JP4214093B2 - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP4214093B2
JP4214093B2 JP2004244068A JP2004244068A JP4214093B2 JP 4214093 B2 JP4214093 B2 JP 4214093B2 JP 2004244068 A JP2004244068 A JP 2004244068A JP 2004244068 A JP2004244068 A JP 2004244068A JP 4214093 B2 JP4214093 B2 JP 4214093B2
Authority
JP
Japan
Prior art keywords
polishing
substrate
filter
colloidal silica
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004244068A
Other languages
Japanese (ja)
Other versions
JP2006061995A (en
Inventor
宏之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004244068A priority Critical patent/JP4214093B2/en
Publication of JP2006061995A publication Critical patent/JP2006061995A/en
Application granted granted Critical
Publication of JP4214093B2 publication Critical patent/JP4214093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、研磨液組成物、及び該研磨液組成物を用いる基板の製造方法に関する。   The present invention relates to a polishing liquid composition and a method for producing a substrate using the polishing liquid composition.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク基板の製造工程においても研磨後に要求される基板の表面品質は年々厳しくなってきており、ヘッドの低浮上化に対応して、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に対応して、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. Along with this, the surface quality of the substrate required after polishing in the manufacturing process of the magnetic disk substrate has become stricter year by year, and the surface roughness, micro waviness, roll-off and protrusions have been reduced in response to the low flying height of the head. There is a need to reduce the number of scratches per substrate surface, and the size and depth are becoming smaller and smaller, corresponding to the decrease in unit recording area.

また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストの露光の際の焦点深度が浅くなり、より一層の表面平滑性が望まれている。   Also in the semiconductor field, high integration and high speed are advancing. In particular, miniaturization of wiring is required for high integration. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus at the time of exposure of the photoresist becomes shallow, and further surface smoothness is desired.

このような要求に対して、表面平滑性を向上させた研磨液組成物が特許文献1に記載されているが、高容量又は高集積化に必要なスクラッチの低減及び高研磨速度の両立には不十分である。
特開2003―188122号公報
In response to such a requirement, a polishing composition having improved surface smoothness is described in Patent Document 1, but it is necessary to achieve both a reduction in scratches necessary for high capacity or high integration and a high polishing rate. It is insufficient.
Japanese Patent Laid-Open No. 2003-188122

本発明の目的は、研磨後の被研磨基板の表面粗さが小さく、且つナノスクラッチを顕著に低減できる研磨液組成物、及び表面粗さが小さく、且つナノスクラッチが顕著に低減された基板を製造する方法を提供することにある。   An object of the present invention is to provide a polishing composition that has a small surface roughness of a substrate to be polished after polishing and can significantly reduce nano scratches, and a substrate that has a small surface roughness and significantly reduced nano scratches. It is to provide a method of manufacturing.

本発明の要旨は、
〔1〕 以下の条件を満たすコロイダルシリカと水とを含有する、pH1〜3の研磨液組成物:
(1)標準試験Aにおける孔径0.5μmのフィルター通液量が10g/分・cm2以上、
(2)コロイダルシリカの一次平均粒径が50nm以下、及び
(3)コロイダルシリカの含有量が2〜40重量%、
〔2〕 前記〔1〕記載の研磨液組成物を仕上げ研磨工程に用いる基板の製造方法、
に関する。
The gist of the present invention is as follows.
[1] A polishing composition of pH 1 to 3 containing colloidal silica and water satisfying the following conditions:
(1) The flow rate of a filter having a pore diameter of 0.5 μm in standard test A is 10 g / min · cm 2 or more,
(2) The primary average particle size of colloidal silica is 50 nm or less, and (3) the content of colloidal silica is 2 to 40% by weight,
[2] A method for producing a substrate using the polishing composition according to [1] in a final polishing step,
About.

本発明の研磨液組成物を、例えば、高密度化又は高集積化用の精密部品基板の研磨工程で用いることにより、研磨後基板の表面平滑性が優れ、且つ従来では検出できなかった微細なナノスクラッチを顕著に低減でき、表面性状に優れた高品質のメモリーハードディスク基板及び半導体基板等の精密部品基板を効率良く製造することができるという効果が奏される。   By using the polishing composition of the present invention, for example, in a polishing step of a precision component substrate for densification or high integration, the surface smoothness of the substrate after polishing is excellent, and the fineness that could not be detected conventionally is used. Nano scratches can be remarkably reduced, and a high-quality memory hard disk substrate having excellent surface properties and a precision component substrate such as a semiconductor substrate can be efficiently produced.

本発明の研磨液組成物は、研磨材と水とを含有するものであって、研磨材の一次平均粒径が50nm以下、研磨材の含有量が2〜40重量%、且つ孔径が0.5μmのメンブランフィルターをフィルターの面積1cm2当り1分間に3.7g(以下、3.7g/分・cm2)以上通液できるものである。かかる特徴を有することで、優れた表面品質を達成し、欠陥の原因となるナノスクラッチを顕著に低減することが可能である。このナノスクラッチは、例えば、メモリーハードディスク基板又は半導体基板において、高密度化又は高集積化に重要になる物性である。従って、本発明の研磨液組成物を用いることで、表面品質に優れた高品質のメモリーハードディスク基板又は半導体基板等の精密部品基板を製造することができる。 The polishing composition of the present invention contains an abrasive and water, and has a primary average particle size of 50 nm or less, an abrasive content of 2 to 40% by weight, and a pore size of 0.1. A membrane filter of 5 μm can pass through 3.7 g (hereinafter 3.7 g / min · cm 2 ) or more per minute per 1 cm 2 of the filter area. By having such characteristics, it is possible to achieve excellent surface quality and significantly reduce nano scratches that cause defects. This nano-scratch is a physical property that is important for high density or high integration in, for example, a memory hard disk substrate or a semiconductor substrate. Accordingly, by using the polishing composition of the present invention, a high-quality memory hard disk substrate or a precision component substrate such as a semiconductor substrate having excellent surface quality can be produced.

本発明者らは、メモリーハードディスク基板や半導体基板等の精密部品基板の高密度化又は高集積化に必要な表面平滑性を達成するための要件について、鋭意検討したところ、これまで検出できなかった「ナノスクラッチ」(深さが10nm以上、100nm未満、幅が5nm以上500nm未満、長さが100μm以上の基板表面の微細な傷)の発生がメモリーハードディスク基板では高密度化、また半導体基板では高集積化を阻害していることを初めて見出した。更に、前記ナノスクラッチを低減するには、研磨液組成物のフィルターを通過する通液量が特定量以上必要であることを初めて見出し、本発明を完成させるに至った。   The present inventors diligently examined the requirements for achieving the surface smoothness necessary for high density or high integration of precision component substrates such as memory hard disk substrates and semiconductor substrates, and have not been able to detect them so far. The occurrence of “nano scratches” (fine scratches on the substrate surface with a depth of 10 nm or more and less than 100 nm, a width of 5 nm or more and less than 500 nm, and a length of 100 μm or more) is increased in the density of the memory hard disk substrate and high in the semiconductor substrate. It was found for the first time that the integration was hindered. Furthermore, in order to reduce the nano-scratch, it has been found for the first time that the amount of liquid passing through the filter of the polishing composition is required to be a specific amount or more, and the present invention has been completed.

前記ナノスクラッチの低減機構は、明らかでないが、特定の一次平均粒径を有する研磨材を特定量含有し、所定の通液量を有する研磨液組成物を用いることで、研磨布上への研磨液組成物の蓄積及び研磨屑の堆積が抑制されるためと推定される。   The nano-scratch reduction mechanism is not clear, but by using a polishing liquid composition containing a specific amount of an abrasive having a specific primary average particle diameter and having a predetermined liquid flow rate, polishing on a polishing cloth is performed. It is estimated that accumulation of liquid composition and accumulation of polishing scraps are suppressed.

本発明の研磨液組成物のpHは、研磨速度を向上させる観点及びナノスクラッチの低減の観点から8以下が好ましく、例えば、研磨材として酸化珪素(シリカ)の場合、好ましくは1〜5、より好ましくは1〜4、更に好ましくは1〜3、更に好ましくは1〜2である。研磨液組成物のpHが低いほど、研磨材粒子間の粒子間引力が大きくなり、研磨中にスクラッチの原因と考えられる粗大粒子又は微細粒子の凝集体の基板表面への脱落が抑制されるため好ましい。   The pH of the polishing composition of the present invention is preferably 8 or less from the viewpoint of improving the polishing rate and the reduction of nanoscratches. For example, in the case of silicon oxide (silica) as the abrasive, preferably 1 to 5, more. Preferably it is 1-4, More preferably, it is 1-3, More preferably, it is 1-2. The lower the pH of the polishing liquid composition, the greater the attractive force between the particles of the abrasive particles, and the drop of coarse particles or fine particle aggregates that are considered to cause scratches during polishing to the substrate surface is suppressed. preferable.

本発明の研磨液組成物の通液量は、以下の標準試験Aで測定したものをいう。
(1)試験温度:25℃
(2)吸引圧力:−100kPa
(3)ろ過フィルター:
メンブランフィルター:
(a5)材質:親水性PTFE(ポリテトラフルオロエチレン)
(b5)孔径:0.5μm(JIS K3832に記載の方法で、該フィルターを通して連続した気泡が出始める点の圧力が0.14MPa以上に相当)
(c5)厚さ:35μm
(d5)ろ過面積:17.3cm2 (直径=47mm)
(e5)多孔度:79%
多孔度=(PTFEの密度−メンブランフィルターの密度)/メンブランフィルターの密度×100(%)
メンブランフィルターの密度=フィルターの単位面積当たりの重量/メンブランフィルターの厚み
例えば、アドバンテック東洋社製「H050A047A」を使うことができる。
The passing amount of the polishing composition of the present invention is measured by the following standard test A.
(1) Test temperature: 25 ° C
(2) Suction pressure: -100 kPa
(3) Filtration filter:
Membrane filter:
(A5) Material: hydrophilic PTFE (polytetrafluoroethylene)
(B5) Pore diameter: 0.5 μm (in the method described in JIS K3832, the pressure at the point where continuous bubbles start to emerge through the filter corresponds to 0.14 MPa or more)
(C5) Thickness: 35 μm
(D5) Filtration area: 17.3 cm 2 (diameter = 47 mm)
(E5) Porosity: 79%
Porosity = (density of PTFE−density of membrane filter) / density of membrane filter × 100 (%)
Density of membrane filter = weight per unit area of filter / thickness of membrane filter For example, “H050A047A” manufactured by Advantech Toyo Co., Ltd. can be used.

(4)操作:前記フィルターを装着した吸引濾過器に前記吸引圧力下、300gの研磨液組成物を2秒間で流し込み、その直後から1分間にフィルターを通過した研磨液組成物の重量を測定する。この重量を標準試験で用いたフィルターのろ過面積で除したものを通液量とする。
減圧の方法は特に限定はないが、例えば、水循環式のアスピレーターを用いることができる。
(4) Operation: 300 g of the polishing composition is poured into the suction filter equipped with the filter under the suction pressure for 2 seconds, and the weight of the polishing composition that has passed through the filter is measured for 1 minute immediately thereafter. . The amount obtained by dividing this weight by the filtration area of the filter used in the standard test is defined as the flow rate.
The method for reducing the pressure is not particularly limited. For example, a water circulation aspirator can be used.

本発明の研磨液組成物の通液量は、標準試験Aにおいて、3.7g/分・cm2以上であることが必要であり、ナノスクラッチの低減の観点から、好ましくは4g/分・cm2以上、より好ましくは5g/分・cm2以上、更に好ましくは10g/分・cm2以上、更に好ましくは12g/分・cm2以上、更に好ましくは15g/分・cm2以上である。この通液量は、後述のように研磨液組成物の粘度を低減する、研磨液組成物中の研磨材の分散を高める、研磨液組成物中の研磨材の凝集物をろ過等で除く等の方法により調整することができる。 The liquid passing rate of the polishing composition of the present invention needs to be 3.7 g / min · cm 2 or more in the standard test A, and preferably 4 g / min · cm from the viewpoint of reducing nanoscratches. 2 or more, more preferably 5 g / min · cm 2 or more, further preferably 10 g / min · cm 2 or more, further preferably 12 g / min · cm 2 or more, and further preferably 15 g / min · cm 2 or more. As described later, this liquid passing amount reduces the viscosity of the polishing composition, increases the dispersion of the abrasive in the polishing composition, removes aggregates of the abrasive in the polishing composition by filtration, etc. It can be adjusted by this method.

更に、本発明の研磨液組成物は、前記標準試験Aのメンブランフィルターを以下のものに置換えた標準試験Bにおける通液量が0.5g/分・cm2以上であることが好ましい。
(a2)材質:親水性PTFE
(b2)孔径:0.2μm(JIS K3832に記載の方法で、該フィルターを通して連続した気泡が出始める点の圧力が0.24MPa以上に相当する)
(c2)厚さ:35μm
(d2)ろ過面積:63.6cm2 (直径=90mm)
(e2)多孔度:71%
Further, the polishing composition of the present invention preferably has a liquid passing rate of 0.5 g / min · cm 2 or more in the standard test B in which the membrane filter of the standard test A is replaced with the following.
(A2) Material: hydrophilic PTFE
(B2) Pore diameter: 0.2 μm (the pressure at the point where continuous bubbles start to emerge through the filter by the method described in JIS K3832 corresponds to 0.24 MPa or more)
(C2) Thickness: 35 μm
(D2) Filtration area: 63.6 cm 2 (diameter = 90 mm)
(E2) Porosity: 71%

ナノスクラッチの低減の観点から、より好ましくは0.8g/分・cm2以上、1g/分・cm2以上、さらに好ましくは2g/分・cm2以上である。孔径が0.2μmのメンブランフィルターとしては、例えば、アドバンテック東洋社製「H020A090C」を用いることができる。 From the viewpoint of reducing nanoscratches, it is more preferably 0.8 g / min · cm 2 or more, 1 g / min · cm 2 or more, and further preferably 2 g / min · cm 2 or more. As the membrane filter having a pore diameter of 0.2 μm, for example, “H020A090C” manufactured by Advantech Toyo Co., Ltd. can be used.

更に、本発明の研磨液組成物は、前記標準試験Aのメンブランフィルターを以下のものに置換えた標準試験Cにおける通液量が0.13g/分・cm2以上であることが好ましい。
(a1)材質:親水性PTFE
(b1)孔径:0.1μm(JIS K3832に記載の方法で、該フィルターを通して連続した気泡が出始める点の圧力が0.38MPa以上に相当する)
(c1)厚さ:35μm
(d1)ろ過面積:63.6cm2 (直径=90mm)
(e1)多孔度:71%
Further, the polishing composition of the present invention preferably has a liquid passing rate of 0.13 g / min · cm 2 or more in the standard test C in which the membrane filter of the standard test A is replaced with the following.
(A1) Material: hydrophilic PTFE
(B1) Pore diameter: 0.1 μm (the pressure at the point where continuous bubbles start to emerge through the filter by the method described in JIS K3832 corresponds to 0.38 MPa or more)
(C1) Thickness: 35 μm
(D1) Filtration area: 63.6 cm 2 (diameter = 90 mm)
(E1) Porosity: 71%

ナノスクラッチの低減の観点から、より好ましくは0.15g/分・cm2以上、更に好ましくは0.2g/分・cm2以上、更に好ましくは0.4g/分・cm2以上、更に好ましくは0.45g/分・cm2以上である。孔径が0.1μmのメンブランフィルターとしては、例えば、アドバンテック東洋社製「H010A090C」を用いることができる。 From the viewpoint of reducing nanoscratches, more preferably 0.15 g / min · cm 2 or more, still more preferably 0.2 g / min · cm 2 or more, further preferably 0.4 g / min · cm 2 or more, further preferably 0.45 g / min · cm 2 or more. As a membrane filter having a pore diameter of 0.1 μm, for example, “H010A090C” manufactured by Advantech Toyo Co., Ltd. can be used.

本発明における研磨材としては、研磨用に一般的に使用されている研磨材を使用することができ、金属、金属若しくは半金属の炭化物、窒化物、酸化物、又はホウ化物、ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体例としては、シリカ、酸化アルミニウム(以下、アルミナという)、炭化珪素、ダイヤモンド、酸化マンガン、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム等、またこれら研磨材の表面を官能基で修飾あるいは表面改質したもの、界面活性剤や研磨材で複合粒子化したもの等が挙げられ、これらを二種以上使用することは表面粗さを低減させる観点から好ましい。更に、ナノスクラッチの低減の観点から、コロイダル粒子とヒュームド粒子が好ましく、より好ましくはコロイダル粒子、たとえばコロイダルシリカ、コロイダルセリア、コロイダルアルミナであり、中でもコロイダルシリカ、例えば、ケイ酸水溶液から生成させる製法により得られるコロイダルシリカが好ましい。   As the abrasive in the present invention, an abrasive generally used for polishing can be used, and examples thereof include metal, metal or metalloid carbide, nitride, oxide, boride, diamond, and the like. It is done. The metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type). Specific examples of the abrasive include silica, aluminum oxide (hereinafter referred to as alumina), silicon carbide, diamond, manganese oxide, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, etc., and the surface of these abrasives. Examples include those modified or functionally modified with a functional group and those made into composite particles with a surfactant or an abrasive, and the use of two or more of these is preferable from the viewpoint of reducing the surface roughness. Furthermore, colloidal particles and fumed particles are preferred from the viewpoint of reducing nanoscratches, more preferably colloidal particles such as colloidal silica, colloidal ceria, and colloidal alumina, among others, by a production method using colloidal silica such as an aqueous silicic acid solution. The resulting colloidal silica is preferred.

本発明の研磨液組成物に含有される研磨材の一次粒子の平均粒径(一次平均粒径ともいう)は、研磨材が二種以上混合されているかどうかに関係なく、50nm以下であり、研磨速度の観点から、好ましくは1nm以上、より好ましくは3nm以上、さらに好ましくは5nm以上、また、表面粗さ(中心線平均粗さ:Ra、Peak to Valley値:Rmax)を低減する観点から、好ましくは40nm以下、より好ましくは30nm以下、更に好ましくは20nm以下、更に好ましくは15nm以下である。従って、経済的に表面粗さを低減する観点から該一次粒子の平均粒径は、好ましくは1〜40nm、より好ましくは3〜30nm、更に好ましくは、5〜20nm、更に好ましくは5〜15nmである。更に、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び基板の表面粗さを低減させる観点から、その二次粒子の平均粒径は、たとえば5〜150nm、好ましくは5〜100nm、より好ましくは5〜80nm、更に好ましくは5〜50nm、更に好ましくは5〜30nmである。   The average particle size of the primary particles of the abrasive contained in the polishing composition of the present invention (also referred to as primary average particle size) is 50 nm or less, regardless of whether two or more types of abrasives are mixed. From the viewpoint of polishing rate, preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more, and from the viewpoint of reducing the surface roughness (center line average roughness: Ra, Peak to Valley value: Rmax), Preferably it is 40 nm or less, More preferably, it is 30 nm or less, More preferably, it is 20 nm or less, More preferably, it is 15 nm or less. Therefore, from the viewpoint of economically reducing the surface roughness, the average particle size of the primary particles is preferably 1 to 40 nm, more preferably 3 to 30 nm, still more preferably 5 to 20 nm, still more preferably 5 to 15 nm. is there. Furthermore, when the primary particles are aggregated to form secondary particles, the average particle size of the secondary particles is, for example, from the viewpoint of improving the polishing rate and reducing the surface roughness of the substrate. The thickness is 5 to 150 nm, preferably 5 to 100 nm, more preferably 5 to 80 nm, still more preferably 5 to 50 nm, and still more preferably 5 to 30 nm.

また、前記研磨材の一次粒子の平均粒径は、研磨材が二種以上混合されているかどうかに関係なく、透過型電子顕微鏡で観察した画像を使い、粒子を真球とみなして一次粒子の小粒径側からの累積体積頻度が50%となる粒径(D50)を求め、この値を一次平均粒径とする。また、二次粒子の平均粒径はレーザー光散乱法を用いて体積平均粒径として測定することができる。   In addition, the average particle size of the primary particles of the abrasive is not limited to whether or not two or more types of abrasive are mixed, and the image observed with a transmission electron microscope is used to regard the particles as true spheres. The particle diameter (D50) at which the cumulative volume frequency from the small particle diameter side becomes 50% is determined, and this value is taken as the primary average particle diameter. The average particle diameter of the secondary particles can be measured as a volume average particle diameter using a laser light scattering method.

更に、研磨材の粒径分布としては、研磨材が一種以上混合されているかどうかに関係なく、ナノスクラッチの低減、表面粗さの低減及び高い研磨速度を達成する観点から、D90/D50は、好ましくは1〜3、より好ましくは1.3〜3である。尚、D90とは、透過型電子顕微鏡で観察した画像を使い、粒子を真球とみなして一次粒子の小粒径側からの累積体積頻度が90%となる粒径をいう。   Further, as the particle size distribution of the abrasive, D90 / D50, from the viewpoint of achieving a reduction in nanoscratches, a reduction in surface roughness and a high polishing rate regardless of whether one or more abrasives are mixed. Preferably it is 1-3, More preferably, it is 1.3-3. Note that D90 is a particle diameter at which the cumulative volume frequency from the small particle diameter side of the primary particles becomes 90% by using the image observed with a transmission electron microscope and regarding the particles as true spheres.

研磨液組成物中における研磨材の含有量は2〜40重量%であり、研磨速度を向上させる観点から好ましくは2.5重量%以上、より好ましくは3重量%以上、更に好ましくは5重量%以上であり、また、表面品質を向上させる観点から、好ましくは30重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。すなわち、経済的に表面品質を向上させる観点から、好ましくは2.5〜30重量%、より好ましくは3〜20重量%、更に好ましくは5〜10重量%である。   The content of the abrasive in the polishing composition is 2 to 40% by weight, preferably 2.5% by weight or more, more preferably 3% by weight or more, and further preferably 5% by weight from the viewpoint of improving the polishing rate. From the viewpoint of improving the surface quality, it is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less. That is, from the viewpoint of economically improving the surface quality, it is preferably 2.5 to 30% by weight, more preferably 3 to 20% by weight, and still more preferably 5 to 10% by weight.

本発明の研磨液組成物中の媒体には水が使用される。水にはイオン交換水、蒸留水、超純水等が挙げられる。また、本発明においては、水に加えて、水溶性有機溶剤も媒体として使用することができる。水溶性有機溶剤としては一級〜三級アルコール、グリコール等が挙げられる。これらの媒体の含有量は、研磨液組成物中、60〜99重量%が好ましく、65〜99重量%がより好ましい。   Water is used as the medium in the polishing composition of the present invention. Examples of water include ion exchange water, distilled water, and ultrapure water. In the present invention, in addition to water, a water-soluble organic solvent can also be used as a medium. Examples of the water-soluble organic solvent include primary to tertiary alcohols and glycols. The content of these media is preferably 60 to 99% by weight, more preferably 65 to 99% by weight in the polishing composition.

また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。例えば、硫酸、硝酸等の無機酸又は1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP)等の有機酸;アンモニア水、水酸化ナトリウム、水酸化カリウム等の無機塩基又は有機塩基;酸性塩、中性塩又は塩基性塩;界面活性剤;過酸化水素等の酸化剤;ラジカル捕捉剤;包摂化合物;防錆剤;並びに消泡剤及び抗菌剤等が挙げられる。中でも、研磨速度を向上させる観点から及び基板の表面粗さを低減させる観点から、無機酸、有機酸、酸性塩、過酸化水素等の酸化剤が好ましい。これらの他の成分の含有量としては、研磨液組成物中、研磨速度を向上させる観点及び基板の表面粗さを低減させる観点から、0〜10重量%が好ましく、0〜5重量%がより好ましい。   Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. For example, inorganic acids such as sulfuric acid and nitric acid or organic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP); inorganic bases or organic bases such as aqueous ammonia, sodium hydroxide and potassium hydroxide; Examples include neutral salts or basic salts; surfactants; oxidizing agents such as hydrogen peroxide; radical scavengers; inclusion compounds; rust inhibitors; and antifoaming agents and antibacterial agents. Among these, from the viewpoint of improving the polishing rate and from the viewpoint of reducing the surface roughness of the substrate, oxidizing agents such as inorganic acids, organic acids, acidic salts, and hydrogen peroxide are preferable. The content of these other components is preferably 0 to 10% by weight and more preferably 0 to 5% by weight from the viewpoint of improving the polishing rate and reducing the surface roughness of the substrate in the polishing composition. preferable.

本発明の研磨液組成物は、前記成分を適宜混合することにより、調製することができる。尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。   The polishing composition of the present invention can be prepared by appropriately mixing the above components. The concentration of each component in the polishing liquid composition may be any of the concentration during production of the composition and the concentration during use. Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.

また、本発明の研磨液組成物は、前記各成分の混合液の製造後又は使用時に、例えば、公知のフィルターを使って調製するこができる。例えば、バグフィルター、メンブランフィルター、デプスフィルター、プリーツフィルター等が挙げられ、これらを単独で、又は組み合わせて用いることができる。ナノスクラッチを低減する観点から、好ましくは前記フィルターを組み合わせることであり、より好ましくは少なくともメンブランフィルターを1個以上組み合わせることである。   Moreover, the polishing liquid composition of the present invention can be prepared, for example, using a known filter after the production of the liquid mixture of the above components or at the time of use. For example, a bug filter, a membrane filter, a depth filter, a pleat filter, etc. are mentioned, These can be used individually or in combination. From the viewpoint of reducing nanoscratches, preferably, the filters are combined, and more preferably, at least one membrane filter is combined.

本発明の研磨液組成物の粘度は、ナノスクラッチを低減する観点から、B型粘度(25℃、12r/min)で、好ましくは20mPa・s以下であり、より好ましくは10mPa・s以下、更に好ましくは5mPa・s以下である。   The viscosity of the polishing composition of the present invention is a B-type viscosity (25 ° C., 12 r / min) from the viewpoint of reducing nanoscratches, preferably 20 mPa · s or less, more preferably 10 mPa · s or less, and further Preferably, it is 5 mPa · s or less.

本発明におけるナノスクラッチとは、深さが10nm以上、100nm未満、幅が5nm以上500nm未満、長さが100μm以上の基板表面の微細な傷で、原子間力顕微鏡(AFM)で検出することができ、後述の実施例に記載の目視検査装置である「MicroMax」による測定でスクラッチ本数として定量評価できる。   The nano-scratch in the present invention is a fine scratch on the substrate surface having a depth of 10 nm or more and less than 100 nm, a width of 5 nm or more and less than 500 nm, and a length of 100 μm or more, which can be detected with an atomic force microscope (AFM). It can be quantitatively evaluated as the number of scratches by measurement with “MicroMax” which is a visual inspection apparatus described in Examples described later.

また、表面平滑性の尺度である表面粗さは、評価方法に限定はないが、本発明では、AFMにおける波長10μm以下の短い波長で測定可能な粗さとして評価し、中心線平均粗さ(AFM―Ra)として表す。具体的には後述の実施例に記載の方法で得られる。   The surface roughness, which is a measure of surface smoothness, is not limited to an evaluation method, but in the present invention, it is evaluated as a roughness that can be measured at a short wavelength of 10 μm or less in AFM, and the centerline average roughness ( AFM-Ra). Specifically, it can be obtained by the method described in Examples below.

本発明において好適に使用される被研磨基板の材質としては、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、ニ酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中でも、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金を含有する被研磨基板に好適である。例えば、Ni-Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板により適しており、Ni-Pメッキされたアルミニウム合金基板が更に適している。   Examples of the material of the substrate to be polished that are preferably used in the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, and amorphous. Examples thereof include glassy substances such as carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, it is suitable for a substrate to be polished containing a metal such as aluminum, nickel, tungsten, copper, and an alloy containing these metals as a main component. For example, an aluminum alloy substrate plated with Ni—P or a glass substrate such as crystallized glass or tempered glass is more suitable, and an aluminum alloy substrate plated with Ni—P is more suitable.

被研磨基板の形状は特に制限が無く、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が本発明の研磨液組成物を用いた研磨の対象となる。その中でも、ディスク状の被研磨基板の研磨に特に適している。   The shape of the substrate to be polished is not particularly limited. For example, the shape having a flat portion such as a disk shape, a plate shape, a slab shape, or a prism shape, or the shape having a curved surface portion such as a lens can be used for the polishing liquid composition of the present invention. It becomes the object of polishing used. Among these, it is particularly suitable for polishing a disk-shaped substrate to be polished.

本発明の研磨液組成物は、精密部品基板の研磨に好適に用いられる。例えば、メモリーハードディスク基板等の磁気ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光ディスク、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に適している。中でも、本発明の研磨液組成物は、高密度化、高集積化において重要なナノスクラッチを顕著に低減し得るものであるため、メモリーハードディスク基板等の磁気ディスクや半導体基板の研磨により好適であり、磁気ディスク基板の研磨に特に適している。   The polishing composition of the present invention is suitably used for polishing precision component substrates. For example, it is suitable for polishing of magnetic parts such as a memory hard disk substrate, a magnetic recording medium substrate such as a magneto-optical disk, a precision mask such as a photomask substrate, an optical lens, an optical disk, an optical mirror, an optical prism, and a semiconductor substrate. Among them, the polishing composition of the present invention can remarkably reduce nano scratches that are important for high density and high integration, and is therefore suitable for polishing magnetic disks such as memory hard disk substrates and semiconductor substrates. Particularly suitable for polishing magnetic disk substrates.

メモリーハードディスク基板や半導体基板の研磨は、シリコンウェハ(ベアウェハ)のポリッシング工程、埋め込み金属配線の形成工程、層間絶縁膜の平坦化工程、埋め込みキャパシタ形成工程等において行われる。   The polishing of the memory hard disk substrate or the semiconductor substrate is performed in a polishing process of a silicon wafer (bare wafer), a formation process of an embedded metal wiring, a planarization process of an interlayer insulating film, an embedded capacitor formation process, and the like.

上記のように本発明の研磨液組成物を用いることで基板のナノスクラッチを有意に低減することができる。従って、本発明は、前記研磨液組成物を用いる基板のナノスクラッチの低減方法及び基板の製造方法に関する。   As described above, by using the polishing composition of the present invention, the nano-scratch of the substrate can be significantly reduced. Accordingly, the present invention relates to a method for reducing nanoscratches on a substrate using the polishing composition, and a method for producing a substrate.

本発明の基板のナノスクラッチの低減方法又は基板の製造方法は、本発明の研磨液組成物を用いて被研磨基板を研磨する工程を有する方法である。この研磨工程としては、具体的には、不織布状の有機高分子系研磨布等を貼り付けた研磨盤で基板を挟み込み、本発明の研磨液組成物を基板表面に供給し、一定荷重を加えながら研磨盤や基板を動かすことにより研磨する方法等が挙げられる。なお、研磨液組成物の供給量、研磨荷重、研磨盤や基板を動かす回転数等の条件は、公知の範囲であればよい。   The method for reducing substrate nanoscratches or the method for producing a substrate of the present invention is a method comprising a step of polishing a substrate to be polished using the polishing composition of the present invention. Specifically, as the polishing step, the substrate is sandwiched between polishing plates with a non-woven organic polymer polishing cloth or the like attached thereto, the polishing composition of the present invention is supplied to the substrate surface, and a constant load is applied. For example, a method of polishing by moving a polishing board or a substrate may be used. The conditions such as the supply amount of the polishing composition, the polishing load, and the number of rotations for moving the polishing disk and the substrate may be within a known range.

本発明の研磨液組成物を用いた研磨工程に供する前の基板の表面品質は特に限定しないが、例えば、中心線平均粗さが1nm以下の表面品質を有する基板が適する。   The surface quality of the substrate before being subjected to the polishing step using the polishing liquid composition of the present invention is not particularly limited. For example, a substrate having a surface quality with a center line average roughness of 1 nm or less is suitable.

前記研磨工程は、複数の研磨工程がある場合、第2工程以降に行われるのが好ましく、より好ましくは一つ又は二つ以上の仕上げ研磨工程、更に好ましくは最終研磨工程に行われることが望ましい。その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、段階毎に基板を洗浄することが好ましい。なお、研磨機としては、特に限定はない。   When there are a plurality of polishing steps, the polishing step is preferably performed after the second step, more preferably one or two or more finish polishing steps, and more preferably a final polishing step. . At that time, in order to avoid mixing of the polishing material or polishing liquid composition in the previous process, different polishing machines may be used, and if different polishing machines are used, the substrate is cleaned at each stage. It is preferable to do. The polishing machine is not particularly limited.

本発明の研磨液組成物は、研磨工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。   The polishing composition of the present invention is particularly effective in the polishing step, but can be similarly applied to other polishing steps such as a lapping step.

以上のようにして、本発明の研磨液組成物又は本発明の基板の製造方法を用いて製造された基板は、表面平滑性に優れ、中心線平均粗さ(AFM−Ra)が例えば0.3nm以下、0.2nm以下、好ましくは0.15nm以下、0.13nm以下、より好ましくは0.1nm以下、更に好ましくは0.08nm以下のものが得られる。   As described above, the substrate manufactured using the polishing liquid composition of the present invention or the substrate manufacturing method of the present invention is excellent in surface smoothness and has a center line average roughness (AFM-Ra) of, for example, 0.8. 3 nm or less, 0.2 nm or less, preferably 0.15 nm or less, 0.13 nm or less, more preferably 0.1 nm or less, and still more preferably 0.08 nm or less.

また、製造された基板はナノスクラッチが極めて少ないものである。従って、該基板が、例えば、メモリーハードディスク基板である場合には、例えば、記録密度120G bits/inch2、更には160G bits/inch2のものにも対応することができ、半導体基板である場合には、例えば、配線幅65nm、更には45nmのものにも対応することができる。 Further, the manufactured substrate has very few nano scratches. Accordingly, when the substrate is, for example, a memory hard disk substrate, it is possible to cope with, for example, a recording density of 120 G bits / inch 2 and further 160 G bits / inch 2 , and when the substrate is a semiconductor substrate. Can correspond to, for example, a wiring width of 65 nm and further 45 nm.

被研磨基板として、Ni−Pメッキされた基板を、アルミナ研磨材を含有する研磨液であらかじめ粗研磨し、中心線平均粗さ(タリーステップ−Ra)を1nmとした、厚さ1.27mmの外周95mmφで内周25mmφのアルミニウム合金基板を用いて研磨評価を行った。   As a substrate to be polished, a Ni-P plated substrate was roughly polished in advance with a polishing liquid containing an alumina abrasive, and the center line average roughness (tally step-Ra) was 1 nm, and the thickness was 1.27 mm. Polishing evaluation was performed using an aluminum alloy substrate having an outer periphery of 95 mmφ and an inner periphery of 25 mmφ.

実施例1〜9(但し、実施例3〜6は参考例である)
表1に示すように、コロイダルシリカとしては、コロイダルシリカスラリーA(デュポン社製、D90/D50=2.5)、B(Akzo Nobel社製、D90/D50=1.2)、C(デュポン社製、D90/D50=1.4)及びD(デュポン社製、D90/D50=1.4)を用いた。プリーツフィルター(「MCP―JX―E10S」、孔径:1μm、アドバンテック東洋社製)とプリーツフィルター(「MCS−045−E10S」、孔径:0.45μm、アドバンテック東洋社製)とを直列に接続し、送液ポンプを用いてこの順に上記コロイダルシリカのスラリーを通液させた。フィルターを通過したろ液に、表1に記載のHEDP(60重量%水溶液)と過酸化水素(35重量%水溶液)と硫酸(98重量%)あるいはアンモニア水(28重量%)とイオン交換水との混合液を攪拌下混合し、所定のpHの研磨液組成物を得た。
Examples 1-9 (however, Examples 3-6 are reference examples)
As shown in Table 1, colloidal silica includes colloidal silica slurry A (manufactured by DuPont, D90 / D50 = 2.5), B (manufactured by Akzo Nobel, D90 / D50 = 1.2), C (DuPont). And D90 / D50 = 1.4) and D (DuPont, D90 / D50 = 1.4) were used. A pleated filter (“MCP-JX-E10S”, pore size: 1 μm, manufactured by Advantech Toyo) and a pleated filter (“MCS-045-E10S”, pore size: 0.45 μm, manufactured by Advantech Toyo) were connected in series. The slurry of the colloidal silica was passed in this order using a liquid feed pump. To the filtrate that passed through the filter, HEDP (60% by weight aqueous solution), hydrogen peroxide (35% by weight aqueous solution), sulfuric acid (98% by weight) or ammonia water (28% by weight) and ion-exchanged water listed in Table 1 Were mixed with stirring to obtain a polishing liquid composition having a predetermined pH.

Figure 0004214093
Figure 0004214093

実施例10〜11(参考例)
表1に示すように、コロイダルシリカとしては、コロイダルシリカスラリーA及びCを用いた。デプスフィルター(「TCPD―03A―S1FE」、孔径:3μm、アドバンテック東洋社製)とプリーツフィルター(「MCP―JX―E10S」、孔径:1μm、アドバンテック東洋社製)とプリーツフィルター(「MCP−JX−E10S」、孔径:1μm、アドバンテック東洋社製)とを直列に接続し、送液ポンプを用いてこの順に上記コロイダルシリカのスラリーを通液させた。フィルターを通過したろ液に、表1に記載のHEDP(60重量%水溶液)と硫酸(98重量%)と過酸化水素(35重量%水溶液)とイオン交換水との混合液を攪拌下混合し、所定のpHの研磨液組成物を得た。
Examples 10 to 11 (Reference Examples)
As shown in Table 1, colloidal silica slurries A and C were used as the colloidal silica. Depth filter (“TCPD-03A-S1FE”, pore size: 3 μm, manufactured by Advantech Toyo) and pleated filter (“MCP-JX-E10S”, pore size: 1 μm, manufactured by Advantech Toyo) and pleated filter (“MCP-JX-”) E10S ”, pore diameter: 1 μm, manufactured by Advantech Toyo Co., Ltd.) were connected in series, and the slurry of the colloidal silica was passed in this order using a liquid feed pump. A mixture of HEDP (60% by weight aqueous solution), sulfuric acid (98% by weight), hydrogen peroxide (35% by weight aqueous solution) and ion-exchanged water listed in Table 1 was mixed with stirring into the filtrate that passed through the filter. A polishing liquid composition having a predetermined pH was obtained.

実施例12(参考例)
表1に示すように、コロイダルシリカとしては、コロイダルシリカスラリーAを用いた。プリーツフィルター(「MCP―HX―E10S」、孔径:2μm、アドバンテック東洋社製)とプリーツフィルター(「MCP−HX−E10S」、孔径:2μm、アドバンテック東洋社製)とを直列に接続し、送液ポンプを用いてこの順に上記コロイダルシリカのスラリーを通液させた。フィルターを通過したろ液に、表1に記載のHEDP(60重量%水溶液)と硫酸(98重量%)と過酸化水素(35重量%水溶液)とイオン交換水との混合液を攪拌下混合し、所定のpHの研磨液組成物を得た。


Example 12 (Reference Example)
As shown in Table 1, colloidal silica slurry A was used as the colloidal silica. A pleated filter (“MCP-HX-E10S”, pore size: 2 μm, manufactured by Advantech Toyo) and a pleated filter (“MCP-HX-E10S”, pore size: 2 μm, manufactured by Advantech Toyo) are connected in series to send liquid. The colloidal silica slurry was passed in this order using a pump. A mixture of HEDP (60% by weight aqueous solution), sulfuric acid (98% by weight), hydrogen peroxide (35% by weight aqueous solution) and ion-exchanged water listed in Table 1 was mixed with stirring into the filtrate that passed through the filter. A polishing liquid composition having a predetermined pH was obtained.


比較例1
表1に示すように、コロイダルシリカとしては、コロイダルシリカスラリーST−50(日産化学工業社製、D90/D50=1.1)をイオン交換水撹拌下に加えて、コロイダルシリカ濃度を24重量%に調整したものを用いた。更に、それをセルロースアセテート製メンブランフィルター(「C045A090C」、孔径:0.45μm、直径:90mm、アドバンテック東洋社製)で吸引濾過し、所定のpHの研磨液組成物を得た。
Comparative Example 1
As shown in Table 1, as colloidal silica, colloidal silica slurry ST-50 (manufactured by Nissan Chemical Industries, D90 / D50 = 1.1) was added under stirring with ion-exchanged water, and the colloidal silica concentration was 24% by weight. What was adjusted to was used. Further, it was subjected to suction filtration with a cellulose acetate membrane filter (“C045A090C”, pore size: 0.45 μm, diameter: 90 mm, manufactured by Advantech Toyo Co., Ltd.) to obtain a polishing liquid composition having a predetermined pH.

比較例2
表1に示すように、コロイダルシリカとしては、コロイダルシリカスラリーDに、表1記載のHEDP(60重量%水溶液)と硫酸(98重量%)と過酸化水素(35重量%水溶液)とイオン交換水との混合液を攪拌下混合し、所定のpHの研磨液組成物を得た。
Comparative Example 2
As shown in Table 1, colloidal silica includes colloidal silica slurry D, HEDP (60% by weight aqueous solution), sulfuric acid (98% by weight), hydrogen peroxide (35% by weight aqueous solution) and ion-exchanged water listed in Table 1. Was mixed with stirring to obtain a polishing composition having a predetermined pH.

実施例1〜12及び比較例1〜2で得られた研磨液組成物について、フィルター通液量、ナノスクラッチ及びAFMを用いて測定した表面粗さ(AFM―Ra)を以下の方法に基づいて測定・評価した。得られた結果を表2に示す。なお、タリーステップ−Raの測定条件も以下に示す。   About the polishing liquid composition obtained in Examples 1-12 and Comparative Examples 1-2, the surface roughness (AFM-Ra) measured using the liquid flow rate, nano scratch, and AFM was based on the following method. Measured and evaluated. The obtained results are shown in Table 2. Measurement conditions for tally step-Ra are also shown below.

1.通液量の測定条件
(1)吸引圧力設定手段:水循環式アスピレーター(「CIRCULATING ASPIRATOR WJ−15」、柴田科学器械工業社製)を用い、アスピレーターと吸引濾過器との間(吸引濾過器から20cm離れた位置)に圧力計を接続して、濾過中の圧力を−100kPaに調整した。
(2)吸引濾過器:減圧濾過用フィルターホルダー(型番:KGS−47、アドバンテック東洋社製)付の1L吸引瓶
(3)フィルター:メンブランフィルターA(「H050A047A」、アドバンテック東洋社製)材質:親水性PTFE、孔径:0.5μm、厚さ:35μm、ろ過面積:17.3cm2 (直径=47mm)、多孔度:79%。メンブランフィルターB(「H020A090C」、アドバンテック東洋社製)材質:親水性PTFE、孔径:0.2μm、厚さ:35μm、ろ過面積:63.6cm2 (直径=90mm)、多孔度:71%)。メンブランフィルターC(「H010A090C」、アドバンテック東洋社製)材質:親水性PTFE、孔径:0.1μm、厚さ:35μm、ろ過面積:63.6cm2 (直径=90mm)、多孔度:71%)。
(1)通液時間:1分(300gの研磨液組成物を2秒間でフィルター上に入れ終わった時点から1分)
(2)通液量:通液1分後の吸引瓶中の研磨液組成物の重量(g)をフィルターのろ過面積で除して求めた。
1. Conditions for measuring liquid flow rate (1) Suction pressure setting means: using a water circulation aspirator (“CIRCULATING ASPIRETOR WJ-15”, manufactured by Shibata Kagaku Kogyo Co., Ltd.), between the aspirator and the suction filter (20 cm from the suction filter) A pressure gauge was connected to the remote position to adjust the pressure during filtration to -100 kPa.
(2) Suction filter: 1L suction bottle with filter holder for vacuum filtration (model number: KGS-47, manufactured by Advantech Toyo Co., Ltd.) (3) Filter: membrane filter A ("H050A047A", manufactured by Advantech Toyo Co., Ltd.) Material: hydrophilic PTFE, pore size: 0.5 μm, thickness: 35 μm, filtration area: 17.3 cm 2 (diameter = 47 mm), porosity: 79%. Membrane filter B (“H020A090C”, manufactured by Advantech Toyo Co., Ltd.) Material: hydrophilic PTFE, pore diameter: 0.2 μm, thickness: 35 μm, filtration area: 63.6 cm 2 (diameter = 90 mm), porosity: 71%). Membrane filter C (“H010A090C”, manufactured by Advantech Toyo Co., Ltd.) Material: hydrophilic PTFE, pore diameter: 0.1 μm, thickness: 35 μm, filtration area: 63.6 cm 2 (diameter = 90 mm), porosity: 71%).
(1) Flowing time: 1 minute (1 minute from the time when 300 g of the polishing liquid composition is put on the filter in 2 seconds)
(2) Amount of liquid flow: The amount (g) of the polishing liquid composition in the suction bottle 1 minute after the liquid flow was divided by the filtration area of the filter.

2.研磨条件
(1)研磨試験機:スピードファム社製両面9B研磨機
(2)研磨布:フジボウ社製パッド(厚さ0.9mm、開孔径30μm)
(3)研磨盤回転数:32.5r/min
(4)研磨液組成物供給量:100mL/min
(5)研磨時間:4分
(6)研磨荷重(定盤圧力):7.8kPa
(7)投入した基板の枚数:10枚
2. Polishing conditions (1) Polishing tester: Double-sided 9B polishing machine manufactured by Speed Fem Co. (2) Polishing cloth: Pad manufactured by Fujibow (thickness 0.9 mm, opening diameter 30 μm)
(3) Polishing disk rotation speed: 32.5 r / min
(4) Polishing liquid composition supply amount: 100 mL / min
(5) Polishing time: 4 minutes (6) Polishing load (plate pressure): 7.8 kPa
(7) Number of loaded substrates: 10

3.ナノスクラッチの測定条件
(1)測定機器:VISION PSYTEC社製、「MicroMax VMX−2100CSP」
(2)光源:2Sλ(250W)及び3Pλ(250W)共に100%
(3)チルド角:−6°
(4)倍率:最大(視野範囲:全面積の120分の1)
(5)観察領域:全面積(外周95mmφで内周25mmの基板)
(6)アイリス:notch
(7)評価:研磨試験機に投入した10枚の基板の中、無作為に4枚を選択し、その4枚の基板の各々両面にあるナノスクラッチ数(本)の合計を8で除して、基板面当たりのナノスクラッチ数(本/面)を算出した。また、表に記載したナノスクラッチの評価は比較例1のナノスクラッチ数(295本/面)に対する相対評価で行った。
3. Measurement conditions of nano scratch (1) Measuring instrument: “MicroMax VMX-2100CSP” manufactured by VISION PSYTEC
(2) Light source: 100% for both 2Sλ (250 W) and 3Pλ (250 W)
(3) Chilled angle: -6 °
(4) Magnification: Maximum (Field range: 1/120 of the total area)
(5) Observation area: total area (substrate with outer circumference of 95 mmφ and inner circumference of 25 mm)
(6) Iris: notch
(7) Evaluation: Four out of 10 substrates put into the polishing tester were selected at random, and the total number of nanoscratches (on each side) on each side of the 4 substrates was divided by 8. The number of nano scratches per substrate surface (lines / surface) was calculated. Moreover, the evaluation of the nanoscratch described in the table was performed by relative evaluation with respect to the number of nanoscratches (295 / surface) in Comparative Example 1.

4.表面粗さ(AFM−Ra)の測定条件
(1)測定機器:Veeco社製、「TM−M5E」
(2)モード:ノンコンタクト
(3)Scanrate:1.0Hz
(4)Scanarea:10×10μm
(5)評価:基板の両面について、内周と外周間の中心を120°毎に3点測定し、計6点の平均値を求めた。
4). Measurement conditions of surface roughness (AFM-Ra) (1) Measuring instrument: “TM-M5E” manufactured by Veeco
(2) Mode: Non-contact (3) Scanrate: 1.0 Hz
(4) Scanarea: 10 × 10 μm
(5) Evaluation: On both sides of the substrate, the center between the inner periphery and the outer periphery was measured at three points every 120 °, and an average value of a total of six points was obtained.

5.表面粗さ(タリーステップ−Ra)の測定条件
(1)測定機器:ランク・テーラー・ボブソン社製、タリーステップ
(2)ハイパスフィルター:80μm
(3)測定長さ:0.64mm
5. Surface roughness (tally step-Ra) measurement conditions (1) Measuring instrument: Rank Taylor Bobson, Tally step (2) High pass filter: 80 μm
(3) Measurement length: 0.64mm

表2に示した結果から、実施例1〜12の研磨液組成物を用いて得られた基板は、比較例1〜2のそれらに比べ、ナノスクラッチの発生が顕著に抑制されていることがわかる。また、実施例1〜12で得られる基板ではその表面粗さも低いものであることがわかる。   From the results shown in Table 2, the substrate obtained using the polishing liquid compositions of Examples 1 to 12 is significantly suppressed from generating nanoscratches as compared to those of Comparative Examples 1 and 2. Recognize. Moreover, it turns out that the surface roughness is low also in the board | substrate obtained in Examples 1-12.

Figure 0004214093
Figure 0004214093

本発明の研磨液組成物は、精密部品基板、例えば、磁気ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光ディスク、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨などに好適に使用することができる。
The polishing liquid composition of the present invention is a precision component substrate, for example, a precision component such as a magnetic recording medium substrate such as a magnetic disk or a magneto-optical disk, a photomask substrate, an optical lens, an optical disk, an optical mirror, an optical prism, or a semiconductor substrate. It can be suitably used for polishing a substrate.

Claims (2)

コロイダルシリカと水とを含有する混合液をプリーツフィルターで処理して得られる、以下の条件を満たすコロイダルシリカと水とを含有する、pH1〜3の研磨液組成物を仕上げ研磨工程に用いる磁気ディスク基板の製造方法
(1)標準試験Aにおける孔径0.5μmのフィルター通液量が10g/分・cm2以上、
(2)コロイダルシリカの一次平均粒径が50nm以下、及び
(3)コロイダルシリカの含有量が2〜40重量%。
A magnetic disk obtained by treating a mixed liquid containing colloidal silica and water with a pleated filter, and using a polishing liquid composition having a pH of 1 to 3 containing colloidal silica and water satisfying the following conditions in the final polishing step: Substrate manufacturing method :
(1) The flow rate of a filter with a pore size of 0.5 μm in standard test A is 10 g / min · cm 2 or more,
(2) The primary average particle size of colloidal silica is 50 nm or less, and (3) the content of colloidal silica is 2 to 40% by weight.
前記研磨液組成物が、さらに、以下の条件を満たす請求項1記載の製造方法
(4)標準試験Cにおける孔径0.1μmのフィルター通液量が0.g/分・cm2以上。
The manufacturing method according to claim 1 , wherein the polishing composition further satisfies the following conditions:
(4) The flow rate of the filter having a pore size of 0.1 μm in the standard test C is 0. 4 g / min · cm 2 or more.
JP2004244068A 2004-08-24 2004-08-24 Polishing liquid composition Expired - Lifetime JP4214093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244068A JP4214093B2 (en) 2004-08-24 2004-08-24 Polishing liquid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244068A JP4214093B2 (en) 2004-08-24 2004-08-24 Polishing liquid composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007192492A Division JP2007320031A (en) 2007-07-24 2007-07-24 Polishing liquid composition

Publications (2)

Publication Number Publication Date
JP2006061995A JP2006061995A (en) 2006-03-09
JP4214093B2 true JP4214093B2 (en) 2009-01-28

Family

ID=36108901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244068A Expired - Lifetime JP4214093B2 (en) 2004-08-24 2004-08-24 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP4214093B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY147712A (en) 2006-09-29 2013-01-15 Hoya Corp Method of manufacturing glass substrate for magnetic disk, method of manufacturing magnetic disk, and polishing apparatus of glass substrate for magnetic disk
JP5344806B2 (en) * 2006-09-29 2013-11-20 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk, glass substrate polishing apparatus for magnetic disk, and method for manufacturing magnetic disk
JP5575735B2 (en) * 2008-07-03 2014-08-20 株式会社フジミインコーポレーテッド Polishing composition concentrate
JP5396047B2 (en) * 2008-09-03 2014-01-22 三井金属鉱業株式会社 Abrasive slurry for glass
JP5890088B2 (en) * 2010-07-26 2016-03-22 山口精研工業株式会社 Abrasive composition
JP5795843B2 (en) * 2010-07-26 2015-10-14 東洋鋼鈑株式会社 Manufacturing method of hard disk substrate
WO2013099584A1 (en) * 2011-12-28 2013-07-04 コニカミノルタ株式会社 Method of manufacturing glass substrate for information recording medium
JP6418915B2 (en) * 2014-11-26 2018-11-07 花王株式会社 Method for producing polishing composition
JP6376046B2 (en) * 2015-05-13 2018-08-22 信越化学工業株式会社 Substrate manufacturing method
MY186276A (en) * 2015-05-13 2021-07-02 Shinetsu Chemical Co Method for producing substrates
WO2019131885A1 (en) 2017-12-27 2019-07-04 ニッタ・ハース株式会社 Slurry for polishing
CN114131435B (en) * 2021-12-02 2023-04-25 日禺光学科技(苏州)有限公司 Cold working and polishing process for optical lens

Also Published As

Publication number Publication date
JP2006061995A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
TWI364450B (en) Polishing composition
JP4451347B2 (en) Polishing liquid composition
JP4231632B2 (en) Polishing liquid composition
JP4781693B2 (en) Method for reducing nano scratch on magnetic disk substrate
JP2006136996A (en) Polishing composition manufacturing method
US20070167116A1 (en) Polishing composition
JP5844135B2 (en) Method for producing polishing composition
US20020028636A1 (en) Polishing composition
US20040266323A1 (en) Method for manufacturing substrate
JP2007320031A (en) Polishing liquid composition
JP4214093B2 (en) Polishing liquid composition
JP4836441B2 (en) Polishing liquid composition
JP4286168B2 (en) How to reduce nanoscratches
JP5019429B2 (en) Dispersion in container
JP2007301721A (en) Polishing liquid composition
JP2007260906A (en) Manufacturing method of substrate
JP4648367B2 (en) Polishing liquid composition
JP2003211351A (en) Method of reducing micro projections
JP4267546B2 (en) Substrate manufacturing method
JP4156174B2 (en) Polishing liquid composition
JP2006130638A (en) Encased abrasive material particle dispersed liquid
JP4125706B2 (en) Substrate manufacturing method
JP4214107B2 (en) Polishing liquid composition
JP2019182987A (en) Polishing liquid composition for synthetic quartz glass substrate
JP4949432B2 (en) Manufacturing method of hard disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4214093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250