JP2010082746A - Method for manufacturing polishing-treated object, substrate and photomask - Google Patents

Method for manufacturing polishing-treated object, substrate and photomask Download PDF

Info

Publication number
JP2010082746A
JP2010082746A JP2008254197A JP2008254197A JP2010082746A JP 2010082746 A JP2010082746 A JP 2010082746A JP 2008254197 A JP2008254197 A JP 2008254197A JP 2008254197 A JP2008254197 A JP 2008254197A JP 2010082746 A JP2010082746 A JP 2010082746A
Authority
JP
Japan
Prior art keywords
polished
polishing
magnetic fluid
shape
circumferential surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008254197A
Other languages
Japanese (ja)
Inventor
Yasuo Hiramoto
靖男 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008254197A priority Critical patent/JP2010082746A/en
Publication of JP2010082746A publication Critical patent/JP2010082746A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a polishing-treated object capable of improving processing accuracy and a substrate manufactured by the method. <P>SOLUTION: The method is used for manufacturing the polishing-treated object by polishing a polishing portion 51 of an object 50 using magnetic fluid 30 including polishing particles. The method includes a step of polishing the polishing portion 51 by relatively moving a circumferential surface 111 of a wheel 11 that generates magnetism and the object 50 while the polishing portion 51 is in contact with the magnetic fluid 30 disposed on the circumferential surface 111 of the wheel 11. The polishing portion 51 is polished at least two times. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、研磨処理物の製造方法に関し、特にフォトマスクに用いられる基板を製造する技術に関する。   The present invention relates to a method for manufacturing a polished product, and more particularly to a technique for manufacturing a substrate used for a photomask.

近年、携帯通信端末、光記録再生装置、デジタル表示器等の性能及び機能の進歩が著しく、また、ナノエレクトロニクスを牽引する半導体分野では、例えばEUV光を用いたリソグラフィー装置に使用するフォトマスク基板、ミラー基板等の光学部品の超高細密加工技術への要請が強まっている。この結果、超精密・超微細光学部品等の精度をサブミクロンからナノレベルに至るまで、高い再現性で達成できる技術が求められる。   In recent years, the progress of performance and functions of portable communication terminals, optical recording / reproducing devices, digital displays, etc. has been remarkable, and in the semiconductor field leading nanoelectronics, for example, a photomask substrate used for a lithography apparatus using EUV light, There is an increasing demand for ultra-high density processing technology for optical components such as mirror substrates. As a result, there is a need for a technology that can achieve the accuracy of ultra-precise and ultra-fine optical components with high reproducibility from submicron to nano level.

まず、材料に関しては、クリアセラム(オハラ社)、Zerodur(ショット社)、Zerodur−M(ショット社)、ULE(コーニング社)等の極低膨張材料が知られている。これらの材料は、その熱膨張が極めて小さく、温度環境の変化に対しても寸法の均一性が高いため、有用である。   First, regarding materials, ultra-low expansion materials such as Clear Serum (Ohara), Zerodur (Shot), Zerodur-M (Shot), ULE (Corning) are known. These materials are useful because of their extremely low thermal expansion and high dimensional uniformity even with changes in temperature environment.

他方、これらの材料から光学部品を高精度に製造する技術に関しては、研磨粒子を含む磁性流体を用い、材料を研磨して光学部品を製造する磁性流体研磨(Magnetro−Rheological Finishing)法が開発されている(例えば特許文献1参照)。
特表平11−511395号公報
On the other hand, with respect to the technology for manufacturing optical components with high accuracy from these materials, a magnetic fluid polishing method has been developed in which a magnetic fluid containing abrasive particles is used to polish an material to manufacture an optical component (Magnetro-Rheological Finishing). (For example, refer to Patent Document 1).
Japanese National Patent Publication No. 11-511395

しかし、特許文献1に示されるような従来の方法では、ある一定以上の精度は得られるものの、上記の分野で求められるレベルの精度においては、高い再現性で設計形状へと加工することが困難であった。また、特許文献1に示される従来の方法は、加工の精度を高くしようとするほど、加工に長時間を必要とするため、短時間で大量の生産が求められる工業的な使用には不向きである。   However, with the conventional method as shown in Patent Document 1, it is difficult to process into a design shape with high reproducibility at a level of accuracy required in the above field, although a certain level of accuracy is obtained. Met. Further, the conventional method disclosed in Patent Document 1 requires a long time for processing as the processing accuracy is increased, and thus is not suitable for industrial use that requires a large amount of production in a short time. is there.

本発明は、以上の実情に鑑みてなされたものであり、加工精度を向上でき且つ加工時間を短縮できる研磨処理物の製造方法、及びこの製造方法で製造される基板を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a polished product that can improve processing accuracy and reduce processing time, and a substrate manufactured by this manufacturing method. To do.

本発明者は、磁性流体研磨法による被研磨部位の研磨を2回以上行うことで、加工精度が向上し、結果的に加工時間の短縮も可能であることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   The present inventor has found that the processing accuracy can be improved and the processing time can be shortened by polishing the portion to be polished by the magnetic fluid polishing method twice or more, and the present invention is completed. It came. Specifically, the present invention provides the following.

(1) 研磨粒子を含む磁性流体を用い、対象物の被研磨部位を研磨して研磨処理物を製造する研磨処理物の製造方法であって、
磁力を発するホイールの円周面上においた前記磁性流体に前記被研磨部位を接触させた状態で、前記円周面及び前記対象物を相対移動させることで、前記被研磨部位を研磨する工程を有し、
前記被研磨部位の研磨を2回以上行う研磨処理物の製造方法。
(1) A method for producing a polished product, wherein a magnetic fluid containing abrasive particles is used to polish a polished portion of an object to produce a polished product,
A step of polishing the polished portion by moving the circumferential surface and the object relative to each other in a state in which the polished portion is in contact with the magnetic fluid placed on the circumferential surface of the wheel that generates magnetic force. Have
A method for producing a polished product, wherein the polished portion is polished twice or more.

(2) 少なくとも初回の前記被研磨部位の研磨は、前記円周面上におかれた前記磁性流体の最大高さの5%以上の深さに前記被研磨部位が押し込まれた状態で行う(1)記載の研磨処理物の製造方法。   (2) At least the initial polishing of the portion to be polished is performed in a state where the portion to be polished is pushed to a depth of 5% or more of the maximum height of the magnetic fluid placed on the circumferential surface ( 1) The manufacturing method of the grinding | polishing processed material of description.

(3) 少なくとも初回の前記被研磨部位の研磨は、前記円周面上におかれた前記磁性流体の最大高さの65%以下の深さに前記被研磨部位が押し込まれた状態で行う(1)又は(2)記載の研磨処理物の製造方法。   (3) At least the initial polishing of the portion to be polished is performed in a state where the portion to be polished is pushed to a depth of 65% or less of the maximum height of the magnetic fluid placed on the circumferential surface ( The manufacturing method of the grinding | polishing processed material of 1) or (2) description.

(4) 前記磁性流体は、30.0×10−3Pa・s以上63.0×10−3Pa・s以下の粘性係数を有する(1)から(3)いずれか記載の研磨処理物の製造方法。 (4) The magnetic fluid according to any one of (1) to (3), wherein the magnetic fluid has a viscosity coefficient of 30.0 × 10 −3 Pa · s to 63.0 × 10 −3 Pa · s. Production method.

(5) 前記研磨粒子は、0.5μm以上30μm以下の平均粒子径を有する(1)から(4)いずれか記載の研磨処理物の製造方法。   (5) The method according to any one of (1) to (4), wherein the abrasive particles have an average particle diameter of 0.5 μm or more and 30 μm or less.

(6) 前記研磨粒子は、酸化セリウム及びダイヤモンドからなる群より選ばれる1種以上からなる(1)から(5)いずれか記載の研磨処理物の製造方法。   (6) The method according to any one of (1) to (5), wherein the abrasive particles are one or more selected from the group consisting of cerium oxide and diamond.

(7) 前記被研磨部位の研磨後の設計形状との形状誤差のPV値の、前記被研磨部位の研磨前の設計形状との形状誤差のPV値に対する比が1/5以下になるまで、前記被研磨部位の研磨を繰り返して行う(1)から(6)いずれか記載の研磨処理物の製造方法。   (7) Until the ratio of the PV value of the shape error with respect to the design shape after polishing of the portion to be polished to the PV value of the shape error with respect to the design shape before polishing of the portion to be polished is 1/5 or less, The method for producing a polished product according to any one of (1) to (6), wherein the polishing of the portion to be polished is repeated.

(8) 前記被研磨部位の研磨後の設計形状との形状誤差のPV値が100nmPV以下になるまで、前記被研磨部位の研磨を繰り返して行う(1)から(7)いずれか記載の研磨処理物の製造方法。   (8) The polishing process according to any one of (1) to (7), wherein the polishing of the portion to be polished is repeatedly performed until the PV value of the shape error with respect to the design shape after polishing of the portion to be polished is 100 nm PV or less. Manufacturing method.

(9) 前記被研磨部位の設計形状との形状誤差のPV値をあらかじめ700nmPV以下に調節する工程を更に有する(1)から(8)いずれか記載の研磨処理物の製造方法。   (9) The method for producing a polished product according to any one of (1) to (8), further including a step of previously adjusting a PV value of a shape error with respect to a design shape of the portion to be polished to 700 nm PV or less.

(10) 前記被研磨部位の研磨を行う度に前記被研磨部位の形状を測定し、その測定結果に基づいて、前記円周面及び前記対象物の相対移動の速度を調節する制御を行う(1)から(9)いずれか記載の研磨処理物の製造方法。   (10) The shape of the portion to be polished is measured each time the portion to be polished is polished, and control for adjusting the speed of relative movement of the circumferential surface and the object is performed based on the measurement result ( The method for producing a polished product according to any one of 1) to 9).

(11) 前記対象物としてガラス板を用い、(1)から(10)いずれか記載の製造方法で製造される基板。   (11) A substrate manufactured by the manufacturing method according to any one of (1) to (10), using a glass plate as the object.

(12) (11)記載の基板からなるフォトマスク用基板。   (12) A photomask substrate comprising the substrate according to (11).

(13) (12)記載のフォトマスク用基板を用いたフォトマスク。   (13) A photomask using the photomask substrate according to (12).

本発明によれば、磁性流体研磨法による被研磨部位の研磨を2回以上行ったので、研磨処理物の形状と、設計形状との誤差が大幅に低減し、加工精度を向上できる。また、各研磨の条件(特に、被研磨部位に接触する磁性流体の形状等)を適宜設定することで、同等の加工精度を単数回の研磨よりも高い再現性で得ることができ、加工時間を格段に短縮することもできる。   According to the present invention, since the portion to be polished is polished twice or more by the magnetic fluid polishing method, the error between the shape of the polished product and the design shape is greatly reduced, and the processing accuracy can be improved. In addition, by appropriately setting each polishing condition (especially the shape of the magnetic fluid that contacts the part to be polished), equivalent processing accuracy can be obtained with higher reproducibility than single polishing, and processing time Can be significantly shortened.

以下、本発明の一実施形態について、図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明に係る研磨処理物の製造方法では、研磨粒子を含む磁性流体を用い、対象物の被研磨部位を研磨して研磨処理物を製造する。製造工程の詳細を、研磨装置の一例を用いた態様に関して説明する。なお、各図に示される構成要素の一部は、説明の便宜により誇張して表現されている場合もあり、この場合、各図における構成要素の大きさの比率は、実際に想定される大きさの比率から外れる。   In the method for manufacturing a polished product according to the present invention, a polished fluid is manufactured by polishing a portion to be polished of a target using a magnetic fluid containing abrasive particles. Details of the manufacturing process will be described with respect to an embodiment using an example of a polishing apparatus. Note that some of the components shown in each figure may be exaggerated for convenience of explanation, and in this case, the ratio of the sizes of the components in each figure is a size that is actually assumed. It is out of the ratio.

図1は、本発明に係る製造方法で使用できる研磨装置10の部分斜視図であり、図2は図1の研磨装置10の側面図である。研磨装置10はホイール11を備え、このホイール11はその回転軸113が設けられていない面として、円周面111を有する。   FIG. 1 is a partial perspective view of a polishing apparatus 10 that can be used in the manufacturing method according to the present invention, and FIG. 2 is a side view of the polishing apparatus 10 of FIG. The polishing apparatus 10 includes a wheel 11, and the wheel 11 has a circumferential surface 111 as a surface on which the rotation shaft 113 is not provided.

円周面111に略密着するようにして、流体供給ノズル13及び流体回収部15が配置されている。流体供給ノズル13は、供給管14を通して流体源から移送された磁性流体30を円周面111へと供給し、流体回収部15は、円周面111から回収した磁性流体30を、回収管16を通して流体源へと戻す。このようにして磁性流体が循環される。   The fluid supply nozzle 13 and the fluid recovery unit 15 are disposed so as to be in close contact with the circumferential surface 111. The fluid supply nozzle 13 supplies the magnetic fluid 30 transferred from the fluid source through the supply pipe 14 to the circumferential surface 111, and the fluid recovery unit 15 supplies the magnetic fluid 30 recovered from the circumferential surface 111 to the recovery pipe 16. Back to the fluid source. In this way, the magnetic fluid is circulated.

ここで、図3に示されるように、円周面111のうち流体供給ノズル13と流体回収部15との間の磁化部分112の近傍(本実施形態では内方)では、磁力付加部20が発生する磁場の影響で、磁性流体30が円周面111に固着され、円周面111とともに回転するようになる。   Here, as shown in FIG. 3, in the circumferential surface 111, in the vicinity of the magnetized portion 112 between the fluid supply nozzle 13 and the fluid recovery portion 15 (inward in the present embodiment), the magnetic force applying portion 20 is Under the influence of the generated magnetic field, the magnetic fluid 30 is fixed to the circumferential surface 111 and rotates together with the circumferential surface 111.

磁化部分112には、対象物50の被研磨部位51が隙間CLをあけて対向配置される。ここで、位置調節部17が伸縮することで、被研磨部位51及び磁化部分112の隙間CLの距離が調節される。これにより、被研磨部位51が磁性流体30に接触した状態でホイール11を回転すると、被研磨部位51及び磁性流体30が相対移動するため、磁性流体30に含まれる磁性粒子によって被研磨部位51が局所的に研磨されることになる。   A portion 51 to be polished of the object 50 is opposed to the magnetized portion 112 with a gap CL therebetween. Here, when the position adjusting unit 17 expands and contracts, the distance of the gap CL between the polished portion 51 and the magnetized portion 112 is adjusted. Accordingly, when the wheel 11 is rotated in a state where the polished portion 51 is in contact with the magnetic fluid 30, the polished portion 51 and the magnetic fluid 30 move relative to each other, so that the polished portion 51 is caused by the magnetic particles contained in the magnetic fluid 30. It will be polished locally.

位置調節部17は、被研磨部位51を水平方向にも移動でき、また被研磨部位51の姿勢(角度)を変更することもできるので、被研磨部位51の全体を任意形状へと研磨できる。位置調節部17による被研磨部位51の水平方向への移動軌道は、被研磨部位51の形状等に応じて適宜設定されてよく、特に限定されないが、被研磨部位51の形状が略円である場合には外側から中心部へ経て再度外側へと向かう螺旋軌道(図4(a))であることが好ましく、矩形である場合には平行往復軌道(図4(b))であることが好ましい。   Since the position adjusting unit 17 can move the portion 51 to be polished in the horizontal direction and can change the posture (angle) of the portion 51 to be polished, the entire portion 51 to be polished can be polished into an arbitrary shape. The movement trajectory of the portion 51 to be polished in the horizontal direction by the position adjusting unit 17 may be appropriately set according to the shape of the portion 51 to be polished, and is not particularly limited, but the shape of the portion 51 to be polished is substantially a circle. In this case, a spiral trajectory (FIG. 4 (a)) that goes from the outside to the center and outward again is preferable, and in the case of a rectangular shape, a parallel reciprocating trajectory (FIG. 4 (b)) is preferable. .

なお、本実施形態では、被研磨部位51及び円周面111の相対移動を、ホイール11の回転によって達成したが、これに限られず、被研磨部位51を円周面111に沿った円軌道で移動させてもよい。ただし、この場合には、磁性流体30の供給及び回収のため、被研磨部位51の移動に伴って流体供給ノズル13及び流体回収部15も移動させる必要があるため、装置の簡素化の観点では本実施形態の方が好ましい。   In this embodiment, the relative movement of the portion 51 to be polished and the circumferential surface 111 is achieved by the rotation of the wheel 11. However, the present invention is not limited to this, and the portion 51 to be polished is circular orbital along the circumferential surface 111. It may be moved. However, in this case, since the fluid supply nozzle 13 and the fluid recovery unit 15 need to be moved in accordance with the movement of the polished portion 51 in order to supply and recover the magnetic fluid 30, from the viewpoint of simplifying the apparatus. This embodiment is preferred.

本発明の製造方法は、磁力を発するホイール11の円周面111上においた磁性流体30に被研磨部位51を接触させた状態で、円周面111及び対象物50を相対移動させることで、被研磨部位51を研磨する工程を有し、被研磨部位51の研磨を2回以上行うことを特徴とする。これにより、得られる研磨処理物の形状と、設計形状との誤差が大幅に低減し、加工精度を向上できる。   The manufacturing method of the present invention moves the circumferential surface 111 and the object 50 relative to each other in a state where the polished portion 51 is in contact with the magnetic fluid 30 placed on the circumferential surface 111 of the wheel 11 that generates magnetic force. It has the process of grind | polishing the to-be-polished part 51, and grind | polishes the to-be-polished part 51 twice or more, It is characterized by the above-mentioned. Thereby, the difference | error of the shape of the grinding | polishing processed material obtained and a design shape is reduced significantly, and processing precision can be improved.

従来、単数回の研磨で高い加工精度を確保しようとする場合、被研磨部位に接触する磁性流体の形状を小さくする必要があると考えられてきた。被研磨部位に接触する磁性流体の形状を小さくすると、単位時間当たりの加工量が小さくなるため、被研磨部位の全体を研磨するのに費やされる時間が長くならざるを得ない。ここで、磁性流体研磨法を用いた研磨装置は非常に高価であるため、前記装置の稼働時間に対する研磨処理物の生産数の最大化が求められている。また、被研磨部位に接触する磁性流体の形状を小さくすると、加工精度の再現性が悪く、所望の加工精度が得られない場合もあった。しかし、本発明の方法では、研磨を2回以上行うことにより、各研磨の条件を適宜設定(例えば、被研磨部位51に接触する磁性流体30の形状等を大きくする)すれば、高い再現性で所望の加工精度を達成でき、且つ加工精度を維持しつつ研磨装置の占有時間を格段に短縮することもできる。これにより、製造コストを削減しつつ、製造効率を向上できる。   Conventionally, it has been considered that it is necessary to reduce the shape of the magnetic fluid in contact with the portion to be polished when trying to ensure high processing accuracy by single polishing. When the shape of the magnetic fluid that contacts the portion to be polished is reduced, the amount of processing per unit time is reduced, so that the time spent for polishing the entire portion to be polished must be increased. Here, since the polishing apparatus using the magnetic fluid polishing method is very expensive, it is required to maximize the number of products to be polished with respect to the operation time of the apparatus. In addition, if the shape of the magnetic fluid in contact with the portion to be polished is made small, the reproducibility of the processing accuracy is poor and the desired processing accuracy may not be obtained. However, in the method of the present invention, by performing polishing twice or more, if each polishing condition is appropriately set (for example, the shape of the magnetic fluid 30 in contact with the portion to be polished 51 is increased), high reproducibility is achieved. Thus, the desired processing accuracy can be achieved, and the occupation time of the polishing apparatus can be significantly shortened while maintaining the processing accuracy. Thereby, manufacturing efficiency can be improved while reducing manufacturing costs.

図5は、対象物50の被研磨部位51の変化を示す模式図である。まず、第1回目の研磨で磁性流体30によって被研磨部位51を研磨する(図5(a))。すると、被研磨部位51の形状が変化し、被研磨部位51よりも設計形状に近い表面を有する被研磨部位51’が形成される(図5(b))。更に、第2回目の研磨で磁性流体30によって被研磨部位51’を研磨する。これにより、被研磨部位51’の凸部が磁性流体30によって削り取られるため、被研磨部位51’より更に設計形状に近い表面61を有する研磨処理物60が製造される(図5(c))。   FIG. 5 is a schematic diagram showing a change in a portion 51 to be polished of the object 50. First, the part 51 to be polished is polished by the magnetic fluid 30 in the first polishing (FIG. 5A). Then, the shape of the part 51 to be polished changes, and a part 51 'to be polished having a surface closer to the design shape than the part 51 to be polished is formed (FIG. 5B). Further, the portion 51 ′ to be polished is polished by the magnetic fluid 30 in the second polishing. As a result, the convex portion of the portion 51 ′ to be polished is scraped off by the magnetic fluid 30, so that a polished product 60 having a surface 61 closer to the design shape than the portion 51 ′ to be polished is manufactured (FIG. 5C). .

ここで、被研磨部位51の研磨は、被研磨部位51が磁性流体30に押し込まれ、被研磨部位51に接する磁性流体30が被研磨部位51の凸部を削り取ることにより行われる。このため、一般に、被研磨部位51を磁性流体30に押し込む深さが不充分であると、加工面積が小さくなるため、被研磨部位51を所望の形状へと研磨するのに費やされる時間が長期化しやすい。そこで、少なくとも初回の被研磨部位51の研磨は、円周面111上におかれた磁性流体30の最大高さHMの5%以上の深さDに被研磨部位51が押し込まれた状態で行うことが好ましく、より好ましくは20%以上、最も好ましくは50.0%以上である。   Here, polishing of the portion 51 to be polished is performed by pressing the portion 51 to be polished into the magnetic fluid 30, and the magnetic fluid 30 in contact with the portion 51 to be polished scrapes off the convex portion of the portion 51 to be polished. For this reason, in general, if the depth to push the portion 51 to be polished into the magnetic fluid 30 is insufficient, the processing area becomes small, so that the time spent for polishing the portion 51 to be polished into a desired shape is long. Easy to convert. Therefore, at least the initial polishing of the portion 51 to be polished is performed in a state in which the portion 51 to be polished is pushed into the depth D of 5% or more of the maximum height HM of the magnetic fluid 30 placed on the circumferential surface 111. More preferably, it is 20% or more, and most preferably 50.0% or more.

図6は、図2の研磨装置のIII−III線断面図である図3の要部拡大図であり、図7は図2の研磨装置のVII−VII線拡大断面図である。図7に示されるように、最大高さHMは、円周面111から磁性流体30の表面への、円周面111の法線方向に関する距離の最大値を指す。また、図6に示されるように、被研磨部位51が押し込まれた深さDとは、最大高さHMから、最大高さHMを画定していた地点114から被研磨部位51への距離Hmを差し引いた値を指す。   6 is an essential part enlarged view of FIG. 3 which is a sectional view taken along line III-III of the polishing apparatus of FIG. 2, and FIG. 7 is an enlarged sectional view of line VII-VII of the polishing apparatus of FIG. As shown in FIG. 7, the maximum height HM indicates the maximum value of the distance in the normal direction of the circumferential surface 111 from the circumferential surface 111 to the surface of the magnetic fluid 30. Further, as shown in FIG. 6, the depth D at which the portion 51 to be polished is pushed in is the distance Hm from the maximum height HM to the portion 51 to be polished from the point 114 defining the maximum height HM. The value obtained by subtracting.

他方、研磨は、磁性流体30が被研磨部位51を局所的に加工しつつ、被研磨部位51の全面をなぞる(スキャン)ので、原理上アーチ状の加工痕が多少残り、これが加工精度低下の原因になる。ここで、被研磨部位51が磁性流体30に押し込まれる深さが大きくなるにつれ、局所的に削り取られる被研磨部位51の大きさも増すため、加工痕が大きく残りやすい。そこで、少なくとも初回の被研磨部位51の研磨は、円周面111上におかれた磁性流体30の最大高さの65%以下の深さに被研磨部位51が押し込まれた状態で行うことが好ましく、より好ましくは60%以下、最も好ましくは55%以下である。   On the other hand, in the polishing, since the magnetic fluid 30 locally processes the portion 51 to be polished, the entire surface of the portion 51 to be polished is traced (scanned), and in principle, some arch-shaped processing marks remain, which reduces the processing accuracy. Cause. Here, as the depth at which the portion 51 to be polished is pushed into the magnetic fluid 30 increases, the size of the portion 51 to be polished that is locally removed increases, so that the processing marks are likely to remain large. Accordingly, at least the initial polishing of the portion 51 to be polished may be performed in a state where the portion to be polished 51 is pushed to a depth of 65% or less of the maximum height of the magnetic fluid 30 placed on the circumferential surface 111. More preferably, it is 60% or less, and most preferably 55% or less.

なお、上記した押し込み条件は、少なくとも初回の研磨において採用すればよく、2回目以降においても採用することが好ましいが、採用しなくてもよい。また、上記の押し込み条件を2回目以降においても採用する場合、各研磨における押し込み条件を共通としてもよいし、互いに異なるものとしてもよい。   The indentation conditions described above may be adopted at least in the first polishing, and are preferably adopted in the second and subsequent polishing, but may not be adopted. In addition, when the above-described indentation conditions are adopted after the second time, the indentation conditions in each polishing may be common or different from each other.

図5では、被研磨部位の研磨を2回行う態様を示したが、これに限られず、3回以上行ってもよい。具体的に被研磨部位の研磨は、被研磨部位の研磨後の設計形状との形状誤差のPV値の、被研磨部位の研磨前の設計形状との形状誤差のPV値に対する比が1/5以下になるまで繰り返して行うことが好ましく、より好ましくは1/5.3以下、最も好ましくは1/5.5以下である。これにより、充分な加工精度を確保できる。なお、上記比の下限は、ゼロに近い程好ましいが、それに伴う研磨回数の増加による製造工程の長期化とのバランスを考慮して適宜設定すればよい。   Although FIG. 5 shows a mode in which polishing of a portion to be polished is performed twice, the present invention is not limited to this and may be performed three or more times. Specifically, in polishing of a portion to be polished, the ratio of the PV value of the shape error with respect to the design shape after polishing of the portion to be polished to the PV value of the shape error with respect to the design shape before polishing of the portion to be polished is 1/5. It is preferable to repeat until it becomes below, More preferably, it is 1 / 5.3 or less, Most preferably, it is 1 / 5.5 or less. Thereby, sufficient processing accuracy can be secured. The lower limit of the ratio is preferably closer to zero, but may be appropriately set in consideration of the balance with the prolongation of the manufacturing process due to the accompanying increase in the number of polishing times.

本明細書においてPV値とは、基準面BPの各々の点から測定対象面への法線方向に関する距離を測定し、その最高点の距離LMと最低点の距離Lmとの和の値を指す(図5(a)参照)。ここで、基準面BPとは、測定対象の面の各々の点からの法線方向の距離の二乗和が最小となる面である。PV値は、特に限定されないが、He−Neレーザーリング光源/点光源切り替え式による高精度レーザ干渉式形状測定器「VeriFire-AT」(ZYGO社製)等を用いて測定できる。   In this specification, the PV value refers to the sum of the distance LM of the highest point and the distance Lm of the lowest point, by measuring the distance in the normal direction from each point of the reference plane BP to the measurement target surface. (See FIG. 5 (a)). Here, the reference plane BP is a plane in which the sum of squares of the distances in the normal direction from the respective points of the measurement target surface is minimized. The PV value is not particularly limited, but can be measured by using a He-Ne laser ring light source / point light source switching type high-precision laser interference type shape measuring device “VeriFire-AT” (manufactured by ZYGO).

同様の理由により、被研磨部位の研磨は、被研磨部位の研磨後の設計形状との形状誤差のPV値が100nmPV以下になるまで繰り返して行うことが好ましく、より好ましくは90nmPV以下、最も好ましくは80nmPV以下である。これにより、充分な加工精度を確保できる。なお、上記PV値の下限は、ゼロに近い程好ましいが、それに伴う研磨回数の増加による製造工程の長期化とのバランスを考慮して適宜設定すればよい。   For the same reason, it is preferable that the polishing of the portion to be polished is repeatedly performed until the PV value of the shape error with respect to the design shape after polishing of the portion to be polished is 100 nm PV or less, more preferably 90 nm PV or less, most preferably 80 nm PV or less. Thereby, sufficient processing accuracy can be secured. The lower limit of the PV value is preferably closer to zero, but may be appropriately set in consideration of the balance with the prolongation of the manufacturing process due to the accompanying increase in the number of polishing times.

(予備工程)
次に、平坦な基板を製造する方法を例として、予備工程を説明する。予備工程は、磁性流体研磨法による加工を行う前に、対象物を設計形状に近づけるための加工工程である。ただし、曲面を有する基板を製造する場合にも、以下に説明する方法に限られず、公知の方法に従って、磁性流体研磨法による加工を行う前に設計形状に近づけるための加工を行ってよい。
(Preliminary process)
Next, the preliminary process will be described by taking a method of manufacturing a flat substrate as an example. The preliminary step is a processing step for bringing the object close to the design shape before processing by the magnetic fluid polishing method. However, when manufacturing a substrate having a curved surface, the method is not limited to the method described below, and a process for approaching the design shape may be performed according to a known method before the process by the magnetic fluid polishing method.

本発明に係る製造方法は、被研磨部位の研磨に費やされる時間を短縮できるよう、被研磨部位の設計形状との形状誤差のPV値をあらかじめ700nmPV以下に調節する工程を更に有することが好ましく、より好ましくは690nmPV以下、最も好ましくは680nmPV以下である。かかる予備工程としては、加工工程、ラップ工程、研削加工工程が挙げられる。   The manufacturing method according to the present invention preferably further includes a step of adjusting the PV value of the shape error with respect to the design shape of the portion to be polished to 700 nm PV or less in advance so that the time spent for polishing the portion to be polished can be shortened. More preferably, it is 690 nmPV or less, Most preferably, it is 680 nmPV or less. Examples of the preliminary process include a processing process, a lapping process, and a grinding process.

加工工程では、ダイヤモンドもしくは超硬合金等からなるカッター、バンドソー、内周刃、もしくは砥石を用いて、切断、ロータリー研削、又は研磨し、最終形状に近い形状に加工する。   In the processing step, cutting, rotary grinding, or polishing is performed using a cutter, a band saw, an inner peripheral blade, or a grindstone made of diamond or cemented carbide, etc., and processed into a shape close to the final shape.

ラップ工程では、対象物の形状を所望の形状へと更に近似させるとともに、全体の反り等を修正して表面を略平坦化する。この工程では、両面加工機又は片面加工機を使用し、固定砥粒で粒度等を調節する。ただし、場合によっては、一次研削及び二次研削のように段階的に行ってもよい。固定砥粒としては、炭化ケイ素、アルミナ等からなる粒子を固化したものや、ダイヤモンドを、メタルボンド、レジンボンド、ビトリファイドボンド、又は電着によって固化したものをペレット状にしたものが使用される。また、研削工程の前後又は間に、NC加工機等を用いてチャンファー加工及びチャンファー研磨を行ってもよい。   In the lapping step, the shape of the object is further approximated to a desired shape, and the entire warp or the like is corrected to flatten the surface. In this step, a double-sided processing machine or a single-sided processing machine is used, and the particle size and the like are adjusted with fixed abrasive grains. However, depending on the case, you may carry out in steps like primary grinding and secondary grinding. As the fixed abrasive grains, those obtained by solidifying particles made of silicon carbide, alumina or the like, or those obtained by solidifying diamond by metal bond, resin bond, vitrified bond, or electrodeposition into pellets are used. Further, chamfering and chamfering may be performed using an NC processing machine or the like before or after the grinding process.

研削加工工程は、固定砥粒の粒度等の条件を変え、片面加工機を用いて行う。場合によっては、一次研削、二次研削等のように段階的に研削加工を行った後に、更に形状を所望化するための工程である。ラップ工程及び研削加工工程はいずれか一方のみ行ってもよく、その順序が入れ替わってもよい。   The grinding process is performed using a single-side processing machine while changing conditions such as the grain size of the fixed abrasive grains. Depending on the case, it is a process for making the shape further desired after performing grinding in stages such as primary grinding and secondary grinding. Only one of the lapping step and the grinding step may be performed, and the order may be changed.

本発明の製造方法では、被研磨部位の研磨を行う度に被研磨部位の形状を測定し、その測定結果に基づいて、円周面111及び対象物50の相対移動の速度を調節する制御を行うことが好ましい。例えば、図5(b)に示す被研磨部位51’の研磨を行う前に、被研磨部位51’の形状を測定し、その測定結果に基づく制御を行うことが好ましい。これにより、設計形状に近似した形状の研磨処理物を効率的に製造できる。例えば、被研磨部位のうち、設計形状との形状誤差が大きい箇所においては相対移動の速度を低下し、設計形状との形状誤差が小さい箇所においては相対移動の速度を増加することで、高い加工精度を維持しつつ研磨時間を短縮できる。   In the manufacturing method of the present invention, the shape of the portion to be polished is measured every time the portion to be polished is polished, and control for adjusting the relative movement speed of the circumferential surface 111 and the object 50 is performed based on the measurement result. Preferably it is done. For example, it is preferable to measure the shape of the polished portion 51 ′ and perform control based on the measurement result before polishing the polished portion 51 ′ shown in FIG. As a result, it is possible to efficiently manufacture a polished product having a shape approximate to the design shape. For example, among the parts to be polished, high processing speed is achieved by reducing the relative movement speed at locations where the shape error with the design shape is large and increasing the relative movement speed at locations where the shape error with the design shape is small. Polishing time can be shortened while maintaining accuracy.

また、上記の制御は、所望の研磨レートも併せて考慮しつつ行うことが好ましい。つまり、対象物50と同じ素材からなる試料を種々の条件下、磁性流体研磨法で研磨した際の研磨レートをそれぞれ測定し、所望の研磨レートが得られる条件を予め求めておけばよい。なお、研磨レートの測定のための研磨が、被研磨部位の研磨に含まれないことは明らかである。   In addition, the above control is preferably performed while taking into consideration a desired polishing rate. That is, the polishing rate when a sample made of the same material as the object 50 is polished by the magnetic fluid polishing method under various conditions is measured, and the conditions for obtaining a desired polishing rate may be obtained in advance. It is obvious that the polishing for measuring the polishing rate is not included in the polishing of the portion to be polished.

具体的に、本実施形態の研磨装置10は位置調節部17、支持部19、及びホイール11の動作を制御するNC制御装置を備えている。従って、このNC制御装置に所望の設定値を入力することで、高精度レーザ干渉式形状測定器(例えば「VeriFire−AT」(Zygo社製))等による対象物50の被研磨部位51の形状の測定結果に基づく動作制御を行えばよい。なお、動作制御の手順自体は、特許文献1に記載される通り周知技術であるため、その説明を省略する。   Specifically, the polishing apparatus 10 according to the present embodiment includes an NC control device that controls operations of the position adjusting unit 17, the support unit 19, and the wheel 11. Therefore, by inputting a desired set value to this NC control device, the shape of the portion 51 to be polished of the object 50 by a high-precision laser interference type shape measuring instrument (for example, “VeriFire-AT” (manufactured by Zygo)) or the like. The operation control based on the measurement results may be performed. Note that the operation control procedure itself is a well-known technique as described in Patent Document 1, and therefore the description thereof is omitted.

被研磨部位の形状の測定は各研磨の前に行い、速度調節制御も各研磨において行うことが好ましいが、これに限られず、上記工程を行う回と行わない回とを組み合わせてもよい。なお、上記工程は、特に限定されないが、基本的に初回の研磨においては行う必要がある。   The shape of the part to be polished is preferably measured before each polishing, and the speed adjustment control is preferably performed in each polishing. However, the present invention is not limited to this. In addition, although the said process is not specifically limited, It is necessary to perform in fundamental grinding | polishing fundamentally.

(磁性流体)
磁性流体は、担体中に非コロイド磁気物質が分散された流体であり、磁界下におかれると、レオロジー特性(粘性、弾性、及び可塑性)が変化する。具体的な組成は、周知技術に従って適宜設定されてよい。
(Magnetic fluid)
A magnetic fluid is a fluid in which a non-colloidal magnetic substance is dispersed in a carrier, and changes rheological properties (viscosity, elasticity, and plasticity) when placed under a magnetic field. A specific composition may be appropriately set according to a known technique.

ここで、円周面111上の磁性流体30の最大高さが大きい程、被研磨部位51に押し込まれる深さである最大高さの所定割合の絶対値も大きくなり、結果的に被研磨部位51を所望の形状へと研磨するのに費やされる時間を短縮できる。このため、円周面111上の磁性流体30の最大高さを充分に確保できるよう、磁性流体は、30.0×10−3Pa・s以上の粘性係数を有することが好ましく、より好ましくは40.0×10−3Pa・s以上、最も好ましくは35.0×10−3Pa・s以上である。なお、ここで言う粘性係数は、磁性流体が無磁場(磁界を積極的に発生していない雰囲気)におかれた際の粘性係数を指す。粘性係数が上記範囲にある場合、通常、ホイールの円周面上におかれた磁性流体の最大高さは1.0mm〜2.0mmになる。 Here, as the maximum height of the magnetic fluid 30 on the circumferential surface 111 is larger, the absolute value of a predetermined ratio of the maximum height, which is the depth pushed into the portion 51 to be polished, also increases, resulting in the portion to be polished. The time spent for polishing 51 to a desired shape can be shortened. For this reason, the magnetic fluid preferably has a viscosity coefficient of 30.0 × 10 −3 Pa · s or more, more preferably, so that the maximum height of the magnetic fluid 30 on the circumferential surface 111 can be sufficiently secured. 40.0 × 10 −3 Pa · s or more, most preferably 35.0 × 10 −3 Pa · s or more. The viscosity coefficient mentioned here refers to the viscosity coefficient when the magnetic fluid is placed in a magnetic field (atmosphere that does not actively generate a magnetic field). When the viscosity coefficient is in the above range, the maximum height of the magnetic fluid placed on the circumferential surface of the wheel is usually 1.0 mm to 2.0 mm.

他方、磁性流体の粘性係数が過剰であると、流体回収部15による磁性流体の回収が不充分になったり、磁性流体が供給管14及び回収管16を詰まらせたりといった不具合が生じやすい。このため、磁性流体は、63.0×10−3Pa・s以下の粘性係数を有することが好ましく、より好ましくは58.0×10−3Pa・s以下、最も好ましくは53.0×10−3Pa・s以下である。 On the other hand, when the viscosity coefficient of the magnetic fluid is excessive, problems such as insufficient recovery of the magnetic fluid by the fluid recovery unit 15 and clogging of the supply pipe 14 and the recovery pipe 16 are likely to occur. For this reason, the magnetic fluid preferably has a viscosity coefficient of 63.0 × 10 −3 Pa · s or less, more preferably 58.0 × 10 −3 Pa · s or less, and most preferably 53.0 × 10 6. -3 Pa · s or less.

本発明で使用される磁性流体は研磨粒子を含む。研磨粒子は、得られる研磨処理物60の表面61の表面粗さを所望値以下にしやすい点で、30μm以下の平均粒子径を有することが好ましく、より好ましくは20μm以下、最も好ましくは15μm以下である。   The magnetic fluid used in the present invention includes abrasive particles. The abrasive particles preferably have an average particle diameter of 30 μm or less, more preferably 20 μm or less, and most preferably 15 μm or less, in that the surface roughness of the surface 61 of the polishing product 60 to be obtained is easily reduced to a desired value or less. is there.

他方、研磨粒子の平均粒子径が過小であると、研磨効率が悪化しやすい。そこで、研磨粒子の平均粒子径は0.5μm以上であることが好ましく、より好ましくは3.0μm以上、最も好ましくは5.0μm以上である。   On the other hand, if the average particle size of the abrasive particles is too small, the polishing efficiency tends to deteriorate. Therefore, the average particle size of the abrasive particles is preferably 0.5 μm or more, more preferably 3.0 μm or more, and most preferably 5.0 μm or more.

研磨粒子は、シリカ、酸化セリウム、ダイヤモンド等の公知素材の1種以上からなってよいが、研磨効率を向上できる点で、酸化セリウム及びダイヤモンドからなる群より選ばれる1種以上からなることが好ましい。具体的には、ダイヤモンドペースト(QEDテクノロジーズ社製D−20、D−10等)、酸化セリウム(QEDテクノロジーズ社製C−20、C−10等)が使用できる。特に、設計形状との誤差及び表面粗さを所望値以下にしやすい点で、研磨粒子はダイヤモンドからなることがより好ましい。   The abrasive particles may be made of one or more kinds of known materials such as silica, cerium oxide, and diamond, but are preferably made of one or more kinds selected from the group consisting of cerium oxide and diamond from the viewpoint of improving polishing efficiency. . Specifically, diamond paste (D-20, D-10, etc. manufactured by QED Technologies), cerium oxide (C-20, C-10, etc. manufactured by QED Technologies) can be used. In particular, the abrasive particles are more preferably made of diamond from the viewpoint that the error from the design shape and the surface roughness can be easily reduced to a desired value or less.

(対象物)
対象物は、研磨が必要である被研磨部位を有する限りにおいて特に限定されず、所望の用途に応じて、任意の素材及び形状のものから選択できる。素材は、例えば、金属、ガラス(ガラスセラミックスも含む)等であってよく、ガラスであることが好ましく、中でも研磨によるスクラッチが発生しにくい点でガラスセラミックスがより好ましい。ガラスセラミックスは、低膨張特性を得やすい点で、β−石英(β−SiO)及び/又はβ−石英固溶体(β−SiO固溶対)を含有することが好ましい。また、表面は、図2に示すような凸面に限られず、図8に示すような平坦面、図9に示すような凹面等であってよい。
(Object)
The object is not particularly limited as long as it has a portion to be polished that needs to be polished, and can be selected from materials of any material and shape depending on the desired application. The material may be, for example, metal, glass (including glass ceramics) and the like, and is preferably glass, and glass ceramics is more preferable because scratches due to polishing are less likely to occur. The glass ceramic preferably contains β-quartz (β-SiO 2 ) and / or β-quartz solid solution (β-SiO 2 solid solution pair) from the viewpoint of easily obtaining low expansion characteristics. Further, the surface is not limited to the convex surface as shown in FIG. 2, but may be a flat surface as shown in FIG. 8, a concave surface as shown in FIG.

中でも、対象物としてガラス板を用いることで製造される基板は、所望の表面特性及び低膨張特性を有し、有用である。ガラス板としては、クリアセラム(オハラ社)、Zerodur(ショット社)、Zerodur−M(ショット社)、ULE(コーニング社)等のアモルファスガラス又は結晶化ガラス等の極低膨張材料からなる平板が好ましい。   Especially, the board | substrate manufactured by using a glass plate as a target object has a desired surface characteristic and a low expansion characteristic, and is useful. As the glass plate, an amorphous glass such as Clear Serum (Ohara), Zerodur (Shot), Zerodur-M (Shot), ULE (Corning), or a flat plate made of an extremely low expansion material such as crystallized glass is preferable. .

かかる基板からなるフォトマスク用基板、及びこのフォトマスク用基板を用いたフォトマスクは、露光光としてEUV(超紫外線)を用いたリソグラフィーにおいて有用であり、半導体等の超精密・超微細光学部品の製造において活用できる。   A photomask substrate made of such a substrate and a photomask using this photomask substrate are useful in lithography using EUV (ultra-ultraviolet) as exposure light, and are used for ultra-precision / ultra-fine optical components such as semiconductors. Can be used in manufacturing.

直径100mm×厚み25mmの寸法を有する極低膨張ガラスセラミックス「クリアセラム−Z」(オハラ社製)を対象物として用い、MRF(商標)研磨機「Q22−Y」(QEDテクノロジーズ社製)を用いて研磨を行った。所望の設計形状は平面である。研磨の条件は表1に示す通りである。使用した磁性流体の粘性係数は46.5×10−3Pa・sであり、研磨粒子はダイヤモンドからなり10μmの平均粒子径を有しており、ホイールの円周面上の研磨粒子を含む磁性流体の最大高さは1.8mmであった。また、各研磨前後には高精度レーザ干渉式形状測定器「VeriFire−AT」(Zygo社製)を用いて対象物の表面形状を測定し、この測定結果に基づいて各研磨においてNC制御装置による制御を行った。その際に研磨に費やされた時間もあわせて表1に示す。 Using an ultra-low expansion glass ceramic “Clear Serum-Z” (made by OHARA) having a diameter of 100 mm × thickness of 25 mm as an object, and using an MRF ™ polishing machine “Q22-Y” (made by QED Technologies). And polished. The desired design shape is a plane. The polishing conditions are as shown in Table 1. The magnetic fluid used has a viscosity coefficient of 46.5 × 10 −3 Pa · s, the abrasive particles are made of diamond, have an average particle diameter of 10 μm, and include magnetic particles including abrasive particles on the circumferential surface of the wheel. The maximum height of the fluid was 1.8 mm. Also, before and after each polishing, the surface shape of the object is measured using a high-precision laser interference type shape measuring instrument “VeriFire-AT” (manufactured by Zygo), and an NC controller is used in each polishing based on the measurement result. Control was performed. Table 1 also shows the time spent for polishing.

Figure 2010082746
※押し込み率とは、磁性流体の最大高さに対する、被研磨部位が押し込まれた深さの割合を指す。
Figure 2010082746
* The indentation rate refers to the ratio of the depth at which the part to be polished is indented to the maximum height of the magnetic fluid.

表1に示されるように、研磨を1回のみ行った比較例1〜6では、研磨に多大な時間が費やされたにもかかわらず、研磨処理物のPVが大きく、加工精度が低かった。これに対して、実施例1〜5では、研磨を2回以上行ったにもかかわらず、研磨に費やされた時間の合計は比較例1〜6よりも大幅に短く、しかも研磨処理物のPVも小さく、高い加工精度が得られた。これにより、磁性流体研磨法による被研磨部位の研磨を2回以上行うことで、加工精度を向上できるとともに、結果的に研磨処理物の製造効率も向上できることが確認された。   As shown in Table 1, in Comparative Examples 1 to 6 in which the polishing was performed only once, the PV of the polished material was large and the processing accuracy was low, although a great amount of time was spent for polishing. . On the other hand, in Examples 1-5, although the polishing was performed twice or more, the total time spent for polishing was significantly shorter than that of Comparative Examples 1-6, and PV was also small, and high processing accuracy was obtained. Thus, it was confirmed that by performing polishing of the portion to be polished by the magnetic fluid polishing method twice or more, the processing accuracy can be improved and, as a result, the manufacturing efficiency of the polished product can also be improved.

本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

本発明に係る製造方法で使用できる研磨装置の部分斜視図である。It is a fragmentary perspective view of the polish device which can be used with the manufacturing method concerning the present invention. 図1の研磨装置の側面図である。FIG. 2 is a side view of the polishing apparatus of FIG. 1. 図2の研磨装置のIII−III線断面図である。It is the III-III sectional view taken on the line of the polisher of FIG. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 本発明に係る製造方法における対象物の被研磨部位の変化を示す模式図である。It is a schematic diagram which shows the change of the to-be-polished part of the target object in the manufacturing method which concerns on this invention. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 図2の研磨装置のVII−VII線拡大断面図である。FIG. 7 is an enlarged sectional view taken along line VII-VII of the polishing apparatus in FIG. 2. 本発明に係る製造方法で使用できる対象物の形状のバリエーションを示す図である。It is a figure which shows the variation of the shape of the target object which can be used with the manufacturing method which concerns on this invention. 本発明に係る製造方法で使用できる対象物の形状のバリエーションを示す図である。It is a figure which shows the variation of the shape of the target object which can be used with the manufacturing method which concerns on this invention.

符号の説明Explanation of symbols

10 研磨装置
11 ホイール
111 円周面
112 磁化部分
113 回転軸
13 流体供給ノズル
14 供給管
15 流体回収部
16 回収管
17 位置調節部
20 磁力付加部
30 磁性流体
50 対象物
51 被研磨部位
60 研磨処理物
61 表面
DESCRIPTION OF SYMBOLS 10 Polishing apparatus 11 Wheel 111 Circumferential surface 112 Magnetized part 113 Rotating shaft 13 Fluid supply nozzle 14 Supply pipe 15 Fluid recovery part 16 Recovery pipe 17 Position adjustment part 20 Magnetic force addition part 30 Magnetic fluid 50 Object 51 Polishing part 60 Polishing process 61 surface

Claims (13)

研磨粒子を含む磁性流体を用い、対象物の被研磨部位を研磨して研磨処理物を製造する研磨処理物の製造方法であって、
磁力を発するホイールの円周面上においた前記磁性流体に前記被研磨部位を接触させた状態で、前記円周面及び前記対象物を相対移動させることで、前記被研磨部位を研磨する工程を有し、
前記被研磨部位の研磨を2回以上行う研磨処理物の製造方法。
Using a magnetic fluid containing abrasive particles, a polishing process product manufacturing method for polishing a polished portion of an object to manufacture a polishing process product,
A step of polishing the polished portion by moving the circumferential surface and the object relative to each other while the polished portion is in contact with the magnetic fluid placed on the circumferential surface of the wheel that generates magnetic force. Have
A method for producing a polished product, wherein the polished portion is polished twice or more.
少なくとも初回の前記被研磨部位の研磨は、前記円周面上におかれた前記磁性流体の最大高さの5%以上の深さに前記被研磨部位が押し込まれた状態で行う請求項1記載の研磨処理物の製造方法。   The at least first polishing of the portion to be polished is performed in a state where the portion to be polished is pushed to a depth of 5% or more of the maximum height of the magnetic fluid placed on the circumferential surface. Manufacturing method for the above-mentioned polished product. 少なくとも初回の前記被研磨部位の研磨は、前記円周面上におかれた前記磁性流体の最大高さの65%以下の深さに前記被研磨部位が押し込まれた状態で行う請求項1又は2記載の研磨処理物の製造方法。   The at least initial polishing of the portion to be polished is performed in a state where the portion to be polished is pushed to a depth of 65% or less of the maximum height of the magnetic fluid placed on the circumferential surface. 2. A method for producing a polished product according to 2. 前記磁性流体は、30.0×10−3Pa・s以上63.0×10−3Pa・s以下の粘性係数を有する請求項1から3いずれか記載の研磨処理物の製造方法。 The said magnetic fluid is a manufacturing method of the polishing processed material in any one of Claim 1 to 3 which has a viscosity coefficient of 30.0 * 10 < -3 > Pa * s or more and 63.0 * 10 < -3 > Pa * s or less. 前記研磨粒子は、0.5μm以上30μm以下の平均粒子径を有する請求項1から4いずれか記載の研磨処理物の製造方法。   5. The method for producing a polished product according to claim 1, wherein the abrasive particles have an average particle diameter of 0.5 μm or more and 30 μm or less. 前記研磨粒子は、酸化セリウム及びダイヤモンドからなる群より選ばれる1種以上からなる請求項1から5いずれか記載の研磨処理物の製造方法。   The method for producing a polished product according to any one of claims 1 to 5, wherein the abrasive particles comprise one or more selected from the group consisting of cerium oxide and diamond. 前記被研磨部位の研磨後の設計形状との形状誤差のPV値の、前記被研磨部位の研磨前の設計形状との形状誤差のPV値に対する比が1/5以下になるまで、前記被研磨部位の研磨を繰り返して行う請求項1から6いずれか記載の研磨処理物の製造方法。   Until the ratio of the PV value of the shape error with respect to the design shape after polishing of the portion to be polished to the PV value of the shape error with respect to the design shape before polishing of the portion to be polished becomes 1/5 or less, The method for producing a polished product according to any one of claims 1 to 6, wherein the polishing of the part is repeated. 前記被研磨部位の研磨後の設計形状との形状誤差のPV値が100nmPV以下になるまで、前記被研磨部位の研磨を繰り返して行う請求項1から7いずれか記載の研磨処理物の製造方法。   The method for producing a polished product according to any one of claims 1 to 7, wherein the polishing of the portion to be polished is repeated until the PV value of the shape error with respect to the design shape after polishing of the portion to be polished is 100 nm PV or less. 前記被研磨部位の設計形状との形状誤差のPV値をあらかじめ700nmPV以下に調節する工程を更に有する請求項1から8いずれか記載の研磨処理物の製造方法。   The method for producing a polished product according to any one of claims 1 to 8, further comprising a step of previously adjusting a PV value of a shape error with respect to a design shape of the portion to be polished to 700 nm PV or less. 前記被研磨部位の研磨を行う度に前記被研磨部位の形状を測定し、その測定結果に基づいて、前記円周面及び前記対象物の相対移動の速度を調節する制御を行う請求項1から9いずれか記載の研磨処理物の製造方法。   The shape of the to-be-polished part is measured every time the to-be-polished part is polished, and control for adjusting the relative movement speed of the circumferential surface and the object is performed based on the measurement result. 9. The method for producing a polished product according to any one of 9 above. 前記対象物としてガラス板を用い、請求項1から10いずれか記載の製造方法で製造される基板。   The board | substrate manufactured with the manufacturing method in any one of Claim 1 to 10 using a glass plate as said target object. 請求項11記載の基板からなるフォトマスク用基板。   A photomask substrate comprising the substrate according to claim 11. 請求項12記載のフォトマスク用基板を用いたフォトマスク。   A photomask using the photomask substrate according to claim 12.
JP2008254197A 2008-09-30 2008-09-30 Method for manufacturing polishing-treated object, substrate and photomask Pending JP2010082746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254197A JP2010082746A (en) 2008-09-30 2008-09-30 Method for manufacturing polishing-treated object, substrate and photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254197A JP2010082746A (en) 2008-09-30 2008-09-30 Method for manufacturing polishing-treated object, substrate and photomask

Publications (1)

Publication Number Publication Date
JP2010082746A true JP2010082746A (en) 2010-04-15

Family

ID=42247213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254197A Pending JP2010082746A (en) 2008-09-30 2008-09-30 Method for manufacturing polishing-treated object, substrate and photomask

Country Status (1)

Country Link
JP (1) JP2010082746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519056A (en) * 2011-05-13 2014-08-07 レイセオン カンパニー Magnesium mirror and manufacturing method of the magnesium mirror
WO2015046525A1 (en) * 2013-09-27 2015-04-02 Hoya株式会社 Method for producing non-magnetic substrate
JP2016104509A (en) * 2010-07-09 2016-06-09 コーニング インコーポレイテッド End surface finishing device
JP2018054960A (en) * 2016-09-30 2018-04-05 Hoya株式会社 Mask blank substrate, multilayer-reflector coated substrate, mask blank, transfer mask, and semiconductor device manufacturing method
CN108311958A (en) * 2018-01-30 2018-07-24 上海理工大学 The wheeled magnetic coupling fluid polishing device of cluster

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104509A (en) * 2010-07-09 2016-06-09 コーニング インコーポレイテッド End surface finishing device
US9707658B2 (en) 2010-07-09 2017-07-18 Corning Incorporated Edge finishing apparatus
JP2014519056A (en) * 2011-05-13 2014-08-07 レイセオン カンパニー Magnesium mirror and manufacturing method of the magnesium mirror
US9575223B2 (en) 2011-05-13 2017-02-21 Raytheon Company Magnesium mirrors and methods of manufacture thereof
WO2015046525A1 (en) * 2013-09-27 2015-04-02 Hoya株式会社 Method for producing non-magnetic substrate
CN105408062A (en) * 2013-09-27 2016-03-16 Hoya株式会社 Method for producing non-magnetic substrate
JPWO2015046525A1 (en) * 2013-09-27 2017-03-09 Hoya株式会社 Manufacturing method of non-magnetic substrate
JP2018054960A (en) * 2016-09-30 2018-04-05 Hoya株式会社 Mask blank substrate, multilayer-reflector coated substrate, mask blank, transfer mask, and semiconductor device manufacturing method
CN108311958A (en) * 2018-01-30 2018-07-24 上海理工大学 The wheeled magnetic coupling fluid polishing device of cluster

Similar Documents

Publication Publication Date Title
US9017144B2 (en) Method for manufacturing electronic grade synthetic quartz glass substrate
EP2587312B1 (en) Electronic grade glass substrate and making method
Pei et al. Fine grinding of silicon wafers
JP5332249B2 (en) Glass substrate polishing method
JP5402391B2 (en) Method for processing synthetic quartz glass substrate for semiconductor
JP5637062B2 (en) Synthetic quartz glass substrate and manufacturing method thereof
JP2008142802A (en) Manufacturing method for substrate and substrate
JP6252098B2 (en) Square mold substrate
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
JP2010082746A (en) Method for manufacturing polishing-treated object, substrate and photomask
CN101327577B (en) Fixed abrasive polishing pad with self-finishing function and even wear
JP2013052503A (en) Method for manufacturing optical part
JP2009289873A (en) Method of polishing silicon wafer
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
Ahearne et al. Ultraprecision grinding technologies in silicon semiconductor processing
Chen et al. Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels
JP2001328065A (en) Precision machining device
JP2004302280A (en) Method of manufacturing substrate for mask blank, method of manufacturing mask blank and method of manufacturing transfer mask
JP2010238310A (en) Method for manufacturing substrate for magnetic disk
JP2010250893A (en) Manufacturing method of magnetic disk glass substrate, and surface correction method of bonded abrasive tool
JP5792932B2 (en) Glass substrate polishing method and glass substrate manufacturing method using the glass substrate polishing method
KR100436825B1 (en) Polishing apparatus and method for producing semiconductors using the apparatus
JP2004314294A (en) Manufacturing method of substrate for mask blank
JP3880976B2 (en) Mask blank substrate manufacturing method
Doi et al. Polishing technology