JP2013052503A - Method for manufacturing optical part - Google Patents

Method for manufacturing optical part Download PDF

Info

Publication number
JP2013052503A
JP2013052503A JP2012090525A JP2012090525A JP2013052503A JP 2013052503 A JP2013052503 A JP 2013052503A JP 2012090525 A JP2012090525 A JP 2012090525A JP 2012090525 A JP2012090525 A JP 2012090525A JP 2013052503 A JP2013052503 A JP 2013052503A
Authority
JP
Japan
Prior art keywords
polishing
abrasive grains
optical
component
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012090525A
Other languages
Japanese (ja)
Inventor
Yutaka Yamashita
豊 山下
Toshitake Yagi
俊剛 八木
Naoyuki Goto
直雪 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2012090525A priority Critical patent/JP2013052503A/en
Publication of JP2013052503A publication Critical patent/JP2013052503A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for inexpensively processing, to a highly accurate surface state, optical parts formed of optical materials by employing a polishing step by which it is possible to obtain the same polishing effect as a cerium oxide substantially without using the cerium oxide as loose abrasive grains in a polishing liquid.SOLUTION: There is provided the method for manufacturing the optical parts including a polishing step of polishing an optical material by using a polishing liquid, and characterized in that: the polishing liquid contains at least polishing abrasive grains formed of a compound containing Zr and Si, and an abrasive grain concentration in the polishing liquid is within a range of 0.005-40 wt%.

Description

本発明は、光学ガラス、石英ガラス、フッ化物結晶(例としてCaF、LiF、MgF)、シリコン(Si)、ゲルマニウム(Ge)及びジンクセレン(ZnSe)等の光学材料から製造される光学部品の製造方法並びに前記光学材料の研磨方法に関する。具体的には、レンズ、プリズム、ミラー、回折格子及び光フィルター等の光学材料から製造され、高い表面平滑性が求められる、各種光学部品の製造方法及び光学材料の研磨方法に関する。より詳しくは、優れた平滑性が要求されるこれら光学部品を作製すべく、CeO以外の研磨砥粒を用いて高効率且つ高品質に研磨を行う方法に関する。 The present invention relates to optical components manufactured from optical materials such as optical glass, quartz glass, fluoride crystals (for example, CaF 2 , LiF, MgF 2 ), silicon (Si), germanium (Ge), and zinc selenium (ZnSe). The present invention relates to a manufacturing method and a polishing method for the optical material. Specifically, the present invention relates to a method for manufacturing various optical components and a method for polishing an optical material that are manufactured from optical materials such as lenses, prisms, mirrors, diffraction gratings, and optical filters, and that require high surface smoothness. More specifically, the present invention relates to a method of performing polishing with high efficiency and high quality using polishing abrasive grains other than CeO 2 in order to produce these optical components that require excellent smoothness.

レンズ、プリズム、ミラー等の光学部品は、設計通りに光が反射又は屈折されるように、表面を高精度に加工する必要がある。
このような光学部品の平滑な表面性状は、研磨砥粒を分散した研磨スラリーと研磨シートで表面を研磨することによって得られる。
Optical parts such as lenses, prisms, and mirrors need to be processed with high accuracy so that light is reflected or refracted as designed.
Such a smooth surface property of the optical component can be obtained by polishing the surface with a polishing slurry in which polishing abrasive grains are dispersed and a polishing sheet.

特開2003−103442号公報JP 2003-103442 A

ところで、光学材料の研磨では、高い研磨効率と研磨後の高い平滑性を得るために、酸化セリウムからなる研磨砥粒が使用されている。これは、光学ガラス、石英ガラス、蛍石等の光学材料に対する酸化セリウム砥粒の物理的化学的研磨効果が優れており、研磨工程においてスクラッチ等が発生しにくく、且つ、平滑な研磨面が容易に得られるためである。
しかし、近年、酸化セリウムの市場価格が従来のおおよそ10倍以上に高騰しており、光学材料の製造コストへの影響が極めて大きくなっている。
このため、酸化セリウム砥粒を用いた研磨工程に代えて、新しい研磨工程が模索されている。しかし、光学ガラス等の光学材料は比較的硬度が低いものが多いため、研磨工程でスクラッチが発生しやすい。そのため、酸化セリウム砥粒と同等の効果が得られ、且つ低コストでこれを実現できる研磨工程は開発されていない。
By the way, in polishing of an optical material, in order to obtain high polishing efficiency and high smoothness after polishing, polishing abrasive grains made of cerium oxide are used. This is excellent in the physical and chemical polishing effect of cerium oxide abrasive grains on optical materials such as optical glass, quartz glass, and fluorite. Scratches are not easily generated in the polishing process, and a smooth polished surface is easy. It is because it is obtained.
However, in recent years, the market price of cerium oxide has soared to about 10 times or more than before, and the influence on the manufacturing cost of the optical material has become extremely large.
For this reason, it replaces with the grinding | polishing process using a cerium oxide abrasive grain, and the new grinding | polishing process is searched. However, since many optical materials such as optical glass have relatively low hardness, scratches are likely to occur in the polishing process. Therefore, a polishing process that can achieve the same effect as the cerium oxide abrasive grains and that can realize this at low cost has not been developed.

特許文献1には、酸化セリウム又は酸化ジルコニウムを用いた光学材料の研磨方法が記載されている。
しかし、酸化ジルコニウムを砥粒として用いる研磨方法では、研磨後の表面にスクラッチが多く発生するため、近年の極めて高精度な光学部品に要求される表面粗さを達成することは困難である。さらに酸化ジルコニウムは、従来の酸化セリウムの市場価格のおおよそ2倍であるため、従来の酸化セリウムの市場価格と同等以下の低いコストを実現することは不可能である。
Patent Document 1 describes a method for polishing an optical material using cerium oxide or zirconium oxide.
However, in the polishing method using zirconium oxide as abrasive grains, many scratches are generated on the surface after polishing, and it is difficult to achieve the surface roughness required for an extremely high-precision optical component in recent years. Furthermore, since zirconium oxide is approximately twice the market price of conventional cerium oxide, it is impossible to realize a low cost equivalent to or less than the market price of conventional cerium oxide.

本発明の目的は、研磨液中の遊離砥粒として酸化セリウムを用いなくとも、酸化セリウムと同等の研磨効果が得られる研磨工程によって、脆性を有する光学材料からなる光学部品を、より低コストで高精度の表面性状に加工する製造方法を提供することにある。   An object of the present invention is to provide an optical component made of an optical material having brittleness at a lower cost by a polishing process that can obtain a polishing effect equivalent to that of cerium oxide without using cerium oxide as free abrasive grains in the polishing liquid. An object of the present invention is to provide a manufacturing method for processing a surface texture with high accuracy.

本発明者らは、鋭意試験研究を重ねた結果、研磨砥粒として特定のものを選択し、且つ、これを用いた研磨液及びその他の研磨工程の条件を、被加工物に合わせて選択及び調整することにより、上記の課題を解決するに至った。
本発明は、具体的には以下のような製造方法を提供する。
As a result of intensive studies and studies, the inventors have selected a specific abrasive grain, and selected a polishing liquid using the abrasive and other polishing process conditions according to the workpiece. By adjusting, it came to solve said subject.
Specifically, the present invention provides the following manufacturing method.

(構成1)
光学材料を、研磨液を用いて研磨する研磨工程を含む光学部品の製造方法であって、
前記研磨液は、Zr及びSiを含む化合物からなる研磨砥粒を少なくとも含有し、
前記研磨液中の研磨砥粒濃度が0.005wt%〜40wt%の範囲であることを特徴とする光学部品の製造方法。
(構成2)
光学材料を、研磨液を用いて研磨する研磨工程を含む光学部品の製造方法であって、
前記研磨液は、Zr及びSiを含む化合物からなる研磨砥粒を少なくとも含有し、
前記研磨液中の研磨砥粒濃度が2wt%〜40wt%の範囲であることを特徴とする光学部品の製造方法又は光学材料の研磨方法。
(構成3)
前記研磨液中の研磨砥粒の平均粒子径d50が0.2μm〜2.0μmである構成1又は2に記載の光学部品の製造方法又は光学材料の研磨方法。
(構成4)
前記光学材料はガラスである構成1から3のいずれかに記載の光学部品の製造方法。
(構成5)
前記光学材料は酸化物基準の質量%で、SiO成分とAl成分の合計が2〜80%、RO成分0〜70%(ただし、RはMg、Ca、Ba、Sr、Znから選ばれる1種以上)、R’O成分0〜20%(ただし、R’はLi、Na、Kから選ばれる1種以上)を含有することを特徴とする構成1から4のいずれかに記載の光学部品の製造方法又は光学材料の研磨方法。
(構成6)
前記研磨工程の終了後の前記光学材料の表面粗さRaを40nm未満となるようにする構成1から5のいずれかに記載の光学部品の製造方法又は光学材料の研磨方法。
(構成7)
前記研磨工程の終了後、さらに研磨工程を施し、最終の研磨工程後の前記光学材料の表面粗さRaを15nm未満となるようにする構成6に記載の光学部品の製造方法又は光学材料の研磨方法。
(構成8)
ヌープ硬さHkが660以下である光学ガラスを、研磨液を用いて研磨する研磨工程を含む光学部品の製造方法であって、
前記研磨液は、Zr及びSiを含む化合物からなる研磨砥粒を少なくとも含有し、
前記研磨液中の研磨砥粒濃度が0.005wt%〜40wt%の範囲であることを特徴とする光学部品の製造方法。
(Configuration 1)
An optical component manufacturing method including a polishing step of polishing an optical material using a polishing liquid,
The polishing liquid contains at least abrasive grains made of a compound containing Zr and Si,
A method for producing an optical component, characterized in that the abrasive grain concentration in the polishing liquid is in the range of 0.005 wt% to 40 wt%.
(Configuration 2)
An optical component manufacturing method including a polishing step of polishing an optical material using a polishing liquid,
The polishing liquid contains at least abrasive grains made of a compound containing Zr and Si,
A method for producing an optical component or a method for polishing an optical material, wherein the abrasive grain concentration in the polishing liquid is in the range of 2 wt% to 40 wt%.
(Configuration 3)
The method for producing an optical component or the method for polishing an optical material according to Configuration 1 or 2, wherein the average particle diameter d50 of the abrasive grains in the polishing liquid is 0.2 μm to 2.0 μm.
(Configuration 4)
4. The method of manufacturing an optical component according to any one of configurations 1 to 3, wherein the optical material is glass.
(Configuration 5)
The optical material is in mass% based on oxide, the total of SiO 2 component and Al 2 O 3 component is 2 to 80%, RO component is 0 to 70% (where R is from Mg, Ca, Ba, Sr, Zn) 1 to 4 selected from the group consisting of 0 to 20% of R ′ 2 O component (where R ′ is one or more selected from Li, Na, and K). The manufacturing method of the optical component as described, or the polishing method of an optical material.
(Configuration 6)
6. The method for manufacturing an optical component or the method for polishing an optical material according to any one of configurations 1 to 5, wherein a surface roughness Ra of the optical material after the polishing step is less than 40 nm.
(Configuration 7)
7. The method of manufacturing an optical component or the polishing of an optical material according to Configuration 6, wherein a polishing step is further performed after the polishing step, and the surface roughness Ra of the optical material after the final polishing step is less than 15 nm. Method.
(Configuration 8)
A method for producing an optical component comprising a polishing step of polishing optical glass having a Knoop hardness Hk of 660 or less using a polishing liquid,
The polishing liquid contains at least abrasive grains made of a compound containing Zr and Si,
A method for producing an optical component, characterized in that the abrasive grain concentration in the polishing liquid is in the range of 0.005 wt% to 40 wt%.

本発明によれば、酸化セリウムを使用せずとも、又は極少量のみを用いた場合であっても、光学材料を高い研磨効率で研磨でき、且つ、マイクロスクラッチの発生を低減できるため、平滑性の高い表面性状を低コストで得られる。従って、光学部品を低コストで製造できる。
また、本発明の製造方法では、初回の研磨工程後に光学材料の表面粗さRaを40nm未満にすることが可能であり、より好ましい実施態様では20nm以下にすることが可能である。
さらに、本発明の製造方法では、最終の研磨工程後に光学材料の表面粗さRaを15nm未満にすることが可能であり、より好ましい実施態様では10nm以下にすることが可能である。
According to the present invention, even if cerium oxide is not used or only a very small amount is used, the optical material can be polished with high polishing efficiency and the occurrence of micro scratches can be reduced. High surface quality can be obtained at low cost. Therefore, an optical component can be manufactured at low cost.
In the production method of the present invention, the surface roughness Ra of the optical material can be made less than 40 nm after the first polishing step, and in a more preferred embodiment, it can be made 20 nm or less.
Furthermore, in the production method of the present invention, the surface roughness Ra of the optical material can be made less than 15 nm after the final polishing step, and in a more preferred embodiment, it can be made 10 nm or less.

光学部品は、一般に以下の工程により製造される。
まず、光学材料を適当な大きさに切断し、粗加工として設計形状に近似した形状に加工する。このとき、熱間プレス成型法を用いて設計形状に近似した形状に加工してもよい。
次に、研削(ラッピング)工程として、ダイヤモンドペレット等を用いて、光学材料の表面にある深いクラックを取り除き、寸法通りの形状に加工する。
最後に研磨(ポリッシング)工程として、研磨液と研磨シートを用いて、光学材料の表面を鏡面に研磨する。
また、各工程の間、又は各工程の最後に、例えば心取り等のように、光学面以外の部分に加工を施してもよい。
The optical component is generally manufactured by the following process.
First, the optical material is cut into an appropriate size and processed into a shape approximate to the design shape as rough processing. At this time, you may process into the shape approximated to design shape using a hot press molding method.
Next, as a grinding (lapping) step, diamond cracks or the like are used to remove deep cracks on the surface of the optical material, and the shape is processed according to dimensions.
Finally, as a polishing process, the surface of the optical material is polished into a mirror surface using a polishing liquid and a polishing sheet.
Moreover, you may process to parts other than an optical surface like a centering etc. between each process or at the end of each process, for example.

研削工程及び研磨工程は、ともに複数の段階に分けて行い、段階を経るごとに砥粒を小さくし、被加工物の表面粗さを平滑に加工してもよい。   Both the grinding process and the polishing process may be performed in a plurality of stages, and the abrasive grains may be reduced and the surface roughness of the workpiece may be processed smoothly each time the stages are passed.

研削工程及び研磨工程では、作製する光学部品の形状に応じて種々の加工装置を適宜選択して行う。例えば、球面レンズの場合、以下のような方法で行うことができる。
研削工程は、レンズ加工面と同じ曲率になるようにダイヤモンドペレットを工具皿に貼り付け、これをレンズ加工面にすり合わせて研削する。製造効率を高めるため、多数個の光学材料を保持皿に複数貼り付けて加工してもよい。また、ダイヤモンドペレットの代わりに、樹脂シートにダイヤモンドの微粉(平均粒子径2μm〜10μm)を分散させたダイヤモンドシート(ダイヤモンドシート)を用いてもよい。
研磨工程は、研削工程と同様に、レンズの曲率と同じ曲率を有する工具皿に研磨シートを貼り付け、研磨液を供給しながら、工具と光学材料を研磨機ですりあわせて研磨する。研磨工程も、多数個の光学材料を保持皿に複数貼り付けて加工してもよい。
In the grinding process and the polishing process, various processing apparatuses are appropriately selected according to the shape of the optical component to be manufactured. For example, in the case of a spherical lens, it can be performed by the following method.
In the grinding process, diamond pellets are affixed to a tool plate so as to have the same curvature as the lens processing surface, and this is ground to the lens processing surface. In order to increase the manufacturing efficiency, a plurality of optical materials may be pasted to a holding plate and processed. Instead of diamond pellets, a diamond sheet (diamond sheet) in which fine diamond powder (average particle diameter of 2 μm to 10 μm) is dispersed in a resin sheet may be used.
In the polishing step, as in the grinding step, a polishing sheet is attached to a tool plate having the same curvature as that of the lens, and the tool and the optical material are polished together by a polishing machine while supplying a polishing liquid. The polishing process may also be performed by attaching a plurality of optical materials to a holding dish.

研磨液は、微細な研磨砥粒を液体中に分散させたものが用いられる。本発明では、研磨砥粒として、少なくとも、Zr及びSiを含む化合物からなる砥粒を用いる。Zr及びSiを含む化合物からなる砥粒を用いることにより、研磨レート(研磨加工の能率)を高くすることができ、研磨後の表面粗さを特に平滑にすることが可能となり、且つ、表面に発生するスクラッチを極限まで低減することが可能になる。
Zr及びSiを含む化合物としては、ジルコン(ZrSiO)、ZrSi等が挙げられ、その他、これらの化合物に他の元素が固溶したものでもよい。ジルコンは、市場価格が従来の酸化セリウムのおおよそ半額以下であるため、これを砥粒として用いることで、酸化セリウムの市場価格が高騰する以前の製造コストよりもさらにコストを低減することが可能になる。
また、Zr及びSiを含む化合物からなる砥粒のほか、その他の研磨砥粒を研磨液に混合することも可能である。従って、Zr及びSiを含む化合物からなる砥粒の含有量は研磨液中の全砥粒質量に対して、70wt%以上が好ましく、80wt%以上がより好ましく、90wt%以上がさらに好ましく、95wt%以上が最も好ましい。その他の研磨砥粒には、スピネル(RAl、ただしRはZn、Mg、Feから選択される1種類以上)、又は酸化ケイ素(SiO)等が好ましく挙げられる、これらに限定されない。その他の研磨砥粒は、Zr及びSiを含む化合物からなる砥粒の効果を損なわない範囲で混合することがよく、その量は、Zr及びSiを含む化合物からなる砥粒の全質量に対して、10%以下が好ましく、5%以下がより好ましく、3%以下が最も好ましい。研磨砥粒として、ジルコン(ZrSiO)のみを用いることが最も好ましい。
As the polishing liquid, one obtained by dispersing fine abrasive grains in the liquid is used. In the present invention, abrasive grains made of a compound containing at least Zr and Si are used as the abrasive grains. By using abrasive grains comprising a compound containing Zr and Si, the polishing rate (polishing efficiency) can be increased, the surface roughness after polishing can be made particularly smooth, and It is possible to reduce the generated scratches to the limit.
Examples of the compound containing Zr and Si include zircon (ZrSiO 4 ) and ZrSi 2 , and other compounds in which other elements are dissolved in these compounds may be used. Zircon has a market price that is less than half that of conventional cerium oxide, so using it as an abrasive makes it possible to further reduce costs compared to the manufacturing cost before the market price of cerium oxide soared. Become.
In addition to abrasive grains made of a compound containing Zr and Si, other abrasive grains can be mixed in the polishing liquid. Therefore, the content of abrasive grains composed of a compound containing Zr and Si is preferably 70 wt% or more, more preferably 80 wt% or more, still more preferably 90 wt% or more, and 95 wt% with respect to the total abrasive mass in the polishing liquid. The above is most preferable. Other abrasive grains preferably include, but are not limited to, spinel (RAl 2 O 4 , where R is one or more selected from Zn, Mg, Fe), silicon oxide (SiO 2 ), and the like. The other abrasive grains are preferably mixed within a range that does not impair the effect of the abrasive grains made of the compound containing Zr and Si, and the amount thereof is based on the total mass of the abrasive grains made of the compound containing Zr and Si. It is preferably 10% or less, more preferably 5% or less, and most preferably 3% or less. Most preferably, only zircon (ZrSiO 4 ) is used as the abrasive grains.

酸化セリウム砥粒は、研磨砥粒に含まないか、上記の砥粒とともに含む場合はごく少量である。その量は、研磨液中の全砥粒質量に対して、20%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、3%以下が最も好ましい。
なお、Zrを含む化合物として酸化ジルコニウム(ZrO)があるものの、酸化ジルコニウムを用いると、光学材料の表面にスクラッチが多数発生することで、所望の表面粗さを達成することが困難になる。そのため、酸化ジルコニウムは、研磨液中の全砥粒質量に対して7%以下に制限され、3%以下がより好ましく、砥粒として用いないことが最も好ましい。
また、酸化アルミニウム(Al)、酸化マンガン(MnO、MnO、Mn、Mn、Mn等)、水酸化アルミニウム及びベーマイト(AlOOH)は、平滑な表面が得られないか、加工レートが低いため、その含有量は、研磨液中の全砥粒質量に対して7%以下に制限され、3%以下がより好ましく、用いないことが最も好ましい。
上記研磨砥粒は、最終の研磨工程以外の研磨工程で用いる事が好ましく、1段目の研磨工程で用いることが最も好ましい。
The cerium oxide abrasive is not included in the polishing abrasive or a very small amount when included with the above-mentioned abrasive. The amount is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less, and most preferably 3% or less with respect to the total abrasive mass in the polishing liquid.
Although there is zirconium oxide (ZrO 2 ) as a compound containing Zr, when zirconium oxide is used, a large number of scratches are generated on the surface of the optical material, making it difficult to achieve a desired surface roughness. Therefore, zirconium oxide is limited to 7% or less with respect to the total abrasive mass in the polishing liquid, more preferably 3% or less, and most preferably not used as abrasive grains.
Aluminum oxide (Al 2 O 3 ), manganese oxide (MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , Mn 2 O 7, etc.), aluminum hydroxide and boehmite (AlOOH) have a smooth surface. Since it is not obtained or the processing rate is low, its content is limited to 7% or less with respect to the total abrasive mass in the polishing liquid, more preferably 3% or less, and most preferably not used.
The abrasive grains are preferably used in a polishing process other than the final polishing process, and most preferably used in the first-stage polishing process.

研磨工程が2段以上の場合、最終の研磨工程ではコロイダルシリカを用いることが好ましい。   When the polishing process has two or more stages, it is preferable to use colloidal silica in the final polishing process.

一般的に、粒度が大きい砥粒で1段目の研磨を行い、より粒度の小さい砥粒で2段目の研磨を最終の研磨工程として行うことが多く行われている。しかし、本発明の光学部品の製造方法では、2段の研磨加工でなくてもよく、適当な研磨砥粒を選択し、研磨加工を1段のみにしてもよく、3段以上にしてもよい。
なお、複数の段階の研磨工程のうち、Zr及びSiを含む化合物からなる研磨砥粒を含有する研磨液を用いた研磨工程が、少なくとも一つ含まれていればよく、他の工程は特に限定されない。
In general, the first-stage polishing is performed with an abrasive having a large particle size, and the second-stage polishing is performed as a final polishing process with an abrasive having a smaller particle size. However, in the method of manufacturing an optical component according to the present invention, it is not necessary to perform the two-stage polishing process. An appropriate abrasive grain may be selected and the polishing process may be performed in only one stage or may be performed in three or more stages. .
In addition, it is only necessary that at least one polishing process using a polishing liquid containing polishing abrasive grains made of a compound containing Zr and Si among a plurality of stages is included, and other processes are particularly limited. Not.

研磨液中の研磨砥粒の濃度は、2wt%以上であると加工レートがより高くなり研磨加工が進むので、2wt%以上が好ましく、10wt%以上がより好ましく、15wt%以上が最も好ましい。また、40wt%以下であると研磨液の流動性が高くなり、研磨液のコストもより低くなるため、40wt%以下が好ましく、29wt%以下がより好ましく、27wt%以下が最も好ましい。
タンクに貯留された研磨液中の研磨砥粒の濃度は、上記の範囲となるように管理することが好ましい。ここで、研磨液の濃度は、所定量のスラリーの質量を測定し、砥粒と溶媒の比重から求めることができる。
上記の研磨液に含まれる研磨砥粒の濃度の好ましい範囲は、加工レートに最も重点を置いたものである。
If the concentration of the abrasive grains in the polishing liquid is 2 wt% or more, the processing rate becomes higher and the polishing process proceeds. Therefore, the concentration is preferably 2 wt% or more, more preferably 10 wt% or more, and most preferably 15 wt% or more. Further, if it is 40 wt% or less, the fluidity of the polishing liquid becomes high and the cost of the polishing liquid becomes lower, so 40 wt% or less is preferable, 29 wt% or less is more preferable, and 27 wt% or less is most preferable.
The concentration of the abrasive grains in the polishing liquid stored in the tank is preferably managed so as to be in the above range. Here, the concentration of the polishing liquid can be determined from the specific gravity of the abrasive grains and the solvent by measuring the mass of a predetermined amount of slurry.
A preferable range of the concentration of the abrasive grains contained in the above-described polishing liquid is one that places the most emphasis on the processing rate.

一方で、特に光学ガラスを研磨する場合には、研磨液中の研磨砥粒の濃度は上記の値より低くても研磨効果が得られるので、スクラッチをより低減したい場合、その下限は、0.005wt%が好ましく、0.01wt%がより好ましく、0.05wt%がさらに好ましく、0.1wt%が最も好ましい。この濃度の範囲でも、工業生産上実用的な加工レートを得る事が可能である。研磨液中の研磨砥粒の濃度の上限は、上記と同様である。   On the other hand, particularly when optical glass is polished, a polishing effect can be obtained even if the concentration of the abrasive grains in the polishing liquid is lower than the above value. 005 wt% is preferable, 0.01 wt% is more preferable, 0.05 wt% is more preferable, and 0.1 wt% is most preferable. Even within this concentration range, it is possible to obtain a practical processing rate for industrial production. The upper limit of the concentration of the abrasive grains in the polishing liquid is the same as described above.

研磨液のpHは、研磨する材料の組成や種類に応じて適宜調整できる。pHの調整は、公知のpH調整剤を用いることができる。
研磨液のpHが5.0以上であると、光学材料の表面の荒れがより低減することで、より平滑な表面を有する光学部品が得られる。そのため、研磨液のpHは、5.0以上が好ましく、7.0以上がより好ましく、8.5以上がさらに好ましく、9.0以上が最も好ましい。また、研磨液のpHが12.0以下であると、研磨加工中の化学的研磨作用が適度に作用し、光学材料の表面の荒れがより低減されることで、より平滑な表面を有する光学部品が得られる。そのため、研磨液のpHは、12.0以下が好ましく、11.5以下がより好ましく、11.0以下が最も好ましい。
The pH of the polishing liquid can be appropriately adjusted according to the composition and type of the material to be polished. A known pH adjuster can be used to adjust the pH.
When the pH of the polishing liquid is 5.0 or more, the surface roughness of the optical material is further reduced, so that an optical component having a smoother surface can be obtained. Therefore, the pH of the polishing liquid is preferably 5.0 or more, more preferably 7.0 or more, further preferably 8.5 or more, and most preferably 9.0 or more. Further, when the pH of the polishing liquid is 12.0 or less, the chemical polishing action during the polishing process acts moderately, and the roughness of the surface of the optical material is further reduced, so that an optical having a smoother surface is obtained. Parts are obtained. Therefore, the pH of the polishing liquid is preferably 12.0 or less, more preferably 11.5 or less, and most preferably 11.0 or less.

研磨液中の砥粒の分散状態は、研磨液のpHに応じて変化するので、分散状態を公知の分散調整剤により調整してもよい。   Since the dispersion state of the abrasive grains in the polishing liquid changes according to the pH of the polishing liquid, the dispersion state may be adjusted with a known dispersion adjusting agent.

研磨砥粒の平均粒子径d50が0.2μm以上であると、研磨加工中の機械的研磨作用が十分に得られることで、高い加工レートが得られる。そのため、研磨砥粒の平均粒子径d50は、0.2μm以上が好ましく、0.3μm以上が好ましく、0.4μm以上が最も好ましい。
また、研磨砥粒の平均粒子径d50が3.0μm以下であると、光学材料の表面にマイクロスクラッチの発生がより低減することで、より平滑な光学部品が得られる。そのため、研磨砥粒の平均粒子径d50は、3.0μm以下が好ましく、2.8μm以下がより好ましく、2.6μm以下が最も好ましい。
When the average particle diameter d50 of the abrasive grains is 0.2 μm or more, a high polishing rate can be obtained by sufficiently obtaining the mechanical polishing action during the polishing process. Therefore, the average particle diameter d50 of the abrasive grains is preferably 0.2 μm or more, preferably 0.3 μm or more, and most preferably 0.4 μm or more.
In addition, when the average particle diameter d50 of the abrasive grains is 3.0 μm or less, the generation of micro scratches on the surface of the optical material is further reduced, so that a smoother optical component can be obtained. Therefore, the average particle diameter d50 of the abrasive grains is preferably 3.0 μm or less, more preferably 2.8 μm or less, and most preferably 2.6 μm or less.

研磨液の温度は、冷温却チラーユニットや、冷却チラー定盤等の温度制御手段によって調整してもよい。   The temperature of the polishing liquid may be adjusted by a temperature control means such as a cooling / heating chiller unit or a cooling chiller surface plate.

研磨シート(研磨パッド)は、発泡硬質樹脂からなるいわゆる硬質シート、又はスエードタイプのいわゆる軟質シートを用いることが、高い加工レートを得られる点で好ましい。スエードタイプの研磨シートとは、基材層と、多数の気泡を有しスエード調の外観を呈するナップ層とからなるものをいう。ナップ層は、被研磨物側に位置する表面層である。基材層の材質は、ポリエステル系樹脂やポリオレフィン系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂等を用いることができ、例えばポリエチレンエチレンテレフタレートが好ましい。基材層の形態は、前記の材料からなるフィルムや不織布を使用できる。
ナップ層の材質は、ポリウレタン系樹脂、ポリエステル系樹脂、ポリエーテル、ポリカーボネート等を用いることができ、これらの樹脂に異種の材料を添加させたものでもよい。
硬質シートとしては、砥粒含有ウレタンシートが例示される。本発明では、研磨シートの少なくとも表面層又はナップ層に、ベーマイト、酸化アルミニウム、酸化マンガン、酸化亜鉛、スピネル系化合物、カーボンブラック、酸化ケイ素、炭化ケイ素、窒化ケイ素、酸化ジルコニウムから選ばれる一種以上の微粒子が分散して含まれていてもよい。これにより、研磨レートをより向上させることや研磨後の表面性状をより良好にすることができる。ナップ層の樹脂にカーボンブラックを添加した軟質シートが、本発明の目的とする被研磨材料に対して、研磨後のスクラッチを効果的に低減できる点で好ましい。
As the polishing sheet (polishing pad), it is preferable to use a so-called hard sheet made of foamed hard resin or a so-called suede-type soft sheet from the viewpoint of obtaining a high processing rate. A suede-type polishing sheet refers to a substrate layer and a nap layer having a number of bubbles and exhibiting a suede-like appearance. The nap layer is a surface layer located on the object side. As the material of the base material layer, a polyester resin, a polyolefin resin, a polyamide resin, a polyurethane resin, or the like can be used. For example, polyethylene ethylene terephthalate is preferable. As the form of the base material layer, a film or a nonwoven fabric made of the above materials can be used.
As the material of the nap layer, polyurethane resin, polyester resin, polyether, polycarbonate, or the like can be used, and a different material may be added to these resins.
An example of the hard sheet is an abrasive-containing urethane sheet. In the present invention, at least the surface layer or nap layer of the polishing sheet has at least one selected from boehmite, aluminum oxide, manganese oxide, zinc oxide, spinel compounds, carbon black, silicon oxide, silicon carbide, silicon nitride, and zirconium oxide. Fine particles may be dispersed and contained. Thereby, a polishing rate can be improved more and the surface property after grinding | polishing can be made more favorable. A soft sheet obtained by adding carbon black to the resin of the nap layer is preferable in that the scratch after polishing can be effectively reduced with respect to the material to be polished which is the object of the present invention.

研磨シートの硬度(アスカーC)、研磨シートの開口径の範囲は、被研磨材料に応じて適宜選択すればよい。また、スエードタイプの研磨シートを用いる場合、そのナップ長についても、被研磨材料に応じて適宜選択すればよい。   The hardness of the polishing sheet (Asker C) and the range of the opening diameter of the polishing sheet may be appropriately selected according to the material to be polished. In addition, when a suede type polishing sheet is used, the nap length may be appropriately selected according to the material to be polished.

2段目の研磨工程以降は仕上げ研磨であるので、コロイダルシリカ等の研磨力の小さい砥粒を用いるために、2段目の研磨の直前には、ある程度の表面粗さに加工をしておく必要がある。表面が鏡面である光学部品を得ながらも、加工コストを低減するためには、少なくとも1段目の研磨工程の後に、光学材料の表面粗さRaを40nm未満、より好ましくは20nm以下にすることが好ましい。   Since the second and subsequent polishing steps are finish polishing, in order to use abrasive grains having a low polishing power such as colloidal silica, the surface is processed to a certain degree of surface roughness immediately before the second polishing step. There is a need. In order to reduce the processing cost while obtaining an optical component having a mirror surface, the surface roughness Ra of the optical material should be less than 40 nm, more preferably 20 nm or less after at least the first polishing step. Is preferred.

上述した条件は、1段目の研磨加工において特に顕著な効果を得ることができる。   The above-described conditions can obtain a particularly remarkable effect in the first stage polishing.

本実施形態では、最終の研磨工程後における、光学材料の表面粗さRaは15nm未満、より好ましくは10nm以下にすることが好ましい。   In the present embodiment, the surface roughness Ra of the optical material after the final polishing step is preferably less than 15 nm, more preferably 10 nm or less.

各研磨工程の後には、光学材料を洗浄することが好ましい。洗浄はRO水、純水、超純水、酸、アルカリ、IPA等を用いることができる。   It is preferable to wash the optical material after each polishing step. For the cleaning, RO water, pure water, ultrapure water, acid, alkali, IPA, or the like can be used.

本発明は、公知の光学材料全般に適用できる。本発明を適用する被加工材料としては、例えば、光学ガラス、石英ガラス、フッ化物結晶(例としてCaF、LiF、MgF)、シリコン(Si)、ゲルマニウム(Ge)及びジンクセレン(ZnSe)等の無機材料が挙げられる。
その中でも、光学ガラスに対して、本発明を好ましく適用できる。
より好ましくは、以下の特徴を有する光学ガラスが好ましい。すなわち、酸化物基準の質量%で、SiO成分とAl成分の合計が2〜80%、RO成分0〜70%(ただし、RはMg、Ca、Ba、Sr、Znから選ばれる1種以上)、R’O成分0〜20%(ただし、R’はLi、Na、Kから選ばれる1種以上)を含有する光学ガラスは、本発明の方法により、マイクロスクラッチの発生を抑制し、高い研磨レートで、平滑な表面性状を得ることが可能である。
より具体的には、SiO成分とAl成分の合計が2〜80%、RO成分0〜70%、R’O成分0〜20%であり、且つ、SiO成分0〜60%、Al成分0〜10%、LiO成分0〜20%、KO成分0〜20%、NaO成分0〜20%、MgO成分0〜5%、CaO成分0〜20%、BaO成分0〜40%、SrO成分0〜10%、ZnO成分0〜10%、ZrO成分0〜10%、TiO成分0〜40%、Nb成分0〜20%、Y成分0〜15%、TeO成分0〜7%、La成分0〜50%、Bi成分0〜85%、Sb0〜1%、CeO0〜1%、SnO0〜1%及び外割でF成分0〜50%を含有する光学ガラスは、本発明の製造方法の効果を顕著に得ることが可能である。
なお、下限が0%である成分は任意に添加できる成分であり、上記以外のその他の成分も適宜含むことが可能である。
また、F成分を含む光学ガラスに関しては、F成分は外割で表現した。すなわち、フッ化物が酸化物に置き換わったと仮定して酸化物換算の質量%で計算し、それらの全質量に対するF成分の質量%で表現した。
The present invention can be applied to all known optical materials. Examples of work materials to which the present invention is applied include optical glass, quartz glass, fluoride crystals (for example, CaF 2 , LiF, MgF 2 ), silicon (Si), germanium (Ge), and zinc selenium (ZnSe). An inorganic material is mentioned.
Among these, the present invention can be preferably applied to optical glass.
More preferably, an optical glass having the following characteristics is preferable. That is, the total of SiO 2 component and Al 2 O 3 component is 2 to 80% by mass based on oxide, and RO component is 0 to 70% (where R is selected from Mg, Ca, Ba, Sr, Zn) Optical glass containing 0 to 20% of R ′ 2 O component (where R ′ is one or more selected from Li, Na, and K), the occurrence of microscratches by the method of the present invention. It is possible to suppress and obtain a smooth surface property at a high polishing rate.
More specifically, the total of the SiO 2 component and the Al 2 O 3 component is 2 to 80%, the RO component is 0 to 70%, the R ′ 2 O component is 0 to 20%, and the SiO 2 component is 0 to 60%. %, Al 2 O 3 component 0-10%, Li 2 O component 0-20%, K 2 O component 0-20%, Na 2 O component 0-20%, MgO component 0-5%, CaO component 0 20%, BaO component 0-40%, SrO component 0-10%, ZnO component 0-10%, ZrO 2 component 0-10%, TiO 2 component 0-40%, Nb 2 O 5 component 0-20%, Y 2 O 3 component 0-15%, TeO 2 component 0-7%, La 2 O 3 component 0-50%, Bi 2 O 3 component 0-85%, Sb 2 O 3 0-1%, CeO 2 0 to 1%, the optical glass containing 0 to 50% F component SnO 2 0 to 1% and the outer split the production method of the present invention It is possible to obtain the results significantly.
In addition, the component whose lower limit is 0% is a component that can be arbitrarily added, and other components other than the above can be included as appropriate.
Moreover, regarding the optical glass containing an F component, the F component is expressed as an outer ratio. That is, assuming that the fluoride was replaced with the oxide, the calculation was performed in terms of mass% in terms of oxide, and expressed in terms of mass% of the F component with respect to their total mass.

各種基板を製造する場合と、光学部品を製造する場合のどちらの場合においても、被加工材料である光学材料のヌープ硬さ(Hk)が、660以下であることが好ましい。ヌープ硬さが660以下であると、Zr及びSiを含む化合物からなる研磨砥粒を用いた場合、平滑な研磨面が得やすく、研磨液を循環していても、経時的な研磨レートの低下が発生しにくい。
被研磨材料のヌープ硬さは、640以下であることがより好ましく、620以下であることが最も好ましい。被研磨材料のヌープ硬さの下限は、特に限定されないが、300が好ましい。
ここで、ヌープ硬さとは、日本光学硝子工業会規格09−1975「光学ガラスのヌープ硬さの測定方法」に則り測定される値である。
It is preferable that the Knoop hardness (Hk) of the optical material, which is a material to be processed, is 660 or less in both cases of manufacturing various substrates and optical components. When the Knoop hardness is 660 or less, when using abrasive grains made of a compound containing Zr and Si, it is easy to obtain a smooth polished surface, and the polishing rate decreases with time even if the polishing liquid is circulated. Is unlikely to occur.
The Knoop hardness of the material to be polished is more preferably 640 or less, and most preferably 620 or less. The lower limit of the Knoop hardness of the material to be polished is not particularly limited, but 300 is preferable.
Here, Knoop hardness is a value measured in accordance with Japanese Optical Glass Industry Association Standard 09-1975 “Measurement Method of Optical Glass Knoop Hardness”.

酸化物基準の質量%で、表1の組成となる光学ガラスのブロックを用意し、これを板状に加工してサンプルとした。このサンプルを研磨したときの、加工能率(加工レート)、研磨後の表面粗さ及びマイクロスクラッチの発生頻度を検証した。   A block of optical glass having the composition shown in Table 1 at a mass% based on oxide was prepared, and this was processed into a plate shape to prepare a sample. When this sample was polished, the processing efficiency (processing rate), the surface roughness after polishing, and the occurrence frequency of micro scratches were verified.

[前加工工程]
光学ガラスのブロックを丸め加工及びスライス加工し、直径67mm、厚さ2.0mmの円形状の板材に成形した。
次に、コアツールで被加工物の外周部端面を研削し、面取形状加工を施した。
[Pre-processing process]
The optical glass block was rounded and sliced and formed into a circular plate having a diameter of 67 mm and a thickness of 2.0 mm.
Next, the outer peripheral end surface of the workpiece was ground with a core tool, and chamfered shape processing was performed.

[研削工程]
1)1段目の工程
浜井産業株式会社製又はスピードファム株式会社製の9B〜24B両面加工機と、#1000のダイヤモンドペレットを用いて研削加工をした。
2)2段目のサブ工程(最終のサブ工程又は唯一の研削工程)
浜井産業株式会社製又はスピードファ株式会社社製の9B〜24B両面加工機と、ダイヤモンド粒子をシート状の樹脂に分散させたダイヤモンドシートを用いて、研削加工をした。
このとき、研削加工後のRaは0.20〜0.40μmであった。
[Grinding process]
1) First step: Grinding was performed using a 9B-24B double-sided machine manufactured by Hamai Sangyo Co., Ltd. or Speed Fam Co., Ltd. and diamond pellets of # 1000.
2) Second stage sub-process (final sub-process or only grinding process)
Grinding was performed using a 9B-24B double-sided machine manufactured by Hamai Sangyo Co., Ltd. or Speedfa Co., Ltd., and a diamond sheet in which diamond particles were dispersed in a sheet-like resin.
At this time, Ra after grinding was 0.20 to 0.40 μm.

Figure 2013052503
Figure 2013052503

[1段目の研磨工程(1P)]
1)1段目の工程(1P)
表面粗さRaで40nm未満にすることを目的として、浜井産業株式会社製の16B両面加工機と研磨シートを用い、両面加工機の上下の定盤に研磨シートを貼付け、上述の前加工工程及び研削工程を施した光学ガラス板を、樹脂製のキャリアとともに上下の定盤間(研磨シートの間)に保持し、遊離砥粒を含む研磨スラリーを再生循環供給しながら、1段目の研磨加工を連続3〜5バッチ行い、条件を変えながら研磨効率(加工レート)の測定を行った。
研磨シートとして硬質発泡ウレタン(硬度(アスカーC)90:浜井産業株式会社製HPC90D2)を用い、ナップ層としてカーボンブラックを含有した軟質シート(硬度(アスカーC)81、75又は70:FILWEL社製)を用いた。
研磨シートは、使用する前に、#400、#600、#800のドレッサーでドレス処理を施した。
研磨スラリーは、遊離砥粒として平均粒子径(d50)が0.2〜2.0μmのジルコン等を水に分散し、希釈濃度を種々変化させた。必要に応じ研磨スラリーのpH調整のために、研磨スラリーにNaOH水溶液を添加した。
研磨スラリーのタンク内に、第1バッチ開始時において上述の研磨スラリー38リットルを貯留し、当該研磨スラリーの濃度を30wt%にした上で、pHを種々変化させて研磨した。研磨スラリーの循環供給経路内には、100μmのフィルターを設けた。
加工開始から、定盤の回転数と加工圧力をともに段階的に上昇させ、最大回転数及び最大加工圧力で一定時間保持し、その後回転数及び加工圧力をともに下降させた。
なお、1バッチの加工枚数は、板材110枚である。測定は、この中から2枚を任意に抜き出し、内周と外周を別に測定した。1バッチ終了後に、研削工程が終了した新たな板材を用意し、次バッチの加工を行った。一つの実施例又は比較例の開始前には、研磨スラリーを未使用の研磨スラリーに交換して加工を行った。
なお、本願実施例に記載されている定盤の回転数は、下定盤の回転数である。
[First polishing step (1P)]
1) First step (1P)
For the purpose of making the surface roughness Ra less than 40 nm, a 16B double-sided processing machine and a polishing sheet manufactured by Hamai Sangyo Co., Ltd. are used, and the polishing sheet is pasted on the upper and lower surface plates of the double-sided processing machine, The optical glass plate that has been subjected to the grinding process is held between the upper and lower surface plates (between the polishing sheets) together with the resin carrier, and the first-stage polishing process is performed while supplying and supplying polishing slurry containing free abrasive grains. Was performed continuously for 3 to 5 batches, and the polishing efficiency (processing rate) was measured while changing the conditions.
A soft foam (hardness (Asker C) 81, 75 or 70: manufactured by FILWEL) using hard foamed urethane (hardness (Asker C) 90: HPC90D2 manufactured by Hamai Sangyo Co., Ltd.) as the polishing sheet and carbon black as the nap layer Was used.
The abrasive sheet was dressed with a # 400, # 600, or # 800 dresser before use.
In the polishing slurry, zircon having an average particle diameter (d50) of 0.2 to 2.0 μm was dispersed in water as free abrasive grains, and the dilution concentration was variously changed. An aqueous NaOH solution was added to the polishing slurry to adjust the pH of the polishing slurry as necessary.
In the polishing slurry tank, 38 liters of the polishing slurry described above was stored at the start of the first batch, and after polishing the concentration of the polishing slurry to 30 wt%, polishing was performed with various changes in pH. A 100 μm filter was provided in the circulating supply path of the polishing slurry.
From the start of machining, both the rotation speed and machining pressure of the surface plate were increased stepwise, held at the maximum rotation speed and maximum machining pressure for a certain period of time, and then both the rotation speed and machining pressure were lowered.
The number of sheets processed in one batch is 110 sheets of plate material. In the measurement, two pieces were arbitrarily extracted from these, and the inner circumference and the outer circumference were measured separately. After the completion of one batch, a new plate material having been finished with the grinding process was prepared, and the next batch was processed. Before the start of one example or comparative example, the polishing slurry was replaced with an unused polishing slurry for processing.
In addition, the rotation speed of the surface plate described in an Example of this application is a rotation speed of a lower surface plate.

比較例の結果を表2〜表4に、実施例の結果を表5〜表11に記載する。表中、そのバッチの加工前に作業を行った場合、加工前作業の欄にその作業を記載した。Aは研磨シートドレス処理を意味し、Bは研磨スラリーのpHの調整(NaOH水溶液等の添加)を意味する。また、表中の本加工時間は、最大加工圧力での加工時間である。加工後の表面性状の評価は、表面粗度Ra20nm未満であり、且つマイクロスクラッチ10個未満のものを基板品質「◎」、表面粗度Ra40nm未満であり、且つマイクロスクラッチ30個未満のものを基板品質「○」、表面粗度Ra60nm以下であり、且つマイクロスクラッチ100個未満のものを基板品質「△」、これらの条件を満たさないものを基板品質「×」とした。
なお、マイクロスクラッチは、得られた基板の表面全体について、日立ハイテクノロジーズ社製NS7300を用いて測定した。
The results of Comparative Examples are shown in Tables 2 to 4, and the results of Examples are shown in Tables 5 to 11. In the table, when the work was performed before the processing of the batch, the work was described in the column of the pre-processing work. A means polishing sheet dressing, and B means adjustment of the pH of the polishing slurry (addition of NaOH aqueous solution or the like). Further, the main machining time in the table is the machining time at the maximum machining pressure. Evaluation of the surface properties after processing is that the surface roughness Ra is less than 20 nm and the micro scratch is less than 10 substrate quality “◎”, the surface roughness Ra is less than 40 nm and the micro scratch is less than 30 substrate. A substrate having a quality “◯”, a surface roughness Ra of 60 nm or less and less than 100 micro scratches was defined as a substrate quality “Δ”, and a substrate not satisfying these conditions was defined as a substrate quality “X”.
In addition, the micro scratch was measured about the whole surface of the obtained board | substrate using NS7300 by Hitachi High-Technologies.

Figure 2013052503
Figure 2013052503

比較例1〜5は、従来の酸化セリウムの遊離砥粒を用いた例である。   Comparative Examples 1 to 5 are examples using conventional free abrasive grains of cerium oxide.

Figure 2013052503
Figure 2013052503

Figure 2013052503
Figure 2013052503

比較例15では、研磨砥粒の質量比をCeO:ZrO=1:9にした。 In Comparative Example 15, the mass ratio of the abrasive grains was CeO 2 : ZrO 2 = 1: 9.

Figure 2013052503
Figure 2013052503

実施例1〜5では、研磨後の表面品質、研磨加工レートともに良好であった。   In Examples 1 to 5, both the surface quality after polishing and the polishing processing rate were good.

Figure 2013052503
Figure 2013052503

実施例6では、研磨砥粒を質量比でZrSiO:CeO=9:1にした。
実施例7では、研磨砥粒を質量比でZrSiO:SiO=9:1にした。
実施例6〜10では、研磨後の表面品質、研磨加工レートともに良好であった。
In Example 6, the abrasive grains were ZrSiO 4 : CeO 2 = 9: 1 by mass ratio.
In Example 7, the abrasive grains were ZrSiO 4 : SiO 2 = 9: 1 by mass ratio.
In Examples 6 to 10, both the surface quality after polishing and the polishing rate were good.

Figure 2013052503
Figure 2013052503

実施例11〜15では、研磨後の表面品質、研磨加工レートともに良好であった。   In Examples 11 to 15, both the surface quality after polishing and the polishing rate were good.

Figure 2013052503
Figure 2013052503

実施例20では、研磨砥粒を質量比でZrSiO:SiO=9:1にした。
実施例16〜20では、研磨後の表面品質、研磨加工レートともに良好であった。
In Example 20, the abrasive grains were ZrSiO 4 : SiO 2 = 9: 1 in terms of mass ratio.
In Examples 16 to 20, both the surface quality after polishing and the polishing processing rate were good.

Figure 2013052503
Figure 2013052503

実施例21では、研磨砥粒を質量比でZrSiO:SiO=9:1にした。
実施例21〜25では、研磨後の表面品質、研磨加工レートともに良好であった。
In Example 21, the abrasive grains were ZrSiO 4 : SiO 2 = 9: 1 by mass ratio.
In Examples 21 to 25, both the surface quality after polishing and the polishing rate were good.

Figure 2013052503
Figure 2013052503

実施例29では、研磨砥粒の質量比を、質量比でZrSiO:CeO=8:2にした。
実施例30では、研磨砥粒の質量比を、質量比でZrSiO:SiO=7:3にした。
実施例26〜30では、研磨後の表面品質、研磨加工レートともに良好であった。
In Example 29, the mass ratio of the abrasive grains was ZrSiO 4 : CeO 2 = 8: 2 by mass ratio.
In Example 30, the mass ratio of the abrasive grains was ZrSiO 4 : SiO 2 = 7: 3 by mass ratio.
In Examples 26 to 30, both the surface quality after polishing and the polishing processing rate were good.

Figure 2013052503
Figure 2013052503

実施例31では、質量比でZrSiO:CeO=97:3にした。
実施例32では、質量比でZrSiO:CeO:SiO=94:3:3にした。
実施例33では、質量比でZrSiO:SiO=97:3にした。
実施例31〜34では、研磨後の表面品質、研磨加工レートともに良好であった。
In Example 31, the mass ratio was ZrSiO 4 : CeO 2 = 97: 3.
In Example 32, the mass ratio was ZrSiO 4 : CeO 2 : SiO 2 = 94: 3: 3.
In Example 33, the mass ratio was ZrSiO 4 : SiO 2 = 97: 3.
In Examples 31-34, both the surface quality after polishing and the polishing processing rate were good.

[2段目の研磨工程(2P)]
洗浄後の基板を、浜井産業株式会社製又はスピードファム株式会社製の16B両面加工機と、スエード研磨シートを用い、遊離砥粒を含む研磨スラリーを供給しながら以下の条件で2段目の研磨加工をし、表面粗さRaを200Å以下にした。
研磨砥粒:コロイダルシリカ(平均粒子径d50=0.02μm)
研磨スラリーのpH:1.0〜7.7
研磨スラリー濃度:10〜30wt%
最大加工圧力:110g/cm
最大回転数:25rpm
加工時間:30分
加工後の基板の表面粗さ(2P加工後Ra)を表12に示す。
[Second stage polishing process (2P)]
Using the 16B double-sided processing machine manufactured by Hamai Sangyo Co., Ltd. or Speed Fam Co., Ltd. and a suede polishing sheet, the substrate after cleaning is polished at the second stage under the following conditions while supplying a polishing slurry containing loose abrasive grains. The surface roughness Ra was set to 200 mm or less by processing.
Polishing abrasive grains: colloidal silica (average particle diameter d50 = 0.02 μm)
Polishing slurry pH: 1.0 to 7.7
Polishing slurry concentration: 10-30 wt%
Maximum processing pressure: 110 g / cm 2
Maximum rotation speed: 25rpm
Processing time: 30 minutes Table 12 shows the surface roughness (Ra after 2P processing) of the substrate after processing.

Figure 2013052503
Figure 2013052503

以上より、本発明の研磨方法は、酸化セリウムを遊離砥粒とした研磨方法と比較しても、基板品質、加工レートが同等以上の研磨方法であることが分かる。   From the above, it can be seen that the polishing method of the present invention is equivalent to or higher in substrate quality and processing rate than the polishing method using cerium oxide as loose abrasive grains.

次に、石英ガラスとCaFからなる光学材料で、上記実施例と同様にサンプルを作製し、研磨レートと研磨後の表面粗さを検証した。 Next, a sample was prepared using an optical material composed of quartz glass and CaF 2 in the same manner as in the above example, and the polishing rate and the surface roughness after polishing were verified.

(実施例35)
[研削工程]
得られた石英ガラスからなるサンプルを、樹脂製のキャリアとともに、スピードファム株式会社製の16B両面加工機の上下の定盤間に保持し、遊離砥粒を含むスラリーを再生循環供給しながら、次の条件で板厚が1.030mmとなるまで研削加工を行った。
SUS定盤にダイヤモンドシートを貼付(平均粒子径9μm)
研削液:クーラント(濃度10wt%)
加工圧:100g/cm
回転数:30(rpm)
(Example 35)
[Grinding process]
While holding the sample made of quartz glass together with the resin carrier between the upper and lower surface plates of the 16B double-sided processing machine manufactured by Speed Fam Co., Ltd. Grinding was performed until the plate thickness was 1.030 mm under the above conditions.
Paste diamond sheet on SUS surface plate (average particle size 9μm)
Grinding fluid: coolant (concentration 10wt%)
Processing pressure: 100 g / cm 2
Rotation speed: 30 (rpm)

[1段目の研磨工程(1P)]
次に、浜井産業株式会社製の16B両面加工機と研磨シートを用い、両面加工機の上下の定盤に研磨シートを貼付け、樹脂製のキャリアとともに上下の定盤間(研磨シートの間)に保持し、遊離砥粒を含む研磨スラリーを再生循環供給しながら次の条件で1段目の研磨加工を行った。
研磨シート:硬質シート(硬度90、開口径100μm)
遊離砥粒(濃度):ZrSiO(20wt%)
砥粒の平均粒子径d50:0.5μm
研磨スラリーのpH:7.0
最大加工圧:110g/cm
最大回転数:40(rpm)
加工時間:45分
研磨加工レートは0.60μm/minであり、1P後の表面粗さRaは0.3μmであった。
[First polishing step (1P)]
Next, using a 16B double-sided processing machine and a polishing sheet manufactured by Hamai Sangyo Co., Ltd., paste the polishing sheet on the upper and lower surface plates of the double-sided processing machine, and between the upper and lower surface plates (between the polishing sheets) together with the resin carrier. The first stage polishing process was performed under the following conditions while holding and recirculating and supplying the polishing slurry containing free abrasive grains.
Polishing sheet: Hard sheet (hardness 90, opening diameter 100 μm)
Free abrasive grains (concentration): ZrSiO 4 (20 wt%)
Average particle diameter d50 of abrasive grains: 0.5 μm
Polishing slurry pH: 7.0
Maximum processing pressure: 110 g / cm 2
Maximum rotation speed: 40 (rpm)
Processing time: 45 minutes The polishing processing rate was 0.60 μm / min, and the surface roughness Ra after 1P was 0.3 μm.

[2段目の研磨工程(2P)]
浜井産業株式会社製の16B両面加工機と研磨シートを用い、両面加工機の上下の定盤に研磨シートを貼付け、樹脂製のキャリアとともに上下の定盤間(研磨シートの間)に保持し、遊離砥粒を含む研磨スラリーを再生循環供給しながら、次の条件で1段目の研磨加工を行った。
研磨シート:軟質シート(硬度86、開口径20μm、ナップ長480μm)
遊離砥粒(濃度):コロイダルシリカ(30wt%)
砥粒の平均粒子径d50:0.08μm
研磨スラリーのpH:4.0
最大加工圧:110g/cm
最大回転数:25(rpm)
加工時間:50分
2P後の表面粗さRaは100Å以下であった。
[Second stage polishing process (2P)]
Using a 16B double-sided processing machine and a polishing sheet manufactured by Hamai Sangyo Co., Ltd., the polishing sheet is attached to the upper and lower surface plates of the double-sided processing machine, and held between the upper and lower surface plates (between the polishing sheets) together with the resin carrier, The first-stage polishing process was performed under the following conditions while supplying and circulating a polishing slurry containing loose abrasive grains.
Polishing sheet: Soft sheet (hardness 86, opening diameter 20 μm, nap length 480 μm)
Free abrasive grains (concentration): colloidal silica (30 wt%)
Average particle diameter of abrasive grains d50: 0.08 μm
Polishing slurry pH: 4.0
Maximum processing pressure: 110 g / cm 2
Maximum rotation speed: 25 (rpm)
Processing time: 50 minutes The surface roughness Ra after 2P was 100 mm or less.

(実施例36)
[研削工程]
CaFからなる板状材料を、樹脂製のキャリアとともに、スピードファム株式会社製の16B両面加工機の上下の定盤間に保持し、遊離砥粒を含むスラリーを再生循環供給しながら、次の条件で板厚が1.030mmとなるまで研削加工を行った。
SUS定盤にダイヤモンドシートを貼付(平均粒子径9μm)
遊離砥粒:グリーンカーボン(GC#240)
加工圧:110g/cm
回転数:35(rpm)
(Example 36)
[Grinding process]
While holding the plate-like material made of CaF 2 between the upper and lower surface plates of a 16B double-sided processing machine manufactured by Speed Fam Co., Ltd. together with a resin carrier, the slurry containing free abrasive grains is recycled and supplied, Grinding was performed until the plate thickness was 1.030 mm under the conditions.
Paste diamond sheet on SUS surface plate (average particle size 9μm)
Free abrasive grains: Green carbon (GC # 240)
Processing pressure: 110 g / cm 2
Number of revolutions: 35 (rpm)

[1段目の研磨工程(1P)]
次に、浜井産業株式会社製の16B両面加工機と研磨シートを用い、両面加工機の上下の定盤に研磨シートを貼付け、樹脂製のキャリアとともに上下の定盤間(研磨シートの間)に保持し、遊離砥粒を含む研磨スラリーを再生循環供給しながら次の条件で1段目の研磨加工を行った。
研磨シート:硬質シート(硬度90、開口径100μm、)
遊離砥粒(濃度):ZrSiO(20wt%)
砥粒の平均粒子径d50:0.5μm
研磨スラリーのpH:7.0
最大加工圧:80g/cm
最大回転数:15(rpm)
加工時間:60分
研磨加工レートは0.50μm/minであり、1P後の表面粗さRaは0.002μmであった。
[First polishing step (1P)]
Next, using a 16B double-sided processing machine and a polishing sheet manufactured by Hamai Sangyo Co., Ltd., paste the polishing sheet on the upper and lower surface plates of the double-sided processing machine, and between the upper and lower surface plates (between the polishing sheets) together with the resin carrier. The first stage polishing process was performed under the following conditions while holding and recirculating and supplying the polishing slurry containing free abrasive grains.
Polishing sheet: hard sheet (hardness 90, opening diameter 100 μm)
Free abrasive grains (concentration): ZrSiO 4 (20 wt%)
Average particle diameter d50 of abrasive grains: 0.5 μm
Polishing slurry pH: 7.0
Maximum processing pressure: 80 g / cm 2
Maximum rotation speed: 15 (rpm)
Processing time: 60 minutes The polishing processing rate was 0.50 μm / min, and the surface roughness Ra after 1P was 0.002 μm.

[2段目の研磨工程(2P)]
浜井産業株式会社製の16B両面加工機と研磨シートを用い、両面加工機の上下の定盤に研磨シートを貼付け、樹脂製のキャリアとともに上下の定盤間(研磨シートの間)に保持し、遊離砥粒を含む研磨スラリーを再生循環供給しながら次の条件で1段目の研磨加工を行った。
研磨シート:軟質シート(硬度86、開口径100μm、ナップ長460μm)
遊離砥粒(濃度):コロイダルシリカ(30wt%)
砥粒の平均粒子径d50:0.08μm
研磨スラリーのpH:6.0
最大加工圧:110g/cm
最大回転数:25(rpm)
加工時間:30分
2P後の表面粗さRaは10Å以下であった。
[Second stage polishing process (2P)]
Using a 16B double-sided processing machine and a polishing sheet manufactured by Hamai Sangyo Co., Ltd., the polishing sheet is attached to the upper and lower surface plates of the double-sided processing machine, and held between the upper and lower surface plates (between the polishing sheets) together with the resin carrier, The first stage polishing process was performed under the following conditions while supplying and circulating a polishing slurry containing loose abrasive grains.
Polishing sheet: Soft sheet (hardness 86, opening diameter 100 μm, nap length 460 μm)
Free abrasive grains (concentration): colloidal silica (30 wt%)
Average particle diameter of abrasive grains d50: 0.08 μm
Polishing slurry pH: 6.0
Maximum processing pressure: 110 g / cm 2
Maximum rotation speed: 25 (rpm)
Processing time: 30 minutes The surface roughness Ra after 2P was 10 mm or less.

以上のことから、実施例の方法によれば、石英ガラスやCaF等の光学材料に対しても、ジルコンを砥粒として用いた加工によって高い研磨レートが得られ、且つ平滑な表面性状を得られることが分かった。 From the above, according to the method of the example, a high polishing rate can be obtained by processing using zircon as abrasive grains for optical materials such as quartz glass and CaF 2 , and a smooth surface property can be obtained. I found out that

(実施例37)
ヌープ硬さがそれぞれ異なる被研磨材料について、直径67mm、厚さ0.95mmの基板を作製し、研磨試験を行った。被研磨材料は、株式会社オハラ製の光学ガラスと、上記実施例で作製した材料4(結晶化ガラス)を用いた。
研磨試験は、オスカー式研磨機と研磨シートを用い、研磨盤に研磨シートを貼り付け、上定盤に基板を保持し、遊離砥粒を含む研磨スラリーを再生循環供給しながら行った。
研磨前の基板表面は、ダイヤモンドペレット#1500で研削を施したものであり、表面粗さRa0.15μm程度であった。
研磨試験の条件は以下の通りである。
研磨シート:硬質シート(硬度90、開口径100μm)
遊離砥粒(濃度):ZrSiO(0.3wt%)
砥粒の平均粒子径d50:1.2μm
研磨スラリーのpH:7.5
分散剤:リン酸ナトリウム
上軸搖動速度:32cpm
下軸回転数:500rpm
上軸加圧:0.4MPa
加工時間:5分
この条件で研磨パッド及びスラリーの交換をせずに、研磨前の新しい基板に交換しながら、合計30バッチの研磨試験を行った。
1バッチの枚数は1枚であり、研磨後のこの基板について評価した。
1バッチ目の結果において、表面が鏡面となっているものを○、表面にクモリが発生しているものを×とした。
また、1バッチ目の研磨除去厚さに対する、10バッチ目及び30バッチ目の研磨除去厚さの比(表中「加工比」と表記する)を測定した。
研磨試験の結果を表13に示す。
(Example 37)
For the materials to be polished having different Knoop hardnesses, substrates having a diameter of 67 mm and a thickness of 0.95 mm were prepared and subjected to a polishing test. As the material to be polished, optical glass manufactured by OHARA INC. And material 4 (crystallized glass) prepared in the above examples were used.
The polishing test was performed by using an Oscar type polishing machine and a polishing sheet, attaching the polishing sheet to the polishing plate, holding the substrate on the upper surface plate, and regenerating and supplying polishing slurry containing free abrasive grains.
The substrate surface before polishing was ground with diamond pellet # 1500 and had a surface roughness Ra of about 0.15 μm.
The conditions of the polishing test are as follows.
Polishing sheet: Hard sheet (hardness 90, opening diameter 100 μm)
Free abrasive grains (concentration): ZrSiO 4 (0.3 wt%)
Average particle diameter of abrasive grains d50: 1.2 μm
Polishing slurry pH: 7.5
Dispersant: Sodium phosphate Upper shaft peristaltic speed: 32 cpm
Lower shaft rotation speed: 500rpm
Upper shaft pressure: 0.4 MPa
Processing time: 5 minutes A total of 30 batches of polishing tests were conducted while replacing the polishing pad and the slurry under these conditions and replacing with a new substrate before polishing.
The number of batches was one, and this substrate after polishing was evaluated.
In the result of the first batch, the case where the surface is a mirror surface is indicated by ◯, and the case where the surface is spider is indicated by ×.
Further, the ratio of the polishing removal thickness of the 10th batch and the 30th batch to the polishing removal thickness of the first batch (denoted as “processing ratio” in the table) was measured.
The results of the polishing test are shown in Table 13.

Figure 2013052503
Figure 2013052503

(実施例38)
実施例37と同様に、ヌープ硬さがそれぞれ異なる被研磨材料について、直径67mm、厚さ0.95mmの基板を作製し、研磨試験を行った。被研磨材料は、株式会社オハラ製の光学ガラスを用いた。
研磨試験は、オスカー式研磨機と研磨シートを用い、研磨盤に研磨シートを貼り付け、上定盤に基板を保持し、遊離砥粒を含む研磨スラリーを再生循環供給しながら行った。
研磨前の基板表面は、ダイヤモンドペレット#1500で研削を施したものであり、表面粗さRa0.15μm程度であった。
研磨試験の条件は以下の通りである。
研磨シート:硬質シート(硬度90、開口径100μm)
遊離砥粒(濃度):ZrSiO(0.04wt%)
砥粒の平均粒子径d50:1.1μm
研磨スラリーのpH:7.5
分散剤:リン酸ナトリウム
上軸搖動速度:32cpm
下軸回転数:500rpm
上軸加圧:0.4MPa
加工時間:5分
この条件で研磨パッド及びスラリーの交換をせずに、研磨前の新しい基板に交換しながら、合計30バッチの研磨試験を行った。
1バッチの枚数は1枚であり、研磨後のこの基板について評価した。
1バッチ目の結果において、表面が鏡面となっているものを○、表面にクモリが発生しているものを×とした。
また、1バッチ目の研磨除去厚さに対する、10バッチ目及び30バッチ目の研磨除去厚さの比(表中「加工比」と表記する)を測定した。
研磨試験の結果を表14に示す。
(Example 38)
In the same manner as in Example 37, substrates having a diameter of 67 mm and a thickness of 0.95 mm were prepared for materials to be polished having different Knoop hardnesses, and a polishing test was performed. As the material to be polished, optical glass manufactured by OHARA INC. Was used.
The polishing test was performed by using an Oscar type polishing machine and a polishing sheet, attaching the polishing sheet to the polishing plate, holding the substrate on the upper surface plate, and regenerating and supplying polishing slurry containing free abrasive grains.
The substrate surface before polishing was ground with diamond pellet # 1500 and had a surface roughness Ra of about 0.15 μm.
The conditions of the polishing test are as follows.
Polishing sheet: Hard sheet (hardness 90, opening diameter 100 μm)
Free abrasive grains (concentration): ZrSiO 4 (0.04 wt%)
Average particle diameter d50 of abrasive grains: 1.1 μm
Polishing slurry pH: 7.5
Dispersant: Sodium phosphate Upper shaft peristaltic speed: 32 cpm
Lower shaft rotation speed: 500rpm
Upper shaft pressure: 0.4 MPa
Processing time: 5 minutes A total of 30 batches of polishing tests were conducted while replacing the polishing pad and the slurry under these conditions and replacing with a new substrate before polishing.
The number of batches was one, and this substrate after polishing was evaluated.
In the result of the first batch, the case where the surface is a mirror surface is indicated by ◯, and the case where the surface is spider is indicated by ×.
Further, the ratio of the polishing removal thickness of the 10th batch and the 30th batch to the polishing removal thickness of the first batch (denoted as “processing ratio” in the table) was measured.
Table 14 shows the results of the polishing test.

Figure 2013052503
Figure 2013052503

実施例37及び38より、ヌープ硬さが660Hk以下のガラス基板に対して研磨試験を行ったときの、30バッチ目の研磨除去厚さは、1バッチ目の研磨除去厚さに対して80%以上であることが明らかになった。一方で、実施例37のヌープ硬さが670Hk以上のガラス基板に対して研磨試験を行ったときの、30バッチ目の研磨除去厚さは、1バッチ目の研磨除去厚さに対して59%以下であった。従って、ヌープ硬さが660Hk以下のガラス基板に対して、Zr及びSiを含む化合物からなる研磨砥粒で研磨を行った場合、研磨液を循環していても、経時的な研磨レートの低下が発生しにくいことが推察される。   From Examples 37 and 38, when a polishing test was performed on a glass substrate having a Knoop hardness of 660 Hk or less, the polishing removal thickness of the 30th batch was 80% of the polishing removal thickness of the first batch. It became clear that it was the above. On the other hand, when the polishing test was performed on the glass substrate having a Knoop hardness of 670 Hk or more in Example 37, the polishing removal thickness of the 30th batch was 59% of the polishing removal thickness of the first batch. It was the following. Therefore, when a glass substrate having a Knoop hardness of 660 Hk or less is polished with polishing abrasive grains made of a compound containing Zr and Si, the polishing rate is reduced over time even if the polishing liquid is circulated. It is presumed that it is difficult to occur.

Claims (7)

光学材料を、研磨液を用いて研磨する研磨工程を含む光学部品の製造方法であって、
前記研磨液は、Zr及びSiを含む化合物からなる研磨砥粒を少なくとも含有し、
前記研磨液中の研磨砥粒濃度が0.005wt%〜40wt%の範囲であることを特徴とする光学部品の製造方法。
An optical component manufacturing method including a polishing step of polishing an optical material using a polishing liquid,
The polishing liquid contains at least abrasive grains made of a compound containing Zr and Si,
A method for producing an optical component, characterized in that the abrasive grain concentration in the polishing liquid is in the range of 0.005 wt% to 40 wt%.
光学材料を、研磨液を用いて研磨する研磨工程を含む光学部品の製造方法であって、
前記研磨液は、Zr及びSiを含む化合物からなる研磨砥粒を少なくとも含有し、
前記研磨液中の研磨砥粒濃度が2wt%〜40wt%の範囲であることを特徴とする光学部品の製造方法。
An optical component manufacturing method including a polishing step of polishing an optical material using a polishing liquid,
The polishing liquid contains at least abrasive grains made of a compound containing Zr and Si,
A method for producing an optical component, wherein the concentration of abrasive grains in the polishing liquid is in the range of 2 wt% to 40 wt%.
前記研磨液中の研磨砥粒の平均粒子径d50が0.2μm〜2.0μmである請求項1又は2に記載の光学部品の製造方法。   The method for producing an optical component according to claim 1 or 2, wherein an average particle diameter d50 of the abrasive grains in the polishing liquid is 0.2 µm to 2.0 µm. 前記光学材料は酸化物基準の質量%で、SiO成分とAl成分の合計が2〜80%、RO成分0〜70%(ただし、RはMg、Ca、Ba、Sr、Znから選ばれる1種以上)、R’O成分0〜20%(ただし、R’はLi、Na、Kから選ばれる1種以上)を含有することを特徴とする請求項1から3のいずれかに記載の光学部品の製造方法。 The optical material is in mass% based on oxide, the total of SiO 2 component and Al 2 O 3 component is 2 to 80%, RO component is 0 to 70% (where R is from Mg, Ca, Ba, Sr, Zn) 1 or more types selected from the above, and R ′ 2 O component 0 to 20% (where R ′ is one or more types selected from Li, Na, and K). 5. The manufacturing method of the optical component as described in any one of. 前記研磨工程の終了後の前記光学材料の表面粗さRaを40nm未満となるようにする請求項1から4のいずれかに記載の光学部品の製造方法。   5. The method of manufacturing an optical component according to claim 1, wherein a surface roughness Ra of the optical material after the polishing step is less than 40 nm. 前記研磨工程の終了後、さらに研磨工程を施し、最終の研磨工程後の前記光学材料の表面粗さRaを15nm未満となるようにする請求項5に記載の光学部品の製造方法。   6. The method of manufacturing an optical component according to claim 5, wherein after the polishing step is finished, a polishing step is further performed so that the surface roughness Ra of the optical material after the final polishing step is less than 15 nm. ヌープ硬さHkが660以下である光学ガラスを、研磨液を用いて研磨する研磨工程を含む光学部品の製造方法であって、
前記研磨液は、Zr及びSiを含む化合物からなる研磨砥粒を少なくとも含有し、
前記研磨液中の研磨砥粒濃度が0.005wt%〜40wt%の範囲であることを特徴とする光学部品の製造方法。
A method for producing an optical component comprising a polishing step of polishing optical glass having a Knoop hardness Hk of 660 or less using a polishing liquid,
The polishing liquid contains at least abrasive grains made of a compound containing Zr and Si,
A method for producing an optical component, characterized in that the abrasive grain concentration in the polishing liquid is in the range of 0.005 wt% to 40 wt%.
JP2012090525A 2011-05-20 2012-04-11 Method for manufacturing optical part Pending JP2013052503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090525A JP2013052503A (en) 2011-05-20 2012-04-11 Method for manufacturing optical part

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2011114228 2011-05-20
JP2011114228 2011-05-20
JP2011121064 2011-05-30
JP2011121064 2011-05-30
JP2011134666 2011-06-16
JP2011134666 2011-06-16
JP2011172223 2011-08-05
JP2011172223 2011-08-05
JP2012090525A JP2013052503A (en) 2011-05-20 2012-04-11 Method for manufacturing optical part

Publications (1)

Publication Number Publication Date
JP2013052503A true JP2013052503A (en) 2013-03-21

Family

ID=47216983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090525A Pending JP2013052503A (en) 2011-05-20 2012-04-11 Method for manufacturing optical part

Country Status (4)

Country Link
JP (1) JP2013052503A (en)
CN (1) CN103501963A (en)
TW (1) TW201249974A (en)
WO (1) WO2012160897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177923A (en) * 2017-04-10 2018-11-15 信越化学工業株式会社 Polishing agent for synthetic quartz glass substrate and method of producing the same, and method of polishing synthetic quartz glass

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227357B2 (en) * 2013-09-30 2017-11-08 Hoya株式会社 Magnetic disk substrate manufacturing method and magnetic disk manufacturing method
CN110253419B (en) * 2014-10-14 2021-08-13 Hoya株式会社 Polishing pad material, method for producing polishing pad, method for producing substrate for magnetic disk, and method for producing magnetic disk
CN108290771A (en) * 2015-11-24 2018-07-17 旭硝子株式会社 Optical glass
US11697183B2 (en) 2018-07-26 2023-07-11 Taiwan Semiconductor Manufacturing Co., Ltd. Fabrication of a polishing pad for chemical mechanical polishing
CN116798456A (en) * 2018-08-07 2023-09-22 Hoya株式会社 Magnetic disk substrate and magnetic disk
CN113601278A (en) * 2021-08-20 2021-11-05 沈阳飞机工业(集团)有限公司 Manufacturing method of mirror finishing auxiliary tool of 3D printed piece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103206A (en) * 2000-07-24 2002-04-09 Smart Gels Japan Kk Working fluid for wire cutting and working fluid for surface grinding of hard-to-cut material
JP2002305166A (en) * 2001-04-05 2002-10-18 Rodel Nitta Co Method for preparing polishing slurry
JP2006222453A (en) * 2001-11-28 2006-08-24 Shin Etsu Handotai Co Ltd Silicon wafer, method for manufacturing the same, and soi wafer
US20070197142A1 (en) * 2006-02-17 2007-08-23 Chien-Min Sung Tools for polishing and associated methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603165B2 (en) * 1994-10-18 2004-12-22 株式会社フジミインコーポレーテッド Abrasive composition
JPH11203674A (en) * 1998-01-12 1999-07-30 Mitsubishi Chemical Corp Method for manufacturing substrate for magnetic recording medium
JPH11278865A (en) * 1998-03-30 1999-10-12 Ngk Insulators Ltd Crystallized glass for magnetic disk substrate, magnetic disk substrate, magnetic disk and production of crystallized glass for magnetic disk substrate
JP3996314B2 (en) * 1999-03-26 2007-10-24 三洋化成工業株式会社 Polishing abrasive dispersant and polishing slurry
JP4202183B2 (en) * 2003-05-09 2008-12-24 株式会社フジミインコーポレーテッド Polishing composition
JP2009269762A (en) * 2008-04-30 2009-11-19 Fuji Electric Device Technology Co Ltd Glass raw material, molding die for the same, and method for manufacturing glass substrate for magnetic disk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103206A (en) * 2000-07-24 2002-04-09 Smart Gels Japan Kk Working fluid for wire cutting and working fluid for surface grinding of hard-to-cut material
JP2002305166A (en) * 2001-04-05 2002-10-18 Rodel Nitta Co Method for preparing polishing slurry
JP2006222453A (en) * 2001-11-28 2006-08-24 Shin Etsu Handotai Co Ltd Silicon wafer, method for manufacturing the same, and soi wafer
US20070197142A1 (en) * 2006-02-17 2007-08-23 Chien-Min Sung Tools for polishing and associated methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177923A (en) * 2017-04-10 2018-11-15 信越化学工業株式会社 Polishing agent for synthetic quartz glass substrate and method of producing the same, and method of polishing synthetic quartz glass

Also Published As

Publication number Publication date
TW201249974A (en) 2012-12-16
WO2012160897A1 (en) 2012-11-29
CN103501963A (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP2013052503A (en) Method for manufacturing optical part
KR102048089B1 (en) Manufacture of synthetic quartz glass substrate
JP2011104713A (en) Dressing tool for glass substrate polishing pad
JP2009072832A (en) Polishing sheet and method for production thereof
JP5331925B2 (en) Manufacturing method of substrate for information recording medium
JP2021167062A (en) Fixed abrasive grain grindstone
CN102886730A (en) Method for manufacturing glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP5712906B2 (en) Substrate manufacturing method
JP6692006B2 (en) Polishing liquid, glass substrate manufacturing method, and magnetic disk manufacturing method
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
US20110212669A1 (en) Method for manufacturing glass substrate for magnetic recording medium
JP2014197441A (en) Method for manufacturing hard disk substrate
WO2014103296A1 (en) Method for manufacturing glass substrate for hard disks
JP2013122795A (en) Slurry for polishing magnetic disk glass, method for manufacturing magnetic disk glass substrate using polishing slurry, and magnetic disk glass substrate
JP5755054B2 (en) Substrate manufacturing method
JPWO2013118648A1 (en) Manufacturing method of glass product and manufacturing method of magnetic disk
JP2010238310A (en) Method for manufacturing substrate for magnetic disk
JP5083477B2 (en) Manufacturing method of glass substrate for information recording medium
CN107615380B (en) Method for polishing glass substrate, polishing liquid, method for producing glass substrate for magnetic disk, and method for producing magnetic disk
WO2011096366A1 (en) Glass substrate manufacturing method
JP5839818B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2014203503A (en) Method for manufacturing hard disk substrate
WO2014115495A1 (en) Method for manufacturing glass substrate for hard disk
CN105580077B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
CN109285565B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301