JP5610800B2 - Optical element manufacturing method - Google Patents

Optical element manufacturing method Download PDF

Info

Publication number
JP5610800B2
JP5610800B2 JP2010059206A JP2010059206A JP5610800B2 JP 5610800 B2 JP5610800 B2 JP 5610800B2 JP 2010059206 A JP2010059206 A JP 2010059206A JP 2010059206 A JP2010059206 A JP 2010059206A JP 5610800 B2 JP5610800 B2 JP 5610800B2
Authority
JP
Japan
Prior art keywords
shape
polishing
component
optical element
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010059206A
Other languages
Japanese (ja)
Other versions
JP2011189476A5 (en
JP2011189476A (en
Inventor
要一郎 安楽
要一郎 安楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010059206A priority Critical patent/JP5610800B2/en
Publication of JP2011189476A publication Critical patent/JP2011189476A/en
Publication of JP2011189476A5 publication Critical patent/JP2011189476A5/en
Application granted granted Critical
Publication of JP5610800B2 publication Critical patent/JP5610800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、非球面光学素子を製造するための光学素子の製造方法に関するもので、特に、その形状が高次の次数を持つ非球面や、放物面、双曲面、回転楕円面などの、全面研磨工具では加工が困難な形状の光学素子を研磨加工する光学素子の製造方法に関するものである。 The present invention relates to a method for manufacturing an optical element for manufacturing an aspherical optical element, and in particular, an aspherical surface having a higher-order shape, a paraboloid, a hyperboloid, a spheroid, etc. The present invention relates to a method for manufacturing an optical element that polishes an optical element having a shape that is difficult to process with a full-surface polishing tool.

合成石英ガラス、低熱膨張ガラス、CVD−SiC、CaF単結晶などの材料は高価であるにもかかわらず、その物理化学特性が優れているために短波長光用のレンズ、ミラーに用いられているが、その形状は、従来、平面、球面、など単純な形状が多かった。しかし、最近では高次の次数を持つ非球面レンズ、ミラーの要求も増してきている。 Although materials such as synthetic quartz glass, low thermal expansion glass, CVD-SiC, and CaF 2 single crystal are expensive, they are used for lenses and mirrors for short wavelength light because of their excellent physicochemical properties. However, there have been many simple shapes such as a flat surface and a spherical surface. Recently, however, there is an increasing demand for high-order aspheric lenses and mirrors.

これらのレンズ、ミラー等の光学素子、あるいは光学素子成形用金型等の製作は高い形状精度が要求され、計測と加工を繰り返すことでその要求精度を満たしてきた。ここで、研削により仕上げられた形状を全面研磨工具で平滑な表面に研磨することは、平面、球面のような単純な形状であれば可能である。ただし、高次の次数を持つ非球面、自由曲面等の複雑な形状では、研削後の形状精度を維持することも困難であった。   The production of optical elements such as lenses and mirrors or optical element molding dies requires high shape accuracy, and the required accuracy has been satisfied by repeating measurement and processing. Here, it is possible to polish the shape finished by grinding to a smooth surface with a whole surface polishing tool as long as it is a simple shape such as a flat surface or a spherical surface. However, it is difficult to maintain the shape accuracy after grinding in complicated shapes such as aspherical surfaces and free-form surfaces having higher orders.

このような形状の加工においては、特に最終仕上げである研磨工程では、研磨工具の形状追随性を高めるために、主に加工領域よりも小さな小径工具を用いたローカル加工法による形状修正加工を行うのが一般的である。このようなローカル加工法の代表的な例としては、特許文献1及び特許文献2に開示されたような方法が考案されている。   In the processing of such a shape, particularly in the polishing process which is the final finish, in order to improve the shape followability of the polishing tool, shape correction processing is mainly performed by a local processing method using a small diameter tool smaller than the processing region. It is common. As typical examples of such local processing methods, methods disclosed in Patent Document 1 and Patent Document 2 have been devised.

特許文献1に開示された加工方法においては、被加工物の加工に先立ち、予め研磨工具の単位時間当たりの研磨除去形状である単位除去形状を取得する。続いて、この単位除去形状と被加工面の計測結果から得られる形状誤差データに基づき、工具の滞留時間分布データを求めて形状修正研磨を行う。この方法は、加工領域全域において、予め取得する単位除去形状が同一あるいは時間の経過に対して一定であると仮定して工具滞留時間分布データを求め、工具滞留時間の制御により形状修正研磨を行うものである。   In the processing method disclosed in Patent Document 1, a unit removal shape that is a polishing removal shape per unit time of the polishing tool is acquired in advance prior to processing of a workpiece. Subsequently, based on the shape error data obtained from the unit removal shape and the measurement result of the surface to be processed, tool dwell time distribution data is obtained to perform shape correction polishing. This method obtains tool dwell time distribution data on the assumption that the unit removal shape acquired in advance is the same or constant over time in the entire machining region, and performs shape correction polishing by controlling the tool dwell time. Is.

また、この種の部分研磨加工法においては、研磨工具を被加工面上でどのような軌跡で移動させるかが、加工条件の一つとなる。この軌跡の設定方法としては、特許文献3に開示された方法が知られている。この従来技術では、接触領域の小さい研磨工具を被加工面上でラスター走査させ、ラスター走査の方向を変えて複数回の研磨工程を行うことにより研磨するようにしている。   Further, in this type of partial polishing method, one of the processing conditions is how the polishing tool is moved on the processing surface. As a method for setting the trajectory, a method disclosed in Patent Document 3 is known. In this prior art, a polishing tool having a small contact area is raster-scanned on the surface to be processed, and polishing is performed by changing the direction of raster scanning and performing a plurality of polishing steps.

特許第3304994号公報Japanese Patent No. 3304994 特開2007−144568号公報JP 2007-144568 A 特開平9−267244号公報Japanese Patent Laid-Open No. 9-267244

ところで、短波長用の光学素子として要求される形状はほとんど軸対称非球面でありかつ高い形状精度が要求される。このような軸対称非球面の研磨を、前述した従来技術のように、複数のラスター走査の方向を逐次変えて研磨を行う研磨方法では、次のような問題点があった。
(1)通常、軸対称非球面形状を創成する前加工は研削工程であり、この研削工程では、被加工物を対称軸(光軸)のまわりに回転させ、研削砥石を半径上で軌道を制御して研削を行っている。この形状創成原理により、被加工物の非球面上には対称軸(光軸)を中心とした同心円状の誤差形状が残存することがほとんどである。さらには、精密工学会「2008年度春季大会学術講演会講演論文集」(1037〜1038頁)等では、上述のような同心円状の誤差形状に加えて、研削砥石の周期的な回転むら又は砥石軸振動に起因して、微小うねり成分が残存することが既に報告されている。これは、円周方向の砥石軌跡に沿って比較的高周波でかつ凹凸差の小さいナノトポグラフィと呼ばれる周期的なうねり成分である。これらの同心円状の形状誤差、及び円周方向の砥石軌跡に沿ったナノトポグラフィを除去するには、部分研磨(ローカル研磨)加工法の工具の走査方式としてラスター走査は適切ではなく、研磨の取り残し(加工の残差)が発生しやすい。
(2)被加工面上での工具通過方向の等方性、異方性を表すパラメータと表面粗さを評価することで、工具の通過軌跡の偏りが表面粗さに影響を与えることは、精密工学会「1990年度秋季大会学術講演会講演論文集」(653〜654頁)等で報告されている。部分研磨(ローカル研磨)において運動条件で表面粗さに影響を与えるのは研磨軌跡の異方性の度合いであり、研磨軌跡の等方性を保てば良好な表面粗さを維持することができる。しかし、複数のラスター走査の方向を逐次変えて研磨加工を進める方式は、原理的に研磨工具の直進走査の重ね合わせであり、全ての走査が直進である。このため、直進走査パターン自体が被加工面に新たに残存し、その方向を変えた重ね合わせのために格子状の新たなうねり(このうねりの空間周期は表面粗さよりも長い領域)が発生しやすい。
By the way, the shape required as an optical element for a short wavelength is almost an axisymmetric aspherical surface, and high shape accuracy is required. In such a polishing method that polishes such an axially symmetric aspherical surface by sequentially changing the direction of a plurality of raster scans as in the prior art described above, there are the following problems.
(1) Usually, the pre-processing for creating an axisymmetric aspherical shape is a grinding process. In this grinding process, the workpiece is rotated around the symmetry axis (optical axis), and the grinding wheel is trajected on the radius. Grinding is controlled. Due to this shape creation principle, concentric error shapes centering around the symmetry axis (optical axis) often remain on the aspherical surface of the workpiece. Furthermore, in the Precision Engineering Society “2008 Spring Conference Academic Lecture Proceedings” (pages 1037-1038), etc., in addition to the concentric error shape as described above, periodic rotation unevenness of the grinding wheel or grinding wheel It has already been reported that minute waviness components remain due to shaft vibration. This is a periodic waviness component called nanotopography having a relatively high frequency and a small unevenness along the circumferential grinding wheel trajectory. Raster scanning is not appropriate as a tool scanning method for partial polishing (local polishing) to remove these concentric shape errors and nanotopography along the grinding wheel trajectory in the circumferential direction. (Processing residuals) are likely to occur.
(2) By evaluating the parameter indicating the isotropic and anisotropy of the tool passing direction on the work surface and the surface roughness, the deviation of the trajectory of the tool affects the surface roughness. It has been reported in the Japan Society for Precision Engineering “Proceedings of the Fall Meeting of the 1990 Fall Conference” (pp. 653-654). In partial polishing (local polishing), it is the degree of anisotropy of the polishing trajectory that affects the surface roughness under the motion conditions, and if the isotropic of the polishing trajectory is maintained, good surface roughness can be maintained. it can. However, the method of proceeding with the polishing process by sequentially changing the directions of a plurality of raster scans is, in principle, superposition of the straight scans of the polishing tool, and all the scans are straight. For this reason, the rectilinear scanning pattern itself remains on the surface to be processed, and a new grid-like undulation (a region where the spatial period of this undulation is longer than the surface roughness) occurs due to the superposition of changing the direction. Cheap.

本発明は、合成石英ガラス等の高脆性材料からなる光学素子等の軸対称な非球面形状を、高い信頼性でかつ高精度に研磨することができる光学素子の製造方法を提供することを目的とするものである。 An object of the present invention is to provide a method of manufacturing an optical element that can polish an axisymmetric aspherical shape such as an optical element made of a highly brittle material such as synthetic quartz glass with high reliability and high accuracy. It is what.

本発明の光学素子の製造方法は、回転する光学素子に対して、前記光学素子の回転軸を通るスパイラル状の軌跡に沿って研磨工具を相対的に走査させることで、前記光学素子の表面を非球面形状に研磨加工する光学素子の製造方法において、前記光学素子の加工前の表面形状を測定し、目標形状に対する誤差形状を求める誤差形状測定工程と、前記誤差形状測定工程で求められた誤差形状の、前記回転軸に対して軸対称な第1の形状成分を抽出する工程と、前記誤差形状と前記第1の形状成分との差分をとることで、前記回転軸に対して非軸対称な第2の形状成分を抽出する工程と、前記第1の形状成分および前記第2の形状成分それぞれの高周波形状成分を判別し、前記それぞれの高周波形状成分から、前記第1の形状成分を研磨除去するための第1の研磨工具と、前記第2の形状成分を研磨除去するための第2の研磨工具とを選定する工程と、前記誤差形状の前記第1の形状成分を前記第1の研磨工具を用いて研磨除去するために必要な第1の滞留時間分布を算出する工程と、前記誤差形状の前記第2の形状成分を前記第2の研磨工具を用いて研磨除去するために必要な第2の滞留時間分布を算出する工程と、前記第1の滞留時間分布を実現するように走査速度を制御しながら、前記スパイラル状の軌跡に沿って第1の研磨工具による研磨を行う第1の研磨工程と、前記第2の滞留時間分布を実現するように走査速度を制御しながら、前記スパイラル状の軌跡に沿って第2の研磨工具による研磨を行う第2の研磨工程と、を有することを特徴とする。 In the method of manufacturing an optical element according to the present invention, the surface of the optical element is scanned by relatively scanning a polishing tool along a spiral locus passing through the rotation axis of the optical element with respect to the rotating optical element. In the method of manufacturing an optical element that is polished into an aspherical shape, an error shape measurement step for measuring the surface shape of the optical element before processing and obtaining an error shape with respect to a target shape, and an error obtained in the error shape measurement step Extracting the first shape component of the shape that is axisymmetric with respect to the rotation axis, and taking the difference between the error shape and the first shape component, thereby providing non-axisymmetric with respect to the rotation axis Extracting the second shape component, determining the high frequency shape component of each of the first shape component and the second shape component, and polishing the first shape component from each of the high frequency shape components Remove A first polishing tool because the the steps of the second shape component selected a second polishing tool for polishing removal, wherein the first shape component first polishing tool of the error shape calculating a first residence time distribution required to polish removed using, the necessary said second shape component of the error shape to polish removed by the second polishing tool A step of calculating a residence time distribution of 2 and a first polishing performed by a first polishing tool along the spiral trajectory while controlling a scanning speed so as to realize the first residence time distribution. A polishing step, and a second polishing step of polishing with a second polishing tool along the spiral trajectory while controlling a scanning speed so as to realize the second residence time distribution. It is characterized by.

前工程から残存する誤差形状を、軸対称成分と非軸対称成分に分離して評価し、各々の成分を効果的に除去するための研磨工具の滞留時間分布を算出し、別工程で研磨を行う。これにより、研磨工具の滞留時間分布を1パスで加工する方式や複数のラスター走査に分けそれらを重ねるときに方向を変える方式に比べて、輪帯状に残る誤差形状を精度よく平滑化除去することができる。また、このような2成分の加工を、加工前に1回の形状計測によって実施することが可能であり、研磨プロセス全体の効率化を図ることが可能となる。   The error shape remaining from the previous process is evaluated by separating it into an axially symmetric component and a non-axisymmetric component, and the dwell time distribution of the polishing tool is calculated to effectively remove each component. Do. As a result, the error shape remaining in the annular zone can be smoothed and removed with higher accuracy than the method of processing the residence time distribution of the polishing tool in one pass and the method of changing the direction when dividing them into multiple raster scans. Can do. Further, such two-component processing can be performed by one shape measurement before processing, and the efficiency of the entire polishing process can be improved.

研削工程にて残存した同心円状の誤差形状に加えて、研削工程の砥石軌跡に沿って円周方向に残存した比較的高周波のナノトポグラフィと呼ばれる周期的な微小うねり成分を、効果的に除去することができ、高精度でかつ平滑な非球面形状を得ることができる。加えて、比較的低周波成分である輪体状のうねり形状を高除去レートで加工することが可能となり、全体の加工時間の短縮に貢献できる。   In addition to the concentric error shape remaining in the grinding process, it effectively removes periodic micro-waviness components called nanotopography of relatively high frequency remaining in the circumferential direction along the grinding wheel trajectory in the grinding process. Therefore, a highly accurate and smooth aspherical shape can be obtained. In addition, it is possible to process the ring-shaped swell shape, which is a relatively low frequency component, at a high removal rate, which can contribute to shortening the overall processing time.

一実施例に係る研磨装置を示す概略構成図である。It is a schematic block diagram which shows the grinding | polishing apparatus which concerns on one Example. 図1の装置を用いた研磨加工方法を示すフローチャートである。It is a flowchart which shows the grinding | polishing processing method using the apparatus of FIG. 研磨工具のスパイラル走査を説明する図である。It is a figure explaining spiral scanning of an abrasive tool.

図1において、ベッド50上には相対的にy方向に往復移動可能なyテーブル52が取り付けられている。yテーブル52を駆動するためのyモータ54には、エンコーダ56が付設されており、エンコーダ56によりyテーブル52のy方向移動量が検出される。yテーブル52上にはx方向に移動可能なxテーブル58が取り付けられている。xテーブル58を駆動するためのモータ60にはエンコーダ62が付設されており、エンコーダ62によりxテーブル58のx方向移動量が検出される。   In FIG. 1, a y table 52 that is reciprocally movable in the y direction is mounted on a bed 50. An encoder 56 is attached to the y motor 54 for driving the y table 52, and the encoder 56 detects the amount of movement in the y direction of the y table 52. An x table 58 that is movable in the x direction is mounted on the y table 52. An encoder 62 is attached to the motor 60 for driving the x table 58, and the encoder 62 detects the amount of movement in the x direction of the x table 58.

xテーブル58上には研磨漕64が固設されている。研磨漕64中には支持体66が固定されており、支持体66には軸68により保持体70が取り付けられている。保持体70上には回転テーブル71が設置されており、不図示のテーブル回転モータ及びエンコーダにより回転駆動、及び回転位置の検出がなされる(以下、この回転軸を適宜、“A軸”と称する)。また、軸68はx方向を向いており、保持体70はx軸に沿う軸のまわりに回動可能である。支持体66にはモータ72が取り付けられており、その駆動回転軸は軸68に結合され、不図示のエンコーダにより回動駆動、及び回動位置の検出がなされる(以下、この回転軸を適宜、“B軸”と称する)。   A polishing rod 64 is fixed on the x table 58. A support 66 is fixed in the polishing rod 64, and a holding body 70 is attached to the support 66 by a shaft 68. A rotary table 71 is installed on the holding body 70, and a rotational drive and a rotational position are detected by a table rotational motor and an encoder (not shown) (hereinafter, this rotational axis is referred to as "A axis" as appropriate). ). Moreover, the axis | shaft 68 has faced the x direction, and the holding body 70 can be rotated around the axis | shaft along an x-axis. A motor 72 is attached to the support 66, and its drive rotation shaft is coupled to a shaft 68, and rotation driving and detection of the rotation position are performed by an encoder (not shown) (hereinafter, this rotation shaft is appropriately set). , Referred to as “B-axis”).

一方、ベッド50にはコラム74が固定されている。コラム74には上下方向すなわちz方向のガイド76が形成されており、ガイド76に沿って上下方向に往復移動可能なように保持体78の傾斜位置決め機構が取り付けられている。保持体78には回転運動可能な研磨ヘッド80が支持されている。研磨ヘッド80の回転軸82の下端には後述する第1の研磨工具T1又は第2の研磨工具T2が取り付けられる。保持体78にはモータ86が取り付けられており、その駆動回転軸は研磨ヘッド80に接続されていて、研磨ヘッド80の傾斜位置決め機構を駆動することができる。保持体78をガイド76に沿って上下方向に移動させるための駆動手段であるエアシリンダー88のロッド90の先端が、保持体78と連結されている。制御装置92は、エンコーダ56、62等からのyテーブル移動量及びxテーブル移動量及び回転テーブル移動量が入力される。さらに、モータ54、60、72、86、研磨ヘッド80中の不図示の研磨ヘッド駆動モータ、及びエアシリンダー88又はその動きを代換するモータが、制御装置92からの指令により駆動される。   On the other hand, a column 74 is fixed to the bed 50. The column 74 is formed with a guide 76 in the vertical direction, that is, in the z direction, and an inclination positioning mechanism for the holding body 78 is attached so as to reciprocate in the vertical direction along the guide 76. The holding body 78 supports a polishing head 80 capable of rotating. A first polishing tool T1 or a second polishing tool T2, which will be described later, is attached to the lower end of the rotating shaft 82 of the polishing head 80. A motor 86 is attached to the holding body 78, and its drive rotation shaft is connected to the polishing head 80, and can drive the tilt positioning mechanism of the polishing head 80. The tip of the rod 90 of the air cylinder 88 that is a driving means for moving the holding body 78 in the vertical direction along the guide 76 is connected to the holding body 78. The control device 92 receives the y table movement amount, the x table movement amount, and the rotation table movement amount from the encoders 56 and 62 and the like. Further, motors 54, 60, 72, 86, a polishing head drive motor (not shown) in the polishing head 80, and an air cylinder 88 or a motor that replaces the movement thereof are driven by commands from the control device 92.

以上のように構成される研磨装置を用いて研磨を行う際には、適切な前加工(研削加工)により所定の表面粗さ及び所定の形状精度に仕上げられている被加工物100が、保持体70上の回転テーブル71に積載され固定される。本実施例においては、被加工物(光学素子)100は、直径200mmの合成石英ガラス製の軸対称非球面レンズとし、光線有効部は中央の直径180mmである。そして、被加工物100としての合成石英ガラス材は、前加工として、対称軸(光軸)周りに被加工物100を回転させて高精度に非球面研削して、所定の表面粗さ及び所定の形状精度に仕上げられている。また、研磨漕64には研磨液102が適当量注入されている。本実施例では研磨液中の研磨砥粒として酸化セリウム砥粒を用いた。 When polishing is performed using the polishing apparatus configured as described above, the workpiece 100 that has been finished with a predetermined surface roughness and a predetermined shape accuracy by appropriate pre-processing (grinding) is held. It is loaded and fixed on the rotary table 71 on the body 70. In the present embodiment, the workpiece (optical element) 100 is an axisymmetric aspherical lens made of synthetic quartz glass having a diameter of 200 mm, and the light beam effective portion has a central diameter of 180 mm. The synthetic quartz glass material as the workpiece 100 is subjected to high-precision aspherical grinding by rotating the workpiece 100 around the symmetry axis (optical axis) as a pre-processing, and has a predetermined surface roughness and a predetermined surface roughness. It is finished with the shape accuracy. An appropriate amount of polishing liquid 102 is injected into the polishing bowl 64. In this example, cerium oxide abrasive grains were used as the abrasive grains in the polishing liquid.

研磨ヘッド80の研磨工具を、工具回転軸82で押圧して回転させながら、非球面形状をもつ被加工物100の表面上を、yテーブル52の直線運動、A軸の回転運動、及びB軸方向の回動により、スパイラル状の軌跡に沿って相対的に走査させる。このようにして、スパイラル走査によるローカル研磨を進める。   While the polishing tool of the polishing head 80 is pressed and rotated by the tool rotating shaft 82, the linear motion of the y table 52, the rotational motion of the A axis, and the B axis on the surface of the workpiece 100 having an aspherical shape. By rotating the direction, scanning is relatively performed along a spiral trajectory. In this way, local polishing by spiral scanning is advanced.

次に、本実施例による研磨加工方法の手順を図2のフローチャートを用いて説明する。まず、被加工物の加工前の表面形状である前加工形状を測定して、この前加工形状の目標形状(設計形状)に対する誤差形状を求める(ステップS1)。   Next, the procedure of the polishing method according to this embodiment will be described with reference to the flowchart of FIG. First, a pre-processed shape that is a surface shape before processing of a workpiece is measured, and an error shape with respect to a target shape (designed shape) of the pre-processed shape is obtained (step S1).

次に、ステップS1の誤差形状測定工程によって得られた誤差形状を、被加工物の回転軸(光軸)に対して軸対称な第1の形状成分である軸対称成分D1を抽出する(ステップS2)。軸対称成分D1の抽出方法としては、誤差形状の中心より半径方向へ向かう微小ステップ毎に(例えば、離散的な座標値の配列である計測形状のサンプリングピッチ毎に)、各々の円周上の形状値の平均値を抽出する一般的な方法が用いられる。この平均値を半径方向の各々円周上では同一の値として被加工面全面に渡ってプロットすると、同心円状の等高線を表す面データとなる。このとき、適宜、一円周上で突出する異常値を除去した上で上述の平均値を算出してもよい。   Next, an axially symmetric component D1, which is a first shape component that is axially symmetric with respect to the rotation axis (optical axis) of the workpiece, is extracted from the error shape obtained by the error shape measuring step in step S1 (step S1). S2). As a method of extracting the axially symmetric component D1, each minute step (for example, every sampling pitch of a measurement shape that is an array of discrete coordinate values) from the center of the error shape in the radial direction is performed on each circumference. A general method for extracting the average value of the shape values is used. When this average value is plotted over the entire surface to be processed as the same value on each circumference in the radial direction, surface data representing concentric contour lines is obtained. At this time, the above-mentioned average value may be calculated after removing abnormal values protruding on one circle as appropriate.

続いて、上述の誤差形状と軸対称成分D1の差分をとり、回転軸に非軸対称な第2の形状成分である非軸対称成分D2を抽出する(ステップS3)。そして、誤差形状の軸対称成分D1と非軸対称成分D2各々を高速フーリエ変換処理することによって空間周波数解析する。その結果を、横軸を空間周波数、縦軸をスペクトル強度とするチャートに表わして、より高周波側の周波数に卓越空間周波数を持つ方の形状成分を「高周波形状成分」として判別する(ステップS4)。本実施例においては、軸対称成分D1の卓越空間周波数は0.10mm−1(空間波長にして10mm)、非軸対称成分D2の卓越空間周波数は0.33mm−1(空間波長にして3mm)であった。ここで、軸対称成分D1の卓越空間周波数は、前工程である研削工程において被加工物を回転させながら研削砥石を半径方向に送る加工を行った際の、例えば研削装置送り軸の精度誤差あるいは熱変位等に起因する比較的低周波の同心円状の形状成分である。一方、非軸対称成分D2の卓越空間周波数は、例えば、研削砥石の周期的な回転むら又は砥石軸振動に起因する、円周方向の砥石軌跡に沿って比較的高周波でかつ凹凸差の小さいナノトポグラフィと呼ばれる周期的な微小うねり成分である。 Subsequently, the difference between the above-described error shape and the axially symmetric component D1 is taken, and the non-axisymmetric component D2, which is the second shape component that is non-axisymmetric with respect to the rotation axis, is extracted (step S3). Then, each of the axially symmetric component D1 and the non-axisymmetric component D2 in the error shape is subjected to a fast Fourier transform process to perform spatial frequency analysis. The result is represented in a chart with the horizontal axis representing the spatial frequency and the vertical axis representing the spectral intensity, and the shape component having the dominant spatial frequency at the higher frequency side is discriminated as the “high frequency shape component” (step S4). . In this embodiment, the dominant spatial frequency of the axially symmetric component D1 is 0.10 mm −1 (10 mm in spatial wavelength), and the dominant spatial frequency of the non-axisymmetric component D2 is 0.33 mm −1 (3 mm in spatial wavelength). Met. Here, the dominant spatial frequency of the axially symmetric component D1 is, for example, an accuracy error of a grinding apparatus feed shaft when a grinding wheel is fed in a radial direction while rotating a workpiece in the grinding process which is a previous process, or It is a relatively low-frequency concentric shape component due to thermal displacement or the like. On the other hand, the dominant spatial frequency of the non-axisymmetric component D2 is, for example, a nano frequency with a relatively high frequency and a small unevenness along the grinding wheel trajectory in the circumferential direction caused by periodic rotation unevenness or grinding wheel vibration of the grinding wheel. It is a periodic swell component called topography.

次に、軸対称成分D1及び非軸対称成分D2各々に対応して単位除去形状のサイズの異なる2つの研磨工具を選定する(ステップS5)。本実施例では軸対称成分D1の卓越空間周波数は0.10mm−1であったので、第1の研磨工具T1のサイズはφ8mm程度とする。このときの工具の単位除去量は1.5mm/hである。一方、非軸対称成分D2の卓越空間周波数は0.33mm−1であったので、第2の研磨工具T2のサイズはφ2mm程度とする。このときの工具の単位除去量は0.5mm/hである。すなわち、軸対称成分D1及び非軸対称成分D2各々の卓越空間周波数よりも高い空間周波数まで加工感度を持つ研磨工具を選定する。 Next, two polishing tools having different unit removal shape sizes corresponding to the axially symmetric component D1 and the non-axisymmetric component D2 are selected (step S5). In the present embodiment, the dominant spatial frequency of the axially symmetric component D1 is 0.10 mm −1 , so the size of the first polishing tool T1 is about φ8 mm. The unit removal amount of the tool at this time is 1.5 mm 3 / h. On the other hand, since the dominant spatial frequency of the non-axisymmetric component D2 is 0.33 mm −1 , the size of the second polishing tool T2 is about φ2 mm. The unit removal amount of the tool at this time is 0.5 mm 3 / h. That is, a polishing tool having processing sensitivity up to a spatial frequency higher than the dominant spatial frequency of each of the axially symmetric component D1 and the non-axisymmetric component D2 is selected.

続いて、誤差形状の軸対称成分D1及び非軸対称成分D2に対して、各々を研磨除去するために必要な研磨工具の被加工面上での滞留時間分布D3、D4を算出する(ステップS6)。滞留時間分布の算出方法は、事前に軸対称成分D1用の第1の研磨工具T1、及び非軸対称成分D2用の第2の研磨工具T2各々について、単位時間当たりの研磨除去形状である単位除去形状を取得しておく。   Subsequently, dwell time distributions D3 and D4 on the work surface of the polishing tool necessary for polishing and removing each of the axially symmetric component D1 and the non-axisymmetric component D2 of the error shape are calculated (step S6). ). The residence time distribution is calculated in advance by a unit having a polishing removal shape per unit time for each of the first polishing tool T1 for the axially symmetric component D1 and the second polishing tool T2 for the non-axisymmetric component D2. Obtain the removal shape.

そして、取得された単位除去形状と、除去目標となる誤差形状(軸対称成分D1及び非軸対称成分D2)からデコンボリューション計算を行い、第1の滞留時間分布D3(軸対称成分D1に対応)及び第2の滞留時間分布D4(非軸対称成分D2に対応)を得る。   Then, deconvolution calculation is performed from the acquired unit removal shape and the error shape (axisymmetric component D1 and non-axisymmetric component D2) to be removed, and a first residence time distribution D3 (corresponding to the axially symmetric component D1). And a second residence time distribution D4 (corresponding to the non-axisymmetric component D2).

この演算については、文献「精密工学会誌:62(1996)408」に詳しく記載されている。得られた滞留時間分布D3、D4は被加工面上における研磨工具T1及び研磨工具T2(定常定期な一定の研磨運動を行う)の滞留時間をあらわすものである。この滞留時間分布を実現するように研磨工具の走査速度を制御すれば、誤差形状、すなわち前工程で残存したうねり形状を平滑除去することができる。   This calculation is described in detail in the document “Journal of the Japan Society for Precision Engineering: 62 (1996) 408”. The obtained residence time distributions D3 and D4 represent residence times of the polishing tool T1 and the polishing tool T2 (performing a regular and constant polishing motion) on the surface to be processed. If the scanning speed of the polishing tool is controlled so as to realize this residence time distribution, the error shape, that is, the waviness shape remaining in the previous step can be removed smoothly.

誤差形状の軸対称成分D1及び非軸対称成分D2において、各々の卓越空間周波数よりも高い空間周波数は通常研磨プロセスの中で平滑化されるのであえて誤差形状に含めなくてもよい。また、形状測定自体が離散的な座標値の配列であり、このサンプリングピッチに従い、高い空間周波数についてはフィルタリング除去されてもよい。また、サンプリングピッチは形状の記述上1mm以下であることが好ましい。   In the axisymmetric component D1 and the non-axisymmetric component D2 of the error shape, a spatial frequency higher than each dominant spatial frequency is usually smoothed in the polishing process and may not be included in the error shape. Further, the shape measurement itself is an array of discrete coordinate values, and high spatial frequencies may be filtered out according to this sampling pitch. The sampling pitch is preferably 1 mm or less in terms of shape description.

続いて、上述の滞留時間分布を実現するように走査速度を制御しながら研磨工具を被加工面全面に渡って走査させる運動制御プログラムを算出する(ステップS9)。これに先立ち、前述の「高周波形状成分」の高精度滞留時間制御及び加工時間短縮に係る研磨工具の走査パラメータを以下のように設定する。運動制御プログラム(研磨加工用NCプログラムあるいは研磨加工プログラムともいう)は、研磨工具を回転速度一定で回転駆動させ、被加工面上をある走査パターンに従って変速走査することで被加工面上での滞留時間を実現するための加工プログラムである。   Subsequently, a motion control program for scanning the polishing tool over the entire surface to be processed while controlling the scanning speed so as to realize the above residence time distribution is calculated (step S9). Prior to this, the scanning parameters of the polishing tool relating to the high-accuracy dwell time control and the machining time reduction of the above-described “high-frequency shape component” are set as follows. A motion control program (also referred to as an NC program for polishing or a polishing program) drives a polishing tool to rotate at a constant rotation speed, and scans the processing surface according to a certain scanning pattern to stay on the processing surface. It is a machining program for realizing time.

研磨工具のスパイラル走査による研磨加工においては、上述の滞留時間分布は、被加工面の半径方向r及び円周方向θの2軸で表されるr−θ座標系の離散的なセル毎の滞留時間の分布に座標変換されている。従って、この各セル間の研磨工具の滞留時間差は、r−θ座標系の各軸の走査速度Vr、Vθの速度差成分に分離された研磨工具の走査速度差の和によって表される。   In the polishing process by spiral scanning of the polishing tool, the residence time distribution described above is residence for each discrete cell in the r-θ coordinate system represented by two axes of the radial direction r and the circumferential direction θ of the work surface. Coordinates have been converted to time distribution. Accordingly, the difference in the residence time of the polishing tool between the cells is expressed by the sum of the scanning speed differences of the polishing tool separated into the speed difference components of the scanning speeds Vr and Vθ of each axis of the r-θ coordinate system.

まず、「高周波形状成分」のスパイラル走査に際しては、スパイラルの回転方向(被加工面円周方向)に滞留時間制御がかかるように、被加工物を保持する回転テーブルの回転速度をテーブル回転モータ(不図示)で変速して制御する。   First, at the time of spiral scanning of the “high-frequency shape component”, the rotation speed of the rotary table that holds the workpiece is controlled by a table rotation motor (so that the dwell time is controlled in the spiral rotation direction (circumferential direction of the workpiece surface). (Not shown) to change the speed.

特に、「高周波形状成分」の研磨加工においては、より正確に目標とする除去形状に沿った走査軸方向の滞留時間差を実現できるよう、加減速指令の高分解能化が図られる。上述の単位セル間の滞留時間差を表す走査速度差の指令分解能は、上述の卓越空間周波数に対応する空間波長λ(以下適宜、“卓越空間波長λ”と称する)に相当する距離を研磨工具が通過する時間内における加減速指令回数Nによって表される。そして、この加減速指令回数Nをより大きくして高分解能化を図るための最小走査速度V2min(非軸対称成分に関するパラメータに“2”を付して称す)が設定される(ステップS7)。具体的には、「高周波形状成分」とした非軸対称成分D2の研磨除去に必要な滞留時間差は、円周方向すなわち被加工物の回転軸(A軸)の走査速度差によって表わされる。そして、この場合における加減速指令回数N2θは、被加工面の最外周において研磨工具T2が非軸対称成分D2の卓越空間波長λ2に相当する距離を円周方向に通過する速度V2θの加速及び減速の合計指令回数N2θとする。ここで、加減速指令回数N2θは、被加工物最外周における最小走査速度V2θmin、卓越空間波長λ2、及び制御装置92より出される加減速指令の指令時間間隔ΔTを用いて次式(1)で表わされる。
N2θ=λ2/(V2θmin×ΔT) (1)
In particular, in the “high-frequency shape component” polishing process, the resolution of the acceleration / deceleration command is increased so that the residence time difference in the scanning axis direction along the target removal shape can be realized more accurately. The command resolution of the scanning speed difference representing the residence time difference between the unit cells is determined by a polishing tool having a distance corresponding to the spatial wavelength λ corresponding to the above-described dominant spatial frequency (hereinafter referred to as “excellent spatial wavelength λ” as appropriate). It is represented by the number N of acceleration / deceleration commands within the passing time. Then, a minimum scanning speed V2min (referred to by adding “2” to the parameter related to the non-axisymmetric component) for increasing the acceleration / deceleration command number N to increase the resolution is set (step S7). Specifically, the residence time difference necessary for polishing removal of the non-axisymmetric component D2 as the “high-frequency shape component” is represented by the difference in scanning speed in the circumferential direction, that is, the rotation axis (A axis) of the workpiece. The acceleration / deceleration command count N2θ in this case is the acceleration and deceleration of the velocity V2θ at which the polishing tool T2 passes the distance corresponding to the dominant space wavelength λ2 of the non-axisymmetric component D2 in the circumferential direction on the outermost periphery of the processing surface. The total number of commands N2θ. Here, the acceleration / deceleration command number N2θ is expressed by the following equation (1) using the minimum scanning speed V2θmin at the outermost periphery of the workpiece, the dominant space wavelength λ2, and the command time interval ΔT of the acceleration / deceleration command issued from the control device 92. Represented.
N2θ = λ2 / (V2θmin × ΔT) (1)

従って、最小走査速度V2θmin、指令時間間隔ΔTを小さくすることにより、加減速指令回数N2θは大きく設定でき、より高い分解能で滞留時間差の制御が可能となる。   Therefore, by decreasing the minimum scanning speed V2θmin and the command time interval ΔT, the acceleration / deceleration command count N2θ can be set large, and the residence time difference can be controlled with higher resolution.

加減速指令回数N2θは、被加工面の最外周において研磨工具T2が卓越空間波長λ2に対応する距離(うねり1周期分)を通過する時間内に、加速指令及び減速指令をそれぞれ5回以上出力するよう、研磨装置の制御範囲内において可能な限り多く設定される。このように加減速指令回数N2θを多く設定することにより、「高周波形状成分」である非軸対称成分すなわち円周方向の目標除去形状をより正確に再現する滞留時間制御が可能となる。   The number of acceleration / deceleration commands N2θ is an acceleration command and a deceleration command that are output at least five times within the time required for the polishing tool T2 to pass the distance corresponding to the dominant space wavelength λ2 (one period of waviness) on the outermost periphery of the work surface. Therefore, as many as possible are set within the control range of the polishing apparatus. Thus, by setting the acceleration / deceleration command number N2θ to be large, it is possible to perform the dwell time control that more accurately reproduces the non-axisymmetric component that is the “high-frequency shape component”, that is, the circumferential target removal shape.

次に、誤差形状のうちの軸対称成分D1の加工における最小送りピッチP1minを設定する(ステップS8)。ここで、軸対称成分D1は被加工物の回転方向すなわち円周方向に凹凸を持たない形状成分であるため、軸対称成分D1の加工においては回転テーブルを一定速度で回転させる。そして、スパイラルの送り方向(被加工面半径方向)には滞留時間制御がかかるようにyテーブルを駆動するyモータと被加工物を傾斜可能に保持する回転テーブルを駆動する回転モータ(不図示)で制御する。   Next, the minimum feed pitch P1min in machining the axially symmetric component D1 in the error shape is set (step S8). Here, since the axially symmetric component D1 is a shape component that does not have irregularities in the rotation direction of the workpiece, that is, in the circumferential direction, the rotary table is rotated at a constant speed in the processing of the axially symmetric component D1. A y motor that drives the y table and a rotary motor that drives the rotary table that tilts the workpiece so that the dwell time is controlled in the spiral feed direction (machined surface radial direction) (not shown). To control.

このとき、同心円状の誤差形状である軸対称成分D1を研磨除去するために、うねり形状の凸部で滞留時間が長くなるように、図3に示すスパイラルの送りピッチを小さくし、うねり形状の凹部では送りを速くしてスパイラル送りピッチを大きくする。また、外周部と中心部付近での除去量の変化を補正するために、滞留時間分布に半径方向にしたがって補正値をかけるようにする。この補正値は被加工物を保持する回転テーブルの回転速度から事前に検証加工などをして求めておく。   At this time, in order to polish and remove the axially symmetric component D1, which is a concentric error shape, the spiral feed pitch shown in FIG. In the recess, the feeding speed is increased to increase the spiral feeding pitch. Further, in order to correct the change in the removal amount in the vicinity of the outer peripheral portion and the central portion, a correction value is applied to the residence time distribution in the radial direction. This correction value is obtained by performing verification processing or the like in advance from the rotation speed of the rotary table holding the workpiece.

除去目標となる軸対称成分D1は比較的低周波の形状成分で、かつ比較的凹凸差の大きい形状ある。このため、以下のような工具走査のパラメータ設定方法により卓越空間周波数λ1(以下適宜、軸対称成分に関するパラメータに“1”を付して称す)のうねり除去に必要な工具走査分解能の確保、及び同時に加工時間の短縮が図られる。   The axisymmetric component D1, which is a removal target, is a shape component having a relatively low frequency and a shape having a relatively large unevenness. For this reason, ensuring the tool scanning resolution necessary for removing the waviness of the dominant spatial frequency λ1 (hereinafter referred to as “1” as appropriate for the parameter related to the axial symmetry component) by the following tool scanning parameter setting method; At the same time, the machining time can be shortened.

まず、被加工面の半径方向のうねり形状成分の除去にあたり、滞留時間差すなわち工具送り方向の速度差をつけて加工する。すなわち、うねり形状の凸部においては比較的長い工具の滞留時間を取り、一方うねり形状の凹部においては比較的短い工具の滞留時間となるが、被加工面全面のうち最も低い部分は最も工具が速く通過する点となる。この最下点における工具速度は無限大にすることは不可能であるため、回転テーブルの回転モータ及び送り方向のyモータの最大速度仕様により規定され、被加工面全面に渡る最低限の均等な除去深さd1minが生じる(以下適宜、“均等除去深さ”と称する)。従って、ここで特に均等除去深さd1minを以下に示す方法で低減することにより、加工時間短縮を図る。まず、均等除去深さd1minは、単位除去レートR1、回転方向の最大走査速度V1θmax、及び送りピッチP1との関係が次式(2)で表される。
d1min=R1/(V1θmax×P1) (2)
First, when removing the waviness shape component in the radial direction of the surface to be processed, machining is performed with a residence time difference, that is, a speed difference in the tool feed direction. That is, a relatively long tool residence time is taken in the undulation-shaped convex portion, while a relatively short tool residence time is obtained in the undulation-shaped concave portion, but the lowest portion of the entire surface to be machined has the tool. It becomes a point that passes quickly. Since the tool speed at this lowest point cannot be made infinite, it is defined by the maximum speed specifications of the rotary motor of the rotary table and the y motor in the feed direction, and is the minimum uniform over the entire work surface. A removal depth d1min is generated (hereinafter referred to as “uniform removal depth” as appropriate). Accordingly, the processing time can be shortened by reducing the uniform removal depth d1min by the following method. First, the relationship between the uniform removal depth d1min, the unit removal rate R1, the maximum scanning speed V1θmax in the rotation direction, and the feed pitch P1 is expressed by the following equation (2).
d1min = R1 / (V1θmax × P1) (2)

ここで、単位除去レートR1は研磨工具T1により決定され、最大走査速度V1θmaxはyテーブル52の最大回転速度(装置仕様)によって規定されるためここでは一定と仮定する。従って、上式の左辺を小さくして加工時間を短縮するためには、右辺の分母の一パラメータとして、送りピッチP1を可能な限りで大きく設定したい要求がある。   Here, since the unit removal rate R1 is determined by the polishing tool T1, and the maximum scanning speed V1θmax is defined by the maximum rotation speed (device specification) of the y table 52, it is assumed here to be constant. Therefore, in order to shorten the processing time by reducing the left side of the above equation, there is a demand to set the feed pitch P1 as large as possible as one parameter of the denominator of the right side.

一方、軸対称成分D1の滞留時間制御の分解能を表す送り方向の走査速度の加減速指令回数N1は、上述の卓越空間波長λ1に相当する距離を研磨工具が通過する時間内における最小送りピッチP1を用いて次式(3)で表される。
N1=λ1/P1 (3)
On the other hand, the acceleration / deceleration command number N1 of the scanning speed in the feed direction that represents the resolution of the dwell time control of the axisymmetric component D1 is the minimum feed pitch P1 within the time during which the polishing tool passes the distance corresponding to the above-described dominant space wavelength λ1. Is represented by the following formula (3).
N1 = λ1 / P1 (3)

軸対称成分D1においても滞留時間制御の分解能を確保するために、加減速指令回数N1は、研磨工具T1が卓越空間波長λ1に相当する距離を通過する時間内に、5回以上の加速及び5回以上の減速の合計回数を満たす最大の送りピッチP1maxを設定する。以下の工具運動制御プログラム算出においては、この条件範囲内で可能な限り大きな送りピッチが算出され比較的短時間での加工が可能となる。   In order to ensure the resolution of the dwell time control even in the axially symmetric component D1, the acceleration / deceleration command number N1 is set to 5 or more accelerations and 5 times within the time when the polishing tool T1 passes the distance corresponding to the dominant space wavelength λ1. The maximum feed pitch P1max that satisfies the total number of times of deceleration more than is set. In the following tool movement control program calculation, a feed pitch as large as possible is calculated within this condition range, and machining in a relatively short time is possible.

以上のように研磨工具走査条件及び研磨工具の単位除去形状を元に、軸対称成分D1及び非軸対称成分D2の滞留時間分布D3、D4を実現するための研磨工具の被加工面上での運動制御プログラムを算出する(ステップS9)。   As described above, based on the polishing tool scanning condition and the unit removal shape of the polishing tool, the dwell time distributions D3 and D4 of the axisymmetric component D1 and the non-axisymmetric component D2 on the work surface of the polishing tool are realized. A motion control program is calculated (step S9).

次に、以上のように研磨加工用のプログラムの算出で得られた非軸対称成分D2を除去するための走査(第2の研磨工程)、軸対称成分D1を除去するための走査(第1の研磨工程)の夫々のプログラムを順次形状修正研磨として実施する(ステップS10)
上述の軸対称成分及び非軸対称成分の研磨加工用のプログラムがすべて実施され、研磨加工が終了する。その後、研磨加工が終了した被加工物の形状計測を行い(ステップS11)、被加工面の現形状の目標形状(設計形状)に対する誤差形状を求め、その誤差形状量が設計公差内であるか判定する(ステップS12)。公差内であれば研磨加工を終了して被加工物を次の工程に送る(ステップS13)。一方、誤差形状が未だ公差内に到達していなければ、継続して、ステップS2以下の工程を繰り返す。
Next, a scan for removing the non-axisymmetric component D2 obtained by the calculation of the polishing program as described above (second polishing step), and a scan for removing the axially symmetric component D1 (first Each polishing step) is sequentially executed as shape correction polishing (step S10).
All of the above-described programs for the axisymmetric component and the non-axisymmetric component polishing are executed, and the polishing is completed. Thereafter, the shape of the workpiece after polishing is measured (step S11), an error shape with respect to the current target shape (design shape) of the work surface is obtained, and whether the error shape amount is within the design tolerance. Determination is made (step S12). If it is within the tolerance, the polishing process is terminated and the workpiece is sent to the next process (step S13). On the other hand, if the error shape has not yet reached the tolerance, the steps after step S2 are repeated.

以上のように、前工程から残存する誤差形状を、軸対称成分と非軸対称成分に分離して評価し、各々の成分を効果的に除去するような研磨工具の滞留時間分布を2分割し、夫々異なる方式の走査で研磨を実行する。研磨工具の滞留時間分布を1パスで加工する方式や複数のラスター走査に分けそれらを重ねるときに方向を変える方式に比べて、本実施例では特に、輪帯状に残る誤差形状を精度よく平滑化除去することができる。また、このような2成分の加工を、加工前に1回の形状計測によって実施することが可能であり、研磨プロセス全体の効率化を図ることが可能となる。特に、研削工程にて残存した同心円状の誤差形状に加えて、研削工程の砥石軌跡に沿って円周方向に残存した比較的高周波のナノトポグラフィと呼ばれる周期的な微小うねり成分を、被加工物の高分解能回転制御によって効果的に除去することができる。これによって、高精度でかつ平滑な軸対称非球面形状を得ることができる。加えて、分離された軸対称成分の加工においては、比較的低周波成分である輪体状のうねり形状の除去に対応可能でかつ比較的高除去レートでの加工が可能となる。これによって、全体の加工時間を短縮できる。   As described above, the error shape remaining from the previous process is evaluated by separating it into an axisymmetric component and a non-axisymmetric component, and the residence time distribution of the polishing tool that effectively removes each component is divided into two. The polishing is performed with different scanning methods. Compared to the method of processing the dwell time distribution of the polishing tool in one pass and the method of changing the direction when dividing them into multiple raster scans, in this embodiment, the error shape remaining in the annular zone is smoothed with high accuracy. Can be removed. Further, such two-component processing can be performed by one shape measurement before processing, and the efficiency of the entire polishing process can be improved. In particular, in addition to the concentric error shape remaining in the grinding process, periodic micro-waviness components called nanotopography of relatively high frequency remaining in the circumferential direction along the grinding wheel trajectory in the grinding process are processed. Can be effectively removed by high-resolution rotation control. Thereby, a highly accurate and smooth axisymmetric aspherical shape can be obtained. In addition, in the processing of the separated axisymmetric component, it is possible to cope with the removal of the ring-shaped swell shape, which is a relatively low frequency component, and it is possible to perform processing at a relatively high removal rate. Thereby, the whole processing time can be shortened.

50 ベッド
52 yテーブル
58 xテーブル
80 研磨ヘッド
100 光学素子(被加工物
50 bed 52 y table 58 x table 80 polishing head 100 optical element ( workpiece )

Claims (5)

回転する光学素子に対して、前記光学素子の回転軸を通るスパイラル状の軌跡に沿って研磨工具を相対的に走査させることで、前記光学素子の表面を非球面形状に研磨加工する光学素子の製造方法において、
前記光学素子の加工前の表面形状を測定し、目標形状に対する誤差形状を求める誤差形状測定工程と、
前記誤差形状測定工程で求められた誤差形状の、前記回転軸に対して軸対称な第1の形状成分を抽出する工程と、
前記誤差形状と前記第1の形状成分との差分をとることで、前記回転軸に対して非軸対称な第2の形状成分を抽出する工程と、
前記第1の形状成分および前記第2の形状成分それぞれの高周波形状成分を判別し、前記それぞれの高周波形状成分から、前記第1の形状成分を研磨除去するための第1の研磨工具と、前記第2の形状成分を研磨除去するための第2の研磨工具とを選定する工程と、
前記誤差形状の前記第1の形状成分を前記第1の研磨工具を用いて研磨除去するために必要な第1の滞留時間分布を算出する工程と、
前記誤差形状の前記第2の形状成分を前記第2の研磨工具を用いて研磨除去するために必要な第2の滞留時間分布を算出する工程と、
前記第1の滞留時間分布を実現するように走査速度を制御しながら、前記スパイラル状の軌跡に沿って第1の研磨工具による研磨を行う第1の研磨工程と、
前記第2の滞留時間分布を実現するように走査速度を制御しながら、前記スパイラル状の軌跡に沿って第2の研磨工具による研磨を行う第2の研磨工程と、を有することを特徴とする光学素子の製造方法。
An optical element that polishes the surface of the optical element into an aspherical shape by scanning the polishing tool relative to the rotating optical element along a spiral trajectory passing through the rotation axis of the optical element. In the manufacturing method,
An error shape measuring step of measuring a surface shape of the optical element before processing and obtaining an error shape with respect to a target shape;
Extracting a first shape component that is axisymmetric with respect to the rotational axis of the error shape obtained in the error shape measurement step;
Extracting a second shape component that is non-axisymmetric with respect to the rotation axis by taking a difference between the error shape and the first shape component;
A first polishing tool for discriminating a high-frequency shape component of each of the first shape component and the second shape component, and polishing and removing the first shape component from the respective high-frequency shape components; Selecting a second polishing tool for polishing away the second shape component;
Calculating a first residence time distribution necessary for polishing and removing the first shape component of the error shape using the first polishing tool ;
Calculating a second residence time distribution required to polish and remove the second shape component of the error shape using the second polishing tool ;
A first polishing step of performing polishing with a first polishing tool along the spiral trajectory while controlling a scanning speed so as to realize the first residence time distribution;
A second polishing step of performing polishing with a second polishing tool along the spiral trajectory while controlling a scanning speed so as to realize the second residence time distribution. A method for manufacturing an optical element.
前記第1及び前記第2の研磨工具は、それぞれの単位除去形状のサイズが異なることを特徴とする請求項1に記載の光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the first and second polishing tools have different unit removal shapes. 前記第1の形状成分および前記第2の形状成分それぞれの高周波形状成分の判別は、前記第1の形状成分および前記第2の形状成分をそれぞれ高速フーリエ変換処理することによって空間周波数解析し、横軸を空間周波数、縦軸をスペクトル強度とするチャートに表わし、より高周波側の周波数に卓越空間周波数を持つ高周波形状成分として判別することを特徴とする請求項2に記載の光学素子の製造方法。 The high-frequency shape component of each of the first shape component and the second shape component is discriminated by performing a spatial frequency analysis by performing a fast Fourier transform process on the first shape component and the second shape component , respectively, axis spatial frequency and the vertical axis in charts and spectral intensity table eagle, the optical element according to claim 2, wherein the determine specific to Rukoto as a high-frequency shaped component having a dominant spatial frequencies in the frequency of the higher frequency side Production method. 前記高周波形状成分の卓越空間周波数に対応する空間波長を持つうねり1周期分を通過する時間内に、加速指令及び減速指令をそれぞれ5回以上出力することを特徴とする請求項3に記載の光学素子の製造方法。   4. The optical system according to claim 3, wherein an acceleration command and a deceleration command are each output five times or more within a time period in which one wave wave having a spatial wavelength corresponding to the dominant spatial frequency of the high-frequency shape component passes. Device manufacturing method. 請求項1乃至4のいずれか一項記載の光学素子の製造方法により製造された光学素子。  The optical element manufactured by the manufacturing method of the optical element as described in any one of Claims 1 thru | or 4.
JP2010059206A 2010-03-16 2010-03-16 Optical element manufacturing method Expired - Fee Related JP5610800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010059206A JP5610800B2 (en) 2010-03-16 2010-03-16 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059206A JP5610800B2 (en) 2010-03-16 2010-03-16 Optical element manufacturing method

Publications (3)

Publication Number Publication Date
JP2011189476A JP2011189476A (en) 2011-09-29
JP2011189476A5 JP2011189476A5 (en) 2013-05-02
JP5610800B2 true JP5610800B2 (en) 2014-10-22

Family

ID=44794935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059206A Expired - Fee Related JP5610800B2 (en) 2010-03-16 2010-03-16 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP5610800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105479295A (en) * 2015-12-09 2016-04-13 中国科学院长春光学精密机械与物理研究所 Generating method of polishing path with function of error normalization

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672601B (en) * 2012-05-02 2014-08-20 西安交通大学 Double-beam grinding machine
DE102013211960A1 (en) * 2013-06-24 2014-12-24 Trumpf Werkzeugmaschinen Gmbh + Co. Kg System and method for detecting deformations
DE102013108766B4 (en) * 2013-08-13 2023-11-16 Optotech Optikmaschinen Gmbh Polishing method for processing an optical surface of an optical lens and polishing tools suitable for this purpose
CN104890131B (en) * 2015-05-19 2016-09-14 中国人民解放军国防科学技术大学 A kind of definitiveness modification processing based on face shape error slope
CN115401534B (en) * 2022-08-30 2023-08-01 大连理工大学 Microarray die conformal polishing method
CN115971985B (en) * 2023-03-21 2023-07-14 中国科学院长春光学精密机械与物理研究所 Method and device for inhibiting influence of systematic track error on surface shape residual error
CN118003159B (en) * 2024-04-10 2024-07-19 吉林交通职业技术学院 Milling and grinding method for deep sagittal aspheric optical element
CN118024121B (en) * 2024-04-11 2024-06-28 浙江大学 Flexible shape control processing device and method for non-circular raceways of inner ring and outer ring of bearing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334460A (en) * 2000-05-30 2001-12-04 Canon Inc Polishing method
JP3890186B2 (en) * 2000-08-11 2007-03-07 キヤノン株式会社 Polishing method, optical element and mold for molding optical element
JP2004160565A (en) * 2002-11-11 2004-06-10 Canon Inc Polishing method and shape variable polishing tool device
US8014894B2 (en) * 2006-10-10 2011-09-06 Novartis Ag Method of surface manufacture with an apex decentered from a spindle axis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105479295A (en) * 2015-12-09 2016-04-13 中国科学院长春光学精密机械与物理研究所 Generating method of polishing path with function of error normalization

Also Published As

Publication number Publication date
JP2011189476A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5610800B2 (en) Optical element manufacturing method
TWI533966B (en) Systems and methods for machining materials
JP5342665B2 (en) Lens shape processing method and lens shape processing apparatus for measuring along spiral measurement path
JP5416956B2 (en) Truing tool for grinding wheel and manufacturing method thereof, truing device using the same, manufacturing method of grinding wheel, and wafer edge grinding apparatus
JP5213442B2 (en) Raster cutting technology for ophthalmic lenses
JP5695214B2 (en) Method for creating processing data for ultra-precise combined machining apparatus and ultra-precise combined machining apparatus
CN108284369B (en) Aspheric surface ultra-precise polishing and shape error compensation method
JP5401757B2 (en) Processing equipment
CN108747609B (en) Precision grinding method for aspheric array structure
CN102794697A (en) Method of manufacturing workpiece
JP2011189476A5 (en) Optical element manufacturing method
CN106926134B (en) in-situ precision measurement method for three-dimensional shape error of aspheric grinding arc diamond grinding wheel
JP3890186B2 (en) Polishing method, optical element and mold for molding optical element
JP2009184066A (en) Method of machining concave fresnel lens shape member, and concave fresnel lens shape member
Shanshan et al. Theoretical and experimental investigation of a tool path control strategy for uniform surface generation in ultra-precision grinding
JP2007118100A (en) Method and apparatus for working curved surface symmetric with respect to rotation axis
JPH0253557A (en) Method and device for working non-spherical body
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
CN108381331B (en) Global shape-modifying machining device and method for planar part
Lin et al. Research on arc-shaped wheel wear and error compensation in arc envelope grinding
JP2004042188A (en) Working method of die
JP2011020241A (en) Polishing method
JP5061558B2 (en) Numerical control device program description method, numerical control device, and machining device
JP6333391B2 (en) Method and machine for measuring and forming the outer target contour of a workpiece by grinding
JP4957153B2 (en) Processing equipment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R151 Written notification of patent or utility model registration

Ref document number: 5610800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees