JP2004098242A - Method for polishing article, its polishing liquid, and method for manufacturing optical article - Google Patents

Method for polishing article, its polishing liquid, and method for manufacturing optical article Download PDF

Info

Publication number
JP2004098242A
JP2004098242A JP2002265434A JP2002265434A JP2004098242A JP 2004098242 A JP2004098242 A JP 2004098242A JP 2002265434 A JP2002265434 A JP 2002265434A JP 2002265434 A JP2002265434 A JP 2002265434A JP 2004098242 A JP2004098242 A JP 2004098242A
Authority
JP
Japan
Prior art keywords
polishing
article
liquid
tool
polishing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002265434A
Other languages
Japanese (ja)
Inventor
Junji Takashita
高下 順治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002265434A priority Critical patent/JP2004098242A/en
Publication of JP2004098242A publication Critical patent/JP2004098242A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method for preventing generation of surface roughness due to a reaction of polishing liquid and a crystal material, when polishing an article made of a fluoride crystal material by a polishing tool, and also to provide its polishing liquid, and a method for manufacturing an optical article (optical element). <P>SOLUTION: In this polishing method, the article made of the fluoride crystal material is polished by the polishing tool. In the method, the polishing for the article is divided into a plurality of polishing processes and each of the divided polishing processes is finished within the time when the surface roughness due to the reaction of the polishing liquid is not generated, to polish the article by the plurality of polishing processes. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子または光学物品の研磨方法、及びその研磨液に関し、特に、結晶材料からなる高精度な光学素子または光学物品を研磨するのに使用される物品の研磨方法、及びその研磨液、光学物品(光学素子)の製造方法に関する。例えば、真空紫外域から遠赤外域までの広い波長範囲において用いられる各種光学素子、レンズ、窓材、プリズム等の光学物品に好適であるフッ化カルシウム(蛍石)、フッ化マグネシウム等のフッ化物系結晶材料からなる高精度な光学素子または光学物品の研磨加工に好適な技術に関するものである。
【0002】
【従来の技術】
蛍石結晶は白色光に対する分散性が少なく、また紫外線域から短波長領域の光透過率が良い等、他の光学材料には無い優れた特長があり、以前から高解像低収差の望遠鏡レンズに用いられている。最近では波長248nmのArFレーザや波長157nmのF2レーザ等の短波長光を光源とした露光装置の照明光学系や投影光学系のレンズへの適用が検討されている。レンズの多くは球面形状であるが、最近では放物面など非球面形状を組み込んだ光学系の設計が多くなってきており、レンズ直径は200mmを超える。
【0003】
非球面レンズの形状を作り込む研磨工程には、直径比がレンズの1/5〜1/10程度の小径の研磨工具が用いられ、レンズの形状測定データを基準に設計形状から厚み側に多くずれている箇所を部分的に研磨除去することにより、形状精度を向上する方法が採用されている。研磨工具は、例えば、円形のピッチ又は発泡ポリウレタン樹脂を台金に貼りつけたもので構成される。
【0004】
研磨工程では、かかる研磨工具をダイヤモンド微粉の入った研磨液をかけながらレンズ加工面に回転しながら押しつけてレンズの端から端までを連続して移動走査する。その際、多くの除去量を必要とする箇所では走査移動速度を遅くしたり圧力を高くしたりすることによって除去量を増加する、いわゆる工具滞留時間制御又は圧力制御を採用している。
工具径の異なる複数の工具を準備して行うこの方式は、元の誤差形状の波長に見合った直径の工具を選択することにより、誤差形状の短波長から長波長までの広い範囲の波長が除去可能となり、非球面レンズの研磨に広く使用されている方式である。
【0005】
従来、短波長光に用いる蛍石レンズの研磨には、ポリシャ(研磨工具)が超微細気孔を有するアスカ硬度80以下のものや(特許文献1参照)、研磨剤がSiO系の微粒子がある。
また、ダイヤ微粒子とコロイダルシリカを併用した研磨液が提案されている(特許文献2参照)。しかしながら、これらのいずれにも研磨剤と混合する液体の種類については、言及されていない。
【0006】
【特許文献1】特開平10−230445号公報
【特許文献2】特開2000−117605号公報
【0007】
【発明が解決しようとする課題】
ところで、蛍石結晶は通常の空気中では表面は安定しており、化学反応で表面が荒れることは少ない。しかしながら、ある種の液体にさらされると表面が荒れた状態になり、光透過率が低下する悪影響が出る。F2レーザ光の場合、表面粗さがrms0.6nm以下の滑らかさが必要だとされている。
通常使用される研磨液の主成分は、研磨剤であるダイヤとそれを分散する液体の混合物からなり、液体には水を使用する。蛍石の主成分のCaFは水と反応して水酸化カルシウムを生成する。その反応速度は遅く、数時間水中に浸した状態では表面反応物は観察されない。しかしながら、最近の研究の結果、表面の干渉縞を顕微鏡で拡大してCCDで形状を解析する原理の表面粗さ計や、原子間引力顕微鏡AFMで表面状態を観察すると、ごくわずかであるが時間と共に徐々に荒れていることがわかってきた。
【0008】
実験によると研磨工具が通過した後の表面平均粗さは、研磨直後はrms0.3nmだったものが、その後2時間液中に浸された箇所は、rmso0.6nmに増加していた。短波長の光ではレンズ表面のごくわずかな荒れで透過率が急激に低下するため研磨中の表面荒れを少なくしなければならない。特に、非球面研磨では小面積の研磨工具を移動してレンズ全面を研磨するため研磨時間が長くなり、径の大きなレンズでは10時間以上かかることも普通である。研磨直後の滑らかな表面を維持するために、研磨液と結晶の反応による表面荒れを少なくする手段が必要になる。
【0009】
そこで、本発明は、上記課題を解決し、研磨工具によりフッ化物系結晶材料からなる物品を研磨するに際して、研磨液と結晶材料の反応による表面荒れを生じないようにすることが可能となる研磨方法、及びその研磨液、光学物品(光学素子)の製造方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は、次の(1)〜(7)のように構成した研磨方法、及びその研磨液、光学物品(光学素子)の製造方法を提供するものである。
(1)研磨工具によりフッ化物系結晶材料からなる物品を研磨する研磨方法において、前記物品に対する研磨を複数回の研磨工程に分割し、該分割された各研磨工程を研磨液の反応による表面荒れが生じない時間内に終えるようにし、前記複数回の研磨工程によって前記物品を研磨することを特徴とする研磨方法。
(2)研磨工具によりフッ化物系結晶材料からなる物品を研磨する研磨方法において、前記物品に対する研磨を水性の研磨液の反応による表面荒れをある程度許した状態で研磨を行なった後、その仕上げ研摩を研磨液の反応による表面荒れが生じない非水性の研磨液で研磨することを特徴とする研磨方法。
(3)前記物品は光学素子を製造するものであり、前記研磨方法は、前記物品の光通過面の面積よりも小さな研磨工具を移動させて当該光通過面に非球面を研磨する研磨方法であることを特徴とする上記(1)または上記(2)に記載の研磨方法。
(4)前記非水溶性の研磨液は、低粘度シリコンオイルに研磨剤を混合した研磨液であることを特徴とする上記(2)に記載の研磨方法。
(5)母材を切削して前記物品を得る工程と、前記物品を上記(1)〜(3)のいずれかに記載の研磨方法により研磨する工程とを含む光学物品(光学素子)の製造方法。
(6)低粘度シリコンオイルに研磨剤を混合したことを特徴とする研磨液。
(7)上記(6)に記載の研磨液を用いて物品を研磨する工程を含む光学物品(光学素子)の製造方法。
【0011】
【発明の実施の形態】
研磨工具によりフッ化物系結晶材料からなる物品を研磨するに際して、上記構成を適用することにより、表面が研磨液との反応で荒れやすい蛍石結晶でも、研磨液と結晶材料の反応による表面荒れを除去することができ、研磨表面粗さを大幅に向上させることが可能となる。また、仕上げ工程の研磨液として、研磨液と結晶材料の反応による表面荒れの生じない非水性の研磨液を用いることにより、研磨表面粗さを大幅に向上させることが可能となる。
【0012】
具体的には、例えば従来1回の研磨で除去していた量を除去厚み方向に数回に分割し、その分割された1回の研磨時間を短くして研磨液の反応による表面荒れが生じない時間内に終えるようにすることで、表面の荒れを少なくする。実験によると、研磨後表面の荒れは最初はゆっくり進み、時間の経過と共に級数的に増加することが明らかとなっている。したがって、ある時間以内で研磨を終了すれば、表面荒れは無視できる程小さく、研磨直後の表面と同程度を維持できる。
【0013】
また、これとは別の手段として、表面反応をある程度許した状態で高除去能率の研磨を行ない、その後に除去能率は低いが表面反応のない非水性の研磨液で研磨する研磨方法を構成する。その際、研磨液としては、液体シリコン研磨液を用いる。液体シリコンは化学的に安定物質で、蛍石との反応は皆無であり、研磨中に液反応による表面荒れがない。但し、シリコン液中では研磨除去量が少なくなり、そのままでは効率的でないので、最初は水性研磨液で研磨し、最後の仕上げはシリコン液中で行う研磨を組み合わせることで、実効を上げるることが可能となる。
【0014】
つぎに、本発明の実施の形態を、図1を用いて説明する。図1(a)は本実施の形態における研磨装置の構成を示す図であり、図1(b)は工具の移動経路を説明するための図である。図1において、10は研磨レンズである蛍石、12は研磨工具で円板状の台金の上にクッション材、その上に研磨シートを接着したものである。14は研磨液で16は研磨液を循環するためのポンプ、18は研磨液を溜める桶で、レンズ全表面を浸すだけの研磨液量が入っている。
20は研磨レンズを載せてNC制御でXY方向に移動するスライドテーブル、22は研磨すべきレンズ表面の傾斜に応じて研磨工具に傾きを与える3軸傾斜機構、24は工具を回転するモータ、工具からレンズ面に加圧を与えるエアーシリンダーまたはバネなどの加圧機構を含む部材である。
【0015】
液に浸されたレンズ上に研磨工具が配置され、工具は回転しながらレンズ面上を加圧状態で全面を移動する。工具の移動経路は、図1(b)に示すように矩形の折り返しをとり、一定ピッチで送り返す。非球面の形状誤差が凸方向に大きい箇所ではレンズを移動するテーブルの速度を遅くし、研磨工具の滞留時間を長くして部分的な研磨除去量を増加することにより設計形状に近ずける。
【0016】
上記運動や、1回の研磨除去量の制御は図示しないがNC制御により行われる。研磨液はレンズ周りの桶内に溜めた状態で、そのままでは研磨剤が沈殿するためポンプ16で回転液流を発生させると同時に、汲み上げた液を研磨点に吐出して循環する。
【0017】
【実施例】
以下に、本発明の実施例について説明する。
[実施例1]
図2に、本発明の実施例1における研磨方法を説明するための図を示す。
図2(a)は従来における一度に所定の研磨除去厚みを除去する研磨方法を説明するための図であり、図2(b)は従来において一度に研磨除去していた厚みを4分割して研磨するようにした本実施例の研磨方法を説明するための図である。
【0018】
本実施例においては、径200mmの単結晶非球面蛍石を研磨するのに、直径10mmの研磨工具を使用した。工具構成は表面から発泡ポリウレタンシート、次層がスポンジ弾性体、最下層が金属円板でそれぞれを接着する。研磨剤は平均粒径0.8μmのダイヤ微粉で、純水に重量濃度0.5%で希釈した。レンズ研磨部に十分な液があるように桶内の液をポンプで吸引滴下すると同時に、研磨剤がおけ内に沈澱しないようにレンズ回りを回転循環させる。
【0019】
本実施例においては、4分割した研磨工程のまず最初の1回目の研磨工程において、レンズ全面を研磨するのに要する時間が30分になるように、テーブル移動速度と工具位置送りピッチを設定して、レンズ全面を一定移動速度で研磨した。引き続き残りの工程を同じようにして3回研磨を繰り返して重ね研磨したところ、表面粗さが1nmrmsのものが得られた。
【0020】
比較例として、従来における一度に所定の研磨除去厚みを除去する研磨方法を実施した。レンズ全面の形状修正研磨に4時間を要し、研磨後の表面粗さは平均粗さで3nmrmsであることが確認された。これらの結果により、分割研磨により研磨表面粗さをより向上させることが可能となるということが確認された。
【0021】
[実施例2]
実施例2においては、表面反応をある程度許した状態で高除去能率の研磨を行なう研磨工程として、実施例1と同様に研磨剤は平均粒径0.8μmのダイヤ微粉で、純水に重量濃度0.5%で希釈したものを使用した。
【0022】
上記研磨工程によりレンズ全面の形状修正研磨が終了後、研磨液を仕上げ用に交換した。仕上げ研磨液の組成は、溶媒液はSiオイル粘度10〜50mm/secで、研磨剤は平均粒径100nmの単結晶ダイヤ微粉を重量濃度0.1%で混合したものを1リッター調合した。研磨剤の分散を良くするために、超音波撹拌機で10分間撹拌し、その後Siオイルを3リッター追加して計4リッターの液を密閉容器に入れ、直径20mm毎分15000rpmの羽根で10分間撹拌した。密閉容器は冷却水で温度調節をした。
【0023】
研磨工具はスポンジゴムの表面に研磨ピッチを網目状に貼ったもので、仕上げ用研磨液中に浸した蛍石レンズ全面を厚み40nmで均等に除去研磨したところ、研磨後の平均表面粗さは0.3nmrmsと、良好な表面粗さのものが得られた。
【0024】
【発明の効果】
本発明によれば、研磨工具によりフッ化物系結晶材料からなる物品を研磨するに際して、研磨液と結晶材料の反応による表面荒れを生じないようにすることが可能となる研磨方法、及びその研磨液、光学物品(光学素子)の製造方法を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を説明するための図であり、(a)は本実施の形態における研磨装置の構成を示す図であり、(b)は工具の移動経路説明するための図である。
【図2】本発明の実施例1における研磨方法を説明するための図であり、(a)は従来における一度に所定の研磨除去厚みを除去する研磨方法を説明するための図、(b)は従来において一度に研磨除去していた厚みを4分割して研磨するようにした本実施例の研磨方法を説明するための図である。
【符号の説明】
10:研磨レンズ
12:研磨工具
14:研磨液
20:スライドテーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for polishing an optical element or an optical article, and a polishing liquid therefor, and more particularly to a method for polishing a highly accurate optical element or an optical article made of a crystalline material, and a polishing liquid therefor. And a method for manufacturing an optical article (optical element). For example, fluorides such as calcium fluoride (fluorite) and magnesium fluoride suitable for various optical elements, lenses, window materials, optical articles such as prisms used in a wide wavelength range from the vacuum ultraviolet region to the far infrared region. The present invention relates to a technique suitable for polishing a highly accurate optical element or optical article made of a system crystal material.
[0002]
[Prior art]
Fluorite crystals have excellent features not found in other optical materials, such as low dispersion of white light and good light transmittance in the ultraviolet to short wavelength range. It is used for Recently, application to a lens of an illumination optical system or a projection optical system of an exposure apparatus using a short wavelength light such as an ArF laser having a wavelength of 248 nm or an F2 laser having a wavelength of 157 nm as a light source has been studied. Many lenses have a spherical shape, but recently, there are many designs of optical systems incorporating an aspherical shape such as a parabolic surface, and the lens diameter exceeds 200 mm.
[0003]
In the polishing process for forming the shape of the aspherical lens, a small-diameter polishing tool having a diameter ratio of about 1/5 to 1/10 of the lens is used. A method of improving shape accuracy by partially polishing and removing a broken portion is employed. The polishing tool is formed, for example, by attaching a circular pitch or foamed polyurethane resin to a base metal.
[0004]
In the polishing step, the polishing tool is rotated and pressed against the lens processing surface while applying a polishing liquid containing diamond fine powder to continuously move and scan the end of the lens. At that time, in a place where a large amount of removal is required, so-called tool residence time control or pressure control in which the removal amount is increased by lowering the scanning movement speed or increasing the pressure is adopted.
This method, which prepares multiple tools with different tool diameters, removes a wide range of wavelengths from short to long wavelengths of the error shape by selecting a tool with a diameter that matches the wavelength of the original error shape. This method is widely used for polishing aspherical lenses.
[0005]
Conventionally, polishing of a fluorite lens used for short-wavelength light includes a polisher (polishing tool) having an ultrafine pore having an Asuka hardness of 80 or less (see Patent Document 1), and an abrasive having SiO 2 -based fine particles. .
Further, a polishing liquid using diamond fine particles and colloidal silica in combination has been proposed (see Patent Document 2). However, none of these publications mentions the type of liquid mixed with the abrasive.
[0006]
[Patent Document 1] JP-A-10-230445 [Patent Document 2] JP-A-2000-117605
[Problems to be solved by the invention]
By the way, the surface of the fluorite crystal is stable in ordinary air, and the surface is rarely roughened by a chemical reaction. However, when exposed to certain liquids, the surface becomes rough, which has the adverse effect of reducing light transmittance. In the case of F2 laser light, smoothness with a surface roughness of rms 0.6 nm or less is required.
The main component of the polishing liquid usually used is a mixture of diamond, which is an abrasive, and a liquid for dispersing the same, and water is used as the liquid. CaF 2 , the main component of fluorite, reacts with water to produce calcium hydroxide. The reaction rate is slow, and no surface reactant is observed when immersed in water for several hours. However, as a result of recent research, observation of the surface state with a surface roughness meter based on the principle of analyzing the shape of the interference fringes on the surface with a microscope and analyzing the shape with a CCD or observation of the surface state with an atomic force microscope AFM shows that although very slight, time It became clear that it was getting rougher.
[0008]
According to the experiment, the surface average roughness after passing through the polishing tool was rms 0.3 nm immediately after polishing, but the portion immersed in the liquid for 2 hours after that increased to rmso 0.6 nm. In the case of light having a short wavelength, the transmittance is sharply reduced due to the slight roughness of the lens surface. Therefore, the surface roughness during polishing must be reduced. In particular, in the case of aspherical polishing, a polishing tool having a small area is moved to polish the entire surface of the lens, so that the polishing time is long. For a lens having a large diameter, it usually takes 10 hours or more. In order to maintain a smooth surface immediately after polishing, means for reducing surface roughness due to the reaction between the polishing liquid and the crystal is required.
[0009]
Therefore, the present invention solves the above-mentioned problems, and when polishing an article made of a fluoride-based crystal material with a polishing tool, it is possible to prevent surface roughness from occurring due to a reaction between the polishing liquid and the crystal material. It is an object of the present invention to provide a method, a polishing liquid therefor, and a method for producing an optical article (optical element).
[0010]
[Means for Solving the Problems]
The present invention provides a polishing method configured as described in the following (1) to (7), a polishing liquid for the polishing method, and a method for manufacturing an optical article (optical element).
(1) In a polishing method for polishing an article made of a fluoride-based crystal material using a polishing tool, polishing of the article is divided into a plurality of polishing steps, and each of the divided polishing steps is roughened by a reaction of a polishing liquid. Wherein the polishing is performed within a time period in which no polishing occurs, and the article is polished by the plurality of polishing steps.
(2) In a polishing method for polishing an article made of a fluoride crystal material using a polishing tool, the article is polished in a state where surface roughness due to the reaction of an aqueous polishing liquid is allowed to some extent, and then the finish polishing is performed. Polishing method using a non-aqueous polishing liquid that does not cause surface roughness due to a reaction of the polishing liquid.
(3) The article is for manufacturing an optical element, and the polishing method is a polishing method of moving an abrasive tool smaller than the area of the light passing surface of the article to polish an aspheric surface on the light passing surface. The polishing method according to (1) or (2) above, wherein
(4) The polishing method according to (2), wherein the water-insoluble polishing liquid is a polishing liquid obtained by mixing an abrasive with low-viscosity silicon oil.
(5) Production of an optical article (optical element) including a step of obtaining the article by cutting a base material and a step of polishing the article by the polishing method according to any one of (1) to (3). Method.
(6) A polishing liquid characterized by mixing an abrasive with low-viscosity silicone oil.
(7) A method for producing an optical article (optical element), comprising a step of polishing the article using the polishing liquid according to (6).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
When polishing an article made of a fluoride-based crystal material with a polishing tool, by applying the above configuration, even with a fluorite crystal whose surface is easily roughened by the reaction with the polishing liquid, the surface roughness due to the reaction between the polishing liquid and the crystal material can be reduced. It can be removed, and the polished surface roughness can be greatly improved. In addition, by using a non-aqueous polishing liquid that does not cause surface roughness due to a reaction between the polishing liquid and the crystal material as the polishing liquid in the finishing step, it is possible to greatly improve the polished surface roughness.
[0012]
Specifically, for example, the amount removed by one polishing in the past is divided into several times in the removal thickness direction, and the polishing time for each divided portion is shortened to cause surface roughness due to the reaction of the polishing liquid. Finishing in less time will reduce surface roughness. Experiments have shown that after polishing, the surface roughness progresses slowly at first and increases exponentially over time. Therefore, if the polishing is completed within a certain time, the surface roughness is negligibly small and can be maintained at the same level as the surface immediately after the polishing.
[0013]
In addition, as another means, a polishing method in which polishing with high removal efficiency is performed in a state where surface reaction is allowed to some extent, and then polishing with a non-aqueous polishing liquid having low removal efficiency but no surface reaction is configured. . At this time, a liquid silicon polishing liquid is used as the polishing liquid. Liquid silicon is a chemically stable substance, has no reaction with fluorite, and has no surface roughness due to liquid reaction during polishing. However, the polishing removal amount in the silicon liquid is small, and it is not efficient as it is, so it is possible to increase the effectiveness by combining polishing with an aqueous polishing liquid at first and polishing at the final finish in the silicon liquid. It becomes possible.
[0014]
Next, an embodiment of the present invention will be described with reference to FIG. FIG. 1A is a diagram illustrating a configuration of a polishing apparatus according to the present embodiment, and FIG. 1B is a diagram illustrating a moving path of a tool. In FIG. 1, reference numeral 10 denotes fluorite as a polishing lens, reference numeral 12 denotes a polishing tool, a cushion material on a disk-shaped base metal, and a polishing sheet adhered thereon. 14 is a polishing liquid, 16 is a pump for circulating the polishing liquid, 18 is a tub for storing the polishing liquid, and contains a polishing liquid amount enough to immerse the entire surface of the lens.
Reference numeral 20 denotes a slide table on which a polishing lens is mounted and moves in the X and Y directions under NC control. Reference numeral 22 denotes a three-axis tilt mechanism that tilts the polishing tool in accordance with the tilt of the lens surface to be polished. Reference numeral 24 denotes a motor for rotating the tool, and a tool. It is a member including a pressurizing mechanism such as an air cylinder or a spring that applies pressure to the lens surface from above.
[0015]
A polishing tool is arranged on the lens immersed in the liquid, and the tool moves over the entire surface of the lens while being pressed while rotating. As shown in FIG. 1B, the moving path of the tool is turned back in a rectangular shape and is sent back at a constant pitch. When the shape error of the aspherical surface is large in the convex direction, the speed of the table for moving the lens is reduced, the residence time of the polishing tool is lengthened, and the amount of partial polishing removal is increased, thereby approaching the designed shape.
[0016]
The above movement and control of the polishing removal amount at one time are performed by NC control, though not shown. The polishing liquid is stored in a tub around the lens. If the polishing liquid is left as it is, the polishing liquid is generated by the pump 16 and the pumped liquid is discharged to the polishing point and circulated.
[0017]
【Example】
Hereinafter, examples of the present invention will be described.
[Example 1]
FIG. 2 is a diagram illustrating a polishing method according to the first embodiment of the present invention.
FIG. 2A is a diagram for explaining a conventional polishing method for removing a predetermined polishing removal thickness at a time, and FIG. 2B is a diagram in which the thickness conventionally removed at a time by polishing is divided into four parts. FIG. 4 is a diagram for explaining a polishing method according to the present embodiment in which polishing is performed.
[0018]
In this example, a polishing tool having a diameter of 10 mm was used for polishing a single-crystal aspherical fluorite having a diameter of 200 mm. The tool construction is such that the foamed polyurethane sheet is adhered from the surface, the next layer is a sponge elastic body, and the lowermost layer is a metal disk. The abrasive was diamond fine powder having an average particle diameter of 0.8 μm, and was diluted with pure water at a weight concentration of 0.5%. The liquid in the tub is suctioned and dropped by a pump so that there is sufficient liquid in the lens polishing unit, and at the same time, the polishing agent is rotated and circulated around the lens so that the polishing agent does not settle in the sink.
[0019]
In the present embodiment, the table moving speed and the tool position feed pitch are set so that the time required for polishing the entire surface of the lens is 30 minutes in the first polishing step of the first of the four divided polishing steps. Then, the entire surface of the lens was polished at a constant moving speed. Subsequently, when the remaining steps were repeated in the same manner, the polishing was repeated three times, and the layers were repeatedly polished. As a result, one having a surface roughness of 1 nmrms was obtained.
[0020]
As a comparative example, a conventional polishing method for removing a predetermined polishing removal thickness at a time was performed. It took 4 hours to polish the shape of the entire surface of the lens, and it was confirmed that the average surface roughness after polishing was 3 nmrms. From these results, it was confirmed that the polished surface roughness can be further improved by the split polishing.
[0021]
[Example 2]
In Example 2, as a polishing step of performing polishing with high removal efficiency while allowing a certain amount of surface reaction, the polishing agent was a diamond fine powder having an average particle diameter of 0.8 μm and a weight concentration in pure water as in Example 1. Those diluted at 0.5% were used.
[0022]
After the shape correction polishing of the entire surface of the lens was completed by the above polishing process, the polishing liquid was replaced for finishing. The composition of the finishing polishing liquid was a 1 liter mixture of a solvent liquid having a Si oil viscosity of 10 to 50 mm 2 / sec and an abrasive mixed with single crystal diamond fine powder having an average particle diameter of 100 nm at a weight concentration of 0.1%. In order to improve the dispersion of the abrasive, the mixture was stirred for 10 minutes with an ultrasonic stirrer, and then 3 liters of Si oil was added, and a total of 4 liters of the liquid was placed in a closed container, and a diameter of 20 mm and a blade of 15000 rpm for 10 minutes were used. Stirred. The temperature of the sealed container was adjusted with cooling water.
[0023]
The polishing tool is a sponge rubber in which the polishing pitch is attached in a mesh form, and the entire surface of the fluorite lens immersed in the polishing solution for polishing is uniformly removed and polished with a thickness of 40 nm. A good surface roughness of 0.3 nmrms was obtained.
[0024]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when grinding | polishing an article which consists of a fluoride-type crystal material with a grinding | polishing tool, it becomes possible to prevent the surface roughening by the reaction of a polishing liquid and a crystal material, and the polishing liquid. Thus, a method for manufacturing an optical article (optical element) can be realized.
[Brief description of the drawings]
FIG. 1 is a view for explaining an embodiment of the present invention, in which (a) is a view showing a configuration of a polishing apparatus in the present embodiment, and (b) is a view for explaining a moving path of a tool; FIG.
FIGS. 2A and 2B are diagrams for explaining a polishing method according to the first embodiment of the present invention, and FIG. 2A is a diagram for explaining a conventional polishing method for removing a predetermined polishing removal thickness at a time, and FIG. FIG. 3 is a view for explaining a polishing method according to the present embodiment in which a conventional polishing and removal is performed by dividing the thickness which has been removed by polishing at one time into four.
[Explanation of symbols]
10: Polishing lens 12: Polishing tool 14: Polishing liquid 20: Slide table

Claims (7)

研磨工具によりフッ化物系結晶材料からなる物品を研磨する研磨方法において、前記物品に対する研磨を複数回の研磨工程に分割し、該分割された各研磨工程を研磨液の反応による表面荒れが生じない時間内に終えるようにし、前記複数回の研磨工程によって前記物品を研磨することを特徴とする研磨方法。In a polishing method for polishing an article made of a fluoride crystal material using a polishing tool, polishing of the article is divided into a plurality of polishing steps, and each of the divided polishing steps does not cause surface roughness due to a reaction of a polishing liquid. A polishing method, wherein the article is polished by the plurality of polishing steps so as to finish within a time. 研磨工具によりフッ化物系結晶材料からなる物品を研磨する研磨方法において、前記物品に対する研磨を水性の研磨液の反応による表面荒れをある程度許した状態で研磨を行なった後、その仕上げ研摩を研磨液の反応による表面荒れが生じない非水性の研磨液で研磨することを特徴とする研磨方法。In a polishing method for polishing an article made of a fluoride-based crystal material with a polishing tool, the article is polished in a state where surface roughness due to the reaction of an aqueous polishing liquid is allowed to some extent, and then the final polishing is performed with the polishing liquid. Polishing using a non-aqueous polishing liquid which does not cause surface roughness due to the reaction of the above. 前記物品は光学素子を製造するものであり、前記研磨方法は、前記物品の光通過面の面積よりも小さな研磨工具を移動させて当該光通過面に非球面を研磨する研磨方法であることを特徴とする請求項1または請求項2に記載の研磨方法。The article is for manufacturing an optical element, and the polishing method is a polishing method of moving an abrasive tool smaller than the area of the light passing surface of the article to polish an aspheric surface on the light passing surface. The polishing method according to claim 1, wherein the polishing method comprises: 前記非水溶性の研磨液は、低粘度シリコンオイルに研磨剤を混合した研磨液であることを特徴とする請求項2に記載の研磨方法。The polishing method according to claim 2, wherein the water-insoluble polishing liquid is a polishing liquid obtained by mixing a polishing agent with low-viscosity silicon oil. 母材を切削して前記物品を得る工程と、前記物品を請求項1〜3のいずれか1項に記載の研磨方法により研磨する工程とを含む光学物品の製造方法。A method for producing an optical article, comprising: a step of cutting the base material to obtain the article; and a step of polishing the article by the polishing method according to claim 1. 低粘度シリコンオイルに研磨剤を混合したことを特徴とする研磨液。A polishing liquid characterized by mixing an abrasive with low-viscosity silicone oil. 請求項6に記載の研磨液を用いて物品を研磨する工程を含む光学物品の製造方法。A method for producing an optical article, comprising a step of polishing an article using the polishing liquid according to claim 6.
JP2002265434A 2002-09-11 2002-09-11 Method for polishing article, its polishing liquid, and method for manufacturing optical article Pending JP2004098242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265434A JP2004098242A (en) 2002-09-11 2002-09-11 Method for polishing article, its polishing liquid, and method for manufacturing optical article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265434A JP2004098242A (en) 2002-09-11 2002-09-11 Method for polishing article, its polishing liquid, and method for manufacturing optical article

Publications (1)

Publication Number Publication Date
JP2004098242A true JP2004098242A (en) 2004-04-02

Family

ID=32264578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265434A Pending JP2004098242A (en) 2002-09-11 2002-09-11 Method for polishing article, its polishing liquid, and method for manufacturing optical article

Country Status (1)

Country Link
JP (1) JP2004098242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114360A (en) * 2006-11-07 2008-05-22 Dong Gu Enterprise Co Ltd Rotary type automatic polishing device of glass lens
JP2011230201A (en) * 2010-04-23 2011-11-17 Olympus Corp Method of manufacturing glass optical element
JP6006391B1 (en) * 2015-09-29 2016-10-12 株式会社 ジャパンセル CaF2 crystal bonding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114360A (en) * 2006-11-07 2008-05-22 Dong Gu Enterprise Co Ltd Rotary type automatic polishing device of glass lens
JP2011230201A (en) * 2010-04-23 2011-11-17 Olympus Corp Method of manufacturing glass optical element
JP6006391B1 (en) * 2015-09-29 2016-10-12 株式会社 ジャパンセル CaF2 crystal bonding method

Similar Documents

Publication Publication Date Title
KR101704811B1 (en) Method of processing synthetic quartz glass substrate for semiconductor
KR101178338B1 (en) Use of cmp for aluminum mirror and solar cell fabrication
TWI409236B (en) Pretreating of the glass substrate surface of the finishing method
EP1761471B1 (en) Process for polishing glass substrate
TW201220375A (en) Method for manufacturing electronic grade synthetic quartz glass substrate
JP2007213020A (en) Glass substrate for mask blank and polishing method therefor
EP1216316B1 (en) Polishing of fluoride crystal optical lenses and preforms using cerium oxide for microlithography
KR20070097090A (en) Process for polishing glass substrate
TW201209002A (en) Synthetic quartz glass substrate and making method
CN209183501U (en) Monocrystal material burnishing device based on inductively coupled plasma body
JP4792146B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
JP2013052503A (en) Method for manufacturing optical part
JP2002331451A (en) Polishing foaming sheet and method of manufacture
CN110303385A (en) Monocrystalline silicon nondestructive polishing method based on liquid phase polishing environment regulation and control
JP4214093B2 (en) Polishing liquid composition
JP2004098242A (en) Method for polishing article, its polishing liquid, and method for manufacturing optical article
JP2001077065A (en) Polishing of molten silica using colloid
JP2010082746A (en) Method for manufacturing polishing-treated object, substrate and photomask
JP6831541B2 (en) Manufacturing method of optical element
KR20010049927A (en) Colloidal silica polishing abrasive
CN114670111A (en) Fixed abrasive combined ultrasonic atomization polishing CaF2Apparatus and method for crystals
EP2898985B1 (en) Method of preparing synthetic quartz glass substrate
JP7464216B2 (en) Processing method using organic fine particles
Venkatesh et al. Ductile streaks in precision grinding of hard and brittle materials
JP2000308950A (en) Polishing method