WO2014115495A1 - Method for manufacturing glass substrate for hard disk - Google Patents

Method for manufacturing glass substrate for hard disk Download PDF

Info

Publication number
WO2014115495A1
WO2014115495A1 PCT/JP2014/000067 JP2014000067W WO2014115495A1 WO 2014115495 A1 WO2014115495 A1 WO 2014115495A1 JP 2014000067 W JP2014000067 W JP 2014000067W WO 2014115495 A1 WO2014115495 A1 WO 2014115495A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass substrate
slurry
abrasive
particle size
Prior art date
Application number
PCT/JP2014/000067
Other languages
French (fr)
Japanese (ja)
Inventor
塚田 和也
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2014115495A1 publication Critical patent/WO2014115495A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for a hard disk (magnetic information recording medium) used as a magnetic disk mounted on a hard disk (HDD).
  • a hard disk magnetic information recording medium
  • HDD hard disk
  • Glass substrates for magnetic information recording media such as HDDs are usually produced by performing a grinding process, a polishing process, a chemical strengthening process, etc. on a flat glass base plate obtained by a float method or a direct press method.
  • a one-stage or two-stage polishing process for finishing the surface depending on the surface quality is usually added.
  • a cerium oxide abrasive having a high polishing rate is generally used for the so-called rough polishing step that is first performed.
  • High-hardness polyurethane pads have been used in polishing processes that use cerium oxide to achieve a high rate, but there are defects that leave scratches and deep damage, making it a high-quality finish that meets the demands of high-density substrates. It was a high issue. Therefore, a suede-shaped pad having a feature including a foam layer designed to have a lower hardness than before has been introduced, and scratches and damage can be improved (for example, Patent Document 1).
  • Patent Document 2 a method of using a slurry in which the secondary particle size distribution of the polishing material is adjusted and no aggregation occurs (Patent Document 2), and oxidation as a polishing material.
  • Patent Document 3 A method of reducing the particle size and increasing the purity of cerium (Patent Document 3) has been reported.
  • polishing rate in order to shorten the manufacturing time, it is required to increase the polishing rate in order to obtain a desired polishing thickness (also referred to as polishing allowance) in a short period of time. It is required to adjust to the required surface roughness.
  • polishing allowance also referred to as polishing allowance
  • the polishing rate is increased with large abrasive particles, and the finished surface roughness is achieved with small abrasive particles.
  • the technology was examined. By using such an abrasive slurry, it became possible to adjust the desired polishing rate and the surface roughness after production to some extent.
  • the polishing rate is increased and the total manufacturing time is shortened. It became possible to improve the quality.
  • the above-mentioned problems are caused by the change in the particle size distribution of the abrasive particles as the polishing proceeds when the abrasive particles having different particle sizes are used.
  • a technique for maintaining the particle size distribution of each abrasive particle is not yet known.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an efficient method of manufacturing a glass substrate for a hard disk capable of ensuring quality capable of meeting the demand for higher density.
  • the method for manufacturing a glass substrate for hard disk includes a polishing step of polishing a glass substrate with a polishing slurry containing abrasive particles, and in the polishing step, An abrasive slurry A containing an abrasive particle group A having an average particle size and a dispersant optimal for the particle group A, an abrasive particle group B having an average particle size larger than the particle group A, and the particle group B Polishing is performed using a polishing slurry obtained by mixing polishing slurry B containing an optimal dispersant.
  • FIG. 1 is a view showing an example of a molding die for glass blanks and a press machine.
  • FIG. 2 is a perspective view of a rotary table on which a glass blank forming press is disposed.
  • the method for manufacturing a glass substrate for hard disk includes a polishing step of polishing the glass substrate with a polishing slurry containing abrasive particles, and in the polishing step, the glass substrate has a predetermined average particle diameter.
  • Abrasive slurry A containing an abrasive particle group A having and an optimal dispersant for the particle group A, an abrasive particle group B having an average particle size larger than the particle group A, and an optimal dispersant for the particle group B It grind
  • the inventor diligently studied the cause of the rate reduction when using a suede pad or the like for polishing, and found that the change in the particle size distribution accompanying the running of the abrasive was influencing, and further researching the present invention. Was completed.
  • the abrasive particles having at least two different particle size distributions are maintained by selecting optimum different dispersants, and by using a polishing slurry in which they are mixed, It is thought that the rate can be improved while maintaining the quality.
  • the manufacturing method of the glass substrate for hard disks of this invention is very useful on industrial use.
  • the manufacturing method of the glass substrate for hard disks according to the present embodiment includes at least the polishing step, the other steps are not particularly limited, and a step that can be used in a conventionally known manufacturing method is appropriately used. it can.
  • a melting process glass blanks manufacturing process
  • a disk processing process a rough grinding process (first grinding process), a fine grinding process (second grinding process), and a rough polishing process
  • Primary polishing step cleaning step, chemical strengthening step, mirror polishing step (secondary polishing step), and a method including a final cleaning step.
  • each said process may be performed in this order, and the order of a chemical strengthening process and a mirror polishing process (secondary polishing process) may be replaced.
  • a method including steps other than these may be used.
  • a heat treatment step, a shape processing step, a coring step, an end surface polishing step, and an inspection step may be performed.
  • the polishing step of the present embodiment may be performed in a rough polishing step (primary polishing step) or may be performed in a mirror polishing step (secondary polishing step). Furthermore, it is desirable to perform both in the rough polishing process and the mirror polishing process in order to achieve more effects.
  • each symbol indicates the following: 1 molding press, 2 upper press, 3 upper mold, 4 first molding surface, 5 lower mold, 6 second molding surface, 7 lower press machine, 8 rotary shaft, 9 rotary table, 21 outflow nozzle, 23 molten glass.
  • a glass material for example, a general aluminosilicate glass is used.
  • the aluminosilicate glass is composed of 58 mass% to 75 mass% SiO 2 , 5 mass% to 23 mass% Al 2 O 3 , 3 mass% to 10 mass% Li 2 O, and 4 mass% to 13 mass. % Na 2 O as a main component.
  • the glass material is not limited to aluminosilicate glass, and may be any material such as soda lime glass or borosilicate glass.
  • glass blanks which are intermediate molded bodies of glass substrates for hard disks, are produced by the direct press method. These glass blanks are generally manufactured by supplying molten glass and press-molding while cooling the molten glass.
  • heat treatment may be applied to correct the flatness of the glass blank and remove internal strain.
  • a coring process may be provided in order to obtain a donut-shaped substrate.
  • FIG. 1 is a schematic view of a mold and a press for producing the glass blanks of the present embodiment by press molding.
  • the press 1 for forming glass blanks is supplied with molten glass, and includes a lower mold 5 and a lower part 7 having a first molding surface 6 for pressurizing the supplied molten glass, and a lower mold 5. It has an upper die 3 and a press machine upper part 2 provided with a second molding surface 4 for pressurizing molten glass with one molding surface 6.
  • FIG. 2 is a perspective view showing a mechanism in which glass blanks are press-formed by the lower press 7 and the upper press 2 arranged on the rotary table.
  • the press machine lower part 7 is embedded in the rotary table 9 side by side in the circumferential direction.
  • the rotary table 9 is provided so as to be able to be driven to rotate around the rotary shaft 8 at a specific speed v (m / s).
  • the molten glass 23 is supplied to the lower mold 5 by the outflow nozzle 21 at a predetermined position on the turntable.
  • the lower mold 5 supplied with the molten glass 23 is transported by the rotary table together with the lower part 7 of the press machine, and the upper mold 3 installed on the upper part 2 of the press machine at another position is lowered to the position of the lower mold 5 to be melted. Pressurize the glass.
  • a plurality of heaters are installed inside the mold.
  • the heater is preferably arranged in one or more rounds and concentrically so as to be arranged at a uniform angle in the circumferential direction in terms of easy temperature control of the mold.
  • a plurality of heaters may or may not be arranged in the press machine lower part 7 in the same manner as the press machine upper part 2, but depending on the pressurizing time to be pressed, It is preferable that they are arranged.
  • the manufacture of the glass blanks in the present embodiment is mainly performed by a molten glass supply step for supplying molten glass to the first molding surface 6 formed on the lower mold 5 and a second molding surface formed on the upper mold 3. 4 and a pressurizing step of obtaining glass blanks by cooling the molten glass supplied to the first molding surface 6 while pressurizing it.
  • a predetermined rough surface is formed on the molding surface 6 of the lower die 5 and the molding surface 4 of the upper die 3 for the purpose of improving the grinding rate in the next grinding step and suppressing grinding variation, and pressurizes the glass blank surface.
  • the rough surface shape of the molding surface of each mold is transferred during the process.
  • the heat treatment step is a step aimed at correcting the flatness of glass blanks and removing internal strain.
  • a method of heat processing For example, the method of using a setter (alumina, zirconia, etc.) and stacking alternately with glass blanks, putting into a heat processing furnace, and applying heat can be employ
  • the temperature during the heat treatment can be performed in a temperature range from Tg to Tg + 100 (° C.) of the glass blank.
  • a coring process is a process of forming an inner hole (center hole) in the center part of the surface of the obtained glass blanks using a diamond core drill.
  • the center of the glass blanks is determined by this coring process.
  • a glass blank means the glass molding before finishing the coring process and performing the grinding process (1st grinding process) of the main plane mentioned later.
  • the glass blanks that have been subjected to the coring (inner peripheral cut) process are ground with a diamond grindstone on the inner peripheral end face and the outer peripheral end face that face the hole in the center portion.
  • chamfering is also performed. For example, in the case of a 2.5 inch hard disk, a predetermined chamfering process is performed after setting the outer diameter to 65 mm and the inner diameter (diameter of the circular hole 1H in the center) to 20 mm.
  • the surface roughness of the end face of the glass blanks at this time is about 2 ⁇ m in Rmax.
  • the grinding process is performed, for example, using a double-side grinding (lapping) device using a planetary gear mechanism. Specifically, the lapping platen is pressed from above and below on both main surfaces of the glass blanks obtained above, the grinding liquid is supplied onto both main surfaces, and the glass blanks and lapping platen are relatively moved. Thus, a grinding process is performed. By the grinding process, the approximate parallelism, flatness, thickness and the like of the glass substrate are preliminarily adjusted, and a glass substrate (glass base material) having a substantially flat main surface is obtained.
  • the grinding liquid for example, a grinding liquid containing alumina abrasive grains having a particle size of # 400 (particle size of about 40 to 60 ⁇ m) is used. By setting the upper surface plate load to about 100 kg, both surfaces of the glass blanks are faced. It may be finished to an accuracy of 0 ⁇ m to 1 ⁇ m and a surface roughness Rmax of about 6 ⁇ m.
  • grinding may be performed using a fixed abrasive type grinding pad in which diamond particles are supported on a resin, ceramic, or metal, which has the advantage of improving the balance between grinding speed and quality after grinding.
  • the particle diameter of diamond can be appropriately changed depending on the purpose, but the average particle diameter used in the first grinding is preferably 2 ⁇ m to 10 ⁇ m. If the diamond particle size is less than 2 ⁇ m for the first lapping, the processing speed is insufficient, and cracks generated on the main surface (upper and lower surfaces) of the glass substrate may not be removed. If the particle diameter of diamond exceeds 10 ⁇ m, there is a risk that cracks may occur on the main surfaces 2 and 3 of the glass substrate 1 due to diamond.
  • a diamond pad having a particle size smaller than that of the diamond particles used in the first grinding it is preferable to use a diamond pad having a particle size smaller than that of the diamond particles used in the first grinding, so that a surface suitable for polishing in the next step is used. Properties can be formed.
  • diamond particles having an average particle diameter of 1 ⁇ m to 5 ⁇ m are used. With the recent increase in density, the diamond particle diameter is becoming smaller, but a balance of workability is required, so 1.5 ⁇ m to 4 ⁇ m is more preferable.
  • the glass substrate main surface (upper and lower surfaces) is ground to a thickness of about 50 ⁇ m to 250 ⁇ m.
  • mirror polishing by brush polishing may be performed on the inner peripheral end surface of the glass substrate. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the inner peripheral end surface of the glass substrate, and then applying the polishing brush while rotating the glass substrate The inner peripheral end face of the glass substrate is polished.
  • abrasive cerium oxide is usually selected and supplied as a polishing liquid at an appropriate concentration.
  • the polishing brush a brush having an appropriate hardness and diameter is selected so that the polishing can be performed softly without damaging the end face.
  • an outer peripheral polishing step may be further performed.
  • mirror polishing by brush polishing is performed on the outer peripheral end surface of the glass substrate.
  • a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the outer peripheral end surface of the glass substrate, and applying the polishing brush while rotating the glass substrate, The outer peripheral end surface of the glass substrate is polished.
  • the abrasive and the polishing brush are selected in the same manner as the abrasive and the polishing brush used for polishing the inner peripheral end face of the glass substrate.
  • the polishing step is a step of polishing the glass substrate with a polishing slurry containing abrasive particles.
  • the glass substrate is divided into the abrasive particle group A having a predetermined average particle diameter and the particles.
  • a polishing slurry A containing the optimum dispersant for the group A, an abrasive particle group B having an average particle size larger than the particle group A, and a polishing slurry B containing the optimum dispersing agent for the particle group B are mixed. Polishing is performed using the resulting polishing slurry.
  • abrasive particle groups having different average particle diameters are prepared in advance, and the optimum dispersant (particle aggregation is controlled for each particle group to maintain the average particle diameter in the particle group.
  • a plurality of polishing slurries are prepared by mixing a dispersing agent that can be used, and a polishing slurry obtained by mixing them is used.
  • the polishing step of this embodiment using a polishing slurry in which abrasive particles having different particle size distributions are mixed is a rough polishing step (primary polishing). Step) or at least one of a mirror polishing step (secondary polishing step). Furthermore, it is desirable because a higher effect can be obtained by performing both in the rough polishing step and the mirror polishing step.
  • the abrasive particles contained in the polishing slurry are not particularly limited, but it is preferable to use particles having the same composition. That is, the polishing slurry preferably used in the present embodiment is a polishing slurry in which a plurality of abrasive particle groups having the same composition and different average particle sizes (particle size distribution) are mixed.
  • a polishing slurry C containing an abrasive particle group C having an average particle diameter intermediate between the particle group A and the particle group B, and a dispersing agent optimum for the particle group C is obtained by using the polishing slurry A and the polishing slurry as described above.
  • a polishing slurry mixed with B can also be used.
  • polishing slurry used in the polishing process of this embodiment will be described more specifically.
  • the abrasive can be appropriately selected depending on whether it is used for rough polishing or mirror polishing.
  • cerium oxide, zirconium oxide, zirconium silicate and the like are preferable for rough polishing; colloidal silica and the like are preferable for mirror polishing.
  • the average particle size in the slurry varies slightly depending on the type of abrasive used.
  • cerium oxide it is preferable to use about 0.5 to 2.5 ⁇ m.
  • a slurry in which these are dispersed in a solvent is preferable.
  • Neutral water and acidic / alkaline aqueous solution can be employ
  • a dispersant that is compatible with the distribution of particle groups is added.
  • the average particle diameter is less than 0.5 ⁇ m, the polishing pad tends to be unable to polish both main surfaces well. On the other hand, when the average particle diameter exceeds 2.5 ⁇ m, the polishing pad may deteriorate the flatness of the end face or cause scratches.
  • colloidal silica when colloidal silica is used, it is preferable to use a slurry obtained by dispersing colloidal silica having an average particle diameter of 10 to 80 nm in a solvent. Also in this case, it does not specifically limit as a solvent, Neutral water and acidic alkaline aqueous solution can be employ
  • a classifier is used to divide the particles into a group of particles having an average particle size (particle size distribution) on the large particle size side and a small particle size side, and according to the average particle size of each particle size distribution, a suitable dispersant and solvent are used.
  • a slurry small average particle size (small particle size): slurry A, large average particle size (large particle size): slurry B) is adjusted.
  • a suitable mixing ratio preferably 1: 1) and used for polishing.
  • the ratio of the slurry A containing the particle group on the small particle size side and the slurry B containing the particle group on the large particle size side in this embodiment is preferably in the range of 0.8 to 1.2 in A / B, 0.9 To 1.1 are more preferable. Further, when the intermediate particle group C is included, the ratio thereof is A: B: C and is mixed in the range of about 0.1 to 0.4: 0.2 to 0.7: 0.1 to 0.4. It is preferable.
  • the average particle size of the particle group B is larger than the average particle size of the particle group A, but the deviation of the average particle size of each particle group varies depending on the abrasive type. For example, in the case of cerium oxide, it can be set with a deviation of 0.3 to 0.7 ⁇ m.
  • the intermediate particle group C it is preferable to use intermediate particles separated from each of the particle groups A and B by at least 0.1 ⁇ m to 0.5 ⁇ m.
  • the group A and the group B are set with a difference of 20 to 60 nm.
  • the intermediate particle group C it is preferable to use intermediate particles separated from each of the particle groups A and B by at least 10 nm to 30 nm.
  • the dispersant used in this embodiment will be described.
  • polymer compounds having various functional groups are used.
  • the functional group carboxylic acid, carboxylate, sulfonic acid, sulfonate and the like are selected, and the counter cation forming the salt can be selected from alkali metal ions, ammonium and the like.
  • the polymer may be a copolymer.
  • the monomer type, the counter cation type, and the molecular weight of the polymer are appropriately selected so that the particle size distribution of each particle group described above can be maintained.
  • the dispersant suitable for the abrasive particle group A having a predetermined average particle size is selected to have a smaller molecular weight than the dispersant suitable for the abrasive particle group B having an average particle size larger than that of the particle group A.
  • the monomer structure preferably has a small number of functional groups (for example, one), and the functional group species may include a carboxylic acid or a salt thereof, but a sulfonic acid or a salt thereof is more preferable.
  • a dispersant having a relatively high molecular weight is preferably selected as the dispersant suitable for the abrasive particle group B having a large particle size distribution, and the monomer structure has a larger number of functional groups (for example, 2 or more). Liked. Moreover, as a kind of functional group, carboxylic acid or its salt is preferable.
  • a sulfonic acid polymer having a molecular weight in the range of 500 to 2000 can be selected as the dispersant for the particle group A, and a dispersant having a molecular weight of 10,000 to 20000, for example, can be selected.
  • a range of maleic acid polymers can be selected, but is not limited thereto.
  • a dispersant suitable for the intermediate particle group C is a polymer having a molecular weight located between the particle groups A and B in terms of molecular weight, and the molecular structure is a monomer having one functional group and two monomers having a functional group. And a copolymer thereof can be preferably used.
  • the rough polishing step is a step of polishing both the main surfaces of the glass substrate with a polishing slurry so that the surface roughness finally required in the subsequent mirror polishing step can be efficiently obtained. It does not specifically limit as a grinding
  • polishing pad used it is preferable to use a hard pad, for example, urethane foam is preferable because the shape change of the polishing surface increases when the hardness of the polishing pad decreases due to heat generated by polishing.
  • a suede pad can also be used for further quality improvement.
  • polishing slurry it is preferable to use the polishing slurry of the present embodiment as described above (especially, one using cerium oxide).
  • the polishing slurry of the present embodiment is used in the mirror polishing step described later, In this rough polishing step, a known polishing slurry used in normal rough polishing (cerium oxide having an average primary particle size of 0.5 to 2.5 ⁇ m, zirconium oxide, zirconium silicate is dispersed in a solvent. It is also possible to appropriately use a slurry).
  • the polishing rate can be kept high even if a suede pad with low hardness is used.
  • the supply amount of the polishing slurry is not particularly limited and is, for example, 5 to 10 L / min.
  • the polishing amount of the glass substrate in the rough polishing step is preferably about 20 to 40 ⁇ m.
  • the polishing amount of the glass substrate is less than 20 ⁇ m, there is a tendency that scratches and defects are not sufficiently removed.
  • the polishing amount of the glass substrate exceeds 40 ⁇ m, the glass substrate is polished more than necessary, and the production efficiency tends to decrease.
  • the glass substrate after the rough polishing step is preferably washed with a neutral detergent, pure water, IPA or the like.
  • a cleaning step may be provided, and the surface of the glass substrate 1 using a cleaning solution containing sulfuric acid and / or hydrofluoric acid for the purpose of removing any of the abrasive cerium oxide, zirconium oxide, or zirconium silicate in the previous step. Clean while etching.
  • a polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass substrate is appropriately removed by a strongly acidic cleaning liquid such as sulfuric acid and / or hydrofluoric acid. Thereafter, the glass substrate 1 is cleaned using an acidic cleaning solution.
  • the cleaning liquid used in the cleaning step varies depending on the chemical resistance of the glass substrate 1, but a concentration of about 1% by mass to 30% by mass is preferable for sulfuric acid, and 0.2% by mass for hydrofluoric acid. A concentration of about 5% by mass is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored.
  • the frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
  • the mirror polishing process is a process of polishing both main surfaces of the glass substrate more precisely.
  • a double-side polishing machine similar to the double-side polishing machine used in the rough polishing process can be used.
  • the polishing pad is preferably a soft pad having a lower hardness than the polishing pad used in the rough polishing step, and for example, urethane foam or suede is preferably used.
  • the polishing slurry a slurry containing cerium oxide or the like similar to the rough polishing step can be used, but in order to make the surface of the glass substrate smoother, the polishing slurry has a finer grain size and less variation. Is preferably used. For example, it is preferable to use a slurry obtained by dispersing colloidal silica having an average primary particle size of 10 to 80 nm in a solvent to form a slurry.
  • a known polishing slurry preferably, colloidal silica used for normal mirror polishing is used in the mirror polishing step. Can be used as appropriate.
  • the polishing slurry according to the present embodiment as described above (particularly, using colloidal silica) in the mirror polishing step in addition to the rough polishing step. .
  • this embodiment it is possible to polish with high accuracy and provide high quality.
  • the supply amount of the polishing slurry is not particularly limited, and is, for example, 0.5 to 1 L / min.
  • the polishing amount in the mirror polishing step is preferably about 2 to 5 ⁇ m.
  • the obtained glass substrate can remove fine defects such as minute roughness and waviness generated on the surface of the glass substrate, or minute scratches generated in the previous process. Is done.
  • the glass substrate manufacturing method of the present embodiment can improve the flatness of the obtained glass substrate, and can manufacture a glass substrate on which the magnetic head can float more stably in the end region. .
  • this step by appropriately adjusting the polishing conditions in the mirror polishing step, the flatness of both main surfaces of the glass substrate is reduced to 2 ⁇ m or less, and the surface roughness Ra of both main surfaces of the glass substrate is reduced to 0.1 nm. be able to.
  • the chemical strengthening step is a step of immersing the glass substrate in a strengthening treatment liquid to improve the impact resistance, vibration resistance, heat resistance, and the like of the glass substrate.
  • the chemical strengthening step is a step of chemically strengthening the glass substrate.
  • the strengthening treatment liquid used for chemical strengthening include a mixed solution of potassium nitrate (60%) and sodium nitrate (40%).
  • Chemical strengthening can be performed by heating the strengthening treatment liquid to 300 to 400 ° C., preheating the glass substrate to 200 to 300 ° C., and immersing in the strengthening treatment liquid for 3 to 4 hours. In this immersion, it is preferable that the immersion is performed in a state of being housed in a holder that holds the end faces of the plurality of glass substrates so that both main surfaces of the glass substrate are chemically strengthened.
  • a standby process for waiting the glass substrate in the air and a water immersion process are adopted to remove the strengthening treatment liquid adhering to the surface of the glass substrate and to homogenize the surface of the glass substrate. It is preferable.
  • the chemically strengthened layer is formed uniformly, the compressive strain is uniform, deformation is difficult to occur, the flatness is good, and the mechanical strength is also good.
  • the waiting time and the water temperature in the water immersing step are not particularly limited. For example, it may be kept in the air for 1 to 60 seconds and immersed in water at about 35 to 100 ° C., and may be determined appropriately in consideration of production efficiency.
  • the final cleaning step is a step of cleaning and cleaning the glass substrate. It does not specifically limit as a washing
  • a cleaning liquid such as a detergent or pure water is used.
  • the pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ⁇ potential can be easily adjusted and scrub cleaning can be performed efficiently.
  • both scrub cleaning with a detergent and scrub cleaning with pure water may be performed.
  • the glass substrate 1 By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned.
  • the glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
  • the glass substrate may be further subjected to ultrasonic cleaning.
  • ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
  • the cleaned glass substrate is subjected to ultrasonic cleaning and drying processes as necessary.
  • the drying step is a step of drying the surface of the glass substrate after removing the cleaning liquid remaining on the surface of the glass substrate with isopropyl alcohol (IPA) or the like.
  • IPA isopropyl alcohol
  • a water rinse cleaning process is performed on the glass substrate after scrub cleaning for 2 minutes to remove the cleaning liquid residue.
  • an IPA cleaning process is performed for 2 minutes, and water remaining on the surface of the glass substrate is removed by IPA.
  • the IPA vapor drying step is performed for 2 minutes, and the liquid IPA adhering to the surface of the glass substrate is dried while being removed by the IPA vapor.
  • the drying process of the glass substrate is not particularly limited, and for example, a known drying method such as spin drying or air knife drying can be employed.
  • the glass substrate that has undergone the final cleaning step may be further subjected to an inspection step before shipment.
  • the inspection step is a step of inspecting the glass substrate that has undergone the above-described steps for the presence or absence of scratches, cracks, foreign matters, and the like.
  • the inspection is performed visually or using an optical surface analyzer (for example, “OSA6100” manufactured by KLA-TENCOL).
  • OSA6100 manufactured by KLA-TENCOL
  • the method for manufacturing a glass substrate for hard disk includes a polishing step of polishing a glass substrate with a polishing slurry containing abrasive particles, and in the polishing step, An abrasive slurry A containing an abrasive particle group A having an average particle size and a dispersant optimal for the particle group A, an abrasive particle group B having an average particle size larger than the particle group A, and the particle group B Polishing is performed using a polishing slurry obtained by mixing polishing slurry B containing an optimal dispersant.
  • each abrasive particle Agglomeration changes the particle size distribution of the abrasive particles derived from each polishing slurry.
  • the particle size distribution in the mixed polishing slurry can be suppressed, and the quality of the polished surface is maintained.
  • the polishing rate can be stably maintained, it is possible to efficiently manufacture an excellent glass substrate.
  • the polishing slurry further includes an abrasive particle group C having an average particle diameter intermediate between the particle group A and the particle group B, and a dispersant optimal for the particle group C. It is more preferable to use a polishing slurry obtained by mixing the polishing slurry A and the polishing slurry B. With such a configuration, the particle distribution can have a shape more suitable for stabilizing the polishing rate, and the optimum particle size distribution can be maintained with higher accuracy, so that higher quality and higher rate can be provided.
  • the manufacturing method includes a rough polishing step and a mirror polishing step as the polishing step, and polishing is performed using the polishing slurry in at least one of the rough polishing step and the mirror polishing step.
  • the polishing process is performed in two stages, and at least one of them is used in the polishing slurry according to the present invention, leading to stabilization of the polishing rate of the applied process.
  • rough polishing is performed. It is considered that high quality can be obtained because the variation in the subsequent substrate removal is small and a more uniform surface state can be obtained, so that high-precision polishing is possible in the subsequent precision polishing step.
  • high surface quality can be obtained because the fluctuation of processing at the time of precision polishing is reduced and more precise conditions can be taken.
  • the manufacturing method it is preferable to polish using the polishing slurry in both the rough polishing step and the mirror polishing step. With such a configuration, it is possible to provide a higher-quality glass substrate suitable for high-density hard disk drives and media.
  • cerium oxide as abrasive particles in the rough polishing step.
  • Zirconium oxide, zircon, or the like may be used.
  • cerium oxide the effects of rate stabilization and reduction in machining allowance variation intended by the present invention can be exhibited more highly.
  • colloidal silica is suitable for obtaining higher surface quality.
  • the concentration of the abrasive component is 0.2 to 20% by mass in each of the polishing slurries.
  • a suede pad as a polishing pad in the rough polishing step.
  • the polishing quality is further improved, and by using the polishing slurry, the stability of the polishing rate can be obtained even if a suede pad is used.
  • Example 1 Glass melting process
  • each raw material was prepared and melted at 1500 ° C. using a platinum crucible.
  • a glass gob supplied to the center of the lower mold forming surface was used with an upper mold facing the lower mold, and a tungsten-based material was used for the upper mold and the lower mold.
  • the pressing time was 1 second, and butt molding was performed so that the thickness of the blanks after molding was uniform.
  • the plate thickness after molding was 1.1 mm on average.
  • the main surface (upper and lower surfaces) of the glass substrate was processed by using diamond grains made of acrylic resin as abrasive grains.
  • the diamond particle diameter was 4 ⁇ m.
  • the main surface (upper and lower surfaces) of the glass substrate was processed using a diamond-shaped diamond resin sheet.
  • a diamond particle diameter of 1.5 ⁇ m was used.
  • the glass substrate 1 main surface (upper and lower surfaces) was ground to about 250 ⁇ m.
  • a cerium oxide abrasive having an average particle size of 1.2 ⁇ m and a wide particle size distribution is applied to a classifier, and the cerium oxide abrasive having an average particle size of 0.95 ⁇ m and an average particle size of 0.4 ⁇ m is obtained. Abrasive and obtained.
  • the polishing slurry A and the slurry B were mixed one-on-one to obtain a polishing liquid used for rough polishing.
  • both main surfaces of 100 glass substrates were subjected to rough polishing using a double-side polishing machine (manufactured by Hamai Sangyo Co., Ltd., 16B type) using the above polishing liquid.
  • a suede urethane pad was used as the polishing pad.
  • the load was 120 g / cm 2 .
  • the supply amount of the polishing slurry was 10 L / min.
  • the polishing liquid is supplied from the slurry tank to the polishing machine, and the liquid used in the processing is discharged from the polishing machine and returned to the slurry tank at the same time, and is circulated through the slurry tank and used for processing.
  • the polishing time was set to 45 minutes.
  • polishing was performed continuously for 10 batches, with 100 glass substrates being polished per batch as one batch.
  • the polishing rate is derived by dividing by the polishing time, and is shown in Table 1 below.
  • chemical strengthening process chemical strengthening was performed on the glass substrate after the above steps. Specifically, first, a mixed melt obtained by melting a solid of potassium nitrate and sodium nitrate was prepared. In addition, this mixed melt is mixed so that the mixing ratio of potassium nitrate and sodium nitrate is 6: 4 by mass ratio. Then, this mixed melt was heated to 400 ° C., and the washed glass base plate was immersed in the heated mixed melt for 60 minutes.
  • the glass substrate was scrubbed.
  • a cleaning liquid a liquid obtained by diluting KOH and NaOH mixed at a mass ratio of 1: 1 with ultrapure water (DI water) and adding a nonionic surfactant to enhance the cleaning performance is obtained.
  • DI water ultrapure water
  • the cleaning liquid was supplied by spraying. After scrub cleaning, in order to remove the cleaning liquid remaining on the surface of the glass substrate, a water rinse cleaning process is performed in an ultrasonic bath for 2 minutes, an IPA cleaning process is performed in an ultrasonic bath for 2 minutes, and finally the glass substrate is cleaned with IPA vapor. The surface of was dried.
  • Example 2 A glass substrate was obtained in the same manner as in Example 1 except that the following polishing slurry was used in the rough polishing step.
  • a cerium oxide abrasive having an average particle size of 1.2 ⁇ m and a wide particle size distribution is applied to a classifier several times, and the cerium oxide abrasive having an average particle size of 0.98 ⁇ m and an oxidation of an average particle size of 0.67 ⁇ m.
  • a cerium oxide abrasive having a particle size distribution with a cerium abrasive and an average particle size of 0.37 ⁇ m was obtained.
  • a slurry was prepared with a concentration of 9% by mass. This is designated as slurry C.
  • the copolymer used here was a copolymer having a maleic acid / acrylic acid ratio lower than that used for 0.95 ⁇ m.
  • Slurry A ', Slurry B', and Slurry C were mixed so as to have the above mixing ratio to obtain a polishing liquid used for rough polishing.
  • Example 1 A glass substrate was obtained in the same manner as in Example 1 except that the following polishing slurry D was used in the rough polishing step.
  • a cerium oxide abrasive with an average particle size of 1.2 ⁇ m and a wide particle size distribution, a copolymer of maleic acid and acrylic acid (MW 12000) is added as a dispersant and neutral water is used as a dispersion medium.
  • a polishing slurry was prepared with a material concentration of 10% by mass. This was designated polishing slurry D.
  • Example 2 A glass substrate was obtained in the same manner as in Example 1 except that the following polishing slurry E was used in the rough polishing step.
  • a slurry prepared by using an acrylic acid polymer (MW 5000) as a dispersing agent to a polishing agent concentration of 10% by mass with respect to a cerium oxide abrasive having an average particle size of 1.2 ⁇ m and a wide particle size distribution. It was.
  • Slurries 1 and 2 were mixed so as to have the following silica ratio to obtain a polishing liquid used for precision polishing.
  • both main surfaces of the glass substrate were polished more precisely using a double-side polishing machine (manufactured by Hamai Sangyo Co., Ltd., 16B type).
  • the load was 120 g / cm 2 and the supply amount of the polishing slurry was 10 L / min.
  • 100 batches of glass substrates were processed as 10 batches.
  • the polishing liquid is supplied from the slurry tank to the polishing machine, and the liquid used in the processing is discharged from the polishing machine and returned to the slurry tank at the same time, and is circulated through the slurry tank and used for processing.
  • the polishing time was set to 30 minutes.
  • polishing rate was derived by dividing by 2 and is shown in Table 2 below.
  • Example 4 In the mirror polishing step, a glass substrate was obtained in the same manner as in Comparative Example 1 except that the following polishing slurry was used.
  • colloidal silica having an average primary particle size of 9 nm, colloidal silica having an average primary particle size of 20 nm, and colloidal silica having an average primary particle size of 35 nm are prepared.
  • Polishing slurries 1 ', 3, and 2' were mixed so as to have the following silica ratio to obtain a polishing liquid used for precision polishing.
  • Comparative Example 3 In the mirror polishing step, a glass substrate was obtained in the same manner as in Comparative Example 1 except that the following polishing slurry 4 was used.
  • Neutral water was used as a dispersion medium
  • the abrasive concentration was 20 mass%
  • the pH was adjusted with a liquid further containing sulfuric acid to obtain a polishing slurry 4.
  • Example 5 In the mirror polishing process, a glass substrate was obtained in the same manner as in Example 1 except that the polishing slurry of Example 3 was used.
  • the polishing rate was derived by dividing by the polishing time.
  • the thickness was measured using a Mitutoyo micrometer (measuring instrument).
  • polishing rate of mirror polishing and maximum thickness difference ⁇ t For the glass substrates obtained in Examples 3 to 4 and Comparative Example 3, the polishing rate after mirror polishing and the maximum thickness difference ⁇ t were evaluated. Polishing was performed continuously for 10 batches, with 100 batches of glass substrate polishing per batch.
  • the polishing rate was derived by dividing by the polishing time.
  • the thickness was measured using a Mitutoyo micrometer (measuring instrument). The results are shown in Table 2.
  • OSA defect count
  • defect inspection As the test apparatus, an optical defect inspection apparatus Candela-OSA6100 manufactured by KLA-Tencor was used.
  • the glass substrate obtained by the production method according to the present invention is excellent in rate stability in the rough polishing step, as compared with the glass substrate of the comparative example obtained by the conventional method.
  • the defect evaluation results also showed that there was very little variation in polishing allowance within one batch, and the final surface quality was excellent.
  • polishing rate was remarkably stabilized and the surface quality was excellent by using a slurry composed of three particle size distributions and each composed of a dispersing agent optimal for different distributions.
  • the rate stability in the precision polishing step is further improved, and the polishing allowance is reduced. It can be seen that the variation is further suppressed.
  • the degree of non-defective product by defect count is rank A, and there is no difference from the level where the present invention is applied to one process, but the non-defective product rate applied to both processes is 100-99%. It is found that the level is higher than the level (95 to 97%) of Examples 1 and 3 applied to No. 1, and the surface quality is also excellent.
  • the present invention has wide industrial applicability in the technical field of glass substrates for hard disks and their manufacturing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

One aspect of the present invention pertains to a method for manufacturing a glass substrate for a hard disk, the method being provided with a polishing step for polishing the glass substrate using a polishing slurry that contains abrasive particles, wherein the method is characterized in that a polishing slurry obtained by mixing a polishing slurry (A), which contains a group of abrasive particles (A) having a prescribed average particle diameter and a dispersant most suitable for the group of particles (A), and a polishing slurry (B), which contains a group of abrasive particles (B) having a larger average particle diameter than the group of particles (A) and a dispersant most suitable for the group of particles (B), is used to polish the glass substrate in the polishing step.

Description

ハードディスク用ガラス基板の製造方法Manufacturing method of glass substrate for hard disk
 本発明は、ハードディスク(HDD)に搭載する磁気ディスクとして用いられるハードディスク(磁気情報記録媒体)用ガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for a hard disk (magnetic information recording medium) used as a magnetic disk mounted on a hard disk (HDD).
 HDD等の磁気情報記録媒体用のガラス基板は、通常、フロート法やダイレクトプレス法により得られた平板状のガラス素板に対し、研削工程、研磨工程、化学強化工程などを行うことによって作製される。 Glass substrates for magnetic information recording media such as HDDs are usually produced by performing a grinding process, a polishing process, a chemical strengthening process, etc. on a flat glass base plate obtained by a float method or a direct press method. The
 特に、ガラス基板の加工においては、平坦度を整える研削工程の後に、面質の要求により面を仕上げる1段もしくは2段階の研磨工程を通常入れる。その研磨工程のうち、最初に行われる所謂粗研磨工程には一般的に研磨レートの高い酸化セリウム研磨材が従来から用いられている。 In particular, in the processing of a glass substrate, after the grinding process for adjusting the flatness, a one-stage or two-stage polishing process for finishing the surface depending on the surface quality is usually added. Of the polishing steps, a cerium oxide abrasive having a high polishing rate is generally used for the so-called rough polishing step that is first performed.
 酸化セリウムを使用する研磨工程には高いレートを発揮するため硬度の高いポリウレタンパッドが用いられてきたが、傷、深いダメージが残る欠点があり、高密度化基板の要求に応える高品質な仕上げに向けて高い課題となっていた。そこで、従来より硬度が低く設計された発泡層を含む特徴を持つスウェード状パッドが導入され、傷、ダメージの改善可能となった(例えば、特許文献1)。 High-hardness polyurethane pads have been used in polishing processes that use cerium oxide to achieve a high rate, but there are defects that leave scratches and deep damage, making it a high-quality finish that meets the demands of high-density substrates. It was a high issue. Therefore, a suede-shaped pad having a feature including a foam layer designed to have a lower hardness than before has been introduced, and scratches and damage can be improved (for example, Patent Document 1).
 一方、研磨工程に用いる研磨スラリーを改良する技術として、これまでに、研磨材の2次粒径の分布を整え、凝集の起こらないスラリーを用いる方法(特許文献2)や、研磨材としての酸化セリウムの小粒径化と高純度化を図る方法(特許文献3)などが報告されている。 On the other hand, as a technique for improving the polishing slurry used in the polishing process, a method of using a slurry in which the secondary particle size distribution of the polishing material is adjusted and no aggregation occurs (Patent Document 2), and oxidation as a polishing material. A method of reducing the particle size and increasing the purity of cerium (Patent Document 3) has been reported.
 ところで、研磨工程においては、製造時間短縮の為、短期間に所望の研磨厚み(研磨取り代ともいう)を得るため研磨速度を高めることが求められる一方、製造品質を高めるため、各研磨工程後に必要とされる表面粗さに調整することが求められる。しかしながら、研磨速度を高めるために研磨材粒子の粒径を大きくすると所望の表面粗さに調整することが困難となり、研磨材粒子の粒径を小さくすると研磨速度が低下するというトレードオフの関係となっており改善が求められていた。これに対し、比較的大きな研磨材粒子と、比較的小さな研磨材粒子を混合して用いることで、大きな研磨材粒子で研磨速度を高め、小さな研磨材粒子で仕上がりの表面粗さを達成するという技術を検討した。このような研磨剤スラリーを用いることで、ある程度所望の研磨速度と製造後の表面粗さを調整することが可能となった。また、このような技術と、前述のような酸化セリウムによる粗研磨工程においてスウェード状パッドを用いる研磨方法を組み合わせることで、研磨速度を高めてトータルの製造時間を短縮するとともに、仕上がりのガラス基板の品質を高めることも可能となった。しかしながら、上述の技術を用いた場合、研磨レートがランニングと共に変化し、バッチ毎に基板研磨の取り代のばらつきが発生するという課題が生じた。このような研磨レートの変化は、取り代のバラツキにつながり、仕上げ厚みのバラツキが拡大すると共に、研磨面品質不良を引き起こすために重大な課題となることが明らかになった。 By the way, in the polishing process, in order to shorten the manufacturing time, it is required to increase the polishing rate in order to obtain a desired polishing thickness (also referred to as polishing allowance) in a short period of time. It is required to adjust to the required surface roughness. However, it is difficult to adjust to the desired surface roughness when the particle size of the abrasive particles is increased in order to increase the polishing rate, and the trade-off relationship is that the polishing rate is decreased when the particle size of the abrasive particles is decreased. There was a need for improvement. In contrast, by using a mixture of relatively large abrasive particles and relatively small abrasive particles, the polishing rate is increased with large abrasive particles, and the finished surface roughness is achieved with small abrasive particles. The technology was examined. By using such an abrasive slurry, it became possible to adjust the desired polishing rate and the surface roughness after production to some extent. In addition, by combining such a technique with a polishing method using a suede pad in the rough polishing step using cerium oxide as described above, the polishing rate is increased and the total manufacturing time is shortened. It became possible to improve the quality. However, when the above-described technique is used, the polishing rate changes with running, and there arises a problem that variation in substrate polishing allowance occurs for each batch. It has been clarified that such a change in the polishing rate leads to a variation in the machining allowance, an increase in the variation in the finished thickness, and a serious problem in causing a poor quality of the polished surface.
 また、本発明者らの検討の結果、上述のような問題は、異なる粒径の研磨材粒子を用いた場合において、研磨が進むにつれて研磨材粒子の粒度分布が変化することが原因となっていることを突き止めたが、このような異なる粒度分布を持つ研磨材粒子を用いた場合において、それぞれの研磨材粒子の粒度分布を維持することを目的とした技術はいまだ知られていない。 Further, as a result of the study by the present inventors, the above-mentioned problems are caused by the change in the particle size distribution of the abrasive particles as the polishing proceeds when the abrasive particles having different particle sizes are used. However, when using abrasive particles having such a different particle size distribution, a technique for maintaining the particle size distribution of each abrasive particle is not yet known.
 このような課題を解決し、近年の記録容量の高密度化及び用途の拡大に伴い、その基材として用いられるガラス基板の記録面の品質の更なる向上とともに、生産性の向上も求められているのが現状である。 In order to solve such problems and increase the recording capacity in recent years and expand applications, there is a need for further improvement in productivity as well as further improvement in the quality of the recording surface of the glass substrate used as the base material. The current situation is.
特開2011-104691号公報JP 2011-104691 A 特開2010-165420号公報JP 2010-165420 A 特開2001-72962号公報JP 2001-72962 A
 本発明はかかる事情に鑑みてなされたものであって、高密度化の要求に応えうる品質を確保できる、効率のよい、ハードディスク用ガラス基板を製造する方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an efficient method of manufacturing a glass substrate for a hard disk capable of ensuring quality capable of meeting the demand for higher density.
 本発明者は、鋭意検討した結果、下記構成を有する製造方法によって、前記課題が解決することを見出し、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of intensive studies, the present inventor has found that the above problems can be solved by a manufacturing method having the following configuration, and has further completed the present invention based on such findings.
 すなわち、本発明の一局面に係るハードディスク用ガラス基板の製造方法は、研磨材粒子を含む研磨スラリーでガラス基板を研磨する研磨工程を備えており、前記研磨工程において、前記ガラス基板を、所定の平均粒子径を有する研磨材粒子群Aと該粒子群Aに最適な分散剤とを含む研磨スラリーAと、前記粒子群Aより大きな平均粒子径を有する研磨材粒子群Bと該粒子群Bに最適な分散剤とを含む研磨スラリーBとを混合して得られる研磨スラリーを用いて研磨することを特徴とする。 That is, the method for manufacturing a glass substrate for hard disk according to one aspect of the present invention includes a polishing step of polishing a glass substrate with a polishing slurry containing abrasive particles, and in the polishing step, An abrasive slurry A containing an abrasive particle group A having an average particle size and a dispersant optimal for the particle group A, an abrasive particle group B having an average particle size larger than the particle group A, and the particle group B Polishing is performed using a polishing slurry obtained by mixing polishing slurry B containing an optimal dispersant.
図1は、ガラスブランクスの成形用金型及びプレス機の一例を示す図である。FIG. 1 is a view showing an example of a molding die for glass blanks and a press machine. 図2は、ガラスブランクス成形用プレス機が配置された回転テーブルの斜視図である。FIG. 2 is a perspective view of a rotary table on which a glass blank forming press is disposed.
 以下、本発明に係る実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described in detail, but the present invention is not limited thereto.
 本実施形態に係るハードディスク用ガラス基板の製造方法は、研磨材粒子を含む研磨スラリーでガラス基板を研磨する研磨工程を備えており、前記研磨工程において、前記ガラス基板を、所定の平均粒子径を有する研磨材粒子群Aと該粒子群Aに最適な分散剤とを含む研磨スラリーAと、前記粒子群Aより大きな平均粒子径を有する研磨材粒子群Bと該粒子群Bに最適な分散剤とを含む研磨スラリーBとを混合して得られる研磨スラリーを用いて研磨することを特徴とする。 The method for manufacturing a glass substrate for hard disk according to the present embodiment includes a polishing step of polishing the glass substrate with a polishing slurry containing abrasive particles, and in the polishing step, the glass substrate has a predetermined average particle diameter. Abrasive slurry A containing an abrasive particle group A having and an optimal dispersant for the particle group A, an abrasive particle group B having an average particle size larger than the particle group A, and an optimal dispersant for the particle group B It grind | polishes using the polishing slurry obtained by mixing the polishing slurry B containing these.
 本発明者は、スエードパッドなどを研磨に用いた場合のレート低下の原因を鋭意検討し、研磨材のランニングに伴う粒度分布の変化が影響していることを見出し、さらに研究を重ねて本発明を完成させた。 The inventor diligently studied the cause of the rate reduction when using a suede pad or the like for polishing, and found that the change in the particle size distribution accompanying the running of the abrasive was influencing, and further researching the present invention. Was completed.
 本実施形態においては、上記構成によって、少なくとも2つの異なる粒度分布を有する研磨材粒子群を、最適なそれぞれ異なる分散剤を選択することによって維持し、それらを混合した研磨スラリーを使用することによって、品質を維持しつつレートを向上できると考えられる。 In the present embodiment, by the configuration described above, the abrasive particles having at least two different particle size distributions are maintained by selecting optimum different dispersants, and by using a polishing slurry in which they are mixed, It is thought that the rate can be improved while maintaining the quality.
 本発明によれば、ハードディスク用ガラス基板の製造方法において、研磨によるガラス基板の研磨面品質を維持しつつ、高いレートを安定的に提供することができる。それにより、非常に高い品質のガラス基板を効率よく生産することができる。よって、本発明のハードディスク用ガラス基板の製造方法は産業利用上きわめて有用である。 According to the present invention, in the method of manufacturing a glass substrate for hard disk, it is possible to stably provide a high rate while maintaining the polished surface quality of the glass substrate by polishing. Thereby, a very high quality glass substrate can be produced efficiently. Therefore, the manufacturing method of the glass substrate for hard disks of this invention is very useful on industrial use.
 本実施形態に係るハードディスク用ガラス基板の製造方法は、前記研磨工程を少なくとも備えている限り、その他の工程については特に限定されず、従来公知の製造方法で用いられ得る工程を適宜使用することができる。 As long as the manufacturing method of the glass substrate for hard disks according to the present embodiment includes at least the polishing step, the other steps are not particularly limited, and a step that can be used in a conventionally known manufacturing method is appropriately used. it can.
 ハードディスク用ガラス基板の製造方法としては、通常、例えば、溶融工程(ガラスブランクス製造工程)、円盤加工工程、粗研削工程(第1研削工程)、精研削工程(第2研削工程)、粗研磨工程(1次研磨工程)、洗浄工程、化学強化工程、鏡面研磨工程(2次研磨工程)、及び最終洗浄工程等を備える方法等が挙げられる。そして、前記各工程を、この順番で行うものであってもよいし、化学強化工程と鏡面研磨工程(2次研磨工程)との順番が入れ替わったものであってもよい。さらに、これら以外の工程を備える方法であってもよい。例えば、上記以外に、熱処理工程、形状加工工程、コアリング工程、端面研磨工程や検査工程を行ってもよい。 As a manufacturing method of the glass substrate for hard disks, for example, a melting process (glass blanks manufacturing process), a disk processing process, a rough grinding process (first grinding process), a fine grinding process (second grinding process), and a rough polishing process are usually performed. (Primary polishing step), cleaning step, chemical strengthening step, mirror polishing step (secondary polishing step), and a method including a final cleaning step. And each said process may be performed in this order, and the order of a chemical strengthening process and a mirror polishing process (secondary polishing process) may be replaced. Furthermore, a method including steps other than these may be used. For example, in addition to the above, a heat treatment step, a shape processing step, a coring step, an end surface polishing step, and an inspection step may be performed.
 本実施形態の前記研磨工程は、粗研磨工程(1次研磨工程)で行ってもよいし、鏡面研磨工程(2次研磨工程)で行うこともできる。さらに、粗研磨工程および鏡面研磨工程の両方で行うことがより効果を発揮する上で望ましい。 The polishing step of the present embodiment may be performed in a rough polishing step (primary polishing step) or may be performed in a mirror polishing step (secondary polishing step). Furthermore, it is desirable to perform both in the rough polishing process and the mirror polishing process in order to achieve more effects.
 以下に、本実施形態に係るハードディスク用ガラス基板の製造方法の一実施態様について説明する。 Hereinafter, an embodiment of the method for manufacturing the glass substrate for hard disk according to the present embodiment will be described.
 なお、図面中、各符号は以下を示す:1 成型用プレス機、2 プレス機上部、3 上型、4 第1の成形面、5 下型、6 第2の成形面、7 プレス機下部、8 回転軸、9 回転テーブル、21 流出ノズル、23 溶融ガラス。 In the drawings, each symbol indicates the following: 1 molding press, 2 upper press, 3 upper mold, 4 first molding surface, 5 lower mold, 6 second molding surface, 7 lower press machine, 8 rotary shaft, 9 rotary table, 21 outflow nozzle, 23 molten glass.
 <ガラスブランクス製造工程>
 まず、ガラス素材としては、たとえば一般的なアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、58質量%~75質量%のSiOと、5質量%~23質量%のAlと、3質量%~10質量%のLiOと、4質量%~13質量%のNaOと、を主成分として含有する。ガラス素材は、アルミノシリケートガラスに限られるものではなく、ソーダライムガラス、ホウケイ酸ガラスなど、任意の素材であってもよい。
<Glass blanks manufacturing process>
First, as a glass material, for example, a general aluminosilicate glass is used. The aluminosilicate glass is composed of 58 mass% to 75 mass% SiO 2 , 5 mass% to 23 mass% Al 2 O 3 , 3 mass% to 10 mass% Li 2 O, and 4 mass% to 13 mass. % Na 2 O as a main component. The glass material is not limited to aluminosilicate glass, and may be any material such as soda lime glass or borosilicate glass.
 次に、ダイレクトプレス法により、ハードディスク用ガラス基板の中間成形体であるガラスブランクスを製造する。このガラスブランクスは、溶融ガラスを供給し、その溶融ガラスを冷却しながら加圧成形して製造されるのが一般的である。本実施形態のガラスブランクスの製造においては、上記の工程の他に、前記ガラスブランクスの平坦度を修正し、内部歪みを除去するために熱処理を施してもよい。また、ドーナツ状基板にするためにコアリング工程が設けてもよい。 Next, glass blanks, which are intermediate molded bodies of glass substrates for hard disks, are produced by the direct press method. These glass blanks are generally manufactured by supplying molten glass and press-molding while cooling the molten glass. In the production of the glass blank of the present embodiment, in addition to the above steps, heat treatment may be applied to correct the flatness of the glass blank and remove internal strain. Further, a coring process may be provided in order to obtain a donut-shaped substrate.
 図1は、本実施形態のガラスブランクスをプレス成形で作成するための金型及びプレス機の模式図である。ガラスブランクス成形用のプレス機1は、溶融ガラスが供給され、供給された該溶融ガラスを加圧するための第1の成形面6を備える下型5及びプレス機下部7と、下型5の第1の成形面6との間で溶融ガラスを加圧するための第2の成形面4を備える上型3及びプレス機上部2とを有している。 FIG. 1 is a schematic view of a mold and a press for producing the glass blanks of the present embodiment by press molding. The press 1 for forming glass blanks is supplied with molten glass, and includes a lower mold 5 and a lower part 7 having a first molding surface 6 for pressurizing the supplied molten glass, and a lower mold 5. It has an upper die 3 and a press machine upper part 2 provided with a second molding surface 4 for pressurizing molten glass with one molding surface 6.
 図2は、回転テーブルに並べられたプレス機下部7とプレス機上部2によってガラスブランクスをプレス成形される機構を表した斜視図である。プレス機下部7は、回転テーブル9に円周方向に並べて埋設されている。該回転テーブル9は、回転軸8の周りを特定の速度v(m/s)にて回転駆動可能となるように設けられている。 FIG. 2 is a perspective view showing a mechanism in which glass blanks are press-formed by the lower press 7 and the upper press 2 arranged on the rotary table. The press machine lower part 7 is embedded in the rotary table 9 side by side in the circumferential direction. The rotary table 9 is provided so as to be able to be driven to rotate around the rotary shaft 8 at a specific speed v (m / s).
 またプレス機下部7の上に金型の下型5が設置されているが、回転台上の所定の位置において溶融ガラス23が流出ノズル21によって下型5へ供給される。溶融ガラス23が供給された下型5は、プレス機下部7とともに回転テーブルによって移送され、別の位置においてプレス機上部2に設置された上型3を、下型5の位置まで下降させて溶融ガラスを加圧する。 Further, although the lower mold 5 of the mold is installed on the lower part 7 of the press machine, the molten glass 23 is supplied to the lower mold 5 by the outflow nozzle 21 at a predetermined position on the turntable. The lower mold 5 supplied with the molten glass 23 is transported by the rotary table together with the lower part 7 of the press machine, and the upper mold 3 installed on the upper part 2 of the press machine at another position is lowered to the position of the lower mold 5 to be melted. Pressurize the glass.
 金型の内部には、複数のヒーターが埋め込まれるように設置されている。該ヒーターは、周方向に均一角度で配置されるように、一周又は複数周状であって同心円状に埋め込まれていることが、金型の温度制御をしやすいという点で好ましい。なお、プレス機下部7には、前記プレス機上部2と同様に複数のヒーターを配置されていてもよいし配置されていなくてもよいが、プレスされる加圧時間によってはプレス機下部7に配置されていた方が好ましい。 複数 Inside the mold, a plurality of heaters are installed. The heater is preferably arranged in one or more rounds and concentrically so as to be arranged at a uniform angle in the circumferential direction in terms of easy temperature control of the mold. Note that a plurality of heaters may or may not be arranged in the press machine lower part 7 in the same manner as the press machine upper part 2, but depending on the pressurizing time to be pressed, It is preferable that they are arranged.
 よって、本実施形態におけるガラスブランクスの製造は、主として下型5に形成された第1の成形面6に溶融ガラスを供給する溶融ガラス供給工程と、上型3に形成された第2の成形面4で、第1の成形面6に供給された溶融ガラスを加圧しながら冷却してガラスブランクスを得る加圧工程とを備えるものである。 Therefore, the manufacture of the glass blanks in the present embodiment is mainly performed by a molten glass supply step for supplying molten glass to the first molding surface 6 formed on the lower mold 5 and a second molding surface formed on the upper mold 3. 4 and a pressurizing step of obtaining glass blanks by cooling the molten glass supplied to the first molding surface 6 while pressurizing it.
 下型5の成形面6、上型3の成形面4には次工程の研削工程の研削レート向上及び研削バラツキの抑制の目的で所定の粗面を形成しており、ガラスブランクス表面に加圧工程時に各型の成形面の粗面形状が転写されるようにしている。 A predetermined rough surface is formed on the molding surface 6 of the lower die 5 and the molding surface 4 of the upper die 3 for the purpose of improving the grinding rate in the next grinding step and suppressing grinding variation, and pressurizes the glass blank surface. The rough surface shape of the molding surface of each mold is transferred during the process.
 <熱処理工程>
 熱処理工程は、ガラスブランクスの平坦度の修正および内部歪みの除去を目的とする工程である。熱処理の方法としては特に限定されないが、たとえばセッター(アルミナ、ジルコニア等)を用いて、ガラスブランクスと交互に積み重ねて熱処理炉に入れて熱を加える方法を採用することができる。
<Heat treatment process>
The heat treatment step is a step aimed at correcting the flatness of glass blanks and removing internal strain. Although it does not specifically limit as a method of heat processing, For example, the method of using a setter (alumina, zirconia, etc.) and stacking alternately with glass blanks, putting into a heat processing furnace, and applying heat can be employ | adopted.
 熱処理の条件としては特に制限されない。たとえば、熱処理時の温度としては、ガラスブランクスのTgからTg+100(℃)の温度範囲で行うことができる。当該温度範囲内で熱処理を行うことにより、ガラスブランクスの平坦度を充分に修正することができるとともに、ガラスブランクスの形状の悪化を低減し、さらにセッターとの間の融着に起因する粘着痕の発生する可能性を低減することができる。 There are no particular restrictions on the heat treatment conditions. For example, the temperature during the heat treatment can be performed in a temperature range from Tg to Tg + 100 (° C.) of the glass blank. By performing the heat treatment within the temperature range, the flatness of the glass blanks can be sufficiently corrected, the deterioration of the shape of the glass blanks is reduced, and the adhesion marks caused by the fusion with the setter are further reduced. The possibility of occurring can be reduced.
 <コアリング工程>
 コアリング工程は、得られたガラスブランクスの表面の中心部にダイヤモンドコアドリルを用いて内孔(中心孔)を形成する工程である。このコアリング工程によって、ガラスブランクスの中心が決定される。なお、本実施形態において、ガラスブランクスとは、コアリング工程を終え、後述する主平面の研削工程(第1研削工程)が行われる前のガラス成形物をいう。
<Coring process>
A coring process is a process of forming an inner hole (center hole) in the center part of the surface of the obtained glass blanks using a diamond core drill. The center of the glass blanks is determined by this coring process. In addition, in this embodiment, a glass blank means the glass molding before finishing the coring process and performing the grinding process (1st grinding process) of the main plane mentioned later.
 <形状加工工程>
 次に、形状加工工程においては、コアリング(内周カット)処理が施されたガラスブランクスを、中心部の孔に対向する内周端面、および、外周端面を、ダイヤモンド砥石によって研削し、所定の寸法に調整された後、面取り加工も実施される。例えば2.5インチ型ハードィスクの場合は外径を65mm、内径(中心部の円孔1Hの直径)を20mmとした後、所定の面取り加工が実施される。このときのガラスブランクスの端面の面粗さは、Rmaxで2μm程度である。
<Shaping process>
Next, in the shape processing step, the glass blanks that have been subjected to the coring (inner peripheral cut) process are ground with a diamond grindstone on the inner peripheral end face and the outer peripheral end face that face the hole in the center portion. After being adjusted to dimensions, chamfering is also performed. For example, in the case of a 2.5 inch hard disk, a predetermined chamfering process is performed after setting the outer diameter to 65 mm and the inner diameter (diameter of the circular hole 1H in the center) to 20 mm. The surface roughness of the end face of the glass blanks at this time is about 2 μm in Rmax.
 <表面研削(第1研削)工程>
 次に、第1研削工程においては、成形されたガラスブランクスの両方の主表面に対して、寸法精度および形状精度の向上を目的として、表面研削処理が施される。
<Surface grinding (first grinding) process>
Next, in the first grinding step, a surface grinding process is performed on both main surfaces of the formed glass blanks for the purpose of improving dimensional accuracy and shape accuracy.
 研削処理は、例えば、遊星歯車機構を利用した両面研削(ラッピング)装置を用いて行なわれる。具体的には、上記で得られたガラスブランクスの両主表面に上下からラップ定盤を押圧させ、研削液を両主表面上に供給し、ガラスブランクスとラップ定盤とを相対的に移動させて、研削処理が行なわれる。研削処理によって、ガラス基板としてのおおよその平行度、平坦度および厚みなどが予備調整され、おおよそ平坦な主表面を有するガラス基板(ガラス母材)が得られる。研削液としては、例えば、粒度#400のアルミナ砥粒(粒径約40~60μm)を含有する研削液を用い、上定盤の荷重を100kg程度に設定することによって、ガラスブランクスの両面を面精度0μm~1μm、表面粗さRmaxで6μm程度に仕上げてもよい。 The grinding process is performed, for example, using a double-side grinding (lapping) device using a planetary gear mechanism. Specifically, the lapping platen is pressed from above and below on both main surfaces of the glass blanks obtained above, the grinding liquid is supplied onto both main surfaces, and the glass blanks and lapping platen are relatively moved. Thus, a grinding process is performed. By the grinding process, the approximate parallelism, flatness, thickness and the like of the glass substrate are preliminarily adjusted, and a glass substrate (glass base material) having a substantially flat main surface is obtained. As the grinding liquid, for example, a grinding liquid containing alumina abrasive grains having a particle size of # 400 (particle size of about 40 to 60 μm) is used. By setting the upper surface plate load to about 100 kg, both surfaces of the glass blanks are faced. It may be finished to an accuracy of 0 μm to 1 μm and a surface roughness Rmax of about 6 μm.
 好ましくは、ダイヤモンド粒子を樹脂もしくはセラミック、金属に担持させた固定砥粒式の研削パッドを用いて研削を行ってもよく、それにより研削速度と研削後の品質のバランスが良くなるという利点がある。ダイヤモンドの粒子径は目的よって適宜変更可能であるが、第1研削で使用する平均粒径は2μm~10μmが好ましい。ダイヤモンドの粒子径が、第1ラッピングには2μm未満は加工速度が不足し、ガラス基板の主表面(上下面)に生じたクラックの除去を行なえない場合がある。ダイヤモンドの粒子径が10μmを超えると、逆にダイヤモンドによってガラス基板1の主表面2,3にクラックが発生するおそれがある。 Preferably, grinding may be performed using a fixed abrasive type grinding pad in which diamond particles are supported on a resin, ceramic, or metal, which has the advantage of improving the balance between grinding speed and quality after grinding. . The particle diameter of diamond can be appropriately changed depending on the purpose, but the average particle diameter used in the first grinding is preferably 2 μm to 10 μm. If the diamond particle size is less than 2 μm for the first lapping, the processing speed is insufficient, and cracks generated on the main surface (upper and lower surfaces) of the glass substrate may not be removed. If the particle diameter of diamond exceeds 10 μm, there is a risk that cracks may occur on the main surfaces 2 and 3 of the glass substrate 1 due to diamond.
 <第2研削(ラッピング)工程>
 次に、第2研削工程においては、ガラス基板の両主表面について、第1研削工程と同様に、研削処理が施される。この第2研削工程を行なうことにより、前工程の第1ラッピングまたは端面加工においてガラス基板の両主表面に形成された微細なキズや突起物などの、微細な凹凸形状及び加工ダメージを予め除去しておくことができ、後工程の主表面の研磨時間を精密に制御が可能となり、その短縮化も可能となる。
<Second grinding (lapping) process>
Next, in the second grinding step, grinding processing is performed on both main surfaces of the glass substrate in the same manner as in the first grinding step. By performing this second grinding step, fine uneven shapes and processing damage such as fine scratches and protrusions formed on both main surfaces of the glass substrate in the first lapping or end face processing of the previous step are removed in advance. Therefore, it is possible to precisely control the polishing time of the main surface in the subsequent process, and to shorten it.
 第2研削工程にダイヤモンド粒子を担持させた研削パッドを用いる場合は第1研削で用いたダイヤモンド粒子の粒径より小さいものを用いることが好ましく、そうすることにより、次工程である研磨にふさわしい表面性状を形成出来る。好ましくは、平均粒径の1μm~5μmのダイヤモンド粒子が用いられる。近年の高密度化に伴い、ダイヤモンド粒子径は小さくなりつつあるが、加工性のバランスが必要であることから、1.5μm~4μmがさらに好ましい。 When using a grinding pad carrying diamond particles in the second grinding step, it is preferable to use a diamond pad having a particle size smaller than that of the diamond particles used in the first grinding, so that a surface suitable for polishing in the next step is used. Properties can be formed. Preferably, diamond particles having an average particle diameter of 1 μm to 5 μm are used. With the recent increase in density, the diamond particle diameter is becoming smaller, but a balance of workability is required, so 1.5 μm to 4 μm is more preferable.
 なお、この第1、第2研削工程では、ガラス基板主表面(上下面)で50μm~250μm程度の研削を行なう。 In the first and second grinding steps, the glass substrate main surface (upper and lower surfaces) is ground to a thickness of about 50 μm to 250 μm.
 <内周研磨工程>
 次に、内周研磨工程においては、ガラス基板の内周端面について、ブラシ研磨による鏡面研磨が行なってもよい。具体的には、研磨ブラシに研磨材を含む研磨液を供給し、ガラス基板の内周端面に接触するように研磨ブラシを配置した上で、ガラス基板を回転させながら、研磨ブラシをあてることにより、ガラス基板の内周端面を研磨する。上記の研磨材は通常、酸化セリウムが選択され適度な濃度で研磨液として供給される。また研磨ブラシは、端面に傷をつけることなく軟らかい研磨できるように適度な硬さと直径をもつブラシが選定される。
<Inner circumference polishing process>
Next, in the inner peripheral polishing step, mirror polishing by brush polishing may be performed on the inner peripheral end surface of the glass substrate. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the inner peripheral end surface of the glass substrate, and then applying the polishing brush while rotating the glass substrate The inner peripheral end face of the glass substrate is polished. As the above abrasive, cerium oxide is usually selected and supplied as a polishing liquid at an appropriate concentration. As the polishing brush, a brush having an appropriate hardness and diameter is selected so that the polishing can be performed softly without damaging the end face.
 <外周研磨工程>
 次に、さらに外周研磨工程を行ってもよく、この工程においては、ガラス基板の外周端面について、ブラシ研磨による鏡面研磨が行なわれる。具体的には、研磨ブラシに研磨材を含む研磨液を供給し、ガラス基板の外周端面に接触するように研磨ブラシを配置した上で、ガラス基板を回転させながら、研磨ブラシをあてることにより、ガラス基板の外周端面を研磨する。上記の研磨材および研磨ブラシは、ガラス基板の内周端面の研磨の際に使用される研磨材および研磨ブラシと同様に選定される。
<Outer periphery polishing process>
Next, an outer peripheral polishing step may be further performed. In this step, mirror polishing by brush polishing is performed on the outer peripheral end surface of the glass substrate. Specifically, by supplying a polishing liquid containing an abrasive to the polishing brush, placing the polishing brush in contact with the outer peripheral end surface of the glass substrate, and applying the polishing brush while rotating the glass substrate, The outer peripheral end surface of the glass substrate is polished. The abrasive and the polishing brush are selected in the same manner as the abrasive and the polishing brush used for polishing the inner peripheral end face of the glass substrate.
 <研磨工程>
 研磨工程は研磨材粒子を含む研磨スラリーでガラス基板を研磨する工程であり、本実施形態では、前記研磨工程において、前記ガラス基板を、所定の平均粒子径を有する研磨材粒子群Aと該粒子群Aに最適な分散剤とを含む研磨スラリーAと、前記粒子群Aより大きな平均粒子径を有する研磨材粒子群Bと該粒子群Bに最適な分散剤とを含む研磨スラリーBとを混合して得られる研磨スラリーを用いて研磨する。
<Polishing process>
The polishing step is a step of polishing the glass substrate with a polishing slurry containing abrasive particles. In this embodiment, in the polishing step, the glass substrate is divided into the abrasive particle group A having a predetermined average particle diameter and the particles. A polishing slurry A containing the optimum dispersant for the group A, an abrasive particle group B having an average particle size larger than the particle group A, and a polishing slurry B containing the optimum dispersing agent for the particle group B are mixed. Polishing is performed using the resulting polishing slurry.
 すなわち、本実施形態では、あらかじめ平均粒子径(粒度分布)の異なる研磨材粒子群を用意し、それぞれの粒子群に最適な分散剤(粒子の凝集を制御し、粒子群における平均粒子径を維持できるような分散剤)を混合して複数の研磨スラリーを準備し、それらを混合させた研磨スラリーを用いる。 That is, in this embodiment, abrasive particle groups having different average particle diameters (particle size distribution) are prepared in advance, and the optimum dispersant (particle aggregation is controlled for each particle group to maintain the average particle diameter in the particle group. A plurality of polishing slurries are prepared by mixing a dispersing agent that can be used, and a polishing slurry obtained by mixing them is used.
 このような異なる粒度分布を有する研磨材粒子を混合した(すなわち、粒度分布が2つ以上のピークを有するような)研磨スラリーを用いる本実施形態の前記研磨工程は、粗研磨工程(1次研磨工程)、あるいは鏡面研磨工程(2次研磨工程)の少なくともいずれかにおいて行う。さらに、粗研磨工程および鏡面研磨工程の両方で行うことにより、より高い効果が得られるため望ましい。 The polishing step of this embodiment using a polishing slurry in which abrasive particles having different particle size distributions are mixed (that is, the particle size distribution has two or more peaks) is a rough polishing step (primary polishing). Step) or at least one of a mirror polishing step (secondary polishing step). Furthermore, it is desirable because a higher effect can be obtained by performing both in the rough polishing step and the mirror polishing step.
 なお、研磨スラリーに含まれる研磨材粒子は特に限定はされないが、同じ組成の粒子を用いることが好ましい。すなわち、本実施形態で好ましく用いられる研磨スラリーは、同じ組成で異なる平均粒子径(粒度分布)を有する研磨材粒子群を複数混合させた研磨スラリーである。 The abrasive particles contained in the polishing slurry are not particularly limited, but it is preferable to use particles having the same composition. That is, the polishing slurry preferably used in the present embodiment is a polishing slurry in which a plurality of abrasive particle groups having the same composition and different average particle sizes (particle size distribution) are mixed.
 さらに、粒子群Aと粒子群Bの中間の平均粒子径を有する研磨材粒子群Cと該粒子群Cに最適な分散剤とを含む研磨スラリーCを、上述したような研磨スラリーAおよび研磨スラリーBと混合した研磨スラリーを用いることもできる。このように複数の異なる粒度分布を有する研磨スラリーを混合することにより、粒子分布がより研磨レートの安定化にふさわしい形状を有することができ、より高い精度で最適な粒度分布を維持することができるため、より高品質かつ高レートを提供できる。 Further, a polishing slurry C containing an abrasive particle group C having an average particle diameter intermediate between the particle group A and the particle group B, and a dispersing agent optimum for the particle group C is obtained by using the polishing slurry A and the polishing slurry as described above. A polishing slurry mixed with B can also be used. By mixing polishing slurries having a plurality of different particle size distributions in this way, the particle distribution can have a shape suitable for stabilizing the polishing rate, and the optimum particle size distribution can be maintained with higher accuracy. Therefore, higher quality and higher rate can be provided.
 次に、本実施形態の研磨工程で使用する研磨スラリーについてより具体的に説明する。 Next, the polishing slurry used in the polishing process of this embodiment will be described more specifically.
 研磨材としては、粗研磨または鏡面研磨のどちらで使用するかによって適宜選択できるが、例えば、粗研磨であれば、酸化セリウム、酸化ジルコニウム、ケイ酸ジルコニウム等;鏡面研磨であればコロイダルシリカなど好ましく使用できる。 The abrasive can be appropriately selected depending on whether it is used for rough polishing or mirror polishing. For example, cerium oxide, zirconium oxide, zirconium silicate and the like are preferable for rough polishing; colloidal silica and the like are preferable for mirror polishing. Can be used.
 スラリー中の平均粒子径は、使用する研磨材の種類によって多少異なる。 The average particle size in the slurry varies slightly depending on the type of abrasive used.
 例えば、酸化セリウムの場合、0.5~2.5μm程度のものを使用するのが好ましい。これらを溶媒に分散させてスラリー状にしたものが好ましい。溶媒としては特に限定されないが、中性の水や、酸性・アルカリ性の水溶液を採用することができ、中性の水が好ましく用いられる。また、本実施形態ではこれら溶媒には、酸化セリウムを例にとると、粒子群の分布に適合する分散剤を添加する。溶媒と酸化セリウム全量との混合比率は、酸化セリウム:溶媒=0.5:9.5~3:7程度である。平均粒子径が0.5μm未満の場合には、研磨パッドは、両主表面を良好に研磨できない傾向がある。一方、平均粒子径が2.5μmを超える場合には、研磨パッドは、端面の平坦度を悪化させたり、傷を発生する可能性がある。 For example, in the case of cerium oxide, it is preferable to use about 0.5 to 2.5 μm. A slurry in which these are dispersed in a solvent is preferable. Although it does not specifically limit as a solvent, Neutral water and acidic / alkaline aqueous solution can be employ | adopted and neutral water is used preferably. Further, in the present embodiment, for these solvents, for example, cerium oxide, a dispersant that is compatible with the distribution of particle groups is added. The mixing ratio of the solvent and the total amount of cerium oxide is about cerium oxide: solvent = 0.5: 9.5 to 3: 7. When the average particle diameter is less than 0.5 μm, the polishing pad tends to be unable to polish both main surfaces well. On the other hand, when the average particle diameter exceeds 2.5 μm, the polishing pad may deteriorate the flatness of the end face or cause scratches.
 一方、例えば、コロイダルシリカを用いる場合は、平均粒子径が10~80nmのコロイダルシリカを溶媒に分散させてスラリー状にしたものを研磨スラリーとして用いることが好ましい。この場合も、溶媒としては特に限定されず、中性の水や、酸性アルカリ性の水溶液を採用することができ、中性の水が好ましい。また、本実施形態ではこれら溶媒に、粒度分布粒径に応じた適合する分散剤を添加する。溶媒とコロイダルシリカとの混合比率は、シリカ:溶媒=1:9~3:7程度が好ましい。 On the other hand, for example, when colloidal silica is used, it is preferable to use a slurry obtained by dispersing colloidal silica having an average particle diameter of 10 to 80 nm in a solvent. Also in this case, it does not specifically limit as a solvent, Neutral water and acidic alkaline aqueous solution can be employ | adopted and neutral water is preferable. In the present embodiment, a suitable dispersant corresponding to the particle size distribution particle size is added to these solvents. The mixing ratio of the solvent and colloidal silica is preferably about silica: solvent = 1: 9 to 3: 7.
 本実施形態においては分級機を使い大粒径側と小粒径側の平均粒子径(粒度分布)もつ粒子群に分け、各々の粒度分布の平均粒径に応じて、適する分散剤と溶媒を添加して各々スラリー(小さな平均粒子径(小粒径):スラリーA、大きな平均粒子径(大粒径):スラリーB)が調整される。このように調製された各々のスラリーを適する混合比(好ましくは1:1)で混合して研磨に使用される。本実施形態に係る小粒径側の粒子群を含むスラリーAと大粒径側の粒子群を含むスラリーBの比率はA/Bで0.8~1.2の範囲がよく、0.9から1.1がより好ましい。さらに中間の粒子群Cを含む場合、それらの比率はA:B:Cで、0.1~0.4:0.2~0.7:0.1~0.4程度の範囲で混合させることが好ましい。 In this embodiment, a classifier is used to divide the particles into a group of particles having an average particle size (particle size distribution) on the large particle size side and a small particle size side, and according to the average particle size of each particle size distribution, a suitable dispersant and solvent are used. By adding each, a slurry (small average particle size (small particle size): slurry A, large average particle size (large particle size): slurry B) is adjusted. Each slurry thus prepared is mixed at a suitable mixing ratio (preferably 1: 1) and used for polishing. The ratio of the slurry A containing the particle group on the small particle size side and the slurry B containing the particle group on the large particle size side in this embodiment is preferably in the range of 0.8 to 1.2 in A / B, 0.9 To 1.1 are more preferable. Further, when the intermediate particle group C is included, the ratio thereof is A: B: C and is mixed in the range of about 0.1 to 0.4: 0.2 to 0.7: 0.1 to 0.4. It is preferable.
 上述したように、前記粒子群Bの平均粒子径は前記粒子群Aの平均粒子径より大きいことを特徴とするが、各々の粒子群の平均粒子径の乖離は研磨材種によって異なる。例えば、酸化セリウムの場合は0.3~0.7μmの乖離で設定することができる。またその中間の粒子群Cを設定する場合は前記粒子群A及びBそれぞれに対し少なくとも0.1μm以上0.5μ以下で乖離させた中間の粒子を用いることが好ましい。スラリーを混合する場合は、バッチで攪拌機を用いて一様にしたのちに研磨液として供給してもよいし、インライン方式をとり各々のスラリーを供給しながら供給途中で、供給ホース内で混合させて研磨機に混合スラリーとして供給してもよい。 As described above, the average particle size of the particle group B is larger than the average particle size of the particle group A, but the deviation of the average particle size of each particle group varies depending on the abrasive type. For example, in the case of cerium oxide, it can be set with a deviation of 0.3 to 0.7 μm. When the intermediate particle group C is set, it is preferable to use intermediate particles separated from each of the particle groups A and B by at least 0.1 μm to 0.5 μm. When mixing the slurry, it is possible to supply it as a polishing liquid after making it uniform using a stirrer in a batch, or mix it in the supply hose while supplying each slurry using the in-line method. Then, it may be supplied to the polishing machine as a mixed slurry.
 また、コロイダルシリカを用いる場合は、A群とB群は、20~60nmの乖離で設定される。またその中間の粒子群Cを設定する場合は、前記粒子群A及びBそれぞれに対し少なくとも10nm以上30nm以下で乖離させた中間の粒子を用いることが好ましい。 In addition, when colloidal silica is used, the group A and the group B are set with a difference of 20 to 60 nm. When the intermediate particle group C is set, it is preferable to use intermediate particles separated from each of the particle groups A and B by at least 10 nm to 30 nm.
 次に、本実施形態で使用する分散剤について説明する。本実施形態に係る分散剤としては、種々の官能基を持つ高分子化合物が用いられる。官能基についてはカルボン酸、カルボン酸塩、スルホン酸、スルホン酸塩などが選択され、塩を形成する対カチオンはアルカリ金属イオンやアンモニウム等から選択され得る。なお、重合体は共重合体であってもよい。上述したそれぞれの粒子群の粒度分布を維持できるように、重合体のモノマー種類、対カチオン種、分子量が適宜選択される。 Next, the dispersant used in this embodiment will be described. As the dispersant according to this embodiment, polymer compounds having various functional groups are used. As the functional group, carboxylic acid, carboxylate, sulfonic acid, sulfonate and the like are selected, and the counter cation forming the salt can be selected from alkali metal ions, ammonium and the like. The polymer may be a copolymer. The monomer type, the counter cation type, and the molecular weight of the polymer are appropriately selected so that the particle size distribution of each particle group described above can be maintained.
 例えば、所定の平均粒子径を有する研磨材粒子群Aに適する分散剤は粒子群Aより大きな平均粒子径を有する研磨材粒子群Bに適する分散剤に対して、より分子量が小さいものが選択され、モノマー構造として官能基の数が少ない種類が好ましく(例えば、1個)、官能基種としてはカルボン酸またはその塩等を含んでもよいが、スルホン酸またはその塩がより好ましい。一方、大粒径の粒度分布を持つ研磨材粒子群Bに適する分散剤は分子量が比較的高いものが好ましく選択され、モノマー構造としては官能基の数が多い方(例えば、2個以上)が好まれる。また官能基の種類としてはカルボン酸またはその塩が好ましい。 For example, the dispersant suitable for the abrasive particle group A having a predetermined average particle size is selected to have a smaller molecular weight than the dispersant suitable for the abrasive particle group B having an average particle size larger than that of the particle group A. The monomer structure preferably has a small number of functional groups (for example, one), and the functional group species may include a carboxylic acid or a salt thereof, but a sulfonic acid or a salt thereof is more preferable. On the other hand, a dispersant having a relatively high molecular weight is preferably selected as the dispersant suitable for the abrasive particle group B having a large particle size distribution, and the monomer structure has a larger number of functional groups (for example, 2 or more). Liked. Moreover, as a kind of functional group, carboxylic acid or its salt is preferable.
 より具体的には、例えば前記粒子群A用の分散剤としては例えば分子量500~2000の範囲のスルホン酸重合体などを選択でき、前記粒子群B用の分散剤としては例えば分子量10000~20000の範囲のマレイン酸重合体などが選択できるが、その限りではない。さらに、中間の粒子群Cに適する分散剤は分子量でいえば前記粒子群A用およびB用の中間に位置する分子量をもつ重合体、また分子構造は官能基1つのモノマーと官能基2つのモノマーとの共重合体を好ましく用いることができる。 More specifically, for example, a sulfonic acid polymer having a molecular weight in the range of 500 to 2000 can be selected as the dispersant for the particle group A, and a dispersant having a molecular weight of 10,000 to 20000, for example, can be selected. A range of maleic acid polymers can be selected, but is not limited thereto. Furthermore, a dispersant suitable for the intermediate particle group C is a polymer having a molecular weight located between the particle groups A and B in terms of molecular weight, and the molecular structure is a monomer having one functional group and two monomers having a functional group. And a copolymer thereof can be preferably used.
 (粗研磨工程)
 粗研磨工程は、後続する鏡面研磨工程において最終的に必要とされる面粗さが効率よく得られるように、ガラス基板の両主表面を、研磨スラリーを用いて研磨加工する工程である。この工程で採用される研磨方法としては特に限定されず、両面研磨機を用いて研磨することが可能である。
(Rough polishing process)
The rough polishing step is a step of polishing both the main surfaces of the glass substrate with a polishing slurry so that the surface roughness finally required in the subsequent mirror polishing step can be efficiently obtained. It does not specifically limit as a grinding | polishing method employ | adopted at this process, It is possible to grind | polish using a double-side polisher.
 使用する研磨パッドは、研磨パッドの硬度が研磨による発熱により低下すると研磨面の形状変化が大きくなるため、硬質パッドを使用することが好ましく、たとえば発泡ウレタンを使用することが好ましい。さらなる品質向上のために、スエードパッドを用いることもできる。 As the polishing pad used, it is preferable to use a hard pad, for example, urethane foam is preferable because the shape change of the polishing surface increases when the hardness of the polishing pad decreases due to heat generated by polishing. A suede pad can also be used for further quality improvement.
 研磨スラリーとしては、上述したような本実施形態の研磨スラリー(なかでも、酸化セリウムを使用したもの)を用いることが好ましいが、後述の鏡面研磨工程で本実施形態の研磨スラリーを使用する場合は、本粗研磨工程においては、通常の粗研磨に使用される公知の研磨スラリー(平均一次粒子径が0.5~2.5μmの酸化セリウムや、酸化ジルコニウム、ケイ酸ジルコニウムを溶媒に分散させてスラリー状にしたもの)を適宜使用することも可能である。 As the polishing slurry, it is preferable to use the polishing slurry of the present embodiment as described above (especially, one using cerium oxide). However, when the polishing slurry of the present embodiment is used in the mirror polishing step described later, In this rough polishing step, a known polishing slurry used in normal rough polishing (cerium oxide having an average primary particle size of 0.5 to 2.5 μm, zirconium oxide, zirconium silicate is dispersed in a solvent. It is also possible to appropriately use a slurry).
 また、研磨スラリーとして、上述したような本実施形態の研磨スラリーを用いることにより、硬度の低いスエードパッドを用いても、研磨レートを高く維持することができる。 Further, by using the polishing slurry of the present embodiment as described above as the polishing slurry, the polishing rate can be kept high even if a suede pad with low hardness is used.
 研磨スラリーの供給量としては特に限定されず、たとえば、5~10L/分である。 The supply amount of the polishing slurry is not particularly limited and is, for example, 5 to 10 L / min.
 粗研磨工程におけるガラス基板の研磨量は、20~40μm程度とするのが好ましい。ガラス基板の研磨量が20μm未満の場合には、キズや欠陥が充分に除去されない傾向がある。一方、ガラス基板の研磨量が40μmを超える場合には、ガラス基板は、必要以上に研磨されることになり、製造効率が低下する傾向がある。 The polishing amount of the glass substrate in the rough polishing step is preferably about 20 to 40 μm. When the polishing amount of the glass substrate is less than 20 μm, there is a tendency that scratches and defects are not sufficiently removed. On the other hand, when the polishing amount of the glass substrate exceeds 40 μm, the glass substrate is polished more than necessary, and the production efficiency tends to decrease.
 粗研磨工程を終えたガラス基板は、中性洗剤、純水、IPA等で洗浄することが好ましい。洗浄工程を設けても良く、前工程の研磨材酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムのいずれかを除去する目的で硫酸およびまたはフッ化水素酸などを含む洗浄液を用いてガラス基板1の表面をエッチングしながら洗浄する。ガラス基板の表面に付着していた酸化セリウム、酸化ジルコニウム、またはケイ酸ジルコニウムなどの研磨スラリーは、硫酸およびまたはフッ化水素酸などの強酸性の洗浄液によって適切に除去される。その後、ガラス基板1は酸性の洗浄液を用いて洗浄される。 The glass substrate after the rough polishing step is preferably washed with a neutral detergent, pure water, IPA or the like. A cleaning step may be provided, and the surface of the glass substrate 1 using a cleaning solution containing sulfuric acid and / or hydrofluoric acid for the purpose of removing any of the abrasive cerium oxide, zirconium oxide, or zirconium silicate in the previous step. Clean while etching. A polishing slurry such as cerium oxide, zirconium oxide, or zirconium silicate adhering to the surface of the glass substrate is appropriately removed by a strongly acidic cleaning liquid such as sulfuric acid and / or hydrofluoric acid. Thereafter, the glass substrate 1 is cleaned using an acidic cleaning solution.
 洗浄工程において用いられる洗浄液は、ガラス基板1の耐化学性によっても異なるが、硫酸であれば1質量%~30質量%程度の濃度が好ましく、フッ化水素酸であれば0.2質量%~5質量%程度の濃度が好ましい。これらの洗浄液を用いた洗浄は、水溶液が貯留された洗浄機の中で超音波を印加しながら行なわれるとよい。この際に用いられる超音波の周波数は、78kHz以上であることが好ましい。 The cleaning liquid used in the cleaning step varies depending on the chemical resistance of the glass substrate 1, but a concentration of about 1% by mass to 30% by mass is preferable for sulfuric acid, and 0.2% by mass for hydrofluoric acid. A concentration of about 5% by mass is preferred. Cleaning using these cleaning liquids may be performed while applying ultrasonic waves in a cleaning machine in which an aqueous solution is stored. The frequency of the ultrasonic wave used at this time is preferably 78 kHz or higher.
 <鏡面研磨工程>
 鏡面研磨工程は、ガラス基板の両主表面をさらに精密に研磨加工する工程である。鏡面研磨工程では、粗研磨工程で使用する両面研磨機と同様の両面研磨機を使用することができる。
<Mirror polishing process>
The mirror polishing process is a process of polishing both main surfaces of the glass substrate more precisely. In the mirror polishing process, a double-side polishing machine similar to the double-side polishing machine used in the rough polishing process can be used.
 研磨パッドは、粗研磨工程で使用する研磨パッドよりも低硬度の軟質パッドを使用することが好ましく、例えば発泡ウレタンやスウェードを使用するのが好ましい。 The polishing pad is preferably a soft pad having a lower hardness than the polishing pad used in the rough polishing step, and for example, urethane foam or suede is preferably used.
 研磨スラリーとしては、粗研磨工程と同様の酸化セリウム等を含有するスラリーを用いることができるが、ガラス基板の表面をより滑らかにするために、砥粒の粒径がより細かくバラツキが少ない研磨スラリーを用いるのが好ましい。たとえば、平均一次粒子径が10~80nmのコロイダルシリカを溶媒に分散させてスラリー状にしたものを研磨スラリーとして用いることが好ましい。前記粗研磨工程で上述したような本実施形態に係る研磨スラリーを使用する場合は、本鏡面研磨工程においては、通常の鏡面研磨に使用される公知の研磨スラリー(好ましくは、コロイダルシリカを使用するもの)を適宜使用することも可能である。 As the polishing slurry, a slurry containing cerium oxide or the like similar to the rough polishing step can be used, but in order to make the surface of the glass substrate smoother, the polishing slurry has a finer grain size and less variation. Is preferably used. For example, it is preferable to use a slurry obtained by dispersing colloidal silica having an average primary particle size of 10 to 80 nm in a solvent to form a slurry. When the polishing slurry according to this embodiment as described above is used in the rough polishing step, a known polishing slurry (preferably, colloidal silica used for normal mirror polishing is used in the mirror polishing step. Can be used as appropriate.
 さらに、本実施形態においては、前記粗研磨工程に加えて、鏡面研磨工程においても、上述したような本実施形態に係る研磨スラリー(なかでも、コロイダルシリカを使用したもの)を使用することが好ましい。両工程で本実施態様を適用することにより、高い精度の研磨が可能となり高い品質を提供できる。 Further, in the present embodiment, it is preferable to use the polishing slurry according to the present embodiment as described above (particularly, using colloidal silica) in the mirror polishing step in addition to the rough polishing step. . By applying this embodiment in both steps, it is possible to polish with high accuracy and provide high quality.
 研磨スラリーの供給量としては特に限定されず、たとえば、0.5~1L/分である。 The supply amount of the polishing slurry is not particularly limited, and is, for example, 0.5 to 1 L / min.
 鏡面研磨工程での研磨量は、2~5μm程度とするのが好ましい。研磨量をこのような範囲とすることにより、得られるガラス基板は、ガラス基板の表面に発生した微小な荒れやうねり、あるいはこれまでの工程で発生した微小なキズ痕といった微小欠陥が良好に除去される。その結果、本実施形態のガラス基板の製造方法は、得られるガラス基板の平坦度を向上させることができ、端部領域において磁気ヘッドがより安定して浮上し得るガラス基板を作製することができる。また、本工程では、鏡面研磨工程の研磨条件を適宜調整することにより、ガラス基板の両主表面の平坦度を2μm以下、ガラス基板の両主表面の面粗さRaを0.1nmまで小さくすることができる。 The polishing amount in the mirror polishing step is preferably about 2 to 5 μm. By setting the polishing amount in such a range, the obtained glass substrate can remove fine defects such as minute roughness and waviness generated on the surface of the glass substrate, or minute scratches generated in the previous process. Is done. As a result, the glass substrate manufacturing method of the present embodiment can improve the flatness of the obtained glass substrate, and can manufacture a glass substrate on which the magnetic head can float more stably in the end region. . In this step, by appropriately adjusting the polishing conditions in the mirror polishing step, the flatness of both main surfaces of the glass substrate is reduced to 2 μm or less, and the surface roughness Ra of both main surfaces of the glass substrate is reduced to 0.1 nm. be able to.
 <化学強化工程>
 化学強化工程は、ガラス基板を強化処理液に浸漬し、ガラス基板の耐衝撃性、耐振動性及び耐熱性等を向上させる工程である。
<Chemical strengthening process>
The chemical strengthening step is a step of immersing the glass substrate in a strengthening treatment liquid to improve the impact resistance, vibration resistance, heat resistance, and the like of the glass substrate.
 化学強化工程は、ガラス基板に化学強化を施す工程である。化学強化に用いる強化処理液としては、たとえば、硝酸カリウム(60%)と硝酸ナトリウム(40%)の混合溶液などを挙げることができる。化学強化においては、強化処理液を300℃~400℃に加熱し、ガラス基板を200~300℃に予熱し、強化処理液中に3~4時間浸漬することによって行うことができる。この浸漬の際に、ガラス基板の両主表面全体が化学強化されるように、複数のガラス基板の端面を保持するホルダに収納した状態で行うことが好ましい。 The chemical strengthening step is a step of chemically strengthening the glass substrate. Examples of the strengthening treatment liquid used for chemical strengthening include a mixed solution of potassium nitrate (60%) and sodium nitrate (40%). Chemical strengthening can be performed by heating the strengthening treatment liquid to 300 to 400 ° C., preheating the glass substrate to 200 to 300 ° C., and immersing in the strengthening treatment liquid for 3 to 4 hours. In this immersion, it is preferable that the immersion is performed in a state of being housed in a holder that holds the end faces of the plurality of glass substrates so that both main surfaces of the glass substrate are chemically strengthened.
 なお、化学強化工程後に、ガラス基板を大気中に待機させる待機工程や、水浸漬工程を採用して、ガラス基板の表面に付着した強化処理液を除去するとともに、ガラス基板の表面を均質化することが好ましい。このような工程を採用することにより、化学強化層が均質に形成され圧縮歪が均質となり変形が生じ難く平坦度が良好で、機械的強度も良好となる。待機時間や水浸漬工程の水温は特に限定されず、たとえば大気中に1~60秒待機させ、35~100℃程度の水に浸漬させるとよく、製造効率を考慮して適宜決めればよい。 In addition, after the chemical strengthening process, a standby process for waiting the glass substrate in the air and a water immersion process are adopted to remove the strengthening treatment liquid adhering to the surface of the glass substrate and to homogenize the surface of the glass substrate. It is preferable. By adopting such a process, the chemically strengthened layer is formed uniformly, the compressive strain is uniform, deformation is difficult to occur, the flatness is good, and the mechanical strength is also good. The waiting time and the water temperature in the water immersing step are not particularly limited. For example, it may be kept in the air for 1 to 60 seconds and immersed in water at about 35 to 100 ° C., and may be determined appropriately in consideration of production efficiency.
 <最終洗浄工程>
 最終洗浄工程は、ガラス基板を洗浄し、清浄にする工程である。洗浄方法としては特に限定されず、鏡面研磨工程後のガラス基板の表面を清浄にできる洗浄方法であればよい。本実施形態では、スクラブ洗浄を採用する。
<Final cleaning process>
The final cleaning step is a step of cleaning and cleaning the glass substrate. It does not specifically limit as a washing | cleaning method, What is necessary is just the washing | cleaning method which can clean the surface of the glass substrate after a mirror polishing process. In this embodiment, scrub cleaning is employed.
 スクラブ洗浄としては、たとえば、洗剤または純水等の洗浄液が用いられる。スクラブ洗浄に用いられる洗浄液のpHは、9.0以上12.2以下であるとよい。この範囲内であれば、ζ電位を容易に調整でき、効率的にスクラブ洗浄を行なうことが可能となる。スクラブ洗浄としては、洗剤によるスクラブ洗浄と、純水によるスクラブ洗浄との双方を行なってもよい。洗剤および純水を用いることによって、より適切にガラス基板1を洗浄できる。洗剤によるスクラブ洗浄と純水によるスクラブ洗浄との間に、ガラス基板1を純水でさらにリンス処理してもよい。 As the scrub cleaning, for example, a cleaning liquid such as a detergent or pure water is used. The pH of the cleaning solution used for scrub cleaning is preferably 9.0 or more and 12.2 or less. Within this range, the ζ potential can be easily adjusted and scrub cleaning can be performed efficiently. As scrub cleaning, both scrub cleaning with a detergent and scrub cleaning with pure water may be performed. By using a detergent and pure water, the glass substrate 1 can be more appropriately cleaned. The glass substrate 1 may be further rinsed with pure water between scrub cleaning with a detergent and scrub cleaning with pure water.
 スクラブ洗浄を行なった後に、ガラス基板に対して超音波洗浄をさらに行なってもよい。洗剤および純水によるスクラブ洗浄を行なった後に、硫酸水溶液等の薬液による超音波洗浄、純水による超音波洗浄、洗剤による超音波洗浄、IPAによる超音波洗浄、およびまたは、IPAによる蒸気乾燥等を更に行なってもよい。 After the scrub cleaning, the glass substrate may be further subjected to ultrasonic cleaning. After scrub cleaning with detergent and pure water, ultrasonic cleaning with chemical solution such as sulfuric acid aqueous solution, ultrasonic cleaning with pure water, ultrasonic cleaning with detergent, ultrasonic cleaning with IPA, and / or steam drying with IPA, etc. Further, it may be performed.
 洗浄されたガラス基板は、必要に応じて超音波による洗浄および乾燥工程を行う。乾燥工程は、ガラス基板の表面に残る洗浄液をイソプロピルアルコール(IPA)等により除去した後、ガラス基板の表面を乾燥させる工程である。たとえば、スクラブ洗浄後のガラス基板に水リンス洗浄工程を2分間行ない、洗浄液の残渣を除去する。次いで、IPA洗浄工程を2分間行い、ガラス基板の表面に残る水をIPAにより除去する。最後に、IPA蒸気乾燥工程を2分間行い、ガラス基板の表面に付着している液状のIPAをIPA蒸気により除去しつつ乾燥させる。ガラス基板の乾燥工程としては特に限定されず、たとえばスピン乾燥、エアーナイフ乾燥などの、ガラス基板の乾燥方法として公知の乾燥方法を採用することができる。 The cleaned glass substrate is subjected to ultrasonic cleaning and drying processes as necessary. The drying step is a step of drying the surface of the glass substrate after removing the cleaning liquid remaining on the surface of the glass substrate with isopropyl alcohol (IPA) or the like. For example, a water rinse cleaning process is performed on the glass substrate after scrub cleaning for 2 minutes to remove the cleaning liquid residue. Next, an IPA cleaning process is performed for 2 minutes, and water remaining on the surface of the glass substrate is removed by IPA. Finally, the IPA vapor drying step is performed for 2 minutes, and the liquid IPA adhering to the surface of the glass substrate is dried while being removed by the IPA vapor. The drying process of the glass substrate is not particularly limited, and for example, a known drying method such as spin drying or air knife drying can be employed.
 <検査工程>
 最終洗浄工程を経たガラス基板をさらに出荷前に検査工程に供してもよい。検査工程は、上記工程を経たガラス基板に対して、キズ、割れ、異物の付着等の有無を検査する工程である。検査は、目視や光学表面アナライザ(たとえば、KLA-TENCOL社製の「OSA6100」)を用いて行う。検査後、ガラス基板は、異物等が表面に付着しないように、清浄な環境中で、専用収納カセットに収納され、真空パックされた後、出荷される。
<Inspection process>
The glass substrate that has undergone the final cleaning step may be further subjected to an inspection step before shipment. The inspection step is a step of inspecting the glass substrate that has undergone the above-described steps for the presence or absence of scratches, cracks, foreign matters, and the like. The inspection is performed visually or using an optical surface analyzer (for example, “OSA6100” manufactured by KLA-TENCOL). After the inspection, the glass substrate is stored in a dedicated storage cassette and vacuum-packed in a clean environment so that foreign matter or the like does not adhere to the surface, and then shipped.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本発明の一局面に係るハードディスク用ガラス基板の製造方法は、研磨材粒子を含む研磨スラリーでガラス基板を研磨する研磨工程を備えており、前記研磨工程において、前記ガラス基板を、所定の平均粒子径を有する研磨材粒子群Aと該粒子群Aに最適な分散剤とを含む研磨スラリーAと、前記粒子群Aより大きな平均粒子径を有する研磨材粒子群Bと該粒子群Bに最適な分散剤とを含む研磨スラリーBとを混合して得られる研磨スラリーを用いて研磨することを特徴とする。 That is, the method for manufacturing a glass substrate for hard disk according to one aspect of the present invention includes a polishing step of polishing a glass substrate with a polishing slurry containing abrasive particles, and in the polishing step, An abrasive slurry A containing an abrasive particle group A having an average particle size and a dispersant optimal for the particle group A, an abrasive particle group B having an average particle size larger than the particle group A, and the particle group B Polishing is performed using a polishing slurry obtained by mixing polishing slurry B containing an optimal dispersant.
 このような平均粒子径が異なる研磨材粒子群と、各粒子径に最適な分散剤とを含有する研磨スラリーを混合して得られた研磨スラリーを研磨工程で用いることにより、各研磨材粒子が、凝集することで各々の研磨スラリーに由来する研磨材粒子の粒度分布が変化し、結果として混合された研磨スラリーの中における粒度分布が変化することを抑制することができ、研磨面品質を保持しながら、研磨速度を安定的に保つことができるため、優れたガラス基板を効率よく製造することが可能である。 By using a polishing slurry obtained by mixing a polishing slurry containing an abrasive particle group having a different average particle size and a dispersant optimal for each particle size in the polishing step, each abrasive particle Agglomeration changes the particle size distribution of the abrasive particles derived from each polishing slurry. As a result, the particle size distribution in the mixed polishing slurry can be suppressed, and the quality of the polished surface is maintained. However, since the polishing rate can be stably maintained, it is possible to efficiently manufacture an excellent glass substrate.
 また、前記製造方法において、前記研磨スラリーとして、さらに、粒子群Aと粒子群Bの中間の平均粒子径を有する研磨材粒子群Cと該粒子群Cに最適な分散剤とを含む研磨スラリーCと、前記研磨スラリーAおよび前記研磨スラリーBとを混合して得られる研磨スラリーを用いることがより好ましい。このような構成により、粒子分布がより研磨レートの安定化にふさわしい形状を有することができ、より高い精度で最適な粒度分布を維持することができるため、より高品質かつ高レートを提供できる。 Further, in the production method, the polishing slurry further includes an abrasive particle group C having an average particle diameter intermediate between the particle group A and the particle group B, and a dispersant optimal for the particle group C. It is more preferable to use a polishing slurry obtained by mixing the polishing slurry A and the polishing slurry B. With such a configuration, the particle distribution can have a shape more suitable for stabilizing the polishing rate, and the optimum particle size distribution can be maintained with higher accuracy, so that higher quality and higher rate can be provided.
 さらに、前記製造方法において、前記研磨工程として粗研磨工程および鏡面研磨工程を備え、前記粗研磨工程または前記鏡面研磨工程の少なくともいずれかにおいて、前記研磨スラリーを用いて研磨することが好ましい。 Furthermore, it is preferable that the manufacturing method includes a rough polishing step and a mirror polishing step as the polishing step, and polishing is performed using the polishing slurry in at least one of the rough polishing step and the mirror polishing step.
 このように研磨工程を2段階で行い、そのうちの少なくとも一方で本発明に係る研磨スラリーを用いることによって、適用した工程の研磨レートの安定化を導き、粗研磨工程に適用した場合には粗研磨後の基板の取り代のバラツキが小さく、より均質な面状態が得られるために、後工程の精密研磨工程で高精度な研磨が可能となるため高品質を得られると考えられる。また、精密研磨工程に適用した場合には精密研磨時の加工のふれが小さくなり、より高精度な条件が取れるようななるため、高い面品質が得られるという利点がある。 In this way, the polishing process is performed in two stages, and at least one of them is used in the polishing slurry according to the present invention, leading to stabilization of the polishing rate of the applied process. When applied to the rough polishing process, rough polishing is performed. It is considered that high quality can be obtained because the variation in the subsequent substrate removal is small and a more uniform surface state can be obtained, so that high-precision polishing is possible in the subsequent precision polishing step. In addition, when applied to the precision polishing process, there is an advantage that high surface quality can be obtained because the fluctuation of processing at the time of precision polishing is reduced and more precise conditions can be taken.
 さらに、前記製造方法において、前記粗研磨工程及び前記鏡面研磨工程の両方において、前記研磨スラリーを用いて研磨することが好ましい。このような構成により、高密度化ハードデイスクドライブ及びメディアにふさわしいより高品質のガラス基板の提供が可能となる。 Furthermore, in the manufacturing method, it is preferable to polish using the polishing slurry in both the rough polishing step and the mirror polishing step. With such a configuration, it is possible to provide a higher-quality glass substrate suitable for high-density hard disk drives and media.
 また、前記製造方法において、前記粗研磨工程における研磨材粒子として酸化セリウムを用いることが好ましい。酸化ジルコニウム、ジルコンなどを用いてもよいが、酸化セリウムを用いることにより、本発明の意図するレート安定化、取り代バラツキ縮小化の効果をより高く発揮できる。 In the manufacturing method, it is preferable to use cerium oxide as abrasive particles in the rough polishing step. Zirconium oxide, zircon, or the like may be used. However, by using cerium oxide, the effects of rate stabilization and reduction in machining allowance variation intended by the present invention can be exhibited more highly.
 さらに、前記製造方法において、前記鏡面研磨工程における研磨材粒子としてコロイダルシリカを用いることが好ましい。より高い面品質を得る点でコロイダルシリカが適している。 Furthermore, in the manufacturing method, it is preferable to use colloidal silica as abrasive particles in the mirror polishing step. Colloidal silica is suitable for obtaining higher surface quality.
 また、前記製造方法において、前記それぞれの研磨スラリーにおいて、研磨材成分の濃度が0.2~20質量%であることが好ましい。それにより、高品質を維持しつつ高レートを提供できるという本発明の効果がより確実に得られる。 In the manufacturing method, it is preferable that the concentration of the abrasive component is 0.2 to 20% by mass in each of the polishing slurries. Thereby, the effect of the present invention that a high rate can be provided while maintaining high quality can be obtained more reliably.
 さらに、前記製造方法において、前記粗研磨工程の研磨パッドとしてスエードパッドを用いることが好ましい。粗研磨においてスエードパットを使用することにより、より研磨品質が向上し、かつ前記研磨スラリーを用いることによって、スエードパットを使用しても研磨レートの安定性が得られる。 Furthermore, in the manufacturing method, it is preferable to use a suede pad as a polishing pad in the rough polishing step. By using a suede pad in rough polishing, the polishing quality is further improved, and by using the polishing slurry, the stability of the polishing rate can be obtained even if a suede pad is used.
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
 (実施例1)
 [ガラス溶融工程]
 ガラス素材として、61質量%のSiO、3質量%のAl、2.7質量%のNaO、6.9質量%のKO、5.7質量%のMgO、11.5質量%のCaO、9質量%のZrOを含むアルミノシリケートガラスを得る為、各原料を調合し白金るつぼを用いて1500℃で溶融した。
(Example 1)
[Glass melting process]
As the glass material, SiO 2 of 61 wt%, 3 wt% of Al 2 O 3, 2.7 wt% of Na 2 O, 6.9 wt% K 2 O, 5.7 wt% of MgO, 11. In order to obtain an aluminosilicate glass containing 5% by mass of CaO and 9% by mass of ZrO 2 , each raw material was prepared and melted at 1500 ° C. using a platinum crucible.
 [ガラスブランクス製造工程]
 溶融ガラスを1300℃の溶融ノズルより流出させた。流出したガラスを一対のブレードで、10gごとに溶融ガラスを切断し、ガラスブランクスを得た。ブレードは平面視形状がV字形状となっているものを選択し、V字の内角を80°とした。V字が交わる部分の平面視形状は円弧形状のものを用いた。
[Glass blanks manufacturing process]
The molten glass was allowed to flow out from a melting nozzle at 1300 ° C. The glass which flowed out was cut | disconnected every 10g with a pair of blade, and the glass blanks were obtained. A blade having a V shape in plan view was selected, and the inner angle of the V shape was set to 80 °. An arc shape was used as a planar view shape of the portion where the V-shaped crosses.
 プレス成型は、下型成形面の中央に供給したガラスゴブを下型に対向する上型を用い、上型および下型の金型にはタングステン系材料を用いた。またプレス時間は1秒間とし、成形後のブランクスの板厚が均等となるように突き当て成形を行った。成形後の板厚は平均1.1mmであった。 In press molding, a glass gob supplied to the center of the lower mold forming surface was used with an upper mold facing the lower mold, and a tungsten-based material was used for the upper mold and the lower mold. The pressing time was 1 second, and butt molding was performed so that the thickness of the blanks after molding was uniform. The plate thickness after molding was 1.1 mm on average.
 [熱処理工程]
 得られたガラスブランクス(Tg:670℃)に対して、内部歪みを除去するために670℃にて3時間の熱処理を行った。
[Heat treatment process]
The obtained glass blanks (Tg: 670 ° C.) were heat-treated at 670 ° C. for 3 hours in order to remove internal strain.
 [コアリング・形状加工工程]
 円筒状のダイヤモンド砥石を備えたコアドリルを用いてブランクスの中心部に直径が約18.7mmの円形の中心孔を開けた。鼓状のダイヤモンド砥石を用いて、ブランクスの外周端面および内周端面を、外径65mm、内径20mmに内・外径加工した。
[Coring / Shaping process]
Using a core drill equipped with a cylindrical diamond grindstone, a circular center hole having a diameter of about 18.7 mm was formed in the center of the blank. Using a drum-shaped diamond grindstone, the outer peripheral end surface and the inner peripheral end surface of the blanks were processed to have an inner diameter and an outer diameter of 65 mm in outer diameter and 20 mm in inner diameter.
 [表面研削(第1研削)工程]
 第1研削工程においては、砥粒としてダイヤモンドをアクリル樹脂でシート状にしたものを用いて、ガラス基板の主表面(上下面)の加工を行なった。ダイヤモンドの粒子径は4μmのものを用いた。
[Surface grinding (first grinding) process]
In the first grinding step, the main surface (upper and lower surfaces) of the glass substrate was processed by using diamond grains made of acrylic resin as abrasive grains. The diamond particle diameter was 4 μm.
 [第2研削工程]
 第2研削工程では、砥粒としてダイヤモンドをアクリル樹脂でシート状にしたものを用いて、ガラス基板の主表面(上下面)の加工を行なった。ダイヤモンドの粒子径は1.5μmのものを用いた。
[Second grinding process]
In the second grinding step, the main surface (upper and lower surfaces) of the glass substrate was processed using a diamond-shaped diamond resin sheet. A diamond particle diameter of 1.5 μm was used.
 この第1、第2研削工程では、ガラス基板1主表面(上下面)で250μm程度の研削を行なった。 In the first and second grinding steps, the glass substrate 1 main surface (upper and lower surfaces) was ground to about 250 μm.
 [内外周研磨工程]
 端面研磨工程においては、ブラシ研磨方法により、ガラス基板を回転させながらガラス基板の外周端面及び内周端面の表面の粗さを、Rmaxで30nm以下、Raで10nm以下になるように研磨した。そして、このような端面研磨を終えたガラス基板の表面を水洗浄した。
[Inner and outer periphery polishing process]
In the end face polishing step, the surface roughness of the outer peripheral end face and the inner peripheral end face of the glass substrate was polished by a brush polishing method so that the Rmax was 30 nm or less and the Ra was 10 nm or less. And the surface of the glass substrate which finished such end surface grinding | polishing was water-washed.
 [粗研磨工程]
 平均粒径1.2μmをもつ粒度分布の広い酸化セリウム研磨材を分級機にかけ、平均粒径0.95μmの粒度分布をもつ酸化セリウム研磨材と平均粒径0.4μmの粒度分布をもつ酸化セリウム研磨材とを得た。
[Rough polishing process]
A cerium oxide abrasive having an average particle size of 1.2 μm and a wide particle size distribution is applied to a classifier, and the cerium oxide abrasive having an average particle size of 0.95 μm and an average particle size of 0.4 μm is obtained. Abrasive and obtained.
 使用する酸化セリウムの割合は0.95μm粒子/0.4μm粒子=0.55/0.45とした。 The ratio of cerium oxide used was 0.95 μm particles / 0.4 μm particles = 0.55 / 0.45.
 平均粒径0.95μmの粒度分布をもつ酸化セリウムに対しては、マレイン酸とアクリル酸の共重合体(MW=20,000)を分散剤として添加し、中性の水を分散媒として用い、研磨材濃度10質量%として研磨スラリーを調製した。これを研磨スラリーAとした。 For cerium oxide having an average particle size of 0.95 μm, a copolymer of maleic acid and acrylic acid (MW = 20,000) is added as a dispersant, and neutral water is used as a dispersion medium. A polishing slurry was prepared with an abrasive concentration of 10% by mass. This was designated polishing slurry A.
 次に、平均粒径0.40μmの粒度分布をもつ酸化セリウムに対してはアクリル酸重合体(MW=5000)を分散剤として添加し、中性の水を分散媒として用い、研磨材濃度9質量%として研磨スラリーを調製した。これを研磨スラリーBとした。 Next, an acrylic acid polymer (MW = 5000) is added as a dispersant to cerium oxide having a particle size distribution with an average particle size of 0.40 μm, neutral water is used as a dispersion medium, and an abrasive concentration of 9 A polishing slurry was prepared as a mass%. This was designated polishing slurry B.
 上記研磨スラリーAとスラリーBを1対1で混合し、粗研磨に使用する研磨液とした。 The polishing slurry A and the slurry B were mixed one-on-one to obtain a polishing liquid used for rough polishing.
 次に先の研磨液を用いて100枚のガラス基板の両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いて粗研磨加工した。研磨パッドにはスウェード状ウレタンパッドを用いた。また、荷重は120g/cmとした。研磨スラリーの供給量は、10L/分とした。 Next, both main surfaces of 100 glass substrates were subjected to rough polishing using a double-side polishing machine (manufactured by Hamai Sangyo Co., Ltd., 16B type) using the above polishing liquid. A suede urethane pad was used as the polishing pad. The load was 120 g / cm 2 . The supply amount of the polishing slurry was 10 L / min.
 研磨液はスラリータンクから研磨機に供給され、加工で使用された液は研磨機から排出されると同時にスラリータンクに戻され、スラリータンクを循環して加工に使用される。研磨時間は45分に設定した。 The polishing liquid is supplied from the slurry tank to the polishing machine, and the liquid used in the processing is discharged from the polishing machine and returned to the slurry tank at the same time, and is circulated through the slurry tank and used for processing. The polishing time was set to 45 minutes.
 このように1回当たりガラス基板100枚研磨を1バッチとして、10バッチ連続して研磨を実施した。 Thus, polishing was performed continuously for 10 batches, with 100 glass substrates being polished per batch as one batch.
 その際、100枚基板のうち、10枚を選択して研磨前と研磨後の板厚を測定して、最大厚みと最小厚みの差をΔtとし、10枚平均の厚み差を平均取り代として、研磨時間で割って研磨レートを導き、下記表1に示す。 At that time, 10 out of 100 substrates are selected and the plate thickness before and after polishing is measured. The difference between the maximum thickness and the minimum thickness is Δt, and the average thickness difference of 10 sheets is the average machining allowance. The polishing rate is derived by dividing by the polishing time, and is shown in Table 1 below.
 [化学強化工程]
 化学強化工程においては、上記工程を終えたガラス基板に化学強化を施した。具体的には、まず、硝酸カリウムと硝酸ナトリウムの固体を溶融させた混合溶融液を用意した。なお、この混合溶融液は、硝酸カリウムと硝酸ナトリウムとの混合比が質量比で6:4となるように混合させたものである。そして、この混合溶融液を、400℃まで加熱して、その加熱した混合溶融液に、洗浄したガラス素板を、60分間浸漬させた。
[Chemical strengthening process]
In the chemical strengthening step, chemical strengthening was performed on the glass substrate after the above steps. Specifically, first, a mixed melt obtained by melting a solid of potassium nitrate and sodium nitrate was prepared. In addition, this mixed melt is mixed so that the mixing ratio of potassium nitrate and sodium nitrate is 6: 4 by mass ratio. Then, this mixed melt was heated to 400 ° C., and the washed glass base plate was immersed in the heated mixed melt for 60 minutes.
 [鏡面研磨工程]
 続いて研磨装置(ハマイ社製)を用いて鏡面研磨工程を行った。この鏡面研磨工程においてもスエードパッドでガラス基板の主表面の研磨を行った。なお、研磨材としては、20%のコロイダルシリカでpH2.0に調製した液を用いた。研磨条件としては、荷重100g/cmとし、上定盤の回転数5rpm、下定盤の回転数15rpmとした。ただし、これら加工中に適宜変更しながら行った。
[Mirror polishing process]
Subsequently, a mirror polishing process was performed using a polishing apparatus (made by Hamai Co., Ltd.). Also in this mirror polishing step, the main surface of the glass substrate was polished with a suede pad. In addition, as the abrasive, a liquid prepared to pH 2.0 with 20% colloidal silica was used. The polishing conditions, and a load 100 g / cm 2, the rotational speed 5rpm of the upper stool were the rotational speed 15rpm of the lower stool. However, it was performed while changing as appropriate during these processes.
 [最終洗浄工程]
 ガラス基板をスクラブ洗浄した。洗浄液として、KOHとNaOHとを質量比で1:1に混合したものを超純水(DI水)で希釈し、洗浄能力を高めるために非イオン界面活性剤を添加して得られた液体を用いた。洗浄液の供給は、スプレー噴霧によって行った。スクラブ洗浄後、ガラス基板の表面に残る洗浄液を除去するために、水リンス洗浄工程を超音波槽で2分間行い、IPA洗浄工程を超音波槽で2分間行い、最後に、IPA蒸気によりガラス基板の表面を乾燥させた。
[Final cleaning process]
The glass substrate was scrubbed. As a cleaning liquid, a liquid obtained by diluting KOH and NaOH mixed at a mass ratio of 1: 1 with ultrapure water (DI water) and adding a nonionic surfactant to enhance the cleaning performance is obtained. Using. The cleaning liquid was supplied by spraying. After scrub cleaning, in order to remove the cleaning liquid remaining on the surface of the glass substrate, a water rinse cleaning process is performed in an ultrasonic bath for 2 minutes, an IPA cleaning process is performed in an ultrasonic bath for 2 minutes, and finally the glass substrate is cleaned with IPA vapor. The surface of was dried.
 (実施例2)
 粗研磨工程で、下記の研磨スラリーを用いた以外は、実施例1と同様にしてガラス基板を得た。
(Example 2)
A glass substrate was obtained in the same manner as in Example 1 except that the following polishing slurry was used in the rough polishing step.
 平均粒径1.2μmをもつ粒度分布の広い酸化セリウム研磨材を複数回分級機にかけ、平均粒径0.98μmの粒度分布をもつ酸化セリウム研磨材、平均粒径0.67μmの粒度分布の酸化セリウム研磨材と平均粒径0.37μmの粒度分布をもつ酸化セリウム研磨材を得た。使用する酸化セリウムの割合は、平均粒径0.98μm粒子/0.67μm粒子/0.37μm粒子=0.36/0.32/0.32とした。 A cerium oxide abrasive having an average particle size of 1.2 μm and a wide particle size distribution is applied to a classifier several times, and the cerium oxide abrasive having an average particle size of 0.98 μm and an oxidation of an average particle size of 0.67 μm. A cerium oxide abrasive having a particle size distribution with a cerium abrasive and an average particle size of 0.37 μm was obtained. The ratio of the cerium oxide used was an average particle size of 0.98 μm particles / 0.67 μm particles / 0.37 μm particles = 0.36 / 0.32 / 0.32.
 平均粒径0.98μmの粒度分布をもつ酸化セリウムに対してはマレイン酸とアクリル酸の共重合体(MW=12,000)を分散剤として添加し、中性の水を分散媒として用い、研磨材濃度10質量%としてスラリーを調製した。これをスラリーA’とする。 For cerium oxide having a particle size distribution with an average particle size of 0.98 μm, a copolymer of maleic acid and acrylic acid (MW = 12,000) is added as a dispersant, and neutral water is used as a dispersion medium. A slurry was prepared with an abrasive concentration of 10% by mass. This is designated as slurry A '.
 平均粒径0.67μmの粒度分布をもつ酸化セリウムに対してはマレイン酸とアクリル酸の共重合体(MW=5000)を分散剤として添加し、中性の水を分散媒として用い、研磨材濃度9質量%としてスラリーを調製した。これをスラリーCとする。ここで使用した共重合体のマレイン酸とアクリル酸の比は0.95μmに使用したものよりマレイン酸の比率が低い共重合体を使用した。 For cerium oxide having a particle size distribution with an average particle size of 0.67 μm, a copolymer of maleic acid and acrylic acid (MW = 5000) is added as a dispersant, and neutral water is used as a dispersion medium. A slurry was prepared with a concentration of 9% by mass. This is designated as slurry C. The copolymer used here was a copolymer having a maleic acid / acrylic acid ratio lower than that used for 0.95 μm.
 平均粒径0.37μmの粒度分布をもつ酸化セリウムに対してはアクリル酸重合体(MW=5000)を分散剤として添加し、中性の水を分散媒として用い、研磨材濃度9質量%としてスラリーを調製した。これをスラリーB’とする。 For cerium oxide having a particle size distribution with an average particle size of 0.37 μm, an acrylic acid polymer (MW = 5000) is added as a dispersant, neutral water is used as a dispersion medium, and the abrasive concentration is 9% by mass. A slurry was prepared. This is designated as slurry B '.
 スラリーA’、スラリーB’、スラリーCを上記混合比になるように混合し、粗研磨に使用する研磨液とした。 Slurry A ', Slurry B', and Slurry C were mixed so as to have the above mixing ratio to obtain a polishing liquid used for rough polishing.
 (比較例1)
 粗研磨工程で、下記の研磨スラリーDを用いた以外は、実施例1と同様にしてガラス基板を得た。平均粒径1.2μmをもつ粒度分布の広い酸化セリウム研磨材に対してマレイン酸とアクリル酸の共重合体(MW=12000)を分散剤として添加し中性の水を分散媒として用い、研磨材濃度10質量%として研磨スラリーを調製した。これを研磨スラリーDとした。
(Comparative Example 1)
A glass substrate was obtained in the same manner as in Example 1 except that the following polishing slurry D was used in the rough polishing step. A cerium oxide abrasive with an average particle size of 1.2 μm and a wide particle size distribution, a copolymer of maleic acid and acrylic acid (MW = 12000) is added as a dispersant and neutral water is used as a dispersion medium. A polishing slurry was prepared with a material concentration of 10% by mass. This was designated polishing slurry D.
 (比較例2)
 粗研磨工程で、下記の研磨スラリーEを用いた以外は、実施例1と同様にしてガラス基板を得た。平均粒径1.2μmをもつ粒度分布の広い酸化セリウム研磨材に対して、分散剤としてアクリル酸重合体(MW=5000)を使用して研磨材濃度10質量%として調製した液を研磨スラリーEとした。
(Comparative Example 2)
A glass substrate was obtained in the same manner as in Example 1 except that the following polishing slurry E was used in the rough polishing step. A slurry prepared by using an acrylic acid polymer (MW = 5000) as a dispersing agent to a polishing agent concentration of 10% by mass with respect to a cerium oxide abrasive having an average particle size of 1.2 μm and a wide particle size distribution. It was.
 (実施例3)
 鏡面研磨工程において、下記研磨スラリーを用いた以外は、比較例1と同様にしてガラス基板を得た。平均粒子径11nmの粒度分布をもつコロイダルシリカと平均粒子径36nm粒度分布をもつコロイダルシリカを準備し、前者にはスルホン重合体(MW=1000)を分散剤として添加し、中性の水を分散媒として用い研磨材濃度20質量%として、更に硫酸を含む液でpHを調製し、研磨スラリー1とした。
(Example 3)
In the mirror polishing step, a glass substrate was obtained in the same manner as in Comparative Example 1 except that the following polishing slurry was used. Colloidal silica having an average particle size of 11 nm and colloidal silica having an average particle size of 36 nm are prepared. To the former, a sulfone polymer (MW = 1000) is added as a dispersant to disperse neutral water. The slurry was used as a medium, the abrasive concentration was 20% by mass, and the pH was adjusted with a liquid further containing sulfuric acid to obtain a polishing slurry 1.
 後者にはアクリル酸重合体(MW=3500)を分散剤として添加し、中性の水を分散媒として用い研磨材濃度18質量%として、更に硫酸を含む液でpHを調製し、研磨スラリー2とした。 In the latter case, an acrylic acid polymer (MW = 3500) is added as a dispersant, neutral water is used as a dispersion medium, the abrasive concentration is 18% by mass, pH is further adjusted with a liquid containing sulfuric acid, and polishing slurry 2 It was.
 スラリー1と2を下記のシリカ割合になるように混合し、精密研磨に使用する研磨液とした。使用するコロイダルシリカの割合は11nm粒子/35nm粒子=0.55/0.45とした。 Slurries 1 and 2 were mixed so as to have the following silica ratio to obtain a polishing liquid used for precision polishing. The ratio of the colloidal silica used was 11 nm particles / 35 nm particles = 0.55 / 0.45.
 次にガラス基板の両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いてさらに精密に研磨加工した。加重は120g/cmとし、研磨スラリーの供給量は、10L/分とした。本工程では、ガラス基板100枚を1バッチとし、10バッチずつ加工した。 Next, both main surfaces of the glass substrate were polished more precisely using a double-side polishing machine (manufactured by Hamai Sangyo Co., Ltd., 16B type). The load was 120 g / cm 2 and the supply amount of the polishing slurry was 10 L / min. In this step, 100 batches of glass substrates were processed as 10 batches.
 研磨液はスラリータンクから研磨機に供給され、加工で使用された液は研磨機から排出されると同時にスラリータンクに戻され、スラリータンクを循環して加工に使用される。研磨時間は30分に設定した。 The polishing liquid is supplied from the slurry tank to the polishing machine, and the liquid used in the processing is discharged from the polishing machine and returned to the slurry tank at the same time, and is circulated through the slurry tank and used for processing. The polishing time was set to 30 minutes.
 100枚基板のうち、10枚を選択して研磨前と研磨後の板厚を測定して、最大厚みと最小厚みの差をΔtとし、10枚平均の厚み差を平均取り代として、研磨時間で割って研磨レートを導き、下記表2に記した。 10 out of 100 substrates are selected and the thickness before and after polishing is measured. The difference between the maximum thickness and the minimum thickness is Δt. The polishing rate was derived by dividing by 2 and is shown in Table 2 below.
 (実施例4)
 鏡面研磨工程において、下記研磨スラリーを用いた以外は、比較例1と同様にしてガラス基板を得た。
Example 4
In the mirror polishing step, a glass substrate was obtained in the same manner as in Comparative Example 1 except that the following polishing slurry was used.
 平均一次粒子径9nmの粒度分布をもつコロイダルシリカと平均一次粒径20nmの粒度分布をもつコロイダルシリカと平均一次粒子径35nm粒度分布をもつコロイダルシリカを準備し、9nmシリカにはスルホン重合体(MW=800)を分散剤として添加し、中性の水を分散媒として用い研磨材濃度20質量%として、更に硫酸を含む液でpHを調製し、研磨スラリー1’とした。20nmシリカにはアクリル酸重合体(MW=1500)を分散剤として添加し、中性の水を分散媒として用い研磨材濃度18質量%として、更に硫酸を含む液でpHを調製し、スラリー3とした。 Colloidal silica having an average primary particle size of 9 nm, colloidal silica having an average primary particle size of 20 nm, and colloidal silica having an average primary particle size of 35 nm are prepared. A sulfone polymer (MW = 800) was added as a dispersant, neutral water was used as a dispersion medium, the abrasive concentration was 20% by mass, and the pH was further adjusted with a liquid containing sulfuric acid to obtain polishing slurry 1 '. To 20 nm silica, an acrylic acid polymer (MW = 1500) is added as a dispersant, neutral water is used as a dispersion medium, the abrasive concentration is 18% by mass, pH is further adjusted with a liquid containing sulfuric acid, and slurry 3 It was.
 35nmシリカにはアクリル酸重合体(MW=3500)を分散剤として添加し、中性の水を分散媒として用い、研磨材濃度18質量%として更に硫酸を含む液でpHを調製し、研磨スラリー2’とした。 Acrylic acid polymer (MW = 3500) is added to 35 nm silica as a dispersant, neutral water is used as a dispersion medium, and the pH is adjusted with a liquid further containing sulfuric acid at an abrasive concentration of 18% by mass. 2 '.
 研磨スラリー1’と3、2’を下記のシリカ割合になるように混合し、精密研磨に使用する研磨液とした。使用するコロイダルシリカの割合は9nm粒子/20nm/35nm粒子=0.32/0.32/0.36とした。 Polishing slurries 1 ', 3, and 2' were mixed so as to have the following silica ratio to obtain a polishing liquid used for precision polishing. The ratio of the colloidal silica used was 9 nm particles / 20 nm / 35 nm particles = 0.32 / 0.32 / 0.36.
 (比較例3)
 鏡面研磨工程において、下記研磨スラリー4を用いた以外は、比較例1と同様にしてガラス基板を得た。実施例3と同様に、平均一次粒子径11nmの粒度分布を持つコロイダルシリカと平均一次粒子径35nmの粒度分布を持つコロイダルシリカを混合したコロイダルシリカ液に分散剤としてアクリル酸重合体(MW=1500)を添加し、中性の水を分散媒として用い研磨材濃度20質量%として、更に硫酸を含む液でpHを調製し、研磨スラリー4とした。
(Comparative Example 3)
In the mirror polishing step, a glass substrate was obtained in the same manner as in Comparative Example 1 except that the following polishing slurry 4 was used. In the same manner as in Example 3, an acrylic acid polymer (MW = 1500) is used as a dispersant in a colloidal silica liquid obtained by mixing colloidal silica having a particle size distribution with an average primary particle size of 11 nm and colloidal silica having a particle size distribution with an average primary particle size of 35 nm. ), Neutral water was used as a dispersion medium, the abrasive concentration was 20 mass%, and the pH was adjusted with a liquid further containing sulfuric acid to obtain a polishing slurry 4.
 (実施例5)
 鏡面研磨工程において、実施例3の研磨スラリーを使用した以外は、実施例1と同様にしてガラス基板を得た。
(Example 5)
In the mirror polishing process, a glass substrate was obtained in the same manner as in Example 1 except that the polishing slurry of Example 3 was used.
 そして、各実施例および比較例で得られたガラス基板を以下の評価試験で評価した。 And the glass substrate obtained by each Example and the comparative example was evaluated by the following evaluation tests.
 (評価方法)
 (粗研磨の研磨レート・最大厚み差Δt)
 実施例1~2および比較例1~2で得られたガラス基板については、粗研磨後の研磨レートおよび最大厚み差Δtを評価した。1回当たりガラス基板100枚研磨を1バッチとして、10バッチ連続して研磨を実施した。
(Evaluation methods)
(Roughing polishing rate / maximum thickness difference Δt)
For the glass substrates obtained in Examples 1 and 2 and Comparative Examples 1 and 2, the polishing rate and the maximum thickness difference Δt after rough polishing were evaluated. Polishing was performed continuously for 10 batches, with 100 batches of glass substrate polishing per batch.
 その際、100枚基板のうち、10枚を選択して研磨前と研磨後の板厚を測定して、最大厚みと最小厚みの差をΔtとし、10枚平均の厚み差を平均取り代として、研磨時間で割って研磨レートを導いた。 At that time, 10 out of 100 substrates are selected and the plate thickness before and after polishing is measured. The difference between the maximum thickness and the minimum thickness is Δt, and the average thickness difference of 10 sheets is the average machining allowance. The polishing rate was derived by dividing by the polishing time.
 厚みの測定には、ミツトヨ製 マイクロメーター(測定器)を用いた。 The thickness was measured using a Mitutoyo micrometer (measuring instrument).
 (鏡面研磨の研磨レート・最大厚み差Δt)
 実施例3~4および比較例3で得られたガラス基板については、鏡面研磨後の研磨レートおよび最大厚み差Δtを評価した。1回当たりガラス基板100枚研磨を1バッチとして、10バッチ連続して研磨を実施した。
(Polishing rate of mirror polishing and maximum thickness difference Δt)
For the glass substrates obtained in Examples 3 to 4 and Comparative Example 3, the polishing rate after mirror polishing and the maximum thickness difference Δt were evaluated. Polishing was performed continuously for 10 batches, with 100 batches of glass substrate polishing per batch.
 その際、100枚基板のうち、10枚を選択して研磨前と研磨後の板厚を測定して、最大厚みと最小厚みの差をΔtとし、10枚平均の厚み差を平均取り代として、研磨時間で割って研磨レートを導いた。 At that time, 10 out of 100 substrates are selected and the plate thickness before and after polishing is measured. The difference between the maximum thickness and the minimum thickness is Δt, and the average thickness difference of 10 sheets is the average machining allowance. The polishing rate was derived by dividing by the polishing time.
 厚みの測定には、ミツトヨ製 マイクロメーター(測定器)を用いた。結果を表2に示す。 The thickness was measured using a Mitutoyo micrometer (measuring instrument). The results are shown in Table 2.
 (粗研磨および鏡面研磨の研磨レート・最大厚み差Δt)
 実施例5で得られたガラス基板については、粗研磨および鏡面研磨それぞれにおいて、上記研磨レートおよび最大厚み差Δtを測定した。結果を表3に示す。
(Roughing and mirror polishing polishing rate / maximum thickness difference Δt)
For the glass substrate obtained in Example 5, the polishing rate and the maximum thickness difference Δt were measured in each of rough polishing and mirror polishing. The results are shown in Table 3.
 (ディフェクトカウント)
 OSA(ディフェクトカウント)欠陥(ディフェクト)検査を実施した。試験装置として、KLA-Tencor社製光学式欠陥検査装置Candela-OSA6100を使用した。
(Defect count)
OSA (defect count) defect inspection was performed. As the test apparatus, an optical defect inspection apparatus Candela-OSA6100 manufactured by KLA-Tencor was used.
 欠陥検査では、各実施例および各比較例で100枚ずつ加工したガラス基板を全数検査し、付着物が10以下で、スクラッチが2以下と判定された基板を良品と判定し、良品数が95枚以上の場合をA(優良)、95枚未満90枚以上の場合をB(良)、90枚未満85枚以上の場合をC(可)、85枚未満の場合をD(不良)と評価した。結果を表1および2に記した。 In the defect inspection, a total of 100 glass substrates processed in each example and each comparative example are inspected, and a substrate determined to have a deposit of 10 or less and a scratch of 2 or less is determined to be a non-defective product. Evaluate as A (excellent) when there are more than 90 sheets, B (good) when 90 sheets or less less than 95 sheets, C (good) when less than 90 sheets and 85 sheets or more, and D (defect) when less than 85 sheets did. The results are shown in Tables 1 and 2.
 (表面粗さRa)
 さらに、実施例3~4および比較例3で得られたガラス基板については、表面粗さRaをVeeco社のAFM(原子間力顕微鏡)で評価した。結果を表2に記した。
(Surface roughness Ra)
Further, for the glass substrates obtained in Examples 3 to 4 and Comparative Example 3, the surface roughness Ra was evaluated by AFM (Atomic Force Microscope) manufactured by Veeco. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、本発明にかかる製造方法により得られたガラス基板は、従来の方法で得られた比較例のガラス基板に比べて、いずれも粗研磨工程でのレート安定性に優れ、1バッチ内での研磨取り代のバラツキが非常に少なく、最終面品質が優れることもディフェクト評価結果から示された。 As shown in Table 1, the glass substrate obtained by the production method according to the present invention is excellent in rate stability in the rough polishing step, as compared with the glass substrate of the comparative example obtained by the conventional method. The defect evaluation results also showed that there was very little variation in polishing allowance within one batch, and the final surface quality was excellent.
 さらに、3つの粒度分布により構成させて、それぞれ異なる分布に最適な分散剤で構成させたスラリーを用いたことにより、研磨レートが著しく安定化し、面品質が優れていることも判った。 Furthermore, it was also found that the polishing rate was remarkably stabilized and the surface quality was excellent by using a slurry composed of three particle size distributions and each composed of a dispersing agent optimal for different distributions.
 また、表2に示すように、鏡面面化工程において、本発明に係る研磨スラリーを使用することにより、精密研磨工程でのレート安定性に優れ、1バッチ内での研磨取り代のバラツキが非常に少なく、最終面品質が優れることもディフェクト評価、Ra結果によって示された。更に3つの粒度分布により構成させて、それぞれ異なる分布に最適な分散剤で構成させたスラリーを用いたことにより、研磨レートが著しく安定化し、面品質が優れていることも判った。 Moreover, as shown in Table 2, by using the polishing slurry according to the present invention in the mirror finishing step, the rate stability in the precision polishing step is excellent, and the variation in polishing removal within one batch is very large. The defect quality and Ra results also indicated that the final surface quality was excellent. Further, it was also found that the polishing rate was remarkably stabilized and the surface quality was excellent by using a slurry constituted by three particle size distributions and a dispersing agent optimal for different distributions.
 さらに表3に示すように、粗研磨工程、精密研磨工程の両工程に本発明に係る研磨スラリーを使用するよることにより、精密研磨工程でのレートにおける安定度がより向上し、研磨取り代のバラツキもより抑制されることがわかる。また表中ではディフェクトカウントによる良品率の程度はAランクであり片方の工程に本発明を適用した水準と差異は無いが、両工程に適用した系の良品率は100~99%と、片工程に適用した実施例1及び3のレベル(95~97%)より高いことがわかっており、面品質においても優れることがわかる。 Furthermore, as shown in Table 3, by using the polishing slurry according to the present invention in both the rough polishing step and the precise polishing step, the rate stability in the precision polishing step is further improved, and the polishing allowance is reduced. It can be seen that the variation is further suppressed. In the table, the degree of non-defective product by defect count is rank A, and there is no difference from the level where the present invention is applied to one process, but the non-defective product rate applied to both processes is 100-99%. It is found that the level is higher than the level (95 to 97%) of Examples 1 and 3 applied to No. 1, and the surface quality is also excellent.
 この出願は、2013年1月23日に出願された日本国特許出願特願2013-10362を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2013-10362 filed on January 23, 2013, the contents of which are included in the present application.
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to the drawings and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that it can be done. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、ハードディスク用ガラス基板およびその製造方法の技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field of glass substrates for hard disks and their manufacturing methods.

Claims (8)

  1.  研磨材粒子を含む研磨スラリーでガラス基板を研磨する研磨工程を備えたハードディスク用ガラス基板の製造方法において、
     前記研磨工程において、前記ガラス基板を、所定の平均粒子径を有する研磨材粒子群Aと該粒子群Aに最適な分散剤とを含む研磨スラリーAと、前記粒子群Aより大きな平均粒子径を有する研磨材粒子群Bと該粒子群Bに最適な分散剤とを含む研磨スラリーBとを混合して得られる研磨スラリーを用いて研磨することを特徴とする、ハードディスク用ガラス基板の製造方法。
    In the method of manufacturing a glass substrate for hard disk comprising a polishing step of polishing a glass substrate with a polishing slurry containing abrasive particles,
    In the polishing step, the glass substrate has a polishing slurry A containing an abrasive particle group A having a predetermined average particle diameter and a dispersant optimal for the particle group A, and an average particle diameter larger than that of the particle group A. A method for producing a glass substrate for a hard disk, wherein polishing is performed using a polishing slurry obtained by mixing an abrasive particle group B having a polishing slurry B containing a dispersing agent optimal for the particle group B.
  2.  前記研磨スラリーとして、さらに、粒子群Aと粒子群Bの中間の平均粒子径を有する研磨材粒子群Cと該粒子群Cに最適な分散剤とを含む研磨スラリーCと、前記研磨スラリーAおよび前記研磨スラリーBとを混合して得られる研磨スラリーを用いることを特徴とする、請求項1に記載のハードディスク用ガラス基板の製造方法。 As the polishing slurry, a polishing slurry C further comprising an abrasive particle group C having an average particle diameter intermediate between the particle group A and the particle group B, and a dispersing agent optimal for the particle group C, and the polishing slurry A and The method for producing a glass substrate for a hard disk according to claim 1, wherein a polishing slurry obtained by mixing the polishing slurry B is used.
  3.  前記研磨工程として粗研磨工程および鏡面研磨工程を備え、前記粗研磨工程または前記鏡面研磨工程の少なくともいずれかにおいて、前記研磨スラリーを用いて研磨することを特徴とする、請求項1または2に記載のハードディスク用ガラス基板の製造方法。 The rough polishing step and the mirror polishing step are provided as the polishing step, and polishing is performed using the polishing slurry in at least one of the rough polishing step and the mirror polishing step. Method for manufacturing a glass substrate for hard disks.
  4.  前記粗研磨工程及び前記鏡面研磨工程の両方において、前記研磨スラリーを用いて研磨することを特徴とする、請求項3に記載のハードディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a hard disk according to claim 3, wherein polishing is performed using the polishing slurry in both the rough polishing step and the mirror polishing step.
  5.  前記粗研磨工程における研磨材粒子として酸化セリウムを用いる、請求項1~4のいずれかに記載のハードディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a hard disk according to any one of claims 1 to 4, wherein cerium oxide is used as the abrasive particles in the rough polishing step.
  6.  前記鏡面研磨工程における研磨材粒子としてコロイダルシリカを用いる、請求項1~5のいずれかに記載のハードディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a hard disk according to any one of claims 1 to 5, wherein colloidal silica is used as the abrasive particles in the mirror polishing step.
  7.  前記それぞれの研磨スラリーにおいて、研磨材成分の濃度が0.2~20質量%である、請求項1~6に記載のハードディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a hard disk according to any one of claims 1 to 6, wherein in each of the polishing slurries, the concentration of the abrasive component is 0.2 to 20 mass%.
  8.  前記粗研磨工程の研磨パッドとしてスエードパッドを用いる、請求項1~7のいずれかに記載のハードディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a hard disk according to any one of claims 1 to 7, wherein a suede pad is used as a polishing pad in the rough polishing step.
PCT/JP2014/000067 2013-01-23 2014-01-10 Method for manufacturing glass substrate for hard disk WO2014115495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-010362 2013-01-23
JP2013010362 2013-01-23

Publications (1)

Publication Number Publication Date
WO2014115495A1 true WO2014115495A1 (en) 2014-07-31

Family

ID=51227292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000067 WO2014115495A1 (en) 2013-01-23 2014-01-10 Method for manufacturing glass substrate for hard disk

Country Status (1)

Country Link
WO (1) WO2014115495A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288455A (en) * 2000-02-03 2001-10-16 Kao Corp Polishing liquid composition
JP2001323254A (en) * 2000-05-12 2001-11-22 Kao Corp Polishing liquid composition
JP2004253058A (en) * 2003-02-20 2004-09-09 Kao Corp Polishing liquid composition
JP2005187664A (en) * 2003-12-25 2005-07-14 Fujimi Inc Composition for polishing and polishing method using the same
JP2007321159A (en) * 2007-08-01 2007-12-13 Yamaguchi Seiken Kogyo Kk Precisely abrasive composition for hard and brittle material
JP2010192041A (en) * 2009-02-18 2010-09-02 Fuji Electric Device Technology Co Ltd Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium manufactured by the method, and perpendicular magnetic recording medium
JP2012209010A (en) * 2011-03-15 2012-10-25 Asahi Glass Co Ltd Manufacturing method of glass substrate for magnetic recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288455A (en) * 2000-02-03 2001-10-16 Kao Corp Polishing liquid composition
JP2001323254A (en) * 2000-05-12 2001-11-22 Kao Corp Polishing liquid composition
JP2004253058A (en) * 2003-02-20 2004-09-09 Kao Corp Polishing liquid composition
JP2005187664A (en) * 2003-12-25 2005-07-14 Fujimi Inc Composition for polishing and polishing method using the same
JP2007321159A (en) * 2007-08-01 2007-12-13 Yamaguchi Seiken Kogyo Kk Precisely abrasive composition for hard and brittle material
JP2010192041A (en) * 2009-02-18 2010-09-02 Fuji Electric Device Technology Co Ltd Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium manufactured by the method, and perpendicular magnetic recording medium
JP2012209010A (en) * 2011-03-15 2012-10-25 Asahi Glass Co Ltd Manufacturing method of glass substrate for magnetic recording medium

Similar Documents

Publication Publication Date Title
WO2012090510A1 (en) Manufacturing method for glass substrate for magnetic disk, and manufacturing method for magnetic disk
JP2013052503A (en) Method for manufacturing optical part
WO2013145503A1 (en) Method for producing hdd glass substrate
JP2020128539A (en) Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk
WO2013046583A1 (en) Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5339010B1 (en) Manufacturing method of glass substrate for HDD
WO2014208270A1 (en) Method for manufacturing glass substrate for information-recording medium
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
JP6059739B2 (en) Manufacturing method of glass substrate for hard disk
JP2007118173A (en) Polishing brush, brush adjusting fixture, and polishing brush adjusting method
JP5319095B2 (en) Manufacturing method of glass substrate for magnetic disk
CN104838444B (en) The manufacturing method of hard disk glass substrate
WO2014115495A1 (en) Method for manufacturing glass substrate for hard disk
WO2014156189A1 (en) Glass substrate for hard disk and manufacturing method for same
JP2010238310A (en) Method for manufacturing substrate for magnetic disk
JP2010238272A (en) Method for manufacturing glass substrate for magnetic disk
JP2010238298A (en) Method for manufacturing glass substrate for magnetic disk
WO2012090755A1 (en) Method for producing glass substrate for recording medium
JP7467759B2 (en) Magnetic disk substrate, magnetic disk, annular substrate, and method for manufacturing magnetic disk substrate
JP5839818B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2013099083A1 (en) Method for manufacturing glass substrate for hdd
JP5719030B2 (en) Polishing pad and glass substrate manufacturing method using the polishing pad
CN109285565B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2011062781A (en) Manufacturing method of glass substrate for magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP