JP4202183B2 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP4202183B2
JP4202183B2 JP2003132312A JP2003132312A JP4202183B2 JP 4202183 B2 JP4202183 B2 JP 4202183B2 JP 2003132312 A JP2003132312 A JP 2003132312A JP 2003132312 A JP2003132312 A JP 2003132312A JP 4202183 B2 JP4202183 B2 JP 4202183B2
Authority
JP
Japan
Prior art keywords
acid
polishing
component
alumina
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003132312A
Other languages
Japanese (ja)
Other versions
JP2004331886A (en
Inventor
貴規 宇野
博保 杉山
寿樹 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2003132312A priority Critical patent/JP4202183B2/en
Priority to GB0410214A priority patent/GB2401610B/en
Priority to MYPI20041724A priority patent/MY144061A/en
Priority to CNB2004100435122A priority patent/CN100392035C/en
Publication of JP2004331886A publication Critical patent/JP2004331886A/en
Application granted granted Critical
Publication of JP4202183B2 publication Critical patent/JP4202183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータの記憶装置として用いられる磁気ディスク用の基板等の被研磨物の表面を研磨するために用いられる研磨用組成物に関するものである。より詳しくは、より大きな研磨速度が得られるとともに、被研磨面の表面粗さを低減することができる研磨用組成物に関するものである。
【0002】
【従来の技術】
近年、コンピュータの記憶装置として用いられるハードディスクの高密度化等の要求に伴い、ハードディスク用基板の研磨工程における研磨速度及びハードディスク用基板の表面品質の向上が求められている。このような要求を満たすために、従来の研磨用組成物は、水、アルミナ質研磨材及びモリブデン酸塩と有機酸とからなる研磨促進剤を含有している(例えば、特許文献1参照。)。そして、研磨材により被研磨物の表面(被研磨面)を研磨し、研磨促進剤により大きな研磨速度が得られるようになっている。また、α−アルミナ粒子、アルミニウムハイドレート等の固形物及び水を含有し、α−アルミナが全固形物の1〜50重量%に設定されているものもある(例えば、特許文献2参照。)。そして、α−アルミナ粒子により被研磨面を研磨し、固形物が研磨促進剤として作用して大きな研磨速度が得られるようになっている。
【0003】
【特許文献1】
特開平7−216345号公報(第2〜3頁)
【特許文献2】
特表平11−511394号公報(第4〜10頁)
【0004】
【発明が解決しようとする課題】
ところが、前者の研磨用組成物においては、アルミナ質研磨材並びに研磨促進剤を構成するモリブデン酸及び有機酸のみでは研磨速度を十分に向上させることができないという問題があった。一方、後者の研磨用組成物においては、研磨速度を向上させることはできるが表面粗さを低減する効果が低く、被研磨面の表面粗さを十分に低減することができないという問題があった。
【0005】
本発明は、前記のような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、より大きな研磨速度が得られるとともに、被研磨面の表面粗さを低減することができる研磨用組成物を提供することにある。
【0006】
【課題を解決するための手段】
前記の目的を達成するために、請求項1に記載の発明の研磨用組成物は、(a)α−アルミナを主成分とするアルミナ砥粒、(b)フュームドアルミナ、(c)有機酸、無機酸及びそれらの塩からなる群から選ばれる少なくとも一種の研磨促進剤及び(d)水の各成分を含有し、前記成分(c)が、クエン酸、マレイン酸、無水マレイン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、チオリンゴ酸、ギ酸、シュウ酸、カルボキシエチルチオコハク酸、硝酸アルミニウム及び硝酸鉄からなる群から選ばれる少なくとも一種であり、さらに成分(e)アルミナゾルを含有するものである。
【0009】
【発明の実施の形態】
以下、本発明を具体化した実施形態を詳細に説明する。
本実施形態の研磨用組成物には、(a)α−アルミナを主成分とするアルミナ砥粒、(b)フュームドアルミナ、(c)有機酸、無機酸及びそれらの塩からなる群から選ばれる少なくとも一種の研磨促進剤及び(d)水の各成分が含有されている。
【0010】
この研磨用組成物は、磁気ディスク用基板等の被研磨物の表面を研磨(一次研磨等)するために用いられる。被研磨物の具体例としては、ブランク材のアルミニウム合金表面にニッケル(Ni)−リン(P)の無電解メッキが施されたNi−Pサブストレートや、Ni−鉄(Fe)サブストレート、ボロンカーバイド(BC)サブストレート、カーボン(C)サブストレート等が挙げられる。
【0011】
成分(a)のα−アルミナ(α−酸化アルミニウム)を主成分とするアルミナ砥粒は、その機械的研磨作用により研磨材として作用し、被研磨面を研磨する。α−アルミナを主成分とするとは、アルミナ砥粒を構成するアルミナの結晶形態においてα化率が50%以上であることをいう。ここでいうα化率とは、X線回折測定による(113)面回折線の積分強度比から求められたものであり、アルミナの結晶形態の具体例としてはα−アルミナ、δ−アルミナ、θ−アルミナ、κ−アルミナ等が挙げられる。成分(a)は、α化率が異なるα−アルミナの混合により構成されてもよいし、α−アルミナと他の結晶形態のアルミナとの混合により構成されてもよい。アルミナの結晶形態においてα化率が50%未満の場合、成分(a)は機械的研磨作用が十分でなく大きな研磨速度が得られない。また、研磨材として一般的には二酸化ケイ素、酸化チタン等も用いられるが、これらは機械的研磨作用が十分でなく大きな研磨速度が得られない。従って、研磨用組成物は研磨材として成分(a)を含有する必要がある。
【0012】
成分(a)の粒子径は、レーザー回折散乱式粒度測定機(LS−230;Coulter社製)を用いた測定等のレーザー回折散乱法により求められる平均粒子径で好ましくは2.0μm以下、より好ましくは0.05〜1.0μmである。平均粒子径が0.05μm未満では機械的研磨作用が十分でなく大きな研磨速度が得られないおそれがある。一方、2.0μmを超えると、研磨後の被研磨物の表面粗さが悪化し、被研磨面にスクラッチが発生するおそれがある。
【0013】
研磨用組成物中の成分(a)の含有量は、好ましくは0.01〜40重量%、より好ましくは2〜25重量%である。成分(a)の含有量が0.01重量%未満では、研磨速度を十分に得ることができないおそれがある。一方、40重量%を超えると、成分(a)同士が凝集することにより研磨用組成物の安定性が低下して研磨用組成物に沈殿が発生しやすくなるおそれがある。
【0014】
成分(b)のフュームドアルミナは、研磨を促進するとともに、被研磨面の微小うねりを低減して表面粗さを低減する。これは、成分(b)が成分(a)のアルミナ粒子表面に作用し、研磨用組成物中の成分(a)の分散性を向上させるためと推察される。ここで、微小うねりとは、表面粗さ測定機を用いて一定の測定波長で測定された微小な凹凸を高さ(Å)で表したものである。研磨用組成物が成分(b)の代わりに例えばフュームドシリカを含有したときには、フュームドシリカは研磨促進効果が低く大きな研磨速度が得られず、被研磨面の表面粗さを低減することができない。従って、研磨用組成物は成分(b)を含有する必要がある。さらに、成分(b)のフュームドアルミナは、下記反応式(1)に示すように塩化アルミニウムの酸水素反応により得られ、δ−アルミナを有するとともにα化率が50%未満である。
【0015】
4AlCl3+6H2+3O2→2Al23+12HCl …(1)
成分(b)の粒子径は、気体吸着による粉体の比表面積測定法(BET法)により測定された比表面積から求められる平均一次粒子径で好ましくは0.005〜0.5μm、より好ましくは0.01〜0.1μmである。また、成分(b)のレーザー回折散乱法により測定される二次粒子径の最大値は、好ましくは1.5μm程度である。一般に、研磨用組成物中では、成分(b)同士が会合して凝集体を形成している。成分(b)の平均一次粒子径が0.005μm未満では、成分(a)の分散性を向上させる効果が低いために研磨促進効果が十分に得られない。一方、平均一次粒子径が0.5μmを超える、又は二次粒子径分布の上限が1.5μmを超えると、成分(b)の凝集体が大きくなり、(a)及び(b)の各成分の安定性が低下して研磨用組成物に沈殿が発生しやすくなるおそれがある。
【0016】
研磨用組成物中の成分(b)の含有量は、成分(a)の50重量%以下が好ましく、0.005〜20重量%がより好ましく、1〜12.5重量%が最も好ましい。成分(b)の含有量が成分(a)の0.005重量%未満では、成分(a)のアルミナ粒子表面に作用する成分(b)の量が不十分となるために成分(a)の分散性を十分に向上させることができず、研磨速度を十分に向上させることができない。一方、50重量%を超えると、成分(a)のアルミナ粒子表面に作用する成分(b)の量が過剰になるために成分(a)の機械的研磨作用が阻害され、大きな研磨速度が得られないおそれがある。
【0017】
成分(c)の有機酸、無機酸及びそれらの塩からなる群から選ばれる少なくとも一種の研磨促進剤は、その化学的研磨作用によって被研磨面を研磨することにより研磨を促進する。これらの中でも、有機酸及び無機塩からなる群から選ばれる少なくとも一種が、化学的研磨作用が強く研磨促進効果が高いために好ましい。さらに、成分(c)は、クエン酸、マレイン酸、無水マレイン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、チオリンゴ酸、ギ酸、シュウ酸、カルボキシエチルチオコハク酸、硝酸アルミニウム及び硝酸鉄からなる群から選ばれる少なくとも一種がより好ましく、クエン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、イミノ二酢酸及びカルボキシエチルチオコハク酸からなる群から選ばれる少なくとも一種が最も好ましい。
【0018】
研磨用組成物中の成分(c)の含有量は、好ましくは0.01〜10重量%、より好ましくは0.05〜5重量%、最も好ましくは0.1〜3重量%である。成分(c)の含有量が0.01重量%未満では、成分(c)による研磨促進効果が十分に得られない。一方、10重量%を超えても研磨促進効果をそれ以上高めることができず、不経済である。
【0019】
成分(d)の水は、他の成分を溶解又は分散させる。成分(d)は他の成分の作用を阻害するのを防止するために不純物をできるだけ含有しないものが好ましく、具体的にはイオン交換樹脂にて不純物イオンを除去した後にフィルタを通して異物を除去した純水や超純水、又は蒸留水等が好ましい。研磨用組成物中の成分(d)の含有量は、研磨用組成物中の他の成分の含有量に対する残量である。
【0020】
研磨用組成物には、前記各成分以外に(e)アルミナゾルを含有させるのが好ましい。成分(e)のアルミナゾルは、被研磨面に微小突起、微細なピット等の表面欠陥が発生するのを抑制するとともに、微小うねりを低減して被研磨面の表面粗さを低減する。これは、成分(e)が成分(a)のアルミナ粒子表面に付着し、成分(a)の機械的研磨作用を促進するためと推察される。さらに、成分(e)が研磨用組成物中にコロイド状に分散することにより、成分(a)の分散性を向上させて成分(a)が沈殿するのを防止したり、被研磨物を研磨するときに研磨パッドに成分(a)を保持しやすくする。
【0021】
成分(e)の具体例としてはアルミナ水和物及び水酸化アルミニウムから選ばれる少なくとも一種を酸性水溶液中にコロイド状に分散させたものが挙げられ、アルミナ水和物としてはベーマイト、擬ベーマイト、ダイアスポア、ジブサイト、バイヤライト等が挙げられる。ここで、酸性水溶液は有機酸、無機酸及びそれらの塩により水のpHを酸性側に調整することにより調製される。アルミナ水和物は単独で含有されてもよいし、二種以上を組み合わせて含有されてもよい。これらの中でも、ベーマイト又は擬ベーマイトを酸性水溶液中に分散させたものが、表面欠陥の発生を抑制する効果及び被研磨面の表面粗さを低減する効果が高いために好ましい。
【0022】
研磨用組成物中の成分(e)の含有量は、成分(e)中の固形分の重量で好ましくは0.01〜20重量%、より好ましくは0.05〜15重量%、最も好ましくは0.1〜10重量%である。成分(e)の含有量が0.01重量%未満では、成分(a)のアルミナ粒子表面に付着する成分(e)の量が不十分となるために成分(a)の機械的研磨作用を促進する効果が低く、被研磨面の表面粗さを十分に低減することができない。一方、20重量%を超えても、被研磨面の表面欠陥の発生を抑制する効果や表面粗さを低減する効果をそれ以上発揮することができず、不経済である。
【0023】
研磨用組成物には、研磨用組成物の安定化や研磨加工上の必要性等に応じ、成分(e)以外のその他の添加成分として、(f)界面活性剤、防錆剤、防食剤、沈降防止剤等を含有させてもよい。研磨用組成物中のその他の添加成分の含有量は、研磨用組成物の常法に従って決定される。
【0024】
成分(f)の界面活性剤は成分(a)の分散性を向上させ、ノニオン系界面活性剤やアニオン系界面活性剤等が挙げられる。これらの中でも、例えば被研磨面としての磁気ディスク用基板の表面を研磨するときに、磁気ディスク用基板の外周部の面ダレを抑制して磁気ディスク用基板表面の平坦性を向上させる効果が高いために、ノニオン系界面活性剤においては下記一般式(2)で示されるポリオキシエチレンポリオキシプロピレンアルキルエーテル、下記一般式(3)又は下記一般式(4)で示される構造を持つポリオキシエチレンポリオキシプロピレンコポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル又は下記一般式(5)で示されるウレタン会合型界面活性剤が好ましい。
【0025】
【化1】

Figure 0004202183
(式中のRはアルキル基を示し、l及びmは整数を示す。)
【0026】
【化2】
Figure 0004202183
(式中のn、o及びpは整数を示す。)
【0027】
【化3】
Figure 0004202183
(式中のq、r及びsは整数を示す。)
【0028】
【化4】
Figure 0004202183
(式中のXは活性水素原子を有する化合物とアルキレンオキシドから誘導されたポリエーテルポリオールの残基(但し、ポリエーテル鎖中にオキシエチレン基を20〜90重量%含む。)、tは2〜8の整数(=前記ポリエーテルポリオール1分子中の水酸基の数)、Yは二価の炭化水素基、Zは活性水素原子を有する一価の化合物の残基、uは3以上の整数を示す。)
一方、アニオン系界面活性剤においては、ポリアクリル酸ナトリウム等のポリカルボン酸塩や、イソプレンスルホン酸とアクリル酸との共重合体等のイソプレンスルホン酸又はその塩を必須単量体として得られる重合体が好ましい。本実施形態の研磨用組成物を調製するときにおける各成分の混合順序は限定されず、いずれの順序でもよいし同時でもよい。
【0029】
次に、本実施形態の研磨用組成物を用いた研磨方法について説明する。
被研磨面として磁気ディスク用基板表面を研磨するときには、磁気ディスク用基板表面の研磨工程において、磁気ディスク用基板の表面品質をより効率的に向上させるため、一般的には研磨工程は二段階に分けて行なわれる。即ち、1段目の研磨工程においては、磁気ディスク用基板表面のうねり、2段目の仕上げ研磨工程では除去できないような磁気ディスク用基板表面の大きなスクラッチや凹凸等の表面欠陥を除去する目的で研磨工程が行なわれる。
【0030】
一方、2段目の研磨工程においては、所望の小さな表面粗さに調整し、かつ1段目の研磨工程で発生した表面欠陥や1段目の研磨工程で完全に除去できなかったような表面欠陥を除去する目的で、仕上げ研磨工程が行なわれる。また、場合によっては、研磨工程を3段以上の工程に細分化して行なわれることもある。本実施形態の研磨用組成物は、これらの研磨工程のいずれにも用いることができるが、研磨能率が高く磁気ディスク用基板表面の微小うねりを低減することができるために、1段目の研磨工程で用いられるのが好ましい。
【0031】
さて、本実施形態の研磨用組成物を用いて例えばNi−Pサブストレート表面の1段目の研磨(一次研磨)を行なうときには、研磨用組成物をNi−Pサブストレート表面に供給しながら研磨パッドでNi−Pサブストレート表面を研磨する。このとき、研磨用組成物には成分(a)が含有されているために、その機械的研磨作用によって一定の研磨速度でNi−Pサブストレート表面を研磨することができ、成分(c)が含有されているために、その化学的研磨作用によって研磨を促進して大きな研磨速度が得られる。さらに、研磨用組成物には成分(b)が含有されているために、より大きな研磨速度が得られるとともに、Ni−Pサブストレート表面の表面粗さを低減することができる。加えて、成分(e)を含有することにより、Ni−Pサブストレート表面に表面欠陥が発生するのを抑制するとともに表面粗さをより低減することができる。
【0032】
以上詳述した本実施形態によれば、次のような効果が発揮される。
・ 本実施形態の研磨用組成物は(a)〜(c)の各成分を含有している。このため、成分(a)による機械的研磨作用並びに(b)及び(c)の各成分の研磨促進作用によって従来の研磨用組成物に比べてより大きな研磨速度が得られるとともに、成分(b)により被研磨面の表面粗さを低減することができる。
【0033】
・ 研磨用組成物は成分(e)を含有するのが好ましい。この場合には、被研磨面に表面欠陥が発生するのを抑制するとともに表面粗さをさらに低減することができる。
【0034】
・ 成分(c)はクエン酸、マレイン酸、無水マレイン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、チオリンゴ酸、ギ酸、シュウ酸、カルボキシエチルチオコハク酸、硝酸アルミニウム及び硝酸鉄からなる群から選ばれる少なくとも一種が好ましく、クエン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、イミノ二酢酸及びカルボキシエチルチオコハク酸からなる群から選ばれる少なくとも一種がより好ましい。この場合には、より高い研磨促進効果を得ることができる。
【0035】
・ 成分(e)はベーマイト又は擬ベーマイトを酸性水溶液中に分散させたものが好ましい。この場合は、被研磨面に表面欠陥が発生するのをより確実に抑制するとともに表面粗さをより一層低減することができる。
【0036】
なお、前記実施形態を次のように変更して構成することもできる。
・ 研磨用組成物を、調製されるときには成分(d)の含有量が研磨工程に用いられるときに比べて少なく設定されることにより成分(d)以外の各成分が濃縮され、研磨工程に用いられるときには成分(d)が加えられて希釈されるように構成してもよい。このように構成した場合は、研磨用組成物の管理を容易に行なうとともに輸送効率を向上させることができる。
【0037】
・ 被研磨面の研磨を1段で行なってもよいし、本実施形態の研磨用組成物を仕上げ研磨に用いてもよい。
・ 被研磨物としては、磁気ディスク以外にも半導体ウエハ等の半導体基板、光学レンズ等が挙げられる。これらの材質としては、タングステン、銅、シリコン、ガラス、セラミック等が挙げられる。
【0038】
【実施例】
次に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。
各参考、各実施例及び比較例の説明
参考例1においては、まず成分(a)としてのα−アルミナ、成分(b)としてのフュームドアルミナ及び成分(c)としてのコハク酸及び成分(d)の水を混合して組成物を調製した。組成物中における(a)〜(c)の各成分の含有量を表1にそれぞれ示す。
【0039】
参考例2〜25、実施例22〜26及び比較例1〜44においては、(a)〜(c)の各成分の種類及び含有量を表1〜表3に示すように変更した以外は、参考例1と同様にして組成物を調製した。参考例3、実施例24及び比較例7においては、成分(a)としてα化率97%のアルミナ粒子を含有した。実施例22〜25、比較例2、比較例22及び比較例27においてはさらに成分(e)を2重量%含有し、実施例26、比較例3、比較例23及び比較例28においては成分(e)を10重量%含有した。ここで、成分(e)は、酸性水溶液(pH3)にベーマイト10重量%を添加した後、ホモミキサーを用いてコロイド状に分散させて調製した。続いて、各例の組成物に成分(d)をさらに加えて希釈し、研磨用組成物をそれぞれ調製した。ここで、組成物と成分(d)との混合量は、容積比で組成物:成分(d)=1:3とした。そして、各例の研磨用組成物について、下記(1)及び(2)の項目に関し測定を行なった。それらの結果を表1〜表3に示す。
【0040】
尚、表1〜表3において、成分(a)の粒子径はレーザー回折散乱式粒度測定機(LS−230;Coulter社製)により測定された平均粒子径を示し、成分(b)の粒子径はBET法により測定される比表面積から求められる平均一次粒子径を示す。さらに、各成分の含有量は重量%で示す。
【0041】
(1)研磨速度の比
各例の研磨用組成物を用い、下記の研磨条件で被研磨物(無電解Ni−Pサブストレート)の表面を研磨した後、下記に示す計算式に基づいて研磨速度を求めた。そして、求められた研磨速度を比較例6の研磨速度で割ることにより、比較例6に対する研磨速度の比(%)を求めた。
<研磨条件>
被研磨物:直径3.5インチ(≒95mm)の無電解Ni−Pサブストレート、研磨機:片面研磨機(宇田川鐵工社製、定盤直径300mm)、研磨パッド:ポリウレタンパッド(CR200;カネボウ株式会社製)、荷重:100g/cm2(≒10kPa)、下定盤回転数:100rpm、研磨用組成物の供給量:8ml/分、研磨時間:1μmの取り代を取ることができる時間(予め予備実験により決定した。)
<研磨速度の計算式>
研磨速度[μm/分]=研磨による無電解Ni−Pサブストレートの重量減[g]÷(被研磨面の面積[cm2]×Ni−Pメッキの密度[g/cm3]×研磨時間[分])×10000
(2)微小うねり(Micro−Wa)の比
研磨加工後の無電解Ni−Pサブストレート表面を非接触式表面粗さ測定器(PhaseShift社製 Micro XAM;対物レンズ:×10倍、フィルター:Gaussian Bandpass 80〜450μmで測定されたRa値)を用いて微小うねりの大きさを測定した。1枚の無電解Ni−Pサブストレートの表裏それぞれ2箇所について測定し、4箇所のRaの平均値を微小うねりの大きさとした。そして、測定された微少うねりの大きさを比較例6の微小うねりの大きさで割ることにより、比較例6に対する微小うねりの大きさの比(%)を求めた。
【0042】
【表1】
Figure 0004202183
【0043】
【表2】
Figure 0004202183
【0044】
【表3】
Figure 0004202183
表1〜表3に示すように、参考例1〜25、実施例22〜26においては、研磨速度及び微小うねりについて優れた結果となった。即ち、研磨速度を大きくすることができるとともに、微小うねりを小さくすることができた。実施例22〜26においては、さらに成分(e)を含有するために微小うねりについてさらに優れた結果となった。このため、参考例1〜25、実施例22〜26の研磨用組成物を用いると、より大きな研磨速度が得られるとともに、被研磨面の表面粗さを低減することができた。
【0045】
一方、比較例1〜3においては、成分(c)を含有しないために、各実施例に比べて研磨速度が非常に小さく、加えて研磨後の被研磨面に表面欠陥が発生して微小うねりの大きさを測定することができなかった。比較例4においては、成分(c)として過ヨウ素酸カリウムを含有するために、参考例2等に比べて研磨速度が小さく微小うねりが大きい値となった。比較例5〜23においては、成分(b)を含有しないために、参考例1〜4や参考例13〜21等に比べて研磨速度が小さい又は微小うねりが大きい値となった。
【0046】
比較例24〜28においては、成分(a)を含有しないために、参考例10等に比べて研磨速度が小さい値となった。特に実施例25〜26、参考例22,23においては、成分(b)の含有量を増加させても研磨速度を大きくすることができなかった。比較例29〜44においては、成分(b)としてフュームドシリカ、TiO2、ZrO2、ZrSiO4、CeO2又はα−アルミナを含有するために、参考例2等に比べて研磨速度は小さい値となった。さらに、微小うねりが大きい値となったり、研磨後の被研磨面に表面欠陥が発生して微小うねりの大きさを測定することができなかった。
【0047】
次に、前記実施形態から把握できる技術的思想について以下に記載する。
(1)前記成分(c)はクエン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、イミノ二酢酸及びカルボキシエチルチオコハク酸からなる群から選ばれる少なくとも一種である前記研磨用組成物。
この構成によれば、より大きな研磨速度が得られる。
【0048】
(2)前記成分(e)はベーマイト又は擬ベーマイトを酸性水溶液中に分散させたものである前記研磨用組成物。この構成によれば、被研磨面に表面欠陥が発生するのをより確実に抑制するとともに表面粗さをより低減することができる。
【0049】
【発明の効果】
本発明は、以上のように構成されているため、次のような効果を奏する。
請求項1に記載の発明の研磨用組成物によれば、より大きな研磨速度が得られるとともに被研磨面の表面粗さを低減することができる。
【0050】
また、被研磨面に表面欠陥が発生するのを抑制するとともに表面粗さをより低減することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing composition used for polishing the surface of an object to be polished such as a magnetic disk substrate used as a storage device of a computer. More specifically, the present invention relates to a polishing composition capable of obtaining a higher polishing rate and reducing the surface roughness of the surface to be polished.
[0002]
[Prior art]
In recent years, with the demand for higher density of hard disks used as computer storage devices, improvement of the polishing rate and the surface quality of the hard disk substrate in the polishing process of the hard disk substrate is required. In order to satisfy such requirements, the conventional polishing composition contains water, an alumina abrasive, and a polishing accelerator composed of molybdate and an organic acid (for example, see Patent Document 1). . And the surface (surface to be polished) of an object to be polished is polished with an abrasive, and a large polishing rate can be obtained with a polishing accelerator. Moreover, there are solids such as α-alumina particles and aluminum hydrate and water, and α-alumina is set to 1 to 50% by weight of the total solids (see, for example, Patent Document 2). . And the to-be-polished surface is grind | polished with (alpha) -alumina particle, a solid substance acts as a grinding | polishing promoter, and a big grinding | polishing rate is obtained.
[0003]
[Patent Document 1]
JP 7-216345 A (pages 2 to 3)
[Patent Document 2]
JP-T 11-511394 (pages 4-10)
[0004]
[Problems to be solved by the invention]
However, the former polishing composition has a problem that the polishing rate cannot be sufficiently improved only with the alumina abrasive and the molybdic acid and organic acid constituting the polishing accelerator. On the other hand, the latter polishing composition has a problem that the polishing rate can be improved, but the effect of reducing the surface roughness is low, and the surface roughness of the surface to be polished cannot be sufficiently reduced. .
[0005]
The present invention has been made paying attention to the problems existing in the prior art as described above. The object is to provide a polishing composition capable of obtaining a higher polishing rate and reducing the surface roughness of the surface to be polished.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the polishing composition of the invention according to claim 1 comprises (a) alumina abrasive grains containing α-alumina as a main component, (b) fumed alumina, and (c) organic acid. And at least one polishing accelerator selected from the group consisting of inorganic acids and salts thereof, and (d) each component of water , wherein the component (c) is citric acid, maleic acid, maleic anhydride, malic acid , Glycolic acid, succinic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, tartaric acid, crotonic acid, nicotinic acid, acetic acid, thiomalic acid, formic acid, oxalic acid, carboxyethylthiosuccinic acid, nitric acid It is at least one selected from the group consisting of aluminum and iron nitrate, and further contains component (e) alumina sol .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail.
The polishing composition of the present embodiment is selected from the group consisting of (a) alumina abrasive grains mainly composed of α-alumina, (b) fumed alumina, (c) organic acids, inorganic acids, and salts thereof. At least one kind of polishing accelerator and (d) water components.
[0010]
This polishing composition is used for polishing (primary polishing or the like) the surface of an object to be polished such as a magnetic disk substrate. Specific examples of the object to be polished include a Ni-P substrate in which an electroless plating of nickel (Ni) -phosphorus (P) is performed on an aluminum alloy surface of a blank material, a Ni-iron (Fe) substrate, and boron. Examples thereof include a carbide (BC) substrate and a carbon (C) substrate.
[0011]
Alumina abrasive grains mainly composed of component (a) α-alumina (α-aluminum oxide) act as an abrasive by the mechanical polishing action, and polish the surface to be polished. “Having α-alumina as a main component” means that the α conversion is 50% or more in the crystal form of alumina constituting the alumina abrasive grains. The α conversion rate here is obtained from the integrated intensity ratio of (113) plane diffraction lines by X-ray diffraction measurement. Specific examples of the crystal form of alumina include α-alumina, δ-alumina, θ -Alumina, κ-alumina and the like. The component (a) may be composed of a mixture of α-alumina having different α conversion rates, or may be composed of a mixture of α-alumina and another crystal form of alumina. When the α conversion is less than 50% in the crystal form of alumina, the component (a) does not have a sufficient mechanical polishing action and a high polishing rate cannot be obtained. In general, silicon dioxide, titanium oxide or the like is also used as an abrasive, but these do not have a sufficient mechanical polishing action and cannot provide a large polishing rate. Therefore, the polishing composition needs to contain the component (a) as an abrasive.
[0012]
The particle diameter of the component (a) is preferably an average particle diameter determined by a laser diffraction scattering method such as measurement using a laser diffraction / scattering particle size measuring device (LS-230; manufactured by Coulter), and is preferably 2.0 μm or less. Preferably it is 0.05-1.0 micrometer. If the average particle size is less than 0.05 μm, the mechanical polishing action is not sufficient and a large polishing rate may not be obtained. On the other hand, if it exceeds 2.0 μm, the surface roughness of the polished object after polishing may deteriorate, and scratches may occur on the polished surface.
[0013]
The content of the component (a) in the polishing composition is preferably 0.01 to 40% by weight, more preferably 2 to 25% by weight. If the content of component (a) is less than 0.01% by weight, the polishing rate may not be sufficiently obtained. On the other hand, when the amount exceeds 40% by weight, the stability of the polishing composition decreases due to aggregation of the components (a), and precipitation may easily occur in the polishing composition.
[0014]
The fumed alumina of component (b) promotes polishing and reduces surface roughness by reducing minute waviness of the surface to be polished. This is presumably because component (b) acts on the surface of the alumina particles of component (a) to improve the dispersibility of component (a) in the polishing composition. Here, the minute waviness is a height (Å) representing minute irregularities measured at a constant measurement wavelength using a surface roughness measuring machine. When the polishing composition contains, for example, fumed silica instead of the component (b), fumed silica has a low polishing acceleration effect and a large polishing rate cannot be obtained, and the surface roughness of the surface to be polished can be reduced. Can not. Therefore, the polishing composition needs to contain the component (b). Furthermore, the fumed alumina of the component (b) is obtained by an oxyhydrogen reaction of aluminum chloride as shown in the following reaction formula (1), and has δ-alumina and an alpha conversion rate of less than 50%.
[0015]
4AlCl 3 + 6H 2 + 3O 2 → 2Al 2 O 3 + 12HCl (1)
The particle diameter of the component (b) is preferably an average primary particle diameter determined from the specific surface area measured by the specific surface area measurement method (BET method) of the powder by gas adsorption, preferably 0.005 to 0.5 μm, more preferably 0.01 to 0.1 μm. Moreover, the maximum value of the secondary particle diameter measured by the laser diffraction scattering method of the component (b) is preferably about 1.5 μm. In general, in the polishing composition, the components (b) are associated with each other to form an aggregate. When the average primary particle diameter of the component (b) is less than 0.005 μm, the effect of improving the dispersibility of the component (a) is low, so that the polishing promoting effect cannot be sufficiently obtained. On the other hand, when the average primary particle size exceeds 0.5 μm or the upper limit of the secondary particle size distribution exceeds 1.5 μm, the aggregate of the component (b) becomes large, and each component of (a) and (b) There is a risk that precipitation of the polishing composition is likely to occur due to a decrease in the stability of the polishing composition.
[0016]
The content of the component (b) in the polishing composition is preferably 50% by weight or less of the component (a), more preferably 0.005 to 20% by weight, and most preferably 1 to 12.5% by weight. When the content of the component (b) is less than 0.005% by weight of the component (a), the amount of the component (b) acting on the surface of the alumina particles of the component (a) becomes insufficient. Dispersibility cannot be improved sufficiently, and the polishing rate cannot be improved sufficiently. On the other hand, if it exceeds 50% by weight, the amount of the component (b) acting on the surface of the alumina particles of the component (a) becomes excessive, so that the mechanical polishing action of the component (a) is hindered and a high polishing rate is obtained. There is a risk of not being able to.
[0017]
At least one polishing accelerator selected from the group consisting of organic acids, inorganic acids and salts thereof as component (c) promotes polishing by polishing the surface to be polished by its chemical polishing action. Among these, at least one selected from the group consisting of organic acids and inorganic salts is preferable because of its strong chemical polishing action and high polishing promoting effect. Furthermore, component (c) is citric acid, maleic acid, maleic anhydride, malic acid, glycolic acid, succinic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, tartaric acid, crotonic acid, More preferably at least one selected from the group consisting of nicotinic acid, acetic acid, thiomalic acid, formic acid, oxalic acid, carboxyethylthiosuccinic acid, aluminum nitrate and iron nitrate, citric acid, malic acid, glycolic acid, succinic acid, itaconic acid And at least one selected from the group consisting of iminodiacetic acid and carboxyethylthiosuccinic acid is most preferred.
[0018]
The content of the component (c) in the polishing composition is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight, and most preferably 0.1 to 3% by weight. When the content of the component (c) is less than 0.01% by weight, the polishing promoting effect by the component (c) cannot be sufficiently obtained. On the other hand, if it exceeds 10% by weight, the polishing promoting effect cannot be further increased, which is uneconomical.
[0019]
The water of component (d) dissolves or disperses other components. Component (d) preferably contains as little impurities as possible in order to prevent the action of other components from being inhibited. Specifically, a pure component in which foreign ions are removed through a filter after removing impurity ions with an ion exchange resin. Water, ultrapure water, or distilled water is preferred. The content of component (d) in the polishing composition is the remaining amount relative to the content of other components in the polishing composition.
[0020]
The polishing composition preferably contains (e) alumina sol in addition to the above components. The component (e) alumina sol suppresses the occurrence of surface defects such as minute protrusions and minute pits on the surface to be polished, and also reduces the surface roughness of the surface to be polished by reducing the microwaviness. This is presumably because the component (e) adheres to the surface of the alumina particles of the component (a) and promotes the mechanical polishing action of the component (a). Furthermore, the component (e) is colloidally dispersed in the polishing composition, thereby improving the dispersibility of the component (a) and preventing the component (a) from precipitating or polishing the object to be polished. When this is done, the component (a) is easily held on the polishing pad.
[0021]
Specific examples of the component (e) include those in which at least one selected from alumina hydrate and aluminum hydroxide is colloidally dispersed in an acidic aqueous solution. Examples of the alumina hydrate include boehmite, pseudoboehmite, and diaspore. , Jibsite, bayerite and the like. Here, the acidic aqueous solution is prepared by adjusting the pH of water to the acidic side with an organic acid, an inorganic acid, and a salt thereof. Alumina hydrate may be contained alone or in combination of two or more. Among these, boehmite or pseudoboehmite dispersed in an acidic aqueous solution is preferable because it has a high effect of suppressing the occurrence of surface defects and a low surface roughness of the surface to be polished.
[0022]
The content of the component (e) in the polishing composition is preferably 0.01 to 20% by weight, more preferably 0.05 to 15% by weight, most preferably the solid content in the component (e). 0.1 to 10% by weight. If the content of the component (e) is less than 0.01% by weight, the amount of the component (e) adhering to the alumina particle surface of the component (a) becomes insufficient, so that the mechanical polishing action of the component (a) is reduced. The effect of promoting is low, and the surface roughness of the surface to be polished cannot be sufficiently reduced. On the other hand, even if it exceeds 20% by weight, the effect of suppressing the generation of surface defects on the surface to be polished and the effect of reducing the surface roughness cannot be further exhibited, which is uneconomical.
[0023]
The polishing composition includes (f) a surfactant, a rust inhibitor, and an anticorrosive agent as an additional component other than the component (e), depending on the need for stabilization of the polishing composition and polishing processing. Further, an anti-settling agent or the like may be contained. Content of the other additional component in polishing composition is determined in accordance with the normal method of polishing composition.
[0024]
The surfactant of component (f) improves the dispersibility of component (a), and examples thereof include nonionic surfactants and anionic surfactants. Among these, for example, when polishing the surface of the magnetic disk substrate as the surface to be polished, the effect of improving the flatness of the surface of the magnetic disk substrate by suppressing surface sagging of the outer peripheral portion of the magnetic disk substrate is high. Therefore, in the nonionic surfactant, polyoxyethylene polyoxypropylene alkyl ether represented by the following general formula (2), polyoxyethylene having a structure represented by the following general formula (3) or the following general formula (4) A polyoxypropylene copolymer, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene sorbite fatty acid ester or a urethane-associated surfactant represented by the following general formula (5) is preferred.
[0025]
[Chemical 1]
Figure 0004202183
(R in the formula represents an alkyl group, and l and m represent an integer.)
[0026]
[Chemical 2]
Figure 0004202183
(In the formula, n, o and p represent integers.)
[0027]
[Chemical 3]
Figure 0004202183
(Q, r, and s in the formula represent integers.)
[0028]
[Formula 4]
Figure 0004202183
(X in the formula is a residue of a polyether polyol derived from a compound having an active hydrogen atom and an alkylene oxide (provided that 20 to 90% by weight of an oxyethylene group is contained in the polyether chain), and t is 2 to 2. An integer of 8 (= number of hydroxyl groups in one molecule of the polyether polyol), Y is a divalent hydrocarbon group, Z is a residue of a monovalent compound having an active hydrogen atom, and u is an integer of 3 or more .)
On the other hand, in the case of anionic surfactants, polycarboxylic acid salts such as sodium polyacrylate, isoprene sulfonic acid such as a copolymer of isoprene sulfonic acid and acrylic acid, or a salt thereof can be obtained as an essential monomer. Coalescence is preferred. The order of mixing the components when preparing the polishing composition of the present embodiment is not limited, and any order may be sufficient.
[0029]
Next, a polishing method using the polishing composition of this embodiment will be described.
When polishing the surface of a magnetic disk substrate as a surface to be polished, in order to improve the surface quality of the magnetic disk substrate more efficiently in the polishing process of the magnetic disk substrate surface, the polishing process is generally divided into two stages. It is done separately. That is, for the purpose of removing surface defects such as waviness on the surface of the magnetic disk substrate in the first stage polishing process and large scratches and irregularities on the surface of the magnetic disk substrate that cannot be removed in the second stage polishing process. A polishing step is performed.
[0030]
On the other hand, in the second stage polishing process, the surface is adjusted to a desired small surface roughness and has not been completely removed in the first stage polishing process or surface defects generated in the first stage polishing process. A final polishing process is performed for the purpose of removing defects. In some cases, the polishing process may be divided into three or more steps. The polishing composition of the present embodiment can be used in any of these polishing steps. However, since the polishing efficiency is high and micro waviness on the surface of the magnetic disk substrate can be reduced, the first-stage polishing is performed. It is preferably used in the process.
[0031]
When the polishing composition of the present embodiment is used to polish, for example, the first stage (primary polishing) of the Ni-P substrate surface, polishing is performed while supplying the polishing composition to the Ni-P substrate surface. Polish the Ni-P substrate surface with a pad. At this time, since the polishing composition contains the component (a), the mechanical polishing action can polish the Ni-P substrate surface at a constant polishing rate, and the component (c) Since it is contained, polishing is accelerated by its chemical polishing action, and a large polishing rate can be obtained. Furthermore, since the polishing composition contains the component (b), a higher polishing rate can be obtained, and the surface roughness of the Ni—P substrate surface can be reduced. In addition, by containing the component (e), it is possible to suppress the occurrence of surface defects on the Ni-P substrate surface and to further reduce the surface roughness.
[0032]
According to the embodiment described in detail above, the following effects are exhibited.
-Polishing composition of this embodiment contains each component of (a)-(c). Therefore, the mechanical polishing action by the component (a) and the polishing promoting action of each of the components (b) and (c) can provide a higher polishing speed than the conventional polishing composition, and the component (b) Thus, the surface roughness of the surface to be polished can be reduced.
[0033]
-It is preferable that polishing composition contains a component (e). In this case, it is possible to suppress the occurrence of surface defects on the surface to be polished and further reduce the surface roughness.
[0034]
Component (c) is citric acid, maleic acid, maleic anhydride, malic acid, glycolic acid, succinic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, tartaric acid, crotonic acid, nicotinic acid , Acetic acid, thiomalic acid, formic acid, oxalic acid, carboxyethyl thiosuccinic acid, aluminum nitrate and iron nitrate are preferred, and citric acid, malic acid, glycolic acid, succinic acid, itaconic acid, imino diacid More preferred is at least one selected from the group consisting of acetic acid and carboxyethylthiosuccinic acid. In this case, a higher polishing promoting effect can be obtained.
[0035]
Component (e) is preferably boehmite or pseudoboehmite dispersed in an acidic aqueous solution. In this case, it is possible to more reliably suppress the occurrence of surface defects on the surface to be polished and further reduce the surface roughness.
[0036]
In addition, the said embodiment can also be changed and comprised as follows.
-When the polishing composition is prepared, each component other than the component (d) is concentrated so that the content of the component (d) is set lower than when used in the polishing step, and used for the polishing step. It may be configured such that component (d) is added and diluted when applied. When comprised in this way, management of polishing composition can be performed easily and transportation efficiency can be improved.
[0037]
-The surface to be polished may be polished in one step, or the polishing composition of this embodiment may be used for final polishing.
-As a to-be-polished object, semiconductor substrates, such as a semiconductor wafer, an optical lens, etc. are mentioned besides a magnetic disk. Examples of these materials include tungsten, copper, silicon, glass, and ceramic.
[0038]
【Example】
Next, the embodiment examples and comparative examples and the like will be described more specifically.
( Description of each reference example , each example, and each comparative example)
In Reference Example 1, first, α-alumina as component (a), fumed alumina as component (b), succinic acid as component (c), and water of component (d) were mixed to prepare a composition. did. Table 1 shows the contents of the components (a) to (c) in the composition.
[0039]
In Reference Examples 2 to 25, Examples 22 to 26 and Comparative Examples 1 to 44, except that the types and contents of the components (a) to (c) were changed as shown in Tables 1 to 3, A composition was prepared in the same manner as in Reference Example 1. In Reference Example 3, Example 24, and Comparative Example 7, alumina particles having a pregelatinization rate of 97% were contained as the component (a). In Examples 22 to 25, Comparative Example 2, Comparative Example 22 and Comparative Example 27, 2% by weight of component (e) was further contained, and in Example 26, Comparative Example 3, Comparative Example 23 and Comparative Example 28, the component ( 10% by weight of e) was contained. Here, component (e) was prepared by adding boehmite 10% by weight to an acidic aqueous solution (pH 3) and then dispersing it in a colloidal form using a homomixer. Subsequently, component (d) was further added to the composition of each example and diluted to prepare polishing compositions. Here, the mixing amount of the composition and component (d) was composition: component (d) = 1: 3 in volume ratio. And about the polishing composition of each example, it measured about the item of following (1) and (2). The results are shown in Tables 1 to 3.
[0040]
In Tables 1 to 3, the particle diameter of the component (a) indicates the average particle diameter measured by a laser diffraction / scattering particle size analyzer (LS-230; manufactured by Coulter), and the particle diameter of the component (b). Indicates the average primary particle diameter determined from the specific surface area measured by the BET method. Furthermore, the content of each component is indicated by weight%.
[0041]
(1) Ratio of polishing rate After polishing the surface of an object to be polished (electroless Ni-P substrate) under the following polishing conditions using the polishing composition of each example, polishing was performed based on the calculation formula shown below. The speed was determined. Then, the ratio (%) of the polishing rate to Comparative Example 6 was determined by dividing the determined polishing rate by the polishing rate of Comparative Example 6.
<Polishing conditions>
Object to be polished: electroless Ni-P substrate having a diameter of 3.5 inches (≈95 mm), polishing machine: single-side polishing machine (Udagawa Seiko Co., Ltd., surface plate diameter 300 mm), polishing pad: polyurethane pad (CR200; Kanebo) Co., Ltd.), load: 100 g / cm 2 (≈10 kPa), lower surface plate rotation speed: 100 rpm, supply amount of polishing composition: 8 ml / min, polishing time: time that can take the machining allowance of 1 μm (preliminary) (Determined by preliminary experiment.)
<Calculation formula of polishing rate>
Polishing rate [μm / min] = weight reduction of electroless Ni—P substrate by polishing [g] ÷ (surface area to be polished [cm 2 ] × Ni-P plating density [g / cm 3 ] × polishing time [Min]) x 10000
(2) Non-contact type surface roughness measuring instrument (Phase X Micro XAM; objective lens: x10 times, filter: Gaussian) after electroless Ni-P substrate surface after specific polishing of micro-waving (Micro-Wa) The size of the microwaviness was measured using a bandpass (Ra value measured at 80 to 450 μm). Measurements were made at two locations on the front and back of one electroless Ni—P substrate, and the average value of Ra at the four locations was defined as the size of the microwaviness. And the ratio (%) of the magnitude | size of the micro waviness with respect to the comparative example 6 was calculated | required by dividing the magnitude | size of the measured micro waviness by the magnitude | size of the micro waviness of the comparative example 6. FIG.
[0042]
[Table 1]
Figure 0004202183
[0043]
[Table 2]
Figure 0004202183
[0044]
[Table 3]
Figure 0004202183
As shown in Tables 1 to 3, in Reference Examples 1 to 25 and Examples 22 to 26 , excellent results were obtained with respect to the polishing rate and microwaviness. That is, the polishing rate could be increased and the microwaviness could be reduced. In Examples 22 to 26, since the component (e) was further contained, the results were further excellent with respect to microwaviness. For this reason, when the polishing compositions of Reference Examples 1 to 25 and Examples 22 to 26 were used, a higher polishing rate was obtained and the surface roughness of the surface to be polished could be reduced.
[0045]
On the other hand, in Comparative Examples 1 to 3, since the component (c) is not contained, the polishing rate is very low as compared with each Example, and in addition, surface defects are generated on the polished surface after polishing, resulting in minute waviness. The size of could not be measured. In Comparative Example 4, since potassium periodate was contained as the component (c), the polishing rate was small and the fine waviness was large compared to Reference Example 2 and the like. In Comparative Examples 5 to 23, since the component (b) was not contained, the polishing rate was small or the fine waviness was large compared to Reference Examples 1 to 4, Reference Examples 13 to 21, and the like.
[0046]
In Comparative Examples 24 to 28, since the component (a) was not contained, the polishing rate was smaller than that of Reference Example 10 and the like. Particularly in Examples 25 to 26 and Reference Examples 22 and 23 , the polishing rate could not be increased even when the content of component (b) was increased. In Comparative Examples 29 to 44, since the fumed silica, TiO 2 , ZrO 2 , ZrSiO 4 , CeO 2 or α-alumina is contained as the component (b), the polishing rate is smaller than that of Reference Example 2 and the like. It became. Furthermore, the microwaviness has a large value, or surface defects are generated on the polished surface after polishing, and the size of the microwaviness cannot be measured.
[0047]
Next, the technical idea that can be grasped from the embodiment will be described below.
(1) the component (c) is citric acid, malic acid, glycolic acid, succinic acid, itaconic acid, the polishing composition is at least one selected from the group consisting of iminodiacetic acid and carboxyethyl thio succinic acid.
According to this configuration, a higher polishing rate can be obtained.
[0048]
(2) the component (e) is the polishing composition is obtained by dispersing the boehmite or pseudo-boehmite in an acidic aqueous solution. According to this configuration, it is possible to more reliably suppress the occurrence of surface defects on the polished surface and further reduce the surface roughness.
[0049]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
According to the polishing composition of the first aspect of the invention, a higher polishing rate can be obtained and the surface roughness of the surface to be polished can be reduced.
[0050]
Further , it is possible to suppress the occurrence of surface defects on the surface to be polished and to further reduce the surface roughness.

Claims (1)

(a)α−アルミナを主成分とするアルミナ砥粒、(b)フュームドアルミナ、(c)有機酸、無機酸及びそれらの塩からなる群から選ばれる少なくとも一種の研磨促進剤及び(d)水の各成分を含有し、前記成分(c)が、クエン酸、マレイン酸、無水マレイン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、チオリンゴ酸、ギ酸、シュウ酸、カルボキシエチルチオコハク酸、硝酸アルミニウム及び硝酸鉄からなる群から選ばれる少なくとも一種であり、さらに成分(e)アルミナゾルを含有する研磨用組成物。(A) Alumina abrasive grains mainly composed of α-alumina, (b) fumed alumina, (c) at least one polishing accelerator selected from the group consisting of organic acids, inorganic acids and salts thereof, and (d) Each component of water , wherein the component (c) is citric acid, maleic acid, maleic anhydride, malic acid, glycolic acid, succinic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandel Acid, tartaric acid, crotonic acid, nicotinic acid, acetic acid, thiomalic acid, formic acid, oxalic acid, carboxyethylthiosuccinic acid, aluminum nitrate and iron nitrate, and at least one component (e) containing alumina sol Polishing composition.
JP2003132312A 2003-05-09 2003-05-09 Polishing composition Expired - Lifetime JP4202183B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003132312A JP4202183B2 (en) 2003-05-09 2003-05-09 Polishing composition
GB0410214A GB2401610B (en) 2003-05-09 2004-05-07 Polishing composition
MYPI20041724A MY144061A (en) 2003-05-09 2004-05-07 Polishing composition
CNB2004100435122A CN100392035C (en) 2003-05-09 2004-05-09 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132312A JP4202183B2 (en) 2003-05-09 2003-05-09 Polishing composition

Publications (2)

Publication Number Publication Date
JP2004331886A JP2004331886A (en) 2004-11-25
JP4202183B2 true JP4202183B2 (en) 2008-12-24

Family

ID=32501271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132312A Expired - Lifetime JP4202183B2 (en) 2003-05-09 2003-05-09 Polishing composition

Country Status (4)

Country Link
JP (1) JP4202183B2 (en)
CN (1) CN100392035C (en)
GB (1) GB2401610B (en)
MY (1) MY144061A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718164B2 (en) * 2004-11-26 2011-07-06 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
US7655057B2 (en) * 2005-08-31 2010-02-02 Fujimi Incorporated Polishing composition and polishing method
US7922926B2 (en) * 2008-01-08 2011-04-12 Cabot Microelectronics Corporation Composition and method for polishing nickel-phosphorous-coated aluminum hard disks
JP5536433B2 (en) * 2009-12-11 2014-07-02 花王株式会社 Polishing liquid composition for hard disk substrate
JP5755054B2 (en) * 2011-05-20 2015-07-29 株式会社オハラ Substrate manufacturing method
TW201249974A (en) * 2011-05-20 2012-12-16 Ohara Kk Method for producing polished product
TWI547552B (en) * 2012-03-19 2016-09-01 福吉米股份有限公司 Abrasive for lapping process and substrate production method using the same
US9039914B2 (en) 2012-05-23 2015-05-26 Cabot Microelectronics Corporation Polishing composition for nickel-phosphorous-coated memory disks
JP6325441B2 (en) * 2012-07-17 2018-05-16 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same
CN103937414B (en) * 2014-04-29 2018-03-02 杰明纳微电子股份有限公司 A kind of precise polishing solution of hard disc of computer disk substrate
CN107735478A (en) * 2015-06-26 2018-02-23 福吉米株式会社 Composition for polishing
CN106366939A (en) * 2016-08-30 2017-02-01 东兴华鸿光学科技有限公司 Polishing solution for optics lens
TW202128943A (en) 2019-12-20 2021-08-01 日商Jsr 股份有限公司 Composition for chemical mechanical polishing, chemical mechanical polishing method, and method for manufacturing particles for chemical mechanical polishing
JP7457586B2 (en) * 2020-06-18 2024-03-28 株式会社フジミインコーポレーテッド Concentrated solution of polishing composition and polishing method using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3106339B2 (en) * 1994-02-04 2000-11-06 株式会社フジミインコーポレーテッド Polishing composition
US5693239A (en) * 1995-10-10 1997-12-02 Rodel, Inc. Polishing slurries comprising two abrasive components and methods for their use
US5858813A (en) * 1996-05-10 1999-01-12 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
US6007592A (en) * 1996-11-14 1999-12-28 Nissan Chemical Industries, Ltd. Polishing composition for aluminum disk and polishing process therewith
US6475407B2 (en) * 1998-05-19 2002-11-05 Showa Denko K.K. Composition for polishing metal on semiconductor wafer and method of using same
JP3998813B2 (en) * 1998-06-15 2007-10-31 株式会社フジミインコーポレーテッド Polishing composition
MY127884A (en) * 1999-09-30 2006-12-29 Showa Denko Kk Polishing composition and method
EP1252247A1 (en) * 1999-12-14 2002-10-30 Rodel Holdings, Inc. Polishing compositions for semiconductor substrates
US6527622B1 (en) * 2002-01-22 2003-03-04 Cabot Microelectronics Corporation CMP method for noble metals

Also Published As

Publication number Publication date
CN100392035C (en) 2008-06-04
GB2401610B (en) 2007-12-27
GB0410214D0 (en) 2004-06-09
CN1550532A (en) 2004-12-01
JP2004331886A (en) 2004-11-25
MY144061A (en) 2011-08-15
GB2401610A (en) 2004-11-17

Similar Documents

Publication Publication Date Title
TWI554601B (en) Abrasive and polishing composition
JP4273475B2 (en) Polishing composition
JP4003116B2 (en) Polishing composition for magnetic disk substrate and polishing method using the same
JP4202183B2 (en) Polishing composition
JP3998813B2 (en) Polishing composition
EP0786504A2 (en) Polishing composition
JP4068499B2 (en) Polishing composition
US11180677B2 (en) Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JP4249008B2 (en) Polishing composition and polishing method using the same
TW201313849A (en) Abrasive and polishing composition
US6328774B1 (en) Polishing composition and method for producing a memory hard disk
WO2018190077A1 (en) Synthetic quartz glass substrate polishing agent, production method therefor, and synthetic quartz glass substrate polishing method
JP4202157B2 (en) Polishing composition
KR20180005176A (en) Polishing method for synthetic quartz glass substrate and polishing method of synthetic quartz glass substrate
JPH11293231A (en) Polishing fluid composition
GB2359558A (en) Polishing Composition for Memory Hard Disk Substrates
JP4092015B2 (en) Polishing liquid composition
JP2000129243A (en) Polishing composition
JP2000345143A (en) Abrasive material composition for glass polishing and polishing method using the same
JP2000053948A (en) Abrasive solution composition
JPH11209745A (en) Grinder composition for grinding glass and grinding
JP4093506B2 (en) Polishing liquid composition
JP2002220584A (en) Precision abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Ref document number: 4202183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term