JP2000308950A - Polishing method - Google Patents

Polishing method

Info

Publication number
JP2000308950A
JP2000308950A JP11892999A JP11892999A JP2000308950A JP 2000308950 A JP2000308950 A JP 2000308950A JP 11892999 A JP11892999 A JP 11892999A JP 11892999 A JP11892999 A JP 11892999A JP 2000308950 A JP2000308950 A JP 2000308950A
Authority
JP
Japan
Prior art keywords
polishing
tool
diameter
working
crystal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11892999A
Other languages
Japanese (ja)
Inventor
Manabu Ando
学 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11892999A priority Critical patent/JP2000308950A/en
Publication of JP2000308950A publication Critical patent/JP2000308950A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To be not going to remain an deteriorated layer to deteriorate perfor mance as an optical element on a surface of a working surface by uniformly polishing and removing an overall area of the working surface in a short period of time after providing a specified shape and specified surface roughness at the time of polishing and machining the optical element made from fluoride crystal material. SOLUTION: A polishing tool 10 is constituted by affixing an elastic body 10b of chloroprene rubber, etc., of about 3-5 mm thick of a stainless steel-made circular tool shank 10a having a diameter of about 1/10 of the maximum diameter of a working surface of a working article and molding an asphalt pitch 10c penetration of which is about 5-20 degrees on it. Polishing liquid to be used for short time uniform polishing is to be polishing liquid dispersing diamond abrasive grains an average drain diameter of which is less than 1/4 μm in a saturated aqueous solution of a crystal material constituting the working article with purified water as a solvent. This polishing liquid which is used in the previous process can be used as it is. As it is possible to keep polishing conditions constant, it is possible to improve working performance and to reduce working cost, too.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高精度な光学素子
を研磨加工する研磨方法に関するものであり、特に、C
aF2 やMgF2 等のフッ化物系結晶材料からなる高精
度な光学レンズを研磨加工する研磨方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method for polishing a high-precision optical element.
The present invention relates to a polishing method for polishing a high-precision optical lens made of a fluoride crystal material such as aF 2 or MgF 2 .

【0002】[0002]

【従来の技術】CaF2 やMgF2 等のフッ化物系結晶
材料からなる高精度な光学レンズは、その光学特性が極
めて広範囲の波長帯にわたって良好な透過率をもつこと
から、短波長光用の光学素子として使用されている。
2. Description of the Related Art A high-precision optical lens made of a fluoride-based crystal material such as CaF 2 or MgF 2 has a good transmittance over an extremely wide wavelength band. Used as optical elements.

【0003】このようなCaF2 等のフッ化物系結晶材
料からなる高精度な光学レンズの研磨加工には、その形
状から次のような2種類の研磨方法が採用されている。
The following two types of polishing methods are employed for polishing a high-precision optical lens made of a fluoride crystal material such as CaF 2 , depending on its shape.

【0004】一つは、通常の横振り研磨機による球面や
平面の研磨加工であり、創成しようとするレンズ素材と
ほぼ同径で同じ曲率半径をもち凹凸逆に形成した研磨皿
を、研磨液を介在させた状態で、レンズ素材と相対運動
をさせて研磨を行ない、所定の球面や平面を仕上げるも
のである。
[0004] The first is polishing of a spherical surface or a flat surface by a normal traverse polishing machine. A polishing plate having substantially the same diameter as the lens material to be created, having the same radius of curvature, and formed in the opposite direction to the surface of the polishing liquid is used as a polishing liquid. In this state, polishing is performed by making a relative movement with the lens material in the state of interposing, to finish a predetermined spherical surface or a flat surface.

【0005】他の一つは、非球面を研磨する方法で、被
加工面よりも小径の研磨工具を用い、形状修正研磨をす
るものである。
[0005] Another method is a method of polishing an aspherical surface, in which a shape correction polishing is performed using a polishing tool having a smaller diameter than a surface to be processed.

【0006】しかし、これらの研磨方法では、CaF2
やMgF2 等のフッ化物系結晶材料からなる光学素子の
被研磨表面に多数のピットの発生、前加工の砥粒通過痕
の発現、CaO、MgOの生成による研磨やけ(曇り)
の発生など、被研磨面表面にトラブルが生じ、要求され
る品質を満足できない事態が生じている。
However, in these polishing methods, CaF 2
Of numerous pits on the surface to be polished of an optical element made of a fluoride-based crystal material such as MgO or MgF 2 , development of traces of abrasive grains during pre-processing, polishing or fogging due to the formation of CaO and MgO (cloudiness)
Troubles occur on the surface of the surface to be polished, for example, and the required quality cannot be satisfied.

【0007】そこで、本発明者は、これらの問題点を解
決すべく、特開平08−19943号公報に記載する研
磨方法を提案した。すなわち、CaF2 やMgF2 等の
フッ化物系結晶材料からなる光学レンズの研磨には、精
製水を溶媒としたCaF2 等の結晶材料の飽和水溶液に
ダイヤモンド砥粒を分散させた研磨液が有効であり、こ
の研磨液中で研磨を行なうことにより、被加工物を構成
する結晶材料の溶出が抑制され、長時間にわたる研磨加
工が可能となるので、小径の研磨工具を用いる非球面研
磨加工においても、被研磨面悪化現象を防止でき、高精
度な均一な平滑面を得ることができる。
The present inventor has proposed a polishing method described in Japanese Patent Application Laid-Open No. 08-19943 in order to solve these problems. That is, for polishing an optical lens made of a fluoride crystal material such as CaF 2 or MgF 2 , a polishing liquid in which diamond abrasive grains are dispersed in a saturated aqueous solution of a crystal material such as CaF 2 using purified water as a solvent is effective. By performing polishing in this polishing liquid, elution of the crystal material constituting the workpiece is suppressed, and polishing can be performed for a long time. Therefore, in aspheric polishing using a small-diameter polishing tool, In addition, it is possible to prevent the polished surface from being deteriorated, and to obtain a highly accurate and uniform smooth surface.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前述し
たように、CaF2 やMgF2 等のフッ化物系結晶材料
からなる光学レンズの研磨に際して、精製水を溶媒とし
たCaF2 等の結晶材料の飽和水溶液にダイヤモンド砥
粒を分散させた研磨液中で研磨を行なうことにより、被
加工面の表面粗さを平滑とすることができるとしても、
被加工面の表層が変質しており、極紫外光線などを照射
したときに表面の変質層に起因すると考えられる光線の
吸収などが生じ、短時間のうちに性能の劣化が発生する
場合がある。
However, as described above, when polishing an optical lens made of a fluoride-based crystal material such as CaF 2 or MgF 2 , the saturation of the crystal material such as CaF 2 using purified water as a solvent. By performing polishing in a polishing solution in which diamond abrasive grains are dispersed in an aqueous solution, even if the surface roughness of the surface to be processed can be smoothed,
The surface layer of the surface to be processed is deteriorated, and when irradiating with extreme ultraviolet light or the like, light absorption considered to be caused by the deteriorated layer on the surface occurs, and the performance may deteriorate in a short time. .

【0009】そこで、本発明は、上記のような従来技術
の有する未解決の課題に鑑みてなされたものであって、
CaF2 等のフッ化物系結晶材料からなる光学素子の研
磨加工において、被加工面の表面に光学素子としての性
能を劣化させる変質層を残さない研磨方法を提供するこ
とを目的とするものである。
Accordingly, the present invention has been made in view of the above-mentioned unsolved problems of the prior art,
An object of the present invention is to provide a polishing method for polishing an optical element made of a fluoride-based crystal material such as CaF 2 without leaving a deteriorated layer that degrades the performance of the optical element on the surface of the surface to be processed. .

【0010】[0010]

【課題を解決するための手段】本発明者は、光学素子等
の被加工面表層の変質につき鋭意検討した結果、極紫外
光線を吸収するような変質層は、表面粗さの測定だけで
は判別することが困難であること、そして、極紫外光線
に影響を与えるほどの変質層の形成と研磨液中への放置
時間には相関があり、15分程度以上の放置により影響
の大きな変質が生じることを見出だし、被加工面全体を
短時間で均等に5nm以上の研磨除去を行なうことによ
り、有害な変質層を除去し所定の性能の光学面を得るこ
とができるとの知見を得て、本発明を完成するに至っ
た。
The inventor of the present invention has made intensive studies on the alteration of the surface layer of the surface to be processed such as an optical element, and as a result, the altered layer that absorbs extreme ultraviolet rays can be determined only by measuring the surface roughness. Is difficult to perform, and there is a correlation between the formation of the deteriorated layer that affects the extreme ultraviolet rays and the standing time in the polishing liquid. It has been found that by performing polishing and removal of the entire surface to be processed with a uniform thickness of 5 nm or more in a short period of time, it is possible to remove a harmful altered layer and obtain an optical surface with a predetermined performance. The present invention has been completed.

【0011】すなわち、本発明の研磨方法は、フッ化物
系結晶材料からなる光学素子を研磨加工する際に、所定
の形状と所定の表面粗さが得られた後に、さらに、被加
工面の全域を短時間で均等に研磨除去することを特徴と
する。
That is, in the polishing method of the present invention, when an optical element made of a fluoride-based crystal material is polished, after a predetermined shape and a predetermined surface roughness are obtained, the entire surface of the surface to be processed is further removed. Are uniformly polished and removed in a short time.

【0012】本発明の研磨方法においては、短時間での
均等研磨除去に際して、被加工面の全域を15分以内で
均等に5nm以上研磨除去することが好ましい。
In the polishing method of the present invention, it is preferable to uniformly remove 5 nm or more of the entire surface to be processed within 15 minutes for uniform polishing removal in a short time.

【0013】本発明の研磨方法においては、短時間での
均等研磨除去に際して、平均粒径が1/4μm以下のダ
イヤモンド砥粒を精製水に分散させた研磨液と、被加工
面に比して十分に小さい研磨面を有する研磨工具を用い
ることが好ましい。
[0013] In the polishing method of the present invention, in the case of uniform polishing removal in a short time, a polishing liquid in which diamond abrasive grains having an average particle diameter of 1/4 µm or less are dispersed in purified water is compared with a polishing liquid. It is preferable to use a polishing tool having a sufficiently small polishing surface.

【0014】本発明の研磨方法において、前記研磨工具
は、針入度が5〜20のピッチ、あるいは、発泡PVF
材で構成することができ、また、前記研磨工具の直径
は、前記被加工面の最大径の約1/10であることが好
ましい。
[0014] In the polishing method of the present invention, the polishing tool may have a penetration of 5 to 20 pitches or a foamed PVF.
Preferably, the diameter of the polishing tool is about 1/10 of the maximum diameter of the surface to be processed.

【0015】本発明の研磨方法において、前記研磨液
は、精製水を溶媒とした前記被加工物を構成する結晶材
料の飽和水溶液にダイヤモンド砥粒を分散させた研磨液
であることが好ましい。
In the polishing method of the present invention, it is preferable that the polishing liquid is a polishing liquid in which diamond abrasive grains are dispersed in a saturated aqueous solution of a crystal material constituting the workpiece using purified water as a solvent.

【0016】[0016]

【作用】本発明の研磨方法によれば、CaF2 等のフッ
化物系結晶材料からなる光学素子を研磨加工する際に、
所定の形状と所定の表面粗さが得られた後に、さらに、
被加工面の全域を短時間で均等に研磨除去することによ
り、また、具体的には、精製水を溶媒としたCaF2
の結晶材料の飽和水溶液に平均粒径が1/4μm以下の
ダイヤモンド砥粒を分散させた研磨液と、針入度が5〜
20のピッチ、あるいは発泡PVF材で構成する小径の
研磨工具とを用いて、被加工面の全域を15分以内の短
時間で均等に5nm以上研磨除去することにより、Ca
2 等のフッ化物系結晶材料からなる光学素子を超平滑
面に研磨するとともに光学素子としての性能を劣化させ
る表面の変質層の発生を防止することができる。さら
に、光学素子の非球面形状等においても、精度良く研磨
することができ、有害な変質層を除去して所定の性能の
光学面を得ることができる。
According to the polishing method of the present invention, when polishing an optical element made of a fluoride crystal material such as CaF 2 ,
After a given shape and a given surface roughness are obtained,
By uniformly polishing and removing the entire surface of the surface to be processed in a short time, and more specifically, a saturated aqueous solution of a crystal material such as CaF 2 using purified water as a solvent is used to remove diamond having an average particle size of 1/4 μm or less. Polishing liquid in which abrasive grains are dispersed, penetration is 5
By using a 20-pitch or a small-diameter polishing tool made of a foamed PVF material and uniformly polishing and removing 5 nm or more of the entire surface of the work surface in a short time of 15 minutes or less, Ca
An optical element made of a fluoride crystal material such as F 2 can be polished to an ultra-smooth surface, and the generation of an altered layer on the surface that degrades the performance of the optical element can be prevented. Further, the aspherical shape of the optical element can be polished with high accuracy, and a harmful deteriorated layer can be removed to obtain an optical surface having a predetermined performance.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0018】本発明に基づく高精度な非球面を創成研磨
する形状修正研磨プロセスについて、図1に図示する工
程図を参照して説明する。
The shape correction polishing process for creating and polishing a highly accurate aspheric surface according to the present invention will be described with reference to the process chart shown in FIG.

【0019】先ず、被加工面の設計形状に対する誤差形
状を高精度な形状計測機を用いて測定し(S1)、被加
工面についての誤差形状マップファイルを作成する(S
2)。一定速度で揺動する小径工具の単位時間当たりの
除去量および除去形状ファイルを作成し(S3)、この
除去量および除去形状ファイルと誤差形状マップファイ
ルを用いて、残存誤差形状を最小にするような小径工具
の被加工面上での滞留時間分布を計算する(S4)。こ
れらのデータの取り扱いと滞留時間分布の演算はコンピ
ュータ上で行なわれる。演算の手法は、一般的に、デコ
ンボリューションと呼ばれる手法であり、この演算は、
コンボリューション法(畳み込み積分法)の逆演算であ
り、実際の除去をシミュレーションする方法として知ら
れている。このシミュレーション法では誤差形状および
小径工具の単位除去形状をそれぞれの規模の配列でマト
リクス表示し、誤差形状マトリクス上で単位除去形状マ
トリクスを予定の工具走査方向に沿って重ね合わせ、誤
差形状マトリクス要素から単位除去形状マトリクス要素
をそれぞれ減算し、演算したすべての要素でマイナス値
が生じない場合(過大な除去が発生しない場合)、第3
のマトリクスである滞留時間分布積算マトリクス(誤差
形状マトリクスと同規模の配列であり、初期的に、配列
要素全てが0となっている)のうち、現在の演算で単位
除去形状マトリクスの中心が乗っている要素に、単位時
間1を積算し、単位除去形状マトリクスを誤差形状マト
リクス上で予定の工具走査方向に1要素ずらし、再び除
去が可能か否かの判断を行なうことを繰り返し、全域で
除去が行なえなくなるまで工具走査をシミュレートする
ものである。得られた滞留時間分布マトリクスから、予
定の工具走査方向における工具走査速度を演算しファイ
ルとする(S5)。これは、例えば、誤差形状マトリク
ス(滞留時間分布マトリクス)の1要素の大きさ(L
2 )から決まっている単位長さ(L)を各滞留時間分布
マトリクス要素に積算された単位時間(N)(単位は例
えば秒)で除すればよい。
First, an error shape with respect to a design shape of a work surface is measured using a high-precision shape measuring instrument (S1), and an error shape map file for the work surface is created (S1).
2). A removal amount per unit time and a removal shape file of the small-diameter tool oscillating at a constant speed are created (S3), and the remaining error shape is minimized using the removal amount, the removal shape file, and the error shape map file. The residence time distribution of the small tool on the work surface is calculated (S4). Handling of these data and calculation of the residence time distribution are performed on a computer. The calculation method is generally a method called deconvolution.
This is an inverse operation of the convolution method (convolution integration method), and is known as a method of simulating actual removal. In this simulation method, the error shape and the unit removal shape of the small-diameter tool are displayed in a matrix in an array of each scale, and the unit removal shape matrix is superimposed on the error shape matrix along the predetermined tool scanning direction, and the error shape matrix element is used. In the case where the unit removal shape matrix elements are respectively subtracted and no negative value occurs in all calculated elements (when excessive removal does not occur), the third step is performed.
Of the residence time distribution integration matrix (an array of the same size as the error shape matrix, and all of the array elements are initially set to 0), the center of the unit removal shape matrix is added in the current calculation. The unit time 1 is added to the elements that have been removed, the unit removal shape matrix is shifted by one element in the predetermined tool scanning direction on the error shape matrix, and it is determined whether removal is possible again. Simulates a tool scan until is no longer possible. From the obtained residence time distribution matrix, a tool scanning speed in a predetermined tool scanning direction is calculated and used as a file (S5). This is, for example, the size (L) of one element of the error shape matrix (residence time distribution matrix).
The unit length (L) determined in 2 ) may be divided by the unit time (N) integrated in each residence time distribution matrix element (the unit is, for example, seconds).

【0020】得られた工具走査速度のマトリクスに従い
一定速度で揺動する工具を被加工面上でラスター走査し
て形状創成研磨を行なう(S6)。被加工面上における
ラスター走査のパターンの例を図2に示す。ここで、F
は工具の走査研磨軌跡となるラスターパターンである。
このパターンは工具が被加工物の使用時の実際の光線有
効径から完全に外側に出るように設定される。この時、
図3に図示する研磨装置を用いて、被加工物1を研磨液
3中に固定保持し、研磨液3中で研磨を行なう。その
後、再び誤差形状を測定して(S7)、誤差形状マップ
ファイルを作成する(S8)とともに、設計公差に対す
る合否を判定し(S9)、まだ設計公差を満たさない場
合にはその誤差形状マップから改めて滞留時間分布を演
算する(S4)。このループ(S4〜S9)は、設計公
差に対する合否判定が合格になるまで繰り返される。合
格となった被加工物に対して本発明の特徴である短時間
内の均等研磨を実施し(S10)、加工を終了する(S
11)。
A tool that swings at a constant speed in accordance with the matrix of the obtained tool scanning speed is raster-scanned on the surface to be processed to perform shape creation polishing (S6). FIG. 2 shows an example of a raster scanning pattern on the surface to be processed. Where F
Is a raster pattern that is the scanning and polishing locus of the tool.
This pattern is set so that the tool completely exits from the actual effective beam diameter when the workpiece is used. At this time,
The workpiece 1 is fixed and held in the polishing liquid 3 by using the polishing apparatus shown in FIG. Thereafter, the error shape is measured again (S7), and an error shape map file is created (S8), and the pass / fail of the design tolerance is determined (S9). If the design tolerance is not satisfied yet, the error shape map is used. The residence time distribution is calculated again (S4). This loop (S4 to S9) is repeated until the pass / fail judgment for the design tolerance is passed. The passed workpiece is subjected to uniform polishing within a short time, which is a feature of the present invention (S10), and the processing is terminated (S10).
11).

【0021】次に、図3に図示する研磨装置を用いて被
加工物の研磨を実施する態様について説明する。
Next, an embodiment in which the workpiece is polished using the polishing apparatus shown in FIG. 3 will be described.

【0022】被加工物1は、直径226mm、近似曲率
半径480mmの凸面のCaF2 材の非球面レンズであ
る。ここで使用する研磨液3の組成は、精製水20リッ
トルに、研磨剤としての平均粒径0.2μmのダイヤモ
ンド砥粒80gと被加工物を構成する結晶材料(例え
ば、CaF2 )の微粉末0.5gを加え、これらを24
時間撹拌した後、さらに24時間放置し、0.5μmの
カートリッジフィルターを通過させたものであり、研磨
装置外のタンク4内に貯留される。タンク4内の研磨液
3は、研磨液供給ポンプ5により、研磨装置上の被加工
物が固定されているタブ7中に供給される。また、研磨
装置上のタブ7からは余分な研磨液がドレンポンプ6に
より研磨装置外のタンク4へと排出される。
The workpiece 1 is a convex CaF 2 aspherical lens having a diameter of 226 mm and an approximate radius of curvature of 480 mm. The polishing liquid 3 used here is composed of 20 g of purified water, 80 g of diamond abrasive grains having an average particle diameter of 0.2 μm as a polishing agent, and fine powder of a crystal material (for example, CaF 2 ) constituting a workpiece. 0.5 g and add them to 24
After stirring for a period of time, the mixture is left for 24 hours, passed through a 0.5 μm cartridge filter, and stored in the tank 4 outside the polishing apparatus. The polishing liquid 3 in the tank 4 is supplied by a polishing liquid supply pump 5 into a tub 7 to which a workpiece on the polishing apparatus is fixed. Excess polishing liquid is discharged from the tub 7 on the polishing apparatus to the tank 4 outside the polishing apparatus by the drain pump 6.

【0023】研磨工具として、ステンレス製の工具シャ
ンク2aに形状追随のための厚さ3mmの弾性体(クロ
ロプレインゴム:ゴム硬度30度)2bと、厚さ1mm
のアスファルトピッチ(針入度10度)2cを持つ直径
16mmの小径研磨工具2を用いる。この小径研磨工具
2を荷重500gfで矢印D方向に押圧し、揺動ストロ
ーク8mm、周期5Hzで矢印E方向の運動を与えなが
ら、被加工面全域を前述の計算の結果得られた滞留時間
分布を実現しながら走査し、被加工物1の研磨を行な
う。
As a polishing tool, an elastic body (chloroprene rubber: rubber hardness: 30 degrees) 2b having a thickness of 3 mm for conforming to a stainless steel tool shank 2a, and a thickness of 1 mm
A small-diameter polishing tool 2 having a diameter of 16 mm and an asphalt pitch (penetration of 10 degrees) 2c is used. The small-diameter polishing tool 2 is pressed in the direction of arrow D with a load of 500 gf, and while moving in the direction of arrow E with a swinging stroke of 8 mm and a period of 5 Hz, the residence time distribution obtained as a result of the above calculation is applied to the entire surface to be processed. Scanning is performed while the workpiece 1 is being polished.

【0024】そして、前述したように、形状計測と形状
創成研磨を繰り返すことで、所定の非球面形状と所定の
表面粗さを得た後に、本発明の特徴である最終工程とな
る短時間均等研磨を行なう。
As described above, by repeating the shape measurement and the shape creation polishing, a predetermined aspherical shape and a predetermined surface roughness are obtained. Polishing is performed.

【0025】本発明の特徴である短時間均等研磨に使用
する研磨工具10は、図4に図示するように、被加工物
の被加工面の最大径の約1/10程度の直径を有するス
テンレス製の円形の工具シャンク10aに厚さ3〜5m
m程度ののクロロプレインゴム等の弾性体10bを貼
り、その上に針入度が5〜20度のアスファルトピッチ
10cを成形したものである。また、短時間均等研磨に
使用する研磨液は、精製水を溶媒とした被加工物を構成
する結晶材料(例えば、CaF2 )の飽和水溶液に平均
粒径が1/4μm以下のダイヤモンド砥粒を分散させた
研磨液とする。なお、この研磨液は前工程において使用
したものをそのまま使用することもできる。
As shown in FIG. 4, a polishing tool 10 used for short-time uniform polishing which is a feature of the present invention is made of stainless steel having a diameter of about 1/10 of the maximum diameter of the surface to be processed of the workpiece. 3-5m thick circular tool shank 10a
An elastic body 10b of about m in length, such as chloroprene rubber, is adhered, and an asphalt pitch 10c having a penetration of 5 to 20 degrees is formed thereon. The polishing liquid used for the short-time uniform polishing is prepared by adding a diamond abrasive having an average particle diameter of 1/4 μm or less to a saturated aqueous solution of a crystalline material (for example, CaF 2 ) constituting a workpiece using purified water as a solvent. This is a dispersed polishing liquid. Note that the polishing liquid used in the previous step can be used as it is.

【0026】具体的には、直径が20mmのステンレス
製の円形の工具シャンク10aに厚さ3mmのクロロプ
レインゴム材10bを貼り、その上に針入度が15度の
アスファルトピッチ10cを成形して小径の研磨工具1
0とした。この研磨工具10を用い、そして、研磨液と
しては前工程のものをそのまま使用する。研磨工具の揺
動条件ストローク10mm、周波数を2Hz、研磨荷重
を500gfとして研磨を行なった。揺動方向と直交方
向への走査の条件は、走査速度15mm/sec、送り
ピッチ4mm、1パス当たりの加工時間は約15分と短
時間である。この工程を2パスすることで5nmの均等
研磨除去を行なった。
Specifically, a 3 mm thick chloroprene rubber material 10b is stuck on a stainless steel circular tool shank 10a having a diameter of 20 mm, and an asphalt pitch 10c having a penetration of 15 degrees is formed thereon. Small diameter polishing tool 1
0 was set. This polishing tool 10 is used, and the polishing liquid used in the previous step is used as it is. Polishing was performed under the swinging condition of the polishing tool with a stroke of 10 mm, a frequency of 2 Hz, and a polishing load of 500 gf. The scanning conditions in the direction orthogonal to the swinging direction are as follows: a scanning speed of 15 mm / sec, a feed pitch of 4 mm, and a processing time per pass as short as about 15 minutes. By passing this step twice, uniform polishing removal of 5 nm was performed.

【0027】このように被加工面全域を15分以内の研
磨時間で均等に5nm以上を研磨除去する均等研磨除去
により得られた被加工面の表面粗さは、平均0.4nm
RMSであり、そして、表面に有害な変質層は観察され
なかった。
As described above, the surface roughness of the work surface obtained by uniform polishing removal of evenly polishing 5 nm or more of the entire work surface in a polishing time of 15 minutes or less is 0.4 nm on average.
RMS, and no harmful altered layer was observed on the surface.

【0028】このように、本発明では、CaF2 等のフ
ッ化物系結晶材料からなる光学素子を超平滑な非球面形
状に研磨加工すると同時に表面の有害な変質層の発生を
抑えることが可能となった。
As described above, according to the present invention, it is possible to polish an optical element made of a fluoride-based crystal material such as CaF 2 into an ultra-smooth aspherical shape, and at the same time, it is possible to suppress the generation of a harmful altered layer on the surface. became.

【0029】また、本発明の短時間均等研磨に用いる研
磨工具は、図5の(a)に示すように、直径が20mm
のステンレス製の円形の工具シャンク11aに厚さ5m
mの発泡PVF(ポリビニルフォルマール)材11bを
貼り、その上に針入度が15度のアスファルトピッチ1
1cを成形した研磨工具11であってもよい。
As shown in FIG. 5A, the polishing tool used for short-time uniform polishing according to the present invention has a diameter of 20 mm.
5m thick stainless steel circular tool shank 11a
m of foamed PVF (polyvinyl formal) material 11b, and asphalt pitch 1 having a penetration of 15 degrees
The polishing tool 11 formed with 1c may be used.

【0030】さらに、本発明の短時間均等研磨に用いる
研磨工具は、図5の(b)に示すように、直径が20m
mのステンレス製の円形工具シャンク12aに厚さ5m
mの発泡PVF材12bを貼った研磨工具12でもよ
い。
Further, as shown in FIG. 5B, the polishing tool used for the short-time uniform polishing according to the present invention has a diameter of 20 m.
5m thick stainless steel circular tool shank 12a
The polishing tool 12 to which the foamed PVF material 12b of m is attached may be used.

【0031】このように研磨工具に発泡PVF材を用い
る工具は、非球面の形状変化が大きいときに特に適して
いる。これは、発泡PVF材が、研磨液中で軟化して、
短時間で大きな形状変化に追随できかつ良好な表面粗さ
を得られるためである。
As described above, the tool using the foamed PVF material for the polishing tool is particularly suitable when the shape change of the aspherical surface is large. This is because the foamed PVF material softens in the polishing liquid,
This is because a large shape change can be followed in a short time and good surface roughness can be obtained.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
CaF2 等のフッ化物系結晶材料を超平滑面に研磨する
とともに表面の変質層の発生を防止することができ、さ
らに、汎用性があり、非球面にも適用することができ
る。このように、光学素子としての性能を劣化させる研
磨面悪化現象を防止することができ、高い信頼性で高精
度に所定の性能の光学面でかつ均一な超平滑面を得るこ
とができる本発明は、小径研磨工具で非球面形状を研磨
加工するときに特に有効である。さらに、研磨条件を一
定にしておけるので、加工能率も向上し、また、加工コ
ストも低減することができる。
As described above, according to the present invention,
It is possible to polish a fluoride-based crystal material such as CaF 2 into an ultra-smooth surface and to prevent the formation of an altered layer on the surface, and it is also versatile and can be applied to aspheric surfaces. As described above, it is possible to prevent the polished surface deterioration phenomenon that deteriorates the performance as an optical element, and to obtain an optical surface having a predetermined performance with high reliability and high accuracy and a uniform ultra-smooth surface. Is particularly effective when polishing an aspherical shape with a small-diameter polishing tool. Further, since the polishing conditions can be kept constant, the processing efficiency can be improved and the processing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく高精度な非球面を創成研磨する
形状修正研磨プロセスのフローを示す工程図である。
FIG. 1 is a process chart showing a flow of a shape correction polishing process for creating and polishing a highly accurate aspheric surface according to the present invention.

【図2】被研磨面上でのラスター走査のパターンを示す
図である。
FIG. 2 is a diagram illustrating a raster scanning pattern on a surface to be polished;

【図3】光学素子等の被加工物の研磨を実施するための
研磨装置の概略図である。
FIG. 3 is a schematic view of a polishing apparatus for polishing a workpiece such as an optical element.

【図4】本発明における短時間均等研磨に使用する研磨
工具の構成を示す概略図である。
FIG. 4 is a schematic view showing a configuration of a polishing tool used for short-time uniform polishing in the present invention.

【図5】(a)および(b)はそれぞれ本発明における
短時間均等研磨に使用する研磨工具の他の構成を示す概
略図である。
FIGS. 5A and 5B are schematic views each showing another configuration of a polishing tool used for short-time uniform polishing in the present invention.

【符号の説明】[Explanation of symbols]

1 被加工物 2 (小径)研磨工具 2a 工具シャンク 2b 弾性体 2c アスファルトピッチ 3 研磨液 4 タンク 5 研磨液供給ポンプ 6 ドレンポンプ 7 タブ 10 研磨工具 10a 工具シャンク 10b クロロプレインゴム材 10c アスファルトピッチ 11 研磨工具 11a 工具シャンク 11b 発泡PVF材 11c アスファルトピッチ 12 研磨工具 12a 工具シャンク 12b 発泡PVF材 DESCRIPTION OF SYMBOLS 1 Workpiece 2 (Small diameter) polishing tool 2a Tool shank 2b Elastic body 2c Asphalt pitch 3 Polishing liquid 4 Tank 5 Polishing liquid supply pump 6 Drain pump 7 Tab 10 Polishing tool 10a Tool shank 10b Chloroprene rubber material 10c Asphalt pitch 11 Polishing Tool 11a Tool shank 11b Foamed PVF material 11c Asphalt pitch 12 Polishing tool 12a Tool shank 12b Foamed PVF material

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 フッ化物系結晶材料からなる光学素子を
研磨加工する際に、所定の形状と所定の表面粗さが得ら
れた後に、さらに、被加工面の全域を短時間で均等に研
磨除去することを特徴とする研磨方法。
1. When polishing an optical element made of a fluoride-based crystal material, after a predetermined shape and a predetermined surface roughness are obtained, the entire area of the surface to be processed is further uniformly polished in a short time. A polishing method characterized by removing.
【請求項2】 短時間での均等研磨除去に際して、被加
工面の全域を15分以内で均等に5nm以上研磨除去す
ることを特徴とする請求項1記載の研磨方法。
2. The polishing method according to claim 1, wherein, during uniform polishing removal in a short time, the entire area of the surface to be processed is uniformly polished and removed by 5 nm or more within 15 minutes.
【請求項3】 短時間での均等研磨除去に際して、平均
粒径が1/4μm以下のダイヤモンド砥粒を精製水に分
散させた研磨液と、被加工面に比して十分に小さい研磨
面を有する研磨工具を用いることを特徴とする請求項1
または2記載の研磨方法。
3. A polishing liquid in which diamond abrasive grains having an average particle diameter of 1/4 μm or less are dispersed in purified water and a polished surface sufficiently smaller than a surface to be processed is used for uniform polishing removal in a short time. 2. A polishing tool comprising:
Or the polishing method according to 2.
【請求項4】 前記研磨工具は、針入度が5〜20のピ
ッチで構成されていることを特徴とする請求項3記載の
研磨方法。
4. The polishing method according to claim 3, wherein the polishing tool has a penetration of 5 to 20 pitches.
【請求項5】 前記研磨工具は、発泡PVF材で構成さ
れていることを特徴とする請求項3記載の研磨方法。
5. The polishing method according to claim 3, wherein the polishing tool is made of a foamed PVF material.
【請求項6】 前記研磨工具は、その直径が、前記被加
工面の最大径の約1/10であることを特徴とする請求
項3ないし5のいずれか1項に記載の研磨方法。
6. The polishing method according to claim 3, wherein a diameter of the polishing tool is about 1/10 of a maximum diameter of the surface to be processed.
【請求項7】 前記研磨液は、精製水を溶媒とした前記
被加工物を構成する結晶材料の飽和水溶液にダイヤモン
ド砥粒を分散させた研磨液であることを特徴とする請求
項3ないし6のいずれか1項に記載の研磨方法。
7. The polishing liquid according to claim 3, wherein said polishing liquid is a polishing liquid in which diamond abrasive grains are dispersed in a saturated aqueous solution of a crystalline material constituting said workpiece using purified water as a solvent. The polishing method according to any one of the above.
【請求項8】 前記フッ化物系結晶材料がCaF2 であ
ることを特徴とする請求項1ないし7のいずれか1項に
記載の研磨方法。
8. The polishing method according to claim 1, wherein the fluoride-based crystal material is CaF 2 .
JP11892999A 1999-04-27 1999-04-27 Polishing method Pending JP2000308950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11892999A JP2000308950A (en) 1999-04-27 1999-04-27 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11892999A JP2000308950A (en) 1999-04-27 1999-04-27 Polishing method

Publications (1)

Publication Number Publication Date
JP2000308950A true JP2000308950A (en) 2000-11-07

Family

ID=14748713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11892999A Pending JP2000308950A (en) 1999-04-27 1999-04-27 Polishing method

Country Status (1)

Country Link
JP (1) JP2000308950A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015240A (en) * 2005-07-08 2007-01-25 Olympus Corp Mold, molding method for optical element, and optical element
JP2010089251A (en) * 2008-08-28 2010-04-22 Corning Inc Colloidal silica finishing for metal fluoride optical component
JP2010115779A (en) * 2002-08-06 2010-05-27 Qed Technologies Internatl Inc Uniform thin film produced by magnetorheological finishing
CN107971875A (en) * 2017-11-24 2018-05-01 中国建筑材料科学研究总院有限公司 A kind of multilayer polishing glue and its preparation method and application
CN110695807A (en) * 2019-10-17 2020-01-17 中国人民解放军国防科技大学 Method for uniformly removing extra material
CN115091271A (en) * 2022-07-18 2022-09-23 北京创思工贸有限公司 Optical part substrate shaping method based on ion beam polishing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115779A (en) * 2002-08-06 2010-05-27 Qed Technologies Internatl Inc Uniform thin film produced by magnetorheological finishing
JP2007015240A (en) * 2005-07-08 2007-01-25 Olympus Corp Mold, molding method for optical element, and optical element
JP2010089251A (en) * 2008-08-28 2010-04-22 Corning Inc Colloidal silica finishing for metal fluoride optical component
JP2014102507A (en) * 2008-08-28 2014-06-05 Corning Inc Colloidal silica finishing of metal fluoride optical components
US9254544B2 (en) 2008-08-28 2016-02-09 Corning Incorporated Colloidal silica finishing of metal fluoride optical components
CN107971875A (en) * 2017-11-24 2018-05-01 中国建筑材料科学研究总院有限公司 A kind of multilayer polishing glue and its preparation method and application
CN107971875B (en) * 2017-11-24 2019-09-06 中国建筑材料科学研究总院有限公司 A kind of multilayer polishing glue and its preparation method and application
CN110695807A (en) * 2019-10-17 2020-01-17 中国人民解放军国防科技大学 Method for uniformly removing extra material
CN115091271A (en) * 2022-07-18 2022-09-23 北京创思工贸有限公司 Optical part substrate shaping method based on ion beam polishing

Similar Documents

Publication Publication Date Title
US6106380A (en) Deterministic magnetorheological finishing
CN102328265B (en) For the method manufacturing electronic grade synthetic quartz glass substrate
KR101704811B1 (en) Method of processing synthetic quartz glass substrate for semiconductor
CN1311079A (en) Method for grinding non-axial-symmetry and non-ball-surface mirror
WO1997014532A9 (en) Deterministic magnetorheological finishing
JP2009173542A (en) Method for processing synthetic quartz glass substrate
CN102096311A (en) Photomask-forming glass substrate and making method
JP2000308950A (en) Polishing method
US20040248017A1 (en) Substrate for photomask, photomask blank and photomask
JP2016004821A (en) Manufacturing method of glass substrate for mask blank
US8460061B2 (en) Method for producing large-size synthetic quartz glass substrate
JP2002052451A (en) Polishing method, optical element and forming die for optical element
JP5977606B2 (en) Surface treatment sheet with abrasive particles for treating the surface of a workpiece
JP2011020241A (en) Polishing method
US20230037856A1 (en) Mask blanks substrate and method for manufacturing the same
KR20090094324A (en) Sub-aperture deterministic finishing of high aspect ratio glass products
JP2019155232A (en) Cleaning method and cleaning device
CN108356608A (en) A kind of method of deterministic theory Wolter-I types optics mandrel
Kim et al. Evolution of surface characteristics in material removal simulation with subaperture tools
JP7464216B2 (en) Processing method using organic fine particles
JP2004098242A (en) Method for polishing article, its polishing liquid, and method for manufacturing optical article
JPH03202281A (en) Method of manufacturing polishing tape having arbitrary fine uneven pattern on its outer surface
Saito et al. Abrasive Polishing of Optical Surfaces Using Plate Spring Polisher with Oscillation
JP2000117605A (en) Polishing method for optical element
CN109176161A (en) High-surface-quality processing method for aluminum alloy reflector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041203