基づいて前記被加工物を加工す
ることを特徴とする曲面加工方法。
2. A tool having a diameter smaller than that of a workpiece is rotated around a predetermined axis at a predetermined rotational speed while the load of the tool is kept substantially constant, and a predetermined locus is scanned at a predetermined tool feed speed. In the curved surface machining method for machining a curved surface, a contact locus of the tool with respect to a surface to be machined of the workpiece is approximated by an arc, a minimum radius of curvature is determined from the arc approximation, and a dummy having a circular cross section having various radii of curvature is obtained. -Read out the tool feed speed, tool rotation speed and load control response condition based on the minimum radius of curvature from a database of tool feed speed, tool rotation speed and load control response condition determined by pre-processing the workpiece in advance. And processing the workpiece based on the read tool feed speed, tool rotation speed, and response condition of load control.
【請求項3】前記曲面加工方法は、前記荷重制御の応答
条件として、前記工具の荷重制御のステップ指令値に対
する立ち上がり時間とオーバーシュート量を用いること
を特徴とする請求項1または請求項2記載の曲面加工方
法。
3. The curved surface machining method according to claim 1, wherein a rising time and an overshoot amount with respect to a step command value of the load control of the tool are used as response conditions of the load control. Curved surface processing method.
【請求項4】前記曲面加工方法は、前記最小曲率半径以
外の他の曲率半径の接触軌跡の工具送り速度を、当該接
触軌跡の曲率半径と前記最小曲率半径との比に基づいて
決定することを特徴とする請求項1から請求項3のいず
れかに記載の曲面加工方法。
4. The method for machining a curved surface according to claim 1, wherein a tool feed speed of a contact locus having a radius of curvature other than the minimum radius of curvature is determined based on a ratio between the radius of curvature of the contact locus and the minimum radius of curvature. The curved surface processing method according to any one of claims 1 to 3, wherein:
【請求項5】前記曲面加工方法は、前記工具の走査とし
て、X軸方向またはY軸方向の直線動作と当該直線動作
を行うためのY軸方向またはX軸方向への所定幅の折り
返し動作とを行い、前記円弧近似を行う接触軌跡とし
て、当該折り返し動作を除いた1軸方向の前記直線動作
のみの走査の軌跡を採用することを特徴とする請求項1
から請求項4のいずれかに記載の曲面加工方法。
5. The curved surface machining method according to claim 1, wherein the scanning of the tool includes a linear motion in the X-axis direction or the Y-axis direction and a folding operation of a predetermined width in the Y-axis direction or the X-axis direction for performing the linear motion. And a scanning locus of only the linear motion in one axial direction excluding the turning motion is adopted as a contact locus for performing the arc approximation.
The curved surface processing method according to any one of claims 1 to 4.
【請求項6】前記曲面加工方法は、前記工具の走査とし
て、X軸方向またはY軸方向の直線動作と当該直線動作
を行うためのY軸方向またはX軸方向への所定幅の折り
返し動作とを行い、前記工具の接触軌跡の円弧近似を、
前記直線動作軸と当該直線動作軸と直交し前記工具の前
記被加工物の被加工面への荷重付与軸とのなす面内に工
具軌跡を投影し、当該投影した工具軌跡を最小二乗法で
近似して求めることを特徴とする請求項1から請求項5
のいずれかに記載の曲面加工方法。
6. The curved surface machining method according to claim 1, wherein the scanning of the tool includes a linear motion in an X-axis direction or a Y-axis direction and a folding operation of a predetermined width in the Y-axis direction or the X-axis direction for performing the linear motion. And the circular approximation of the contact trajectory of the tool,
Projecting a tool trajectory in a plane formed by a linear motion axis and an axis for applying a load to the workpiece surface of the workpiece perpendicular to the linear motion axis and the tool, and projecting the tool trajectory by the least square method. 6. The method according to claim 1, wherein the value is obtained by approximation.
The method for processing a curved surface according to any one of the above.
【請求項7】前記曲面加工方法は、前記被加工物の被加
工面が凸曲面と凹曲面が混在する場合、前記工具軌跡を
当該凸曲面と凹曲面の変極点で分割し、凸曲面の工具軌
跡と凹曲面の工具軌跡のそれぞれについて前記円弧近似
を行うことを特徴とする請求項1から請求項6のいずれ
かに記載の曲面加工方法。
7. The curved surface machining method according to claim 1, wherein, when the surface to be machined of the workpiece has both a convex curved surface and a concave curved surface, the tool trajectory is divided by an inflection point of the convex curved surface and the concave curved surface. 7. The curved surface machining method according to claim 1, wherein the circular arc approximation is performed for each of a tool path and a tool path of a concave surface.
【請求項8】前記曲面加工方法は、前記被加工物の被加
工面を研磨加工することを特徴とする請求項1から請求
項7のいずれかに記載の曲面加工方法。
8. The curved surface processing method according to claim 1, wherein said curved surface processing method includes polishing a surface to be processed of said workpiece.
【請求項9】前記曲面加工方法は、前記被加工物の被加
工面を切削または研削加工することを特徴とする請求項
1から請求項7のいずれかに記載の曲面加工方法。
9. The curved surface machining method according to claim 1, wherein said curved surface machining method comprises cutting or grinding a surface to be machined of said workpiece.
JP11041688A 1999-02-19 1999-02-19 Curved surface working method Pending JP2000237931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041688A JP2000237931A (en) 1999-02-19 1999-02-19 Curved surface working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041688A JP2000237931A (en) 1999-02-19 1999-02-19 Curved surface working method

Publications (1)

Publication Number Publication Date
JP2000237931A true JP2000237931A (en) 2000-09-05

Family

ID=12615376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041688A Pending JP2000237931A (en) 1999-02-19 1999-02-19 Curved surface working method

Country Status (1)

Country Link
JP (1) JP2000237931A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342875A (en) * 2004-06-07 2005-12-15 Ricoh Co Ltd Curved surface machining device, optical element and optical element mold formed by using the device, and calibration method of parallel link mechanism
JP2009061525A (en) * 2007-09-05 2009-03-26 Jtekt Corp Hard brittle material grinding method, optical fiber array manufacturing method, and hard brittle material machining device
JP2011036985A (en) * 2009-08-18 2011-02-24 Matsuura Machinery Corp Cam system
US20120010745A1 (en) * 2010-07-12 2012-01-12 Fanuc Corporation Numerical controller for machine tool with function of controlling speed of arc operation
CN106312753A (en) * 2016-08-30 2017-01-11 上海交通大学 Curved surface parallel polishing device
CN111254768A (en) * 2019-09-06 2020-06-09 济南豪特创新管理咨询合伙企业(有限合伙) Ultrasonic metal surface treatment method for steel rail welding joint

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342875A (en) * 2004-06-07 2005-12-15 Ricoh Co Ltd Curved surface machining device, optical element and optical element mold formed by using the device, and calibration method of parallel link mechanism
JP4662018B2 (en) * 2004-06-07 2011-03-30 株式会社リコー Curved surface processing apparatus and parallel link mechanism calibration method
JP2009061525A (en) * 2007-09-05 2009-03-26 Jtekt Corp Hard brittle material grinding method, optical fiber array manufacturing method, and hard brittle material machining device
JP2011036985A (en) * 2009-08-18 2011-02-24 Matsuura Machinery Corp Cam system
US20120010745A1 (en) * 2010-07-12 2012-01-12 Fanuc Corporation Numerical controller for machine tool with function of controlling speed of arc operation
US8744612B2 (en) * 2010-07-12 2014-06-03 Fanuc Corporation Numerical controller for machine tool with function of controlling speed of arc operation
CN106312753A (en) * 2016-08-30 2017-01-11 上海交通大学 Curved surface parallel polishing device
CN111254768A (en) * 2019-09-06 2020-06-09 济南豪特创新管理咨询合伙企业(有限合伙) Ultrasonic metal surface treatment method for steel rail welding joint

Similar Documents

Publication Publication Date Title
US4993896A (en) Edge contouring system
EP1462209B1 (en) Hale-machining method and apparatus
JP4456520B2 (en) Multi-axis spherical grinding apparatus and grinding method
EP0513223A4 (en) Computer-controlled grinding machine for producing objects with complex shapes
JP2008509012A (en) Raster cutting technology for ophthalmic lenses
EP1927911A2 (en) Machining apparatus
JP3246961B2 (en) Control device for crankshaft mirror
JP3426132B2 (en) Machining non-axisymmetric aspheric surface
JP4503326B2 (en) Tool path data generation device and control device including the same
JP2000237931A (en) Curved surface working method
JP2006218554A (en) Method for creating shape of tool grinding wheel
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2006320970A (en) Machining device
US6988860B2 (en) Cutting tool and cutting method using the cutting tool
JP4712586B2 (en) NC machine tool
US20080177407A1 (en) Program writing method of numerical controller, numerical controller and cutting machine controlled thereby
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
KR20070121858A (en) Apparatus and method for grinding and polishing without tilting axis
JP4957153B2 (en) Processing equipment
JP2002178248A (en) Polishing device
JP2008084129A (en) Program writing method of numerical controller, numerical controller and machining device
JP2002160103A (en) Curved surface machine method and its device
KR0152632B1 (en) Automatic grinding control method for a mold grinding system
JP3839326B2 (en) Axisymmetric aspheric grinding method
JP2006192511A (en) Wave removal polishing method