JP2004160565A - Polishing method and shape variable polishing tool device - Google Patents

Polishing method and shape variable polishing tool device Download PDF

Info

Publication number
JP2004160565A
JP2004160565A JP2002326879A JP2002326879A JP2004160565A JP 2004160565 A JP2004160565 A JP 2004160565A JP 2002326879 A JP2002326879 A JP 2002326879A JP 2002326879 A JP2002326879 A JP 2002326879A JP 2004160565 A JP2004160565 A JP 2004160565A
Authority
JP
Japan
Prior art keywords
tool
polishing
shape
annular
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002326879A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nonaka
義史 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002326879A priority Critical patent/JP2004160565A/en
Publication of JP2004160565A publication Critical patent/JP2004160565A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method for performing polishing with the contact between the shape of a workpiece and the tool surface always kept in the optimum state in simple constitution and a shape variable polishing tool device. <P>SOLUTION: This shape variable polishing tool device has a polishing member having the tool surface coming into contact with the surface to be machined, a plurality of annular members different in size, and a driving means for driving the respective annular members in the direction of the tool axis, wherein the polishing member is varied to a desired shape by the annular members to polish the surface to be machined. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、レンズやミラー等の光学素子あるいは金型等を研磨するときに使用される形状可変研磨工具装置および研磨方法に関し、特に、半径方向において曲率半径が変化する非球面形状等の研磨及びリップルと呼ばれるうねりの除去に関するものである。
【0002】
【従来の技術】
非球面を含む光学面の研磨方法として特許文献1がある。これは、あらかじめ被加工物形状を計測し、計測された形状と設計形状との形状偏差に応じて被加工物上に配置された複数の研磨工具が発生する研磨荷重を制御し、これらの研磨荷重を柔軟な研磨パッドに作用させ、この研磨パッドを被加工物と工具間で揺動させることで研磨加工を進めるものである。大型の望遠鏡ミラー、X線望遠鏡用光学素子の能率的な研磨が可能であり、非軸対象の誤差形状も除去可能である。
【0003】
また、複数の駆動手段を備える形状可変工具として特許文献2がある。
【0004】
【特許文献1】
USP4850152
【特許文献2】
特公平5−58864
【0005】
【発明が解決しようとする課題】
しかしながら上記従来技術では以下の課題が残る。
【0006】
特許文献1の方法では、工具の大きさによって最小加工単位が制限され、細かな形状誤差を修正できない。研磨荷重が加工部における面法線方向に作用しないため、工具の除去形状が加工部位によって変化し、除去量が不安定であり、これに起因して高い加工精度が望めない。また、工具間のつなぎ部が不連続になり、工具の大きさに起因するリップルと呼ばれるうねりの成分を生み出しやすい。
【0007】
特許文献2の方法では、変位駆動手段を用いて形状可変な工具であることを主体にしているため、工具の除去量の制御が難しい。被加工物面上の工具軌跡に合わせて複数の変位駆動手段を制御しながら加工を進める必要があるため、駆動手段の制御が困難であり、駆動手段が複数あるため工具そのものの小型化も難しいという問題点があった。
【0008】
そこで、本発明は、上記のような従来技術の有する未解決の課題に鑑みてなされたものであって、簡単な構成で、被加工物形状と工具面の接触状態を常に最適な状態を保ちながら研磨することができる研磨方法および形状可変研磨工具装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の研磨方法において、被加工面に接触する工具面を有する研磨部材と、大きさの異なる複数の輪帯状部材と、それぞれの輪帯状部材を工具軸方向に駆動する駆動手段とを有し、前記輪帯状部材を介して前記研磨部材を被加工面に対応する形状に変化させて被加工面を研磨することを特徴とする。
【0010】
また本発明の形状可変研磨工具装置において、被加工物の被加工面に接触する工具面を有する研磨部材の形状を変化させるように作用する駆動手段と、前記研磨部材を回転させる回転手段と、前記研磨部材に推力を与える推力発生手段と、前記推力発生手段で発生させた推力のみが前記研磨部材に作用するように研磨部材に係る自重を打ち消すためのカウンタウエイトを有することを特徴とする。
【0011】
また本発明の形状可変研磨工具装置において、被加工物の被加工面に接触する工具面を有する研磨部材と、同心円状に配列された複数の輪帯状部材と、輪帯状部材に連結されたシャフトと、該シャフトを等間隔に複数取付けた円環状基板と該円環状基板を工具軸方向に駆動する駆動手段と、前記円環状基板の内輪を外輪に対し回転可能にする回転軸受と、シャフトを貫通させる穴を有する工具形成部本体と、前記工具形成部本体を回転させる回転手段と、前記工具形成部本体および前記円環状基板および前記駆動手段および前記回転手段を一体とする構造体と、装置全体の基準となるベースと、該ベースに固定したハウジングと、該ハウジングに対して構造体を工具軸方向に移動可能にする軸受と、前記構造体の自重を打ち消すように作用するカウンタウエイトを有することを特徴とする。
【0012】
また本発明の形状可変研磨工具装置においては、前記カウンタウエイトは、前記構造体の外側面に静圧軸受および磁石与圧によって拘束されているか、あるいは、前記構造体の外側面を静圧軸受を介して覆うように構成されていることが好ましい。
【0013】
【発明の実施の形態】
図1、図2は本発明の特徴を最もよくあらわす実施例であり、図1は断面概略図であり、図2(a)は図1のA−A断面概略図である。
【0014】
1は被加工面と接触する工具面を有するピッチ、ウレタン等によって形成された工具材料、2はシート状に形成された工具材料1に接着された弾性体、3は弾性体2に接着され可撓性を有する工具基板である。以下、1〜3を研磨部材と呼ぶ。3aは研磨部材の外周部に設けられたカバーであり内部に異物が入り込まないように構成される。4a,4bは連結部であり、5a,5bはシャフト、6a,6bはシャフトの案内部、7a,7bは円環状基板(回転軸受内輪を兼ねる)、9a,9bは回転軸受外輪、10a,10bは円環状基板を軸方向に移動可能なアクチュエータである。シャフト6a,6bは円環状基板ごとに等間隔で数本下ろされ、そのシャフトごとにシャフトの案内部、連結部は設けられている。アクチュエータ10a,10bは内枠11上に取付けられ、制御装置からの出力値に従ってアクチュエータ10a,10bをそれぞれ駆動することにより、円環状基板7a,7bを工具軸T方向に移動させ、円環状基板7a,7bからそれぞれ数本下ろしたシャフトを工具形状形成部本体25に設けられた穴の内部に設けたシャフトの案内部6a、6b内を貫通させ、シャフトの案内部6a、6bに沿って工具軸T方向に移動させ、連結部4a,4bによって連結された2つの輪帯状部材26a,26bをそれぞれ上下動させることにより研磨部材1〜3を変形させ、工具面1を任意の形状に形成する。
この連結部4a,4bは、例えば図4に示すように構成されている。図4において、図4(a)、図4(b)は、それぞれ異なった連結方法を示している。
まず図4(a)は、樹脂製の軸受ハウジング26a´に、樹脂の弾性を利用してシャフト5aの先端の球状連結部4aを着脱可能とする方法である。連結部4aは球状であるため軸受ハウジング26a´に対して回動自在に連結することが可能である。
【0015】
図4(b)は、軸受ハウジングを26a´,26a´´の2体構造とし、開いた状態でシャフト5aの先端の球状連結部4aを挿入し、その状態で軸受ハウジング26a´,26a´´を閉じて連結する方法である。こちらも連結部4aは球状であるため軸受ハウジング26a´,26a´´に対して回動自在に連結することが可能である。
【0016】
図4(a)、図4(b)に示した軸受ハウジングは、輪帯状部材26aと一体としてもよいし、連結部4aと連結した後軸受ハウジング26a´,26a´´を輪帯状部材に固定してもよい。
【0017】
工具形状形成部本体25の外周には、歯車13が設けられ、モータ部15に連結された歯車14から回転トルクが伝達され、工具面1、弾性体2、工具基板3、輪帯状部材26a,26b、連結部4a,4b、シャフト5a,5b、シャフトの案内部6a,6b、円環状基板7a,7bを一体として、内枠11に対して回転案内部12を介して形状形成部本体25が回転するように構成されている。回転軸受内輪を兼ねている円環状基板7a,7b、回転軸受外輪9a,9bが回転自在の軸受部を構成しているため、アクチュエータ10a,10bによる工具形状が形成された状態を保ったまま、工具面1は工具中心軸回りに回転可能である。ここでは歯車を使って工具形状形成部本体25が回転するように構成したが、工具形状形成部本体25の回りにベルトをかけ、モータの回転が減速プーリ、ベルトを介して工具形状形成部本体25に伝達されるようにしてもよい。
【0018】
さらに、以上述べてきた構成部品を一体とするように構造体18が設けられ、この構造体18を上下方向に移動可能にする構造体案内部として静圧軸受16及びハウジング17を設け、ハウジング17は取付け具19a,19bを介して形状可変研磨工具装置全体の基準となるベース21に取付ける。このような構成にすることで、構造体18は形状可変研磨工具装置全体のベース21に対して上下方向に移動可能である。また20は推力発生アクチュエータであり、構造体18に取付けられており、その推力は構造体18、内枠11を介して工具面に作用するように構成されている。ここでは推力発生アクチュエータとして、ヨークとコイルからなるボイスコイルモータを使用した。また24はカウンタウエイトであり、ワイヤ23、滑車22a,22b,22c,22dを介して構造体18に連結されている。これにより工具面に作用する形状可変研磨工具装置全体の自重がキャンセルされ、工具面にはアクチュエータ20の推力のみが作用する。またカウンタウエイト24と構造体18の間には静圧軸受30が設けられ、カウンタウエイト24は構造体18の外側面を覆うように構成され構造体側面に沿って上下方向に案内される。
【0019】
上記カウンタウエイト24について前述した図2(a)に示す実施例の他に、他の実施例として図2(b)に示したような構成も考えられる。図2(a)で説明した実施例との違いのみを説明する。図2(a)においては、構造体18の外側面を覆うようにカウンタウエイト24を構成したが、図2(b)の実施例においては、2つのカウンタウエイトを構造体の一側面およびその反対側面に設け、構造体とカウンタウエイトとの間に静圧軸受および磁石31が設けられ、この静圧軸受と磁石与圧によってカウンタウエイト24が構造体の外側面に沿って上下方向のみ摺動可能になるように構成されている。ここでは2つのカウンタウエイトを取付けたが1つでもまた3つ以上取付けても構わない。
【0020】
カウンタウエイトを前述した実施例のように構成することによって、形状可変研磨工具装置が傾斜してもカウンタウエイトが構造体18から離れてしまうことがなく、従って不要な振動を起こすことがなくなり、確実に工具面に作用する形状可変研磨工具装置全体の自重をキャンセルすることができる。
【0021】
次に、工具形状の形成方法について図5を参照して説明する。ここでは図5(a)に示したような2つの輪帯状部材26a,26b(ここでは輪帯状部材の中心線のみを示す)にシャフトの連結部4a,4bが円周方向に8分割で配置された場合を示す。図5(b)に示したように、加工部位の近似球面の半径がRであり、工具中心からの距離がrであった場合、工具中心部との高さの差ΔHを例えば以下の計算式から求めることができる。
【0022】
ΔH=R(1−cosθ)
このようにして、図5(c)に示すように、各連結部4a,4bの工具中心部からの距離r1,r2と各研磨点における近似球面の半径から各研磨点ごとに工具中心部との高さの差ΔH1,ΔH2を求めその値に応じてアクチュエータ10a,10bを駆動し工具面1を所望の形状に形成する。
【0023】
次に、以上説明した形状可変研磨工具装置を用いた実際の研磨装置について、図3を用いて説明する。
【0024】
図3において、50はベッドであり、ベッド50上にはガイド41が形成された基台51が取付けられており、基台51に形成されたガイド41に沿ってy方向に往復移動可能なyテーブル52が取付けられている。yテーブル52はモータmyの駆動により移動可能であり、yテーブル52にはセンサーsyが付設されており、センサーsyによりyテーブル52のy方向移動量が検出される。yテーブル52上にはガイド42が形成されており、このガイド42に沿ってyテーブル52に対して直交方向に相対的に往復移動可能なxテーブル53が取り付けられている。xテーブル53はモータmxの駆動により移動可能であり、xテーブル53にはセンサーsxが付設されており、センサーsxによりxテーブル53のx方向移動量が検出される。
【0025】
xステージ上には回転テーブル57が設置されており、該回転テーブル57はモータmθzの駆動により回転可能であり、モータmθzにはエンコーダeθzが付設され、回転位置の検出がなされる。
【0026】
一方、ベッド50にはコラム54が固定されている。コラム54には上下方向すなわちz方向のガイド43が形成されており、ガイド43に沿って上下方向に往復移動可能なようにzステージ55が取付けられている。zステージは、モータmzの駆動により移動可能であり、またzステージにはセンサーszが付設されており、センサーszによりzステージのz方向移動量が検出される。
【0027】
zステージ55には研磨ヘッド保持体56が支持されている。zステージにはモータmθxが取付けられており、その駆動回転軸は研磨ヘッド保持体56に接続されていて、研磨ヘッド保持体56のx軸まわりの回動を駆動することができる。モータmθxにはエンコーダeθxが付設されており、エンコーダmθxによりx軸まわりの傾斜角(回動量)が検出される。
【0028】
また研磨ヘッド保持体56には、モータmθyが取付けられており、その駆動回転軸は、前述した形状可変研磨工具装置Sを保持する保持部(不図示)に接続されており保持部はy軸回りの回動を駆動することができる。またモータmθyにはエンコーダeθyが付設されており、このエンコーダeθyによりy軸まわりの傾斜角(回動量)が検出される。そして保持部に前述した形状可変研磨工具装置Sを取付け、研磨を行なう。
【0029】
次に実際研磨を行なうための動作について説明する。
【0030】
まず、回転テーブル57上に被加工物Wを積載固定する。被加工物Wは適切な前加工により所定の表面粗さ、形状精度に仕上げられているものとする。58は制御装置であり、この制御装置58のメモリ領域に、予め形状可変研磨工具装置の走査パターンを入力しておく。
【0031】
この走査パターンは図6に示すようにいくつか考えられる。図6(a)は被加工物W全体をラスター状に形状可変研磨工具装置Sを走査する走査パターンを示した図であり、図6(b)は被加工物Wを回転させ、さらに形状可変研磨工具装置Sを半径方向Hに走査することによってスパイラル状に研磨する走査パターンを示した図、図6(c)は被加工物Wの扇形加工対象部位における任意な走査パターンを示した図である。このような走査パターン上に順に研磨点を予め設定しておく。
【0032】
さらに予め求めておいた被加工物の表面形状データ、設計形状データを制御装置58に入力しておき、表面形状データと設計形状データの差から被加工物表面上の各研磨点における研磨工具の滞留時間を求め、それらの値に基づいてモータmx、my、mθz、mzへ駆動信号を出力し形状可変研磨工具装置Sの被加工物上の位置を制御する。
【0033】
また形状可変研磨工具装置Sの工具軸Tが各研磨点において被加工物表面形状の法線方向を向くようにモータmθx、mθyを駆動制御する。
【0034】
さらに前述した形状可変研磨工具装置Sの工具形状が、各研磨点における近似球面に沿うようにアクチュエータ10a,10bをそれぞれ別々に駆動し工具面を所望の形状に形成する。また所定の回転数になるようモータ15を駆動する。加えて、アクチュエータ20を駆動制御し所望の推力を工具面に作用させる。このようにして被加工物表面の研磨を行う。
【0035】
以上詳述したように、本発明の研磨方法および形状可変研磨工具装置を用いることによって、簡単な構成および制御で、被加工面の近似球面と一致する工具形状を形成でき、工具と被加工物間の接触状態を常に理想的な状態に維持し、研磨加工を安定して行え高精度な加工が実現できる。平面形状、球面形状、非球面形状自由曲面形状であっても加工中に各研磨点、工具位置に応じて工具形状を可変、形成することで被加工物形状と一致させることが可能である。
【0036】
また被加工面上の全ての位置で工具形状が加工部位の形状と一致する為、滞留時間一定の均等研磨において被加工物形状精度を劣化させることなくうねり、リップル成分を除去可能である。
【0037】
さらに工具の自転中心と研磨点の面法線を一致させることで、従来では工具形状と被加工物形状のフィッティングのために設けられていたイコライズ機構が不要となり、工具と被加工物の接触状態が常に理想的な状態を確保でき、工具面内の圧力分布も常に同じ状態が維持できる。
【0038】
また、カウンタウエイト機構により工具面に係る形状可変研磨工具装置の自重がいかなる状態においてもキャンセルされ、アクチュエータによる推力だけが研磨荷重として作用する。そのため工具の除去形状、除去量が安定し、高精度な加工が可能である。
【0039】
また、工具と被加工物の接触状態が一定である為、うねり、リップル成分の除去においても工具の位置、姿勢によらず安定したリップル除去性能を発揮できる。特に、工具が被加工物の外周部でオーバハングするような状態であっても、工具と工作物の接触状態を理想的な状態で維持でき、工作物全面において未加工部分を残すことなくうねり、リップル成分の除去を実施できる。
【0040】
【発明の効果】
以上説明したように本発明によれば、簡単な構成で、被加工面の近似球面と一致する工具形状を形成できるため、工具と被加工物間の接触状態を常に理想的な状態に維持でき、研磨加工を安定して行え高精度な加工が実現できる。
【図面の簡単な説明】
【図1】本発明による形状可変研磨工具装置の実施例を示す概略図
【図2】本発明による形状可変研磨工具装置の実施例を示す断面図
【図3】本発明による形状可変研磨工具装置を使用した研磨装置の実施例を示す図
【図4】連結部を示す図
【図5】工具形状の形成方法を示す図
【図6】走査パターンを示す図
【符号の説明】
1 工具材料
2 弾性体
3 工具基板
1〜3 研磨部材
4a,4b 連結部
5a,5b シャフト
6a,6b シャフトの案内部
7a,7b 円環状基板(回転軸受内輪を兼ねる)
9a,9b 回転軸受外輪
10a,10b アクチュエータ
11 内枠
25 工具形状形成部本体
26a,26b 輪帯状部材
18 構造体
20 推力発生アクチュエータ
24 カウンタウエイト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shape-variable polishing tool device and a polishing method used when polishing an optical element such as a lens or a mirror or a mold, and particularly to polishing and the like of an aspherical shape whose radius of curvature changes in a radial direction. It relates to the removal of undulations called ripples.
[0002]
[Prior art]
Patent Document 1 discloses a method for polishing an optical surface including an aspherical surface. This involves measuring the workpiece shape in advance, controlling the polishing load generated by a plurality of polishing tools arranged on the workpiece in accordance with the shape deviation between the measured shape and the design shape, and controlling the polishing load. The load is applied to a flexible polishing pad, and the polishing is advanced by swinging the polishing pad between the workpiece and the tool. Efficient polishing of a large telescope mirror and an optical element for an X-ray telescope is possible, and it is also possible to remove an error shape which is off-axis.
[0003]
Patent Document 2 discloses a variable-shape tool having a plurality of driving means.
[0004]
[Patent Document 1]
USP4850152
[Patent Document 2]
Tokuho 5-58864
[0005]
[Problems to be solved by the invention]
However, the following problems remain in the above-mentioned conventional technology.
[0006]
In the method of Patent Document 1, the minimum processing unit is limited depending on the size of the tool, and it is not possible to correct a small shape error. Since the polishing load does not act in the normal direction of the surface in the processing portion, the removal shape of the tool varies depending on the processing portion, and the removal amount is unstable, so that high processing accuracy cannot be expected. In addition, the connecting portion between the tools becomes discontinuous, and it is easy to generate a swell component called a ripple due to the size of the tool.
[0007]
In the method of Patent Literature 2, it is difficult to control the removal amount of the tool because the tool is mainly a variable shape tool using displacement driving means. It is necessary to perform machining while controlling a plurality of displacement driving means in accordance with the tool trajectory on the workpiece surface, so that it is difficult to control the driving means, and since there are a plurality of driving means, it is also difficult to reduce the size of the tool itself. There was a problem.
[0008]
Therefore, the present invention has been made in view of the above-mentioned unresolved problems of the prior art, and has a simple configuration and always maintains an optimal state of contact between a workpiece shape and a tool surface. It is an object of the present invention to provide a polishing method and a variable shape polishing tool device capable of polishing while polishing.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the polishing method of the present invention, a polishing member having a tool surface in contact with a surface to be processed, a plurality of annular members having different sizes, and each annular member in the tool axial direction. A driving means for driving, wherein the polishing member is polished by changing the polishing member into a shape corresponding to the processing surface via the annular member.
[0010]
Further, in the variable shape polishing tool device of the present invention, a driving unit that acts to change the shape of a polishing member having a tool surface that is in contact with a processing surface of a workpiece, a rotation unit that rotates the polishing member, A thrust generating means for applying a thrust to the polishing member, and a counterweight for canceling the own weight of the polishing member so that only the thrust generated by the thrust generating means acts on the polishing member are provided.
[0011]
Further, in the variable shape polishing tool device of the present invention, a polishing member having a tool surface in contact with a surface to be processed of a workpiece, a plurality of annular members arranged concentrically, and a shaft connected to the annular member An annular substrate having a plurality of the shafts attached at equal intervals, a driving unit for driving the annular substrate in the tool axis direction, a rotary bearing for rotating an inner ring of the annular substrate with respect to an outer ring, and a shaft. A tool forming unit main body having a hole to be penetrated, a rotating unit for rotating the tool forming unit main body, a structure integrating the tool forming unit main body, the annular substrate, the driving unit, and the rotating unit, and an apparatus A base serving as an overall reference, a housing fixed to the base, a bearing capable of moving the structure relative to the housing in the tool axis direction, and acting to cancel the weight of the structure. And having a counterweight.
[0012]
Further, in the variable shape polishing tool device of the present invention, the counterweight is restrained by a static pressure bearing and a magnet pressurization on an outer surface of the structure, or a static pressure bearing is provided on an outer surface of the structure. It is preferable to be constituted so that it may cover through.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 and 2 show embodiments which best show the features of the present invention. FIG. 1 is a schematic sectional view, and FIG. 2 (a) is a schematic sectional view taken along line AA of FIG.
[0014]
1 is a tool material formed of a pitch, urethane or the like having a tool surface in contact with a surface to be processed, 2 is an elastic body bonded to a sheet-shaped tool material 1, and 3 is bonded to an elastic body 2. It is a flexible tool substrate. Hereinafter, 1 to 3 are referred to as polishing members. Reference numeral 3a denotes a cover provided on the outer peripheral portion of the polishing member, which is configured to prevent foreign matter from entering the inside. Reference numerals 4a and 4b denote connecting portions, 5a and 5b denote shafts, 6a and 6b denote shaft guide portions, 7a and 7b denote annular substrates (also serving as rotary bearing inner rings), 9a and 9b denote rotary bearing outer rings, 10a and 10b. Is an actuator capable of moving the annular substrate in the axial direction. Several shafts 6a and 6b are lowered at equal intervals for each annular substrate, and a guide portion and a connecting portion of the shaft are provided for each shaft. The actuators 10a and 10b are mounted on the inner frame 11, and drive the actuators 10a and 10b, respectively, in accordance with the output values from the control device to move the annular substrates 7a and 7b in the direction of the tool axis T, thereby obtaining the annular substrates 7a. , 7b are respectively lowered through the guide portions 6a, 6b of the shaft provided inside the holes provided in the tool shape forming portion main body 25, and the tool shaft is moved along the guide portions 6a, 6b of the shaft. By moving the two annular members 26a and 26b connected by the connecting portions 4a and 4b in the T direction, the polishing members 1 to 3 are deformed by moving up and down, and the tool surface 1 is formed into an arbitrary shape.
The connecting portions 4a and 4b are configured, for example, as shown in FIG. In FIG. 4, FIGS. 4A and 4B show different connection methods.
First, FIG. 4A shows a method in which the spherical connecting portion 4a at the tip of the shaft 5a can be attached to and detached from the resin bearing housing 26a 'by using the elasticity of the resin. Since the connecting portion 4a is spherical, it can be rotatably connected to the bearing housing 26a '.
[0015]
FIG. 4 (b) shows the bearing housing having a two-body structure of 26a 'and 26a''. The spherical connecting portion 4a at the tip of the shaft 5a is inserted in an open state, and the bearing housing 26a' and 26a '' is in that state. Are closed and connected. Also here, since the connecting portion 4a is spherical, it can be rotatably connected to the bearing housings 26a ', 26a''.
[0016]
The bearing housings shown in FIGS. 4A and 4B may be integrated with the ring-shaped member 26a, or may be fixed to the ring-shaped member after the bearing housings 26a 'and 26a''are connected to the connecting portion 4a. May be.
[0017]
A gear 13 is provided on the outer periphery of the tool shape forming unit main body 25, and rotational torque is transmitted from a gear 14 connected to the motor unit 15, so that the tool surface 1, the elastic body 2, the tool substrate 3, the annular member 26a, 26b, connecting portions 4a and 4b, shafts 5a and 5b, shaft guiding portions 6a and 6b, and annular substrates 7a and 7b are integrated into the shape forming portion main body 25 via the rotation guiding portion 12 with respect to the inner frame 11. It is configured to rotate. Since the annular substrates 7a and 7b also serving as the rotating bearing inner ring and the rotating bearing outer rings 9a and 9b form a rotatable bearing portion, while maintaining a state in which the actuators 10a and 10b form the tool shape, The tool surface 1 is rotatable around the center axis of the tool. Here, the tool shape forming unit main body 25 is configured to rotate using gears. However, a belt is wrapped around the tool shape forming unit main body 25, and the rotation of the motor is reduced via the reduction pulley and the belt. 25 may be transmitted.
[0018]
Further, a structure 18 is provided so as to integrate the components described above, and a hydrostatic bearing 16 and a housing 17 are provided as a structure guide for enabling the structure 18 to move in the vertical direction. Is attached to a base 21 serving as a reference for the entire variable-shape polishing tool device via attachments 19a and 19b. With such a configuration, the structure 18 can be moved up and down with respect to the base 21 of the entire variable shape polishing tool device. Reference numeral 20 denotes a thrust generating actuator, which is attached to the structure 18 so that the thrust acts on the tool surface via the structure 18 and the inner frame 11. Here, a voice coil motor including a yoke and a coil was used as the thrust generating actuator. Reference numeral 24 denotes a counterweight, which is connected to the structure 18 via a wire 23 and pulleys 22a, 22b, 22c, 22d. This cancels the own weight of the entire variable shape polishing tool device acting on the tool surface, and only the thrust of the actuator 20 acts on the tool surface. A hydrostatic bearing 30 is provided between the counterweight 24 and the structure 18. The counterweight 24 is configured to cover the outer surface of the structure 18 and is guided vertically along the side surface of the structure.
[0019]
In addition to the above-described embodiment shown in FIG. 2A for the counterweight 24, a configuration as shown in FIG. 2B may be considered as another embodiment. Only differences from the embodiment described with reference to FIG. In FIG. 2A, the counterweight 24 is formed so as to cover the outer surface of the structure 18. However, in the embodiment of FIG. 2B, two counterweights are connected to one side of the structure and the opposite side. A static pressure bearing and a magnet 31 are provided between the structure and the counterweight on the side surface, and the counterweight 24 can slide only in the vertical direction along the outer surface of the structure by the static pressure bearing and the magnet pressurization. It is configured to be. Here, two counterweights are attached, but one or three or more counterweights may be attached.
[0020]
By configuring the counterweight as in the above-described embodiment, even if the variable-shape polishing tool device is inclined, the counterweight does not separate from the structure 18 and thus does not cause unnecessary vibration, thus ensuring a reliable operation. The self-weight of the entire variable shape polishing tool device acting on the tool surface can be canceled.
[0021]
Next, a method of forming a tool shape will be described with reference to FIG. Here, the connecting parts 4a and 4b of the shaft are arranged in eight circumferential divisions on two annular members 26a and 26b (only the center line of the annular members is shown here) as shown in FIG. Indicates the case where it was done. As shown in FIG. 5 (b), when the radius of the approximate spherical surface of the machining portion is R and the distance from the tool center is r, the height difference ΔH from the tool center is calculated by the following calculation, for example. It can be obtained from the equation.
[0022]
ΔH = R (1-cos θ)
In this way, as shown in FIG. 5 (c), based on the distances r1 and r2 of the connecting portions 4a and 4b from the center of the tool and the radius of the approximate spherical surface at each of the grinding points, the tool center portion and The height differences ΔH1 and ΔH2 are determined, and the actuators 10a and 10b are driven according to the values to form the tool surface 1 into a desired shape.
[0023]
Next, an actual polishing apparatus using the variable shape polishing tool device described above will be described with reference to FIG.
[0024]
In FIG. 3, reference numeral 50 denotes a bed, on which a base 51 on which a guide 41 is formed is attached, and y can reciprocate in the y direction along the guide 41 formed on the base 51. A table 52 is attached. The y table 52 can be moved by driving the motor my, and the y table 52 is provided with a sensor sy. The sensor sy detects the amount of movement of the y table 52 in the y direction. A guide 42 is formed on the y-table 52, and an x-table 53 is mounted along the guide 42 so as to be able to reciprocate in a direction perpendicular to the y-table 52. The x table 53 can be moved by driving the motor mx. The x table 53 is provided with a sensor sx, and the sensor sx detects the amount of movement of the x table 53 in the x direction.
[0025]
A rotary table 57 is provided on the x stage, and the rotary table 57 is rotatable by driving a motor mθz, and an encoder eθz is attached to the motor mθz to detect a rotational position.
[0026]
On the other hand, a column 54 is fixed to the bed 50. The column 54 is formed with a guide 43 in the up-down direction, that is, the z-direction, and a z-stage 55 is mounted so as to be able to reciprocate up and down along the guide 43. The z stage is movable by driving a motor mz, and a sensor sz is attached to the z stage, and the amount of movement of the z stage in the z direction is detected by the sensor sz.
[0027]
A polishing head holder 56 is supported on the z stage 55. A motor mθx is attached to the z-stage, and its drive rotation shaft is connected to the polishing head holder 56, and can drive the rotation of the polishing head holder 56 about the x-axis. The motor mθx is provided with an encoder eθx, and the encoder mθx detects an inclination angle (rotation amount) around the x-axis.
[0028]
Further, a motor mθy is attached to the polishing head holder 56, and a driving rotation axis thereof is connected to a holder (not shown) that holds the above-described variable shape polishing tool device S. Around rotation can be driven. An encoder eθy is attached to the motor mθy, and an inclination angle (rotation amount) around the y-axis is detected by the encoder eθy. Then, the above-described variable shape polishing tool device S is attached to the holding portion, and polishing is performed.
[0029]
Next, an operation for actually performing polishing will be described.
[0030]
First, the workpiece W is loaded and fixed on the rotary table 57. It is assumed that the workpiece W has been finished to predetermined surface roughness and shape accuracy by appropriate pre-processing. Reference numeral 58 denotes a control device, and a scanning pattern of the variable-shape polishing tool device is previously input to a memory area of the control device 58.
[0031]
There are several possible scan patterns as shown in FIG. FIG. 6A is a diagram showing a scanning pattern for scanning the whole shape of the workpiece W in the form of a raster by the variable-sharpening polishing tool device S. FIG. FIG. 6C is a diagram illustrating a scanning pattern in which the polishing tool device S is polished in a spiral shape by scanning in the radial direction H, and FIG. 6C is a diagram illustrating an arbitrary scanning pattern in a sector to be processed of the workpiece W. is there. Polishing points are set in advance on such a scanning pattern in advance.
[0032]
Further, the surface shape data and the design shape data of the workpiece previously obtained are input to the control device 58, and the difference between the surface shape data and the design shape data is used to determine the polishing tool at each polishing point on the workpiece surface. The residence time is obtained, and a drive signal is output to the motors mx, my, mθz, and mz based on those values to control the position of the variable shape polishing tool device S on the workpiece.
[0033]
The motors mθx and mθy are drive-controlled so that the tool axis T of the variable-shape polishing tool device S is oriented in the normal direction of the workpiece surface shape at each polishing point.
[0034]
Further, the actuators 10a and 10b are separately driven so that the tool shape of the variable shape polishing tool device S described above is along the approximate spherical surface at each polishing point, and the tool surface is formed into a desired shape. Further, the motor 15 is driven so as to have a predetermined rotation speed. In addition, the drive of the actuator 20 is controlled to apply a desired thrust to the tool surface. Thus, the surface of the workpiece is polished.
[0035]
As described in detail above, by using the polishing method and the variable-shape polishing tool device of the present invention, it is possible to form, with a simple configuration and control, a tool shape that matches the approximate spherical surface of the work surface, and The state of contact between them is always maintained in an ideal state, and the polishing can be stably performed, and high-precision processing can be realized. Even in the case of a flat shape, a spherical shape, or an aspherical free-form surface shape, it is possible to match the shape of the workpiece by changing and forming the tool shape according to each polishing point and the tool position during processing.
[0036]
In addition, since the tool shape matches the shape of the machined portion at all positions on the work surface, it is possible to remove undulations and ripple components without deteriorating the work shape accuracy in uniform polishing with a fixed residence time.
[0037]
Furthermore, by making the center of rotation of the tool coincide with the surface normal of the polishing point, the equalizing mechanism that was conventionally provided for fitting the tool shape and the workpiece shape is unnecessary, and the contact state between the tool and the workpiece is eliminated. However, the ideal state can always be ensured, and the same pressure distribution in the tool plane can always be maintained.
[0038]
In addition, the self-weight of the variable-shape polishing tool device relating to the tool surface is canceled in any state by the counterweight mechanism, and only the thrust by the actuator acts as a polishing load. Therefore, the removal shape and removal amount of the tool are stable, and high-precision machining is possible.
[0039]
In addition, since the contact state between the tool and the workpiece is constant, stable ripple removal performance can be exhibited regardless of the position and orientation of the tool even in removing undulations and ripple components. In particular, even when the tool overhangs on the outer peripheral portion of the workpiece, the contact state between the tool and the workpiece can be maintained in an ideal state, and the undulation can be maintained without leaving an unprocessed portion on the entire workpiece, Ripple components can be removed.
[0040]
【The invention's effect】
As described above, according to the present invention, with a simple configuration, a tool shape that matches the approximate spherical surface of the work surface can be formed, so that the contact state between the tool and the work can always be maintained in an ideal state. In addition, the polishing process can be performed stably, and a highly accurate process can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a variable-shape polishing tool device according to the present invention; FIG. 2 is a cross-sectional view showing an embodiment of a variable-shape polishing tool device according to the present invention; FIG. FIG. 4 is a diagram showing an embodiment of a polishing apparatus using a tool. FIG. 4 is a diagram showing a connecting portion. FIG. 5 is a diagram showing a method for forming a tool shape. FIG. 6 is a diagram showing a scanning pattern.
DESCRIPTION OF SYMBOLS 1 Tool material 2 Elastic body 3 Tool substrate 1-3 Polishing member 4a, 4b Connecting part 5a, 5b Shaft 6a, 6b Shaft guide part 7a, 7b Toroidal substrate (also serves as a rotating bearing inner ring)
9a, 9b Rotary bearing outer ring 10a, 10b Actuator 11 Inner frame 25 Tool shape forming part main body 26a, 26b Ring-shaped member 18 Structure 20 Thrust generating actuator 24 Counter weight

Claims (5)

被加工面に接触する工具面を有する研磨部材と、大きさの異なる複数の輪帯状部材と、それぞれの輪帯状部材を工具軸方向に駆動する駆動手段とを有し、前記輪帯状部材を介して前記研磨部材を被加工面に対応する形状に変化させて被加工面を研磨することを特徴とする研磨方法。A polishing member having a tool surface in contact with a surface to be processed, a plurality of annular members having different sizes, and driving means for driving the respective annular members in the tool axis direction, via the annular member Polishing the workpiece surface by changing the polishing member into a shape corresponding to the workpiece surface. 被加工物の被加工面に接触する工具面を有する研磨部材の形状を変化させるように作用する駆動手段と、前記研磨部材を回転させる回転手段と、前記研磨部材に推力を与える推力発生手段と、前記推力発生手段で発生させた推力のみが前記研磨部材に作用するように研磨部材に係る自重を打ち消すためのカウンタウエイトを有することを特徴とする形状可変研磨工具装置。A driving unit that acts to change the shape of a polishing member having a tool surface that contacts a surface to be processed of a workpiece, a rotation unit that rotates the polishing member, and a thrust generating unit that applies a thrust to the polishing member. And a counterweight for canceling the weight of the polishing member so that only the thrust generated by the thrust generating means acts on the polishing member. 被加工物の被加工面に接触する工具面を有する研磨部材と、同心円状に配列された複数の輪帯状部材と、輪帯状部材に連結されたシャフトと、該シャフトを等間隔に複数取付けた円環状基板と該円環状基板を工具軸方向に駆動する駆動手段と、前記円環状基板の内輪を外輪に対し回転可能にする回転軸受と、シャフトを貫通させる穴を有する工具形成部本体と、前記工具形成部本体を回転させる回転手段と、前記工具形成部本体および前記円環状基板および前記駆動手段および前記回転手段を一体とする構造体と、装置全体の基準となるベースと、該ベースに固定したハウジングと、該ハウジングに対して構造体を工具軸方向に移動可能にする軸受と、前記構造体の自重を打ち消すように作用するカウンタウエイトを有することを特徴とする形状可変研磨工具装置。A polishing member having a tool surface that comes into contact with a processing surface of a workpiece, a plurality of concentrically arranged annular members, a shaft connected to the annular member, and a plurality of the shafts mounted at equal intervals. A driving means for driving the annular substrate and the annular substrate in the tool axis direction, a rotary bearing for rotating an inner ring of the annular substrate with respect to an outer ring, and a tool forming portion main body having a hole through which the shaft passes; A rotating unit that rotates the tool forming unit main body, a structure that integrates the tool forming unit main body, the annular substrate, the driving unit, and the rotating unit, a base serving as a reference of the entire apparatus, and It has a fixed housing, a bearing that enables the structure to move in the tool axis direction with respect to the housing, and a counterweight that acts to cancel the weight of the structure. Jo variable polishing tool apparatus. 前記カウンタウエイトは、構造体の外側面に静圧軸受および磁石与圧によって拘束されていることを特徴とする請求項3に記載の形状可変研磨工具装置。The variable shape polishing tool device according to claim 3, wherein the counterweight is restrained on an outer surface of the structure by a static pressure bearing and a magnet pressurization. 前記カウンタウエイトは、構造体の外側面を静圧軸受を介して、覆うように設けられていることを特徴とする請求項3に記載の形状可変研磨工具装置。The variable shape polishing tool device according to claim 3, wherein the counterweight is provided so as to cover an outer surface of the structure via a hydrostatic bearing.
JP2002326879A 2002-11-11 2002-11-11 Polishing method and shape variable polishing tool device Withdrawn JP2004160565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326879A JP2004160565A (en) 2002-11-11 2002-11-11 Polishing method and shape variable polishing tool device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326879A JP2004160565A (en) 2002-11-11 2002-11-11 Polishing method and shape variable polishing tool device

Publications (1)

Publication Number Publication Date
JP2004160565A true JP2004160565A (en) 2004-06-10

Family

ID=32805691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326879A Withdrawn JP2004160565A (en) 2002-11-11 2002-11-11 Polishing method and shape variable polishing tool device

Country Status (1)

Country Link
JP (1) JP2004160565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255181A (en) * 2008-04-11 2009-11-05 Nikon Corp Polishing apparatus
JP2011189476A (en) * 2010-03-16 2011-09-29 Canon Inc Method for polishing
CN102430968A (en) * 2011-10-09 2012-05-02 长春工业大学 Device and method for polishing complex optical curved surface
JP2021085410A (en) * 2019-11-25 2021-06-03 日本電子株式会社 Actuator, specimen positioning device, and charged particle beam apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255181A (en) * 2008-04-11 2009-11-05 Nikon Corp Polishing apparatus
JP2011189476A (en) * 2010-03-16 2011-09-29 Canon Inc Method for polishing
CN102430968A (en) * 2011-10-09 2012-05-02 长春工业大学 Device and method for polishing complex optical curved surface
JP2021085410A (en) * 2019-11-25 2021-06-03 日本電子株式会社 Actuator, specimen positioning device, and charged particle beam apparatus

Similar Documents

Publication Publication Date Title
TWI359711B (en) Raster cutting technology for ophthalmic lenses
US6733369B1 (en) Method and apparatus for polishing or lapping an aspherical surface of a work piece
JP2006062077A (en) Grinding method and device for profile of workpiece
JP3652182B2 (en) Diffraction grating processing method and processing apparatus
JP4576255B2 (en) Tool whetstone shape creation method
JPH0929598A (en) Processing device for aspheric surface shape object
JPH0253557A (en) Method and device for working non-spherical body
JP2009107055A (en) Polishing tool and polishing device
JP2004160565A (en) Polishing method and shape variable polishing tool device
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2007118117A (en) Machining device and method for fly-eye lens forming die
JP2019055452A (en) Convex lens processing device, convex lens processing method and grindstone
JP2006320970A (en) Machining device
JPH10286772A (en) Polishing tool, and grinding tool
JP3819141B2 (en) Polishing equipment
JP2008264920A (en) Grinding tool, magnetic grinding method, and magnetic grinding device
JP2002178248A (en) Polishing device
JP2006159331A (en) Cutting method and cutting device
JP2877158B2 (en) Spherical polishing device and spherical polishing method
JP2005324287A (en) Workpiece machining device and workpiece machining method
KR102050766B1 (en) Apparatus for grinding
JPH0966445A (en) Polishing device and polishing method
JPH11291149A (en) Curved surface polishing method and device therefor
JPH0919859A (en) Ultra-precision working machine for spherical mirror-fnish component
US20070062015A1 (en) Method and tool head for machining optically active surfaces, particularly surfaces of progressive spectacle lenses, which are symmetrical in pairs

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207