JP2006218554A - Method for creating shape of tool grinding wheel - Google Patents

Method for creating shape of tool grinding wheel Download PDF

Info

Publication number
JP2006218554A
JP2006218554A JP2005032347A JP2005032347A JP2006218554A JP 2006218554 A JP2006218554 A JP 2006218554A JP 2005032347 A JP2005032347 A JP 2005032347A JP 2005032347 A JP2005032347 A JP 2005032347A JP 2006218554 A JP2006218554 A JP 2006218554A
Authority
JP
Japan
Prior art keywords
axis
tool
grindstone
shape
tool grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005032347A
Other languages
Japanese (ja)
Other versions
JP4576255B2 (en
Inventor
Harutaka Kondo
晴崇 近藤
Shinji Yokoyama
真司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005032347A priority Critical patent/JP4576255B2/en
Publication of JP2006218554A publication Critical patent/JP2006218554A/en
Application granted granted Critical
Publication of JP4576255B2 publication Critical patent/JP4576255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for highly accurately creating an annular grinding wheel. <P>SOLUTION: A lathe 1 for ultra-precision machining can be moved in the directions of three axes, that is, at least an X-axis, a Z-axis, and a B-axis. The tool grinding wheel 9 grinds a workpiece while being held by a tool rotating shaft parallel to the Z-axis. A creation grinding wheel 8 is held by a workpiece rotating shaft, has a plane part at a part facing the tool grinding wheel 9, and creates a shape of the tool grinding wheel 9. Here, the tool grinding wheel 9 is axially rotated by the tool rotating shaft and the creation grinding wheel 8 is axially rotated by the workpiece rotating shaft. The tool grinding wheel 9 is moved forward or reciprocated in the X-axis direction while being oscillated in the B-axis direction. A certain predetermined feed is given to the tool grinding wheel 9 in the Z-axis direction in that state. Consequently, the tool grinding wheel 9 can be annularly created. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、研削加工技術に関し、特に、光学機器に使用されるレンズやプリズムなどの高精度光学素子の研削加工、あるいは、それらを成形するための光学素子成形型の研削加工に好適な砥石の形状を創成する技術に関する。   The present invention relates to grinding technology, and in particular, a grinding wheel suitable for grinding high-precision optical elements such as lenses and prisms used in optical equipment, or grinding of an optical element molding die for molding them. It relates to technology for creating shapes.

レンズやプリズムなどの光学部品は非常に高い形状精度及び表面粗さ精度が必要とされる。このような高精度の光学部品を加工する方法として、例えば非特許文献1に記載されているように、円弧断面形状を有する砥石を用いて、工作物の回転方向とクロスする方向に砥石を移動させ、砥石加工面を工作物に対して円弧包絡させながら非球面研削を行う方法(いわゆるパラレル研削法)が開示されている。この加工法では、図5に示すように、工具砥石109の断面形状が工作物110に転写されるために、非常に高精度な円弧断面形状を有する工具砥石109を用いる必要がある。   Optical parts such as lenses and prisms are required to have very high shape accuracy and surface roughness accuracy. As a method of processing such a high-precision optical component, for example, as described in Non-Patent Document 1, using a grindstone having an arc cross-sectional shape, the grindstone is moved in a direction crossing the rotation direction of the workpiece. A method (so-called parallel grinding method) is disclosed in which aspherical grinding is performed with a grindstone machining surface having an arc envelope with respect to a workpiece. In this processing method, as shown in FIG. 5, since the cross-sectional shape of the tool grindstone 109 is transferred to the workpiece 110, it is necessary to use the tool grindstone 109 having a highly accurate arc cross-sectional shape.

そのような高精度な工具砥石109の創成、目立ての方法として、例えば特許文献1に開示されている球面形状砥石のツルーイング/ドレッシング法がある。この方法について、図6を用いて説明すると、カップ型をした創成砥石108を、形状創成する工具砥石109に対して1方向に切り込み(図6の(a)では左から右方向へ切り込む)、球面形状を創成し、その後はスラリ111によって図6の(b)のようにして目立てするものであり、創成する工具砥石109の外径を直径とする球面形状を創成することができる。   As a method for creating and sharpening such a high-precision tool grindstone 109, for example, there is a truing / dressing method for a spherical grindstone disclosed in Patent Document 1. This method will be described with reference to FIG. 6. A cup-shaped generating grindstone 108 is cut in one direction with respect to a tool whetstone 109 for creating a shape (cut from left to right in FIG. 6A). A spherical shape is created, and thereafter, as shown in FIG. 6 (b) by the slurry 111, a spherical shape having the outer diameter of the tool grindstone 109 to be created as a diameter can be created.

ところで、最近、光学性能の向上を目的として、非球面レンズの形状や自由曲面プリズムの形状が多様化している。そのため、図7に示すような、球面形状の工具砥石109を使用すると、工具砥石109が非球面の工作物110と干渉してしまう場合がある。ここで、干渉を避けるために工具砥石109の半径を小さくすると、工具砥石109に加工負荷が大きくなるため、減耗が大きくなり十分な加工精度が得られないという問題がある。そのため、図8に示すような、工具砥石109の砥石直径bよりも小さな円環曲率半径aを断面形状とした円環形状の砥石を用いることが必要となっている。   Recently, for the purpose of improving the optical performance, the shape of the aspherical lens and the shape of the free-form surface prism have been diversified. Therefore, when a spherical tool grindstone 109 as shown in FIG. 7 is used, the tool grindstone 109 may interfere with the aspherical workpiece 110. Here, if the radius of the tool grindstone 109 is reduced in order to avoid interference, the machining load on the tool grindstone 109 increases, so that there is a problem that wear is increased and sufficient machining accuracy cannot be obtained. Therefore, it is necessary to use an annular grindstone having an annular curvature radius a smaller than the grindstone diameter b of the tool grindstone 109 as shown in FIG.

従来、工具砥石109の加工面を円環形状に創成する手段は、例えば特許文献2に開示されているように、単石ダイヤモンドドレッサ法やステンレスロール法が知られている。
単石ダイヤモンドドレッサ法によって工具砥石を円環形状に創成する方法を図9の(a)を用いて説明すると、この方法は、回転する工具砥石109の加工面を単石ダイヤモンドドレッサ112に接触させながら、加工面が所望の曲率形状となるように単石ダイヤモンドドレッサ112と工具砥石109とを相対的に移動させることにより、工具砥石109を円環形状に創成するものである。
Conventionally, as a means for creating the processing surface of the tool grindstone 109 in an annular shape, for example, a single stone diamond dresser method or a stainless roll method is known as disclosed in Patent Document 2.
A method of creating a tool grindstone in an annular shape by the single stone diamond dresser method will be described with reference to FIG. 9A. In this method, the processing surface of the rotating tool grindstone 109 is brought into contact with the single stone diamond dresser 112. However, the tool stone 109 is created in an annular shape by relatively moving the single stone diamond dresser 112 and the tool grindstone 109 so that the processed surface has a desired curvature shape.

また、ステンレスロール法によって工具砥石を円環形状に創成する方法を図9の(b)を用いて説明すると、この方法は、回転する砥石109とステンレスロール113とを接触させながら相対的に円弧運動させることにより、工具砥石109を円環形状に創成するものである。
特開2001−260023号公報 特開2003−260646号公報 佐伯、厨川、庄司、「パラレル研削法による非球面金型加工に関する研究」、精密工学会誌、社団法人精密工学会、2002年8月、第68巻、第8号、p.1067−1071
In addition, a method for creating a tool grindstone in an annular shape by the stainless roll method will be described with reference to FIG. 9B. This method is based on a relatively circular arc while the rotating grindstone 109 and the stainless roll 113 are in contact with each other. By making it move, the tool grindstone 109 is created in an annular shape.
JP 2001-260023 A JP 2003-260646 A Saeki, Yodogawa, Shoji, “Study on Aspherical Die Machining by Parallel Grinding Method”, Journal of Precision Engineering, Japan Society for Precision Engineering, August 2002, Vol. 68, No. 8, p. 1067-1071

パラレル研削法で高精度な加工結果を得るためには、砥石の断面形状が高精度であることに併せ、工作物の加工面にうねりを形成させないために、図10に示すように、工具砥石109の加工面で砥石回転方向と鉛直方向に周期的な凹凸が存在しないことが必要である。しかしながら、前述したような従来の円環砥石の創成手法では、図9に示されているように、工具砥石109の回転方向に単石ダイヤモンドドレッサ112やステンレスロール113による一様な加工痕が形成されてしまう。このような工具砥石109を非球面形状の研削に使用すると、砥石表面の加工痕が工作物に転写されてしまうため、加工された光学素子の表面にうねりが形成され、十分な光学性能を得ることができないという問題がある。   In order to obtain a high-precision machining result by the parallel grinding method, in addition to the high-precision cross-sectional shape of the grindstone, in order not to form waviness on the machined surface of the workpiece, as shown in FIG. It is necessary that there are no periodic irregularities in the grinding wheel rotation direction and the vertical direction on the 109 processed surface. However, in the conventional method of creating an annular grindstone as described above, uniform machining marks are formed by the single stone diamond dresser 112 and the stainless roll 113 in the rotational direction of the tool grindstone 109 as shown in FIG. Will be. When such a tool grindstone 109 is used for aspherical grinding, the processing marks on the surface of the grindstone are transferred to the workpiece, so that waviness is formed on the surface of the processed optical element and sufficient optical performance is obtained. There is a problem that can not be.

本発明は上述した問題に鑑みてなされたものであり、その解決しようとする課題は、円環形状の砥石を高精度に創生する手法を提供することである。   This invention is made | formed in view of the problem mentioned above, The subject which it is going to solve is providing the method of creating an annular-shaped grindstone with high precision.

本発明の態様のひとつである工具砥石の形状創成方法は、少なくともX軸、当該X軸に垂直な軸であるZ軸、並びに当該X軸及び当該Z軸の両者に垂直な軸を中心として旋回する軸であるB軸の3軸の各方向への移動が可能な機械加工装置と、当該X軸と当該Z軸の両者に平行で且つ当該B軸で旋回可能な工具回転軸に保持されており工作物を研削する工具砥石と、工作物回転軸に保持されていて当該工具砥石に対向する部分に平面部を有しており当該工具砥石を形状創成するための創成砥石と、を用いて行う工具砥石の形状創成方法であって、当該工具砥石を当該工具回転軸にて軸回転させると共に当該創成砥石を当該工作物回転軸にて軸回転させ、当該工具砥石を当該B軸の方向に揺動させながら当該X軸の方向に往移動若しくは往復移動させ、この状態で当該工具砥石に対し当該Z軸の方向へある一定量の切り込みを与えることで当該工具砥石を円環形状に創成する、ことを特徴とするものであり、この特徴によって前述した課題を解決する。   A method for creating a shape of a tool grindstone, which is one of the aspects of the present invention, comprises at least an X-axis, a Z-axis that is an axis perpendicular to the X-axis, and an axis perpendicular to both the X-axis and the Z-axis. A machining apparatus capable of moving in three directions of the B axis, which is the axis to be rotated, and a tool rotation axis which is parallel to both the X axis and the Z axis and which can be swung by the B axis. A tool grindstone for grinding a cage workpiece, and a creation grindstone for creating a shape of the tool grindstone, which is held on the workpiece rotating shaft and has a flat portion in a portion facing the tool grindstone A method for creating a shape of a tool grindstone, wherein the tool grindstone is rotated about the tool rotation axis and the creation grindstone is rotated about the workpiece rotation axis, and the tool grindstone is moved in the direction of the B axis. Move back and forth in the direction of the X axis while swinging In this state, the tool grindstone is created in an annular shape by giving a certain amount of incision to the tool grindstone in the Z-axis direction. Solve the problem.

なお、上述した本発明に係る工具砥石の形状創成方法において、当該工具砥石の位置を、当該工具砥石の円環部の曲率中心とB軸の旋回中心とが一致するように調整しておくようにしてもよい。   In the above-described method for creating the shape of the tool grindstone according to the present invention, the position of the tool grindstone is adjusted so that the center of curvature of the annular portion of the tool grindstone coincides with the turning center of the B axis. It may be.

また、前述した本発明に係る工具砥石の形状創成方法において、当該工具砥石のX軸方向の移動と当該工具砥石のB軸方向の揺動とは非同期で行うようにしてもよい。
また、前述した本発明に係る工具砥石の形状創成方法において、当該工具砥石の当該B軸の方向での揺動と当該工具砥石の当該X軸の方向への移動とは複数回繰り返され、当該繰り返しにおける当該工具砥石と当該創成砥石との接触の開始位置を毎回異ならせるようにしてもよい。
Further, in the above-described method for creating the shape of the tool grindstone according to the present invention, the movement of the tool grindstone in the X-axis direction and the swing of the tool grindstone in the B-axis direction may be performed asynchronously.
Moreover, in the shape creation method of the tool grindstone according to the present invention described above, the swing of the tool grindstone in the direction of the B-axis and the movement of the tool grindstone in the direction of the X-axis are repeated a plurality of times, You may make it change the starting position of the contact with the said tool grindstone and the said creation grindstone in repetition each time.

また、前述した本発明に係る工具砥石の形状創成方法において、当該創成砥石を、当該工具砥石より硬い材質としてもよい。   Moreover, in the shape creation method of the tool grindstone according to the present invention described above, the creation grindstone may be made of a material harder than the tool grindstone.

本発明は、以上のようにすることにより、円環形状の砥石の加工面に砥石回転方向と鉛直方向に周期的な凹凸が生じないので、円環形状の砥石を高精度に創生できるという効果を奏する。   According to the present invention, the ring-shaped grindstone can be created with high accuracy because the processing surface of the circular grindstone does not have periodic irregularities in the rotation direction and the vertical direction of the grindstone. There is an effect.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施例1を説明する。まず、本実施例の構成を説明する。
図1において、超精密加工用旋盤1は、光学素子の光学面自体や当該光学素子の光学面を創成するための金型を加工する工作機である。超精密加工用旋盤1は、同図において矢印で示されているX軸、Z軸、及びB軸の少なくとも3軸移動が可能となっている。
Example 1 of the present invention will be described. First, the configuration of the present embodiment will be described.
In FIG. 1, an ultra-precision machining lathe 1 is a machine tool for machining an optical surface of an optical element itself or a mold for creating the optical surface of the optical element. The ultra-precision machining lathe 1 can move at least three axes of the X axis, the Z axis, and the B axis indicated by arrows in FIG.

超精密加工用旋盤1では、Z軸と平行である回転軸を持っている工作物回転駆動装置2が、Z軸方向に移動制御可能なZ軸ステージ3上に設置されている。更に、Z軸に垂直であるX軸方向に移動制御可能なXステージ4上には、X軸及びZ軸の両者に垂直な軸を中心として旋回する軸であるB軸を持っているB軸ステージ5が配置されている。   In the ultra-precision machining lathe 1, a workpiece rotation driving device 2 having a rotation axis parallel to the Z axis is installed on a Z axis stage 3 that can be controlled to move in the Z axis direction. Further, on the X stage 4 which can be controlled to move in the X-axis direction perpendicular to the Z-axis, the B-axis has a B-axis which is an axis turning around an axis perpendicular to both the X-axis and the Z-axis. Stage 5 is arranged.

B軸ステージ5上には、X軸とZ軸とで張られる平面上に回転軸が含まれている工具回転駆動装置6が設置されている。また、B軸ステージ5の横側には、超精密加工用旋盤1のX軸方向及びZ軸方向の移動制御装置とは別の、B軸方向の移動制御を行うためのB軸駆動装置7が設置されている。   On the B-axis stage 5, a tool rotation driving device 6 including a rotation axis on a plane stretched between the X-axis and the Z-axis is installed. Further, on the side of the B-axis stage 5, a B-axis drive device 7 for performing movement control in the B-axis direction, which is different from the movement control device in the X-axis direction and the Z-axis direction of the lathe 1 for ultraprecision machining. Is installed.

B軸駆動装置7は、例えば、直流モータにクランクを介してB軸ステージを揺動させるなどといった構造、すなわち、B軸回転角制御と揺動移動速度制御といった制御を持たない簡単な構造でも構わない。また、超精密加工用旋盤1によるB軸ステージ5の移動制御を解除することが可能であり、この移動制御を解除すると回転移動が自在にできる。   The B-axis drive device 7 may have, for example, a structure in which the B-axis stage is swung by a DC motor via a crank, that is, a simple structure having no control such as B-axis rotation angle control and swing movement speed control. Absent. Moreover, the movement control of the B-axis stage 5 by the ultra-precision machining lathe 1 can be canceled, and the rotational movement can be freely performed by canceling this movement control.

工作物回転駆動装置2の先端には、工具回転駆動装置6と対向する面が平面となる円柱形状の創成砥石8が取り付けられる。このとき、工作物回転軸に対し、創成砥石8の平面部がスラスト方向及びラジアル方向のどちらの方向にも回転ずれが生じないよう調整を行った取り付けをする。   A columnar generating grindstone 8 having a flat surface facing the tool rotation driving device 6 is attached to the tip of the workpiece rotation driving device 2. At this time, it is attached to the workpiece rotation axis so that the plane portion of the generating grindstone 8 is adjusted so that no rotational deviation occurs in either the thrust direction or the radial direction.

工具回転駆動装置6の先端には、実際の光学面や金型を研削加工するための工具砥石9が取り付けられている。工具砥石9は、工作物側の円環曲率中心とB軸ステージの回転軸中心とが一致するような位置に設置されている。なお、創成砥石8の結合材は、工具砥石9の結合材より硬い材質とする。   A tool grindstone 9 for grinding an actual optical surface or mold is attached to the tip of the tool rotation driving device 6. The tool grindstone 9 is installed at a position where the center of curvature of the workpiece side coincides with the rotation axis center of the B-axis stage. Note that the binding material of the generating grindstone 8 is harder than the binding material of the tool grindstone 9.

次に、本実施例の作用について、図2及び図3を用いて具体的に説明する。但し、これらは本発明を限定するものではない。
まず、工具砥石9の工作物側の円環曲率中心がB軸ステージ5の回転軸の中心(B軸の旋回中心)になるように併せ込み(工具回転駆動装置6の位置調整)を行う。図2はこの併せ込みを済ませた状態を示している。
Next, the operation of this embodiment will be specifically described with reference to FIGS. However, these do not limit the present invention.
First, the tool wheel 9 is combined (position adjustment of the tool rotation driving device 6) so that the center of circular curvature of the workpiece on the workpiece side becomes the center of the rotation axis of the B-axis stage 5 (the center of rotation of the B-axis). FIG. 2 shows a state in which this combination has been completed.

その後、工具砥石9を工具回転駆動装置6にて軸回転させると共に、創成砥石8を工作物回転駆動装置2にて軸回転させる。このとき、B軸ステージ5を移動させる超精密加工用旋盤1のB軸角度の制御を解除しておく。   Thereafter, the tool grindstone 9 is axially rotated by the tool rotation driving device 6 and the generating grindstone 8 is axially rotated by the workpiece rotation driving device 2. At this time, the control of the B-axis angle of the lathe 1 for ultraprecision machining that moves the B-axis stage 5 is released.

次に、B軸駆動装置7へ電力を投入し、B軸駆動装置7にてB軸ステージ5を揺動運動させる。この揺動運動は超精密加工用旋盤1の移動制御装置とは独立した駆動源を使用しているので、超精密加工用旋盤1において移動制御されているXステージ4及びZステージ3の各軸移動とB軸ステージ5のB軸方向の揺動とは非同期の移動動作となる。   Next, power is supplied to the B-axis drive device 7, and the B-axis stage 5 is caused to swing by the B-axis drive device 7. Since this oscillating motion uses a drive source that is independent of the movement control device for the ultra-precision machining lathe 1, each axis of the X stage 4 and the Z stage 3 controlled to move in the ultra-precision machining lathe 1 is used. The movement and the swinging of the B-axis stage 5 in the B-axis direction are asynchronous movement operations.

このようにして工具砥石9を揺動運動させながら、工具砥石9の先端と創成砥石8の先端とが接触する位置からZ軸方向へ、ある一定量の切り込みを与える。そして、この状態で、前記超精密加工用旋盤1のX軸ステージ4に対する移動制御によって、工具砥石9をX軸方向に往移動若しくは往復移動を行わせる。こうすると、創成砥石8と工具砥石9との接触点が図3に示すように移動し、工具砥石9の先端を円環形状に創成する加工が行われる。   While swinging the tool grindstone 9 in this way, a certain amount of cut is given in the Z-axis direction from the position where the tip of the tool grindstone 9 and the tip of the generating grindstone 8 are in contact. In this state, the tool grindstone 9 is moved forward or backward in the X-axis direction by controlling the movement of the super-precision lathe 1 with respect to the X-axis stage 4. As a result, the contact point between the generating grindstone 8 and the tool grindstone 9 moves as shown in FIG. 3, and processing for creating the tip of the tool grindstone 9 in an annular shape is performed.

なお、このときのX軸方向の移動速度は、創成砥石8の接触径と反比例するように変化させるとよく、こうすることにより、創成砥石8の作用点における単位面積当りの加工負荷量が均一になるので、創成砥石8の平面部が均一に磨耗することとなる。   Note that the moving speed in the X-axis direction at this time may be changed so as to be inversely proportional to the contact diameter of the generating wheel 8, whereby the processing load per unit area at the working point of the generating wheel 8 is uniform. Therefore, the flat surface portion of the generating grindstone 8 is uniformly worn.

また、Xステージ4によるX軸移動とB軸ステージ5によるB軸方向の揺動とが非同期の移動としたことにより、X軸方向の座標位置とB軸方向の揺動角度とが二度と一致することがない。この結果、創成砥石8の平面部の面形状を工具砥石9の創成面へ転写してしまうことがなくなるので、円環形状の工具砥石9の先端を高精度に創成することができる。   Further, since the X-axis movement by the X stage 4 and the B-axis direction swing by the B-axis stage 5 are asynchronous movements, the coordinate position in the X-axis direction and the swing angle in the B-axis direction coincide with each other twice. There is nothing. As a result, since the surface shape of the flat portion of the generating grindstone 8 is not transferred to the generating surface of the tool grindstone 9, the tip of the annular tool grindstone 9 can be created with high accuracy.

工具砥石9を円環形状に創成するための上述した加工工程を複数回繰り返すことで、工具砥石9の先端形状が円環形状の砥石に創成される。
以上のように、本実施例によれば、X軸方向の移動とB軸角度の揺動とにより、工具砥石を円環形状に創成することが可能となる。また、X軸方向の位置とB軸の角度とを二度と一致させないようにしたことにより、創成砥石8における凹凸のある平面部の面形状が工具砥石9の創成面に転写してしまうことがなくなる。
By repeating the above-described processing steps for creating the tool grindstone 9 in an annular shape a plurality of times, the tip shape of the tool grindstone 9 is created in an annular grindstone.
As described above, according to this embodiment, the tool grindstone can be created in an annular shape by moving in the X-axis direction and swinging in the B-axis angle. Further, since the position in the X-axis direction and the angle of the B-axis are not made to coincide with each other, the surface shape of the uneven surface portion of the generating grindstone 8 is not transferred to the generating surface of the tool grindstone 9. .

その結果、工具砥石9の加工面に砥石回転方向と鉛直方向に周期的な凹凸を生じさせてしまうことがなくなり、円環形状の工具砥石が高精度に創成加工される。   As a result, the processing surface of the tool grindstone 9 does not cause periodic irregularities in the grindstone rotation direction and the vertical direction, and an annular tool grindstone is created with high accuracy.

次に、本発明の実施例2を説明する。
本実施例では、実施例1に係る超精密加工用旋盤1に設置されていたB軸駆動装置7を廃止する。上記以外の本実施例の構成は図1に示した実施例1の構成と同一であるため、本実施例の構成図としては図1をそのまま用いることとし、その説明については省略する。
Next, a second embodiment of the present invention will be described.
In the present embodiment, the B-axis drive device 7 installed on the ultra-precision machining lathe 1 according to the first embodiment is eliminated. Since the configuration of the present embodiment other than the above is the same as the configuration of the first embodiment shown in FIG. 1, FIG. 1 is used as it is as the configuration diagram of the present embodiment, and description thereof is omitted.

次に、本実施例の作用について、図4を用いて具体的に説明する。但し、これらは本発明を限定するものではない。
B軸の揺動は、超精密加工用旋盤1の移動制御装置で揺動させる。このとき、B軸ステージ5によるB軸の揺動とX軸ステージ4によるX軸の移動とは同一の制御によって移動するため、本実施例においては、両者は同期することとなる。
Next, the operation of this embodiment will be specifically described with reference to FIG. However, these do not limit the present invention.
The B axis is swung by the movement control device of the lathe 1 for ultra-precision machining. At this time, since the swing of the B-axis by the B-axis stage 5 and the movement of the X-axis by the X-axis stage 4 are moved by the same control, both are synchronized in the present embodiment.

次に、工作物回転起動装置2と工具軸回転駆動装置6とを各軸で回転させながら、創成砥石8の先端と工具砥石9の先端とが接触する位置からZ軸方向へ、ある一定量の切り込みを与え、そして、B軸ステージ5によるB軸方向での往復揺動をさせた状態で、X軸ステージ4によるX軸方向の往移動を1回行って工具砥石9を円環形状に創成する加工を行う。   Next, while rotating the workpiece rotation starting device 2 and the tool axis rotation driving device 6 on each axis, a certain amount from the position where the tip of the generating grindstone 8 and the tip of the tool grindstone 9 contact each other in the Z-axis direction. In the state where the B-axis stage 5 is reciprocally swung in the B-axis direction, the X-axis stage 4 is moved once in the X-axis direction to make the tool grindstone 9 into an annular shape. Create a process to create.

次に、B軸方向に往移動させたときに、工具砥石9がX軸方向に移動した距離の0.15倍の長さをX軸位置座標に加算して位置座標を変更した上で、前述と同様にして工具砥石9を円環形状に創成する加工を行う。以降、この工程を複数回繰り返す。   Next, when the tool grindstone 9 is moved forward in the B-axis direction, a length 0.15 times the distance that the tool grindstone 9 is moved in the X-axis direction is added to the X-axis position coordinates, and then the position coordinates are changed. In the same manner as described above, the tool grindstone 9 is processed to create an annular shape. Thereafter, this process is repeated a plurality of times.

このようにして、創成砥石8と工具砥石9との接触開始時の接触位置を毎回異ならせると、図4に示すように、創成砥石8と工具砥石9との接触するX軸位置、及びB軸の揺動角は各回の工程毎にずれることになるので、創成砥石8と工具砥石9との接触するX軸位置とB軸の揺動角が二度と一致することがなくなる。   In this way, when the contact position at the start of contact between the generating grindstone 8 and the tool grindstone 9 is changed every time, as shown in FIG. 4, the X-axis position where the generating grindstone 8 and the tool grindstone 9 are in contact, and B Since the swing angle of the shaft is shifted at every step, the X-axis position where the generating grindstone 8 and the tool grindstone 9 are in contact with the swing angle of the B-axis does not match twice.

以上のように、本実施例によっても、実施例1と同様、X軸方向の移動とB軸角度の揺動とにより、工具砥石を円環形状に創成することが可能となる。また、X軸方向の位置とB軸の角度とを二度と一致させないようにしたことにより、創成砥石8における凹凸のある平面部の面形状が工具砥石9の創成面に転写してしまうことがなくなる。   As described above, also in the present embodiment, as in the first embodiment, the tool grindstone can be created in an annular shape by moving in the X-axis direction and swinging in the B-axis angle. In addition, since the position in the X-axis direction and the angle of the B-axis are not made to coincide with each other, the surface shape of the uneven surface portion of the generating grindstone 8 is not transferred to the generating surface of the tool grindstone 9. .

その結果、工具砥石9の加工面に砥石回転方向と鉛直方向に周期的な凹凸を生じさせてしまうことがなくなり、円環形状の工具砥石が高精度に創成加工される。
その他、本発明は、上述した実施形態に限定されることなく、種々の改良・変更が可能である。
As a result, the processing surface of the tool grindstone 9 does not cause periodic irregularities in the grindstone rotation direction and the vertical direction, and an annular tool grindstone is created with high accuracy.
In addition, the present invention is not limited to the above-described embodiments, and various improvements and changes can be made.

本発明の実施に使用する超精密加工用旋盤の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the lathe for ultraprecision machining used for implementation of this invention. 実施例1における工具砥石の創成の方法を説明する図である。It is a figure explaining the creation method of the tool grindstone in Example 1. FIG. 実施例1における工具砥石の移動の様子を示す図である。It is a figure which shows the mode of the movement of the tool grindstone in Example 1. FIG. 実施例2における工具砥石のX軸原点位置の変更の様子を示す図である。It is a figure which shows the mode of a change of the X-axis origin position of the tool grindstone in Example 2. FIG. パラレル研削法による研削加工の概要を説明する図である。It is a figure explaining the outline | summary of the grinding process by a parallel grinding method. ツルーイング/ドレッシング法による球面形状砥石の創成法の概要を説明する図である。It is a figure explaining the outline | summary of the creation method of the spherical shape grindstone by a truing / dressing method. 球面形状の工具砥石と非球面工作物との干渉の問題を説明する図である。It is a figure explaining the problem of interference with a spherical-shaped tool grindstone and an aspherical surface workpiece. 円環形状砥石の形状の例を示す図である。It is a figure which shows the example of the shape of an annular shape grindstone. 円環形状砥石の創成法の例を示す図である。It is a figure which shows the example of the creation method of an annular shape grindstone. 従来の創成手法で円環砥石に生じるうねりの問題を説明する図である。It is a figure explaining the problem of the waviness which arises in an annular grindstone with the conventional creation method.

符号の説明Explanation of symbols

1 超精密加工用旋盤
2 工作物回転駆動装置
3 Z軸ステージ
4 X軸ステージ
5 B軸ステージ
6 工具回転駆動装置
7 B軸駆動装置
8 創成砥石
9 工具砥石
108 創成砥石
109 工具砥石
110 工作物
111 スラリ
112 単石ダイヤモンドドレッサ
113 ステンレスロール
a 円環曲率半径
b 砥石直径

DESCRIPTION OF SYMBOLS 1 Lathe for ultra-precision machining 2 Workpiece rotation drive device 3 Z-axis stage 4 X-axis stage 5 B-axis stage 6 Tool rotation drive device 7 B-axis drive device 8 Creation wheel 9 Tool wheel 108 Creation wheel 109 Tool wheel 110 Workpiece 111 Slurry 112 Monolithic diamond dresser 113 Stainless steel roll a Circular radius of curvature b Wheel diameter

Claims (5)

少なくともX軸、当該X軸に垂直な軸であるZ軸、並びに当該X軸及び当該Z軸の両者に垂直な軸を中心として旋回する軸であるB軸の3軸の各方向への移動が可能な機械加工装置と、当該X軸と当該Z軸の両者に平行で且つ当該B軸で旋回可能な工具回転軸に保持されており工作物を研削する工具砥石と、工作物回転軸に保持されていて当該工具砥石に対向する部分に平面部を有しており当該工具砥石を形状創成するための創成砥石と、を用いて行う工具砥石の形状創成方法であって、
前記工具砥石を前記工具回転軸にて軸回転させると共に前記創成砥石を前記工作物回転軸にて軸回転させ、
前記工具砥石を前記B軸の方向に揺動させながら前記X軸の方向に往移動若しくは往復移動させ、この状態で前記工具砥石に対し前記Z軸の方向へある一定量の切り込みを与えることで前記工具砥石を円環形状に創成する、
ことを特徴とする工具砥石の形状創成方法。
At least three movements of the X axis, the Z axis which is an axis perpendicular to the X axis, and the B axis which is an axis turning around an axis perpendicular to both the X axis and the Z axis are performed in each direction. Machine tool, a tool grindstone for grinding a workpiece that is held parallel to both the X-axis and the Z-axis and that can be swiveled by the B-axis, and held on the workpiece rotation axis A tool for creating a shape of a tool grindstone, which has a flat portion at a portion facing the tool grindstone and for creating a shape of the tool grindstone,
Rotating the tool grindstone with the tool rotation axis and rotating the generating grindstone with the workpiece rotation axis,
By moving the tool grindstone back and forth in the X-axis direction while swinging in the B-axis direction, in this state, by giving a certain amount of cut in the Z-axis direction to the tool grindstone Creating the tool grindstone in an annular shape,
A method for creating a shape of a tool grindstone characterized by the above.
前記工具砥石の位置を、当該工具砥石の円環部の曲率中心とB軸の旋回中心とが一致するように調整しておくことを特徴とする請求項1記載の工具砥石の形状創成方法。   The method for creating a shape of a tool grindstone according to claim 1, wherein the position of the tool grindstone is adjusted so that the center of curvature of the annular portion of the tool grindstone coincides with the turning center of the B axis. 前記工具砥石のX軸方向の移動と当該工具砥石のB軸方向の揺動とは非同期で行うことを特徴とする請求項1記載の工具砥石の形状創成方法。   The method for creating a shape of a tool grindstone according to claim 1, wherein the movement of the tool grindstone in the X-axis direction and the swing of the tool grindstone in the B-axis direction are performed asynchronously. 前記工具砥石の前記B軸の方向での揺動と当該工具砥石の前記X軸の方向への移動とは複数回繰り返され、当該繰り返しにおける当該工具砥石と前記創成砥石との接触の開始位置を毎回異ならせることを特徴とする請求項1記載の工具砥石の形状創成方法。   The swinging of the tool grindstone in the direction of the B-axis and the movement of the tool grindstone in the direction of the X-axis are repeated a plurality of times, and the starting position of contact between the tool grindstone and the generating grindstone in the repetition is determined. The method for creating a shape of a tool grindstone according to claim 1, wherein the shape is varied each time. 前記創成砥石は、前記工具砥石より硬い材質であることを特徴する請求項1記載の工具砥石の形状創成方法。

The method for creating a shape of a tool grindstone according to claim 1, wherein the creation grindstone is made of a material harder than the tool grindstone.

JP2005032347A 2005-02-08 2005-02-08 Tool whetstone shape creation method Expired - Fee Related JP4576255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032347A JP4576255B2 (en) 2005-02-08 2005-02-08 Tool whetstone shape creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032347A JP4576255B2 (en) 2005-02-08 2005-02-08 Tool whetstone shape creation method

Publications (2)

Publication Number Publication Date
JP2006218554A true JP2006218554A (en) 2006-08-24
JP4576255B2 JP4576255B2 (en) 2010-11-04

Family

ID=36981203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032347A Expired - Fee Related JP4576255B2 (en) 2005-02-08 2005-02-08 Tool whetstone shape creation method

Country Status (1)

Country Link
JP (1) JP4576255B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148043A (en) * 2010-01-22 2011-08-04 Howa Mach Ltd Method for truing grinding tool
JP2012500126A (en) * 2008-08-15 2012-01-05 スリーエム イノベイティブ プロパティズ カンパニー Equipment for truing a grinding wheel
CN102513899A (en) * 2011-12-31 2012-06-27 哈尔滨工业大学 Single-direction inclined-shaft profiling precision grinding method of array optical elements of micro circular troughs
CN103170886A (en) * 2013-03-19 2013-06-26 西安交通大学苏州研究院 Device and method of line contact polishing of spherical and plane optical elements
CN108161744A (en) * 2017-12-29 2018-06-15 中国工程物理研究院激光聚变研究中心 A kind of polishing tool conditioning system and its dressing method
CN111300160A (en) * 2020-02-24 2020-06-19 大连理工大学 Ultraprecise processing method and device for quartz harmonic oscillator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586775B (en) * 2013-11-27 2015-09-02 厦门大学 Off-line type air bag polishing tool trimmer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210565A (en) * 1992-07-20 1994-08-02 Toyoda Mach Works Ltd Grinding wheel correcting device
JPH07136932A (en) * 1994-06-13 1995-05-30 Riide:Kk Truing method for super abrasive grain grinding wheel
JP2006150481A (en) * 2004-11-26 2006-06-15 Olympus Corp Method and device for forming abrasive wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210565A (en) * 1992-07-20 1994-08-02 Toyoda Mach Works Ltd Grinding wheel correcting device
JPH07136932A (en) * 1994-06-13 1995-05-30 Riide:Kk Truing method for super abrasive grain grinding wheel
JP2006150481A (en) * 2004-11-26 2006-06-15 Olympus Corp Method and device for forming abrasive wheel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500126A (en) * 2008-08-15 2012-01-05 スリーエム イノベイティブ プロパティズ カンパニー Equipment for truing a grinding wheel
JP2011148043A (en) * 2010-01-22 2011-08-04 Howa Mach Ltd Method for truing grinding tool
CN102513899A (en) * 2011-12-31 2012-06-27 哈尔滨工业大学 Single-direction inclined-shaft profiling precision grinding method of array optical elements of micro circular troughs
CN103170886A (en) * 2013-03-19 2013-06-26 西安交通大学苏州研究院 Device and method of line contact polishing of spherical and plane optical elements
CN108161744A (en) * 2017-12-29 2018-06-15 中国工程物理研究院激光聚变研究中心 A kind of polishing tool conditioning system and its dressing method
CN111300160A (en) * 2020-02-24 2020-06-19 大连理工大学 Ultraprecise processing method and device for quartz harmonic oscillator
CN111300160B (en) * 2020-02-24 2021-07-06 大连理工大学 Ultraprecise processing method and device for quartz harmonic oscillator

Also Published As

Publication number Publication date
JP4576255B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
TWI359711B (en) Raster cutting technology for ophthalmic lenses
JP4576255B2 (en) Tool whetstone shape creation method
JP5087481B2 (en) Multi-axis control mold automatic cell polishing apparatus and cell automatic polishing method
JP6911547B2 (en) Super finishing method for grooves and manufacturing method for bearings
JP2010260110A (en) Machining apparatus and machining method
JP2009184066A (en) Method of machining concave fresnel lens shape member, and concave fresnel lens shape member
JP3426132B2 (en) Machining non-axisymmetric aspheric surface
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP4668872B2 (en) Grinding method and grinding apparatus
JP2007307680A (en) Cutting method, optical element and die
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2007276034A (en) Dress gear, and manufacturing method and apparatus therefor
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP2008149389A (en) Centerless grinding method and device
JP2004344957A (en) Method for manufacturing compound laser beam machine and precision worked product
WO2006132126A1 (en) Method of producing optical element, and optical element
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JP2009095973A (en) Grinding wheel molding device and method
JPH09192994A (en) Device for processing optical element and method thereof
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JP2021160062A (en) Dress grinding device and method thereof
JP2000190221A (en) Control method and moving route producing method of tool
JP2006326833A (en) Method of machining aspheric surface
JP2001179580A (en) Machining device of end of cylindrical work
JP2004154888A (en) Grinding process for convex-shaped object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R151 Written notification of patent or utility model registration

Ref document number: 4576255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees