JP4286168B2 - How to reduce nanoscratches - Google Patents

How to reduce nanoscratches Download PDF

Info

Publication number
JP4286168B2
JP4286168B2 JP2004081768A JP2004081768A JP4286168B2 JP 4286168 B2 JP4286168 B2 JP 4286168B2 JP 2004081768 A JP2004081768 A JP 2004081768A JP 2004081768 A JP2004081768 A JP 2004081768A JP 4286168 B2 JP4286168 B2 JP 4286168B2
Authority
JP
Japan
Prior art keywords
polishing
acid
zeta potential
substrate
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004081768A
Other languages
Japanese (ja)
Other versions
JP2005262413A (en
JP2005262413A5 (en
Inventor
宏之 吉田
祐一 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004081768A priority Critical patent/JP4286168B2/en
Priority to TW094106992A priority patent/TW200613485A/en
Priority to GB0505057A priority patent/GB2412917B/en
Priority to US11/081,560 priority patent/US20050208883A1/en
Priority to MYPI20051185A priority patent/MY141876A/en
Priority to CN2005100590654A priority patent/CN1673306B/en
Publication of JP2005262413A publication Critical patent/JP2005262413A/en
Publication of JP2005262413A5 publication Critical patent/JP2005262413A5/ja
Priority to US11/692,619 priority patent/US20070167116A1/en
Application granted granted Critical
Publication of JP4286168B2 publication Critical patent/JP4286168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨液組成物及び基板の製造方法に関する。   The present invention relates to a polishing liquid composition and a method for producing a substrate.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上化に対応して、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に対応して、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. As a result, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, and the surface roughness, micro waviness, roll-off and protrusions have been reduced in response to the low flying height of the head. Corresponding to the decrease in unit recording area, the allowable number of scratches per substrate surface is small, and its size and depth are getting smaller.

また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストの露光の際の焦点深度が浅くなり、より一層の表面平滑性が望まれている。   Also in the semiconductor field, high integration and high speed are advancing. In particular, miniaturization of wiring is required for high integration. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus at the time of exposure of the photoresist becomes shallow, and further surface smoothness is desired.

このような要求に対して、メモリーハードディスク基板の表面平滑性を向上させた研磨液組成物が特許文献1に記載されているが、メモリーハードディスク基板の高密度化に必要な表面平滑性を得るには不十分である。
特開2003―193037号公報
In response to such requirements, a polishing liquid composition with improved surface smoothness of the memory hard disk substrate is described in Patent Document 1, but the surface smoothness necessary for increasing the density of the memory hard disk substrate is obtained. Is insufficient.
JP 2003-193037 A

そこで、本件発明者らは、メモリーハードディスク基板や半導体基板等の精密部品基板の高密度化又は高集積化に必要な表面平滑性を達成するための要件について、鋭意検討したところ、これまで検出できなかった「ナノスクラッチ」(深さが10nm以上、100nm 未満、幅が5nm 以上500nm 未満、長さが100 μm以上の基板表面の微細な傷)の発生がメモリーハードディスク基板では高密度化、また半導体基板では高集積化を阻害していることを初めて見出し、本発明を完成させた。   Accordingly, the present inventors have conducted extensive studies on the requirements for achieving the surface smoothness necessary for high density or high integration of precision component substrates such as memory hard disk substrates and semiconductor substrates. The occurrence of “nano scratches” (depth scratches of 10 nm or more, less than 100 nm, widths of 5 nm or more and less than 500 nm, and fine scratches on the substrate surface of 100 μm or more) is increased in density on memory hard disk substrates, and semiconductors For the first time, it has been found that the substrate is preventing high integration, and the present invention has been completed.

即ち、本発明の目的は、研磨後の被研磨物の表面粗さが小さく、且つナノスクラッチを顕著に低減できる研磨液組成物、及び表面粗さが小さく、且つナノスクラッチが顕著に低減した基板の製造方法を提供することにある。   That is, an object of the present invention is to provide a polishing composition that has a small surface roughness of the polished object and can significantly reduce nano scratches, and a substrate that has a small surface roughness and significantly reduced nano scratches. It is in providing the manufacturing method of.

即ち、本発明の要旨は、
次粒子の平均粒径が1nm以上30nm以下であるコロイダルシリカとゼータ電位調整剤とを含有してなるpHが1〜4の研磨液組成物を用いて、Ni−Pメッキされたアルミニウム合金基板のナノスクラッチを低減する方法であって、該研磨液組成物中のコロイダルシリカのゼータ電位を−10〜10mVに調整する工程を有する、Ni−Pメッキされたアルミニウム合金基板のナノスクラッチを低減する方法
に関する。
That is, the gist of the present invention is as follows.
An aluminum alloy substrate plated with Ni-P using a polishing composition having a pH of 1 to 4 comprising colloidal silica having an average primary particle size of 1 nm to 30 nm and a zeta potential adjuster. The method of reducing the nano-scratch of the Ni-P plated aluminum alloy substrate, comprising the step of adjusting the zeta potential of the colloidal silica in the polishing composition to -10 to 10 mV. Way ,
About.

本発明の研磨液組成物を、例えば、高密度化又は高集積化用の精密部品基板の研磨工程で用いることにより、研磨後基板の表面平滑性が優れ、且つ従来では検出できなかった微細なナノスクラッチを顕著に低減できるため、表面性状に優れた高品質のメモリーハードディスク基板及び半導体基板等の精密部品基板を製造することができるという効果が奏される。   By using the polishing composition of the present invention, for example, in a polishing step of a precision component substrate for densification or high integration, the surface smoothness of the substrate after polishing is excellent, and the fineness that could not be detected conventionally is used. Since nano scratches can be remarkably reduced, there is an effect that it is possible to manufacture high-quality memory hard disk substrates having excellent surface properties and precision component substrates such as semiconductor substrates.

本発明は、一次粒子の平均粒径が1nm以上40nm未満の研磨材を含有する研磨液組成物中の該研磨材のゼータ電位を−15〜30mVにすることで、優れた表面性状を備え、欠陥の原因となるナノスクラッチを顕著に低減することが可能である。このナノスクラッチは、特に、メモリーハードディスク基板又は半導体基板において、高密度化又は高集積化に重要になる物性である。したがって、本発明の研磨液組成物を用いることで、表面性状に優れた高品質のメモリーハードディスク基板又は半導体基板を製造することができる。   The present invention has excellent surface properties by setting the zeta potential of the abrasive in the polishing composition containing an abrasive having an average primary particle size of 1 nm or more and less than 40 nm to -15 to 30 mV, It is possible to significantly reduce nano scratches that cause defects. This nano-scratch is a physical property that is important for high density or high integration especially in a memory hard disk substrate or a semiconductor substrate. Therefore, by using the polishing composition of the present invention, a high-quality memory hard disk substrate or semiconductor substrate having excellent surface properties can be produced.

このナノスクラッチの低減機構は明らかではないが、研磨材のゼータ電位が等電点に近づくほど、研磨材粒子間の粒子間引力が大きくなり、研磨中にスクラッチの原因と考えられる粗大粒子又は微細粒子の凝集体の基板表面への脱落が抑制されるためと推定される。   Although the mechanism for reducing this nanoscratch is not clear, the closer the zeta potential of the abrasive is to the isoelectric point, the greater the interparticle attractive force between the abrasive particles, and the coarse or fine particles that are considered to cause scratches during polishing. This is presumed to be due to the suppression of dropout of particle aggregates onto the substrate surface.

本発明においてゼータ電位とは、電気泳動の原理によって、研磨液組成物中の研磨材に外部から電場をかけた時にその研磨材の泳動速度から求められる電位をいう。ゼータ電位の測定装置としては、例えば、「ELS―8000」(大塚電子社製)、「DELSA440SX」(ベックマン・コールター社製)及び「NICOMP Model380」(パティクルサイジングシステムズ社製)等の電気泳動の原理を用いた装置が好ましい。また、「DT1200」(ルフト社製)等の超音波法の原理による測定で代用することも可能である。電気泳動の原理による測定では、装置の原理上、研磨材の濃度を希釈する必要性がある。本明細書における研磨液組成物中の研磨材のゼータ電位とは、研磨液組成物と同一のpHにあらかじめ調整したゼータ電位調整用水溶液(研磨液組成物中のゼータ電位調整剤と水とからなる水溶液。ただし、研磨液組成物が2種類以上のゼータ電位調整剤を含有する場合はそれらの含有比率を保って水溶液を調製する)によって研磨材濃度を所定の濃度に調整した研磨液組成物のゼータ電位を指す。また、前記ゼータ電位測定装置でゼータ電位を測定する際は、測定値の信頼性を高めるために、同一試料、同一測定条件にて、少なくとも3回測定を繰り返し、それらの平均値をゼータ電位とする。   In the present invention, the zeta potential refers to a potential obtained from the migration speed of the abrasive when an electric field is applied from the outside to the abrasive in the polishing composition by the principle of electrophoresis. Examples of the zeta potential measuring device include electrophoresis such as “ELS-8000” (manufactured by Otsuka Electronics), “DELSA440SX” (manufactured by Beckman Coulter), and “NICOMP Model 380” (manufactured by Particle Sizing Systems). An apparatus using the principle is preferred. Further, measurement based on the principle of an ultrasonic method such as “DT1200” (manufactured by Luft) can be substituted. In the measurement based on the principle of electrophoresis, it is necessary to dilute the concentration of the abrasive on the principle of the apparatus. The zeta potential of the abrasive in the polishing liquid composition in the present specification refers to a zeta potential adjusting aqueous solution (preliminarily adjusted to the same pH as the polishing liquid composition (from the zeta potential adjusting agent and water in the polishing liquid composition). However, when the polishing liquid composition contains two or more types of zeta potential regulators, the aqueous solution is prepared by maintaining the content ratio thereof) and the polishing liquid composition is adjusted to have a predetermined concentration. Of zeta potential. In addition, when measuring the zeta potential with the zeta potential measuring device, in order to increase the reliability of the measurement value, the measurement is repeated at least three times under the same sample and the same measurement condition, and the average value thereof is taken as the zeta potential. To do.

本発明の研磨液組成物中の研磨材のゼータ電位は、−15〜30mVであり、ナノスクラッチ低減の観点から、好ましくは−15〜20mV、より好ましくは−15〜10mV、更に好ましくは−10〜10mV、更に好ましくは−5〜5mVである。   The zeta potential of the abrasive in the polishing composition of the present invention is -15 to 30 mV, and from the viewpoint of reducing nanoscratches, it is preferably -15 to 20 mV, more preferably -15 to 10 mV, and still more preferably -10. -10 mV, more preferably -5 to 5 mV.

本発明における研磨材としては、研磨用に一般的に使用されている研磨材を使用することができ、金属、金属若しくは半金属の炭化物、窒化物、酸化物、又はホウ化物、ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体例としては、酸化珪素(以下、シリカという)、酸化アルミニウム(以下、アルミナという)、炭化珪素、ダイヤモンド、酸化マンガン、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム等、またこれら研磨材の表面を官能基で修飾あるいは表面改質したもの、界面活性剤や研磨材で複合粒子化したもの等が挙げられ、これらを一種以上使用することは表面粗さを低減させる観点から好ましい。更に、ナノスクラッチの低減の観点から、コロイダル粒子とヒュームドシリカ粒子が好ましく、より好ましくはコロイダル粒子、たとえばコロイダルシリカ、コロイダルセリア、コロイダルアルミナであり、中でもコロイダルシリカ、たとえばケイ酸水溶液から生成させる製法により得られるコロイダルシリカが好ましい。   As the abrasive in the present invention, an abrasive generally used for polishing can be used, and examples thereof include metal, metal or metalloid carbide, nitride, oxide, boride, diamond, and the like. It is done. The metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type). Specific examples of the abrasive include silicon oxide (hereinafter referred to as silica), aluminum oxide (hereinafter referred to as alumina), silicon carbide, diamond, manganese oxide, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, and the like. In addition, the surface of these abrasives may be modified or surface-modified with a functional group, or may be compounded with a surfactant or an abrasive, and the use of one or more of these may reduce surface roughness. To preferred. Further, from the viewpoint of reducing nanoscratches, colloidal particles and fumed silica particles are preferable, and colloidal particles such as colloidal silica, colloidal ceria, and colloidal alumina are particularly preferable. Colloidal silica obtained by is preferable.

研磨材の一次粒子の平均粒径は、研磨材が一種以上混合されているかどうかに関係なく、1nm以上40nm未満であり、研磨速度を向上させる観点から、好ましくは3nm以上、より好ましくは5nm以上、また、表面粗さ(中心線平均粗さ:Ra、Peak to Valley値:Rmax)を低減する観点から、好ましくは35nm以下、より好ましくは30nm以下、更に好ましくは25nm以下、更に好ましくは20nm以下である。従って、経済的に表面粗さを低減する観点から該一次粒子の平均粒径は、好ましくは1〜35nm、より好ましくは3〜30nm、更に好ましくは5〜25nm、更に好ましくは5〜20nmである。更に、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び基板の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは5〜150nm、より好ましくは5〜100nm、更に好ましくは5〜80nm、更に好ましくは5〜50nm、更に好ましくは5〜30nmである。   The average particle size of the primary particles of the abrasive is 1 nm or more and less than 40 nm regardless of whether or not one or more abrasives are mixed. From the viewpoint of improving the polishing rate, it is preferably 3 nm or more, more preferably 5 nm or more. Moreover, from the viewpoint of reducing the surface roughness (centerline average roughness: Ra, Peak to Valley value: Rmax), it is preferably 35 nm or less, more preferably 30 nm or less, still more preferably 25 nm or less, and even more preferably 20 nm or less. It is. Therefore, from the viewpoint of economically reducing the surface roughness, the average particle size of the primary particles is preferably 1 to 35 nm, more preferably 3 to 30 nm, still more preferably 5 to 25 nm, and still more preferably 5 to 20 nm. . Furthermore, when primary particles are aggregated to form secondary particles, the average particle size of the secondary particles is preferably from the viewpoint of improving the polishing rate and reducing the surface roughness of the substrate. Is 5 to 150 nm, more preferably 5 to 100 nm, still more preferably 5 to 80 nm, still more preferably 5 to 50 nm, still more preferably 5 to 30 nm.

研磨材の一次粒子の平均粒径は、研磨材が一種以上混合されているかどうかに関係なく、走査型電子顕微鏡で観察(好適には3000〜100000倍)した画像を使い、一次粒子の小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50)を求め、この値を一次粒子の平均粒径とする。ここで、ひとつの一次粒子の粒径は、2軸平均(長径と短径の平均)粒径を用いることとする。また、二次粒子の平均粒径はレーザー光回折法を用いて体積平均粒径として測定することができる。   The average particle size of the primary particles of the abrasive is small using the image observed with a scanning electron microscope (preferably 3000 to 100000 times) regardless of whether one or more abrasives are mixed. The particle size (D50) at which the integrated particle size distribution (number basis) from the diameter side is 50% is obtained, and this value is taken as the average particle size of the primary particles. Here, the particle diameter of one primary particle is a biaxial average (average of major axis and minor axis). The average particle size of the secondary particles can be measured as a volume average particle size using a laser beam diffraction method.

また、研磨材の粒径分布としては、研磨材が一種以上混合されているかどうかに関係なく、ナノスクラッチの低減、表面粗さの低減及び高い研磨速度を達成する観点から、D90/D50は、好ましくは1〜5、より好ましくは2〜5、更に好ましくは3〜5である。尚、D90とは、走査型電子顕微鏡で観察(好適には3000〜100000倍)した画像を使い、一次粒子の小粒径側からの積算粒径分布(個数基準)が90%となる粒径をいう。   In addition, as a particle size distribution of the abrasive, D90 / D50, from the viewpoint of achieving a reduction in nanoscratches, a reduction in surface roughness, and a high polishing rate regardless of whether or not one or more abrasives are mixed. Preferably it is 1-5, More preferably, it is 2-5, More preferably, it is 3-5. In addition, D90 is a particle diameter that uses an image observed with a scanning electron microscope (preferably 3000 to 100000 times), and the cumulative particle size distribution (number basis) from the small particle size side of the primary particles is 90%. Say.

研磨液組成物中における研磨材の含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、更に好ましくは3重量%以上、更に好ましくは5重量%以上であり、また、表面品質を向上させる観点から、好ましくは20重量%以下、より好ましくは15重量%以下、更に好ましくは13重量%以下、更に好ましくは10重量%以下である。すなわち、経済的に表面品質を向上させる観点から該含有量は、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、更に好ましくは3〜13重量%、更に好ましくは5〜10重量%である。   The content of the abrasive in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, still more preferably 3% by weight or more, and further preferably 5% from the viewpoint of improving the polishing rate. From the viewpoint of improving the surface quality, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, and further preferably 10% by weight or less. That is, from the viewpoint of economically improving the surface quality, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 3 to 13% by weight, and still more preferably 5 to 5%. 10% by weight.

また、本発明の研磨液組成物に含有するゼータ電位調整剤は、研磨液組成物中での研磨材の表面のゼータ電位を制御するための添加剤である。研磨材粒子の表面に直接的あるいは間接的に吸着して、又は媒体の酸性度若しくは塩基性度などの性質を変化させることにより、研磨材粒子の表面電位を制御する剤をいう。例えば、酸、塩基、塩及び界面活性剤が挙げられる。   Moreover, the zeta potential adjusting agent contained in the polishing liquid composition of the present invention is an additive for controlling the zeta potential of the surface of the abrasive in the polishing liquid composition. An agent that controls the surface potential of abrasive particles by directly or indirectly adsorbing on the surface of the abrasive particles or by changing properties such as acidity or basicity of the medium. Examples include acids, bases, salts, and surfactants.

ゼータ電位調整剤は、たとえば、以下のように使用する。研磨液組成物中に含有する研磨材のゼータ電位が30mVを超える場合、ゼータ電位調整剤としては、酸、酸性塩及びアニオン活性剤を使用しゼータ電位をマイナス側にシフトさせることが好ましい。一方、研磨材のゼータ電位が−15mVより低い場合、ゼータ電位調整剤としては、塩基、塩基性塩及びカチオン活性剤を使用しゼータ電位をプラス側にシフトさせることが好ましい。また、ゼータ電位調整剤が中性塩、非イオン性活性剤及び両性活性剤は、研磨液組成物のpHを変化させずにゼータ電位を調整する場合に用いられる。   The zeta potential adjusting agent is used as follows, for example. When the zeta potential of the abrasive contained in the polishing composition exceeds 30 mV, it is preferable to use an acid, an acid salt and an anionic activator as the zeta potential adjusting agent and shift the zeta potential to the negative side. On the other hand, when the zeta potential of the abrasive is lower than −15 mV, it is preferable to use a base, a basic salt, and a cationic activator as the zeta potential adjusting agent and shift the zeta potential to the plus side. The zeta potential adjusting agent is a neutral salt, a nonionic active agent, or an amphoteric active agent, which is used when adjusting the zeta potential without changing the pH of the polishing composition.

酸としては無機酸又は有機酸が用いられる。無機酸としては、塩酸、硝酸、硫酸、燐酸、ポリ燐酸、アミド硫酸等が挙げられる。また、有機酸としては、カルボン酸、有機燐酸、アミノ酸等が挙げられ、例えば、カルボン酸は、酢酸、グリコール酸、アスコルビン酸等の一価カルボン酸、蓚酸、酒石酸等の二価カルボン酸、クエン酸等の三価カルボン酸が挙げられ、有機燐酸としては、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP)、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等が挙げられる。また、アミノ酸としては、グリシン、アラニン等が挙げられる。これらの内でも、ナノスクラッチ低減の観点から、無機酸、カルボン酸及び有機燐酸が好ましく、例えば、硝酸、硫酸、燐酸、ポリ燐酸、グリコール酸、蓚酸、クエン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンスルホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)が適している。   As the acid, an inorganic acid or an organic acid is used. Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, amidosulfuric acid and the like. Examples of organic acids include carboxylic acids, organic phosphoric acids, amino acids, and the like. For example, carboxylic acids include monovalent carboxylic acids such as acetic acid, glycolic acid, and ascorbic acid, divalent carboxylic acids such as oxalic acid and tartaric acid, and citric acid. Examples of the organic phosphoric acid include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid). Acid), diethylenetriaminepenta (methylenephosphonic acid) and the like. Examples of amino acids include glycine and alanine. Among these, inorganic acids, carboxylic acids and organic phosphoric acids are preferable from the viewpoint of reducing nanoscratches. For example, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, glycolic acid, oxalic acid, citric acid, 1-hydroxyethylidene-1,1 -Diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenesulfonic acid), diethylenetriaminepenta (methylenephosphonic acid) are suitable.

塩基としては、アンモニア水、ヒドロキシルアミン、アルキルヒドロキシルアミン、一級〜三級のアルキルアミン、アルキレンジアミン、アルキルアンモニウムヒドロキシド等が挙げられ、ナノスクラッチ低減の観点から、好ましくはアンモニア水、アルカノールアミンである。   Examples of the base include ammonia water, hydroxylamine, alkylhydroxylamine, primary to tertiary alkylamine, alkylenediamine, alkylammonium hydroxide and the like. From the viewpoint of reducing nanoscratches, ammonia water and alkanolamine are preferable. .

また、塩としては、前記酸の塩が挙げられ、その塩を形成する陽イオンとしては、長周期型周期律表の1A、2A、3B、8族由来の金属、及びアンモニウム、ヒドロキシドアンモニウム、若しくはアルカノールアンモニウム等が好ましい。中でも、酸性塩としては、硝酸アンモニウム、硫酸アンモニウム、硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウム等が挙げられる。塩基性塩としては、クエン酸ナトリウム、シュウ酸ナトリウム、酒石酸ナトリウム等が挙げられる。中性塩としては、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム等が挙げられる。   Examples of the salt include salts of the acids described above, and cations forming the salt include metals derived from groups 1A, 2A, 3B, and 8 of the long-period periodic table, and ammonium, hydroxide ammonium, Or alkanol ammonium is preferable. Among these, examples of the acid salt include ammonium nitrate, ammonium sulfate, aluminum nitrate, aluminum sulfate, and aluminum chloride. Examples of basic salts include sodium citrate, sodium oxalate, sodium tartrate and the like. Examples of the neutral salt include sodium chloride, sodium sulfate, sodium nitrate and the like.

界面活性剤としては、低分子型活性剤及び高分子型活性剤があり、研磨材の表面に吸着又は化学結合し、分子中に同種、異種を問わず、1個以上の親水基を持つ剤である。中でも、エーテル基(オキシエチレン基等)や水酸基に代表される非イオン性基を有する非イオン性活性剤、カルボン酸基、スルフォン酸基、硫酸エステル基、燐酸エステル基に代表されるアニオン性基を有するアニオン活性剤、四級アンモニウムに代表されるカチオン性基を有するカチオン活性剤、アニオン性基及びカチオン性基を有する両性活性剤が挙げられる。   Surfactants include low-molecular-weight active agents and high-molecular-weight active agents, which are adsorbed or chemically bonded to the surface of the abrasive and have one or more hydrophilic groups in the molecule, regardless of whether they are the same or different. It is. Among them, nonionic active agents having nonionic groups typified by ether groups (oxyethylene groups, etc.) and hydroxyl groups, anionic groups typified by carboxylic acid groups, sulfonic acid groups, sulfate ester groups, and phosphate ester groups And an anionic activator having a cationic group represented by quaternary ammonium, an anionic group and a cationic group.

また、前記研磨材とゼータ電位調整剤の好適な組み合わせとしては、研磨材がシリカの場合は、ゼータ電位調整剤としては、硝酸、硫酸、リン酸、ポリリン酸、グリコール酸、シュウ酸、クエン酸、1−ヒドロキシ−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンスルホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)が好ましく、硝酸、硫酸、リン酸、クエン酸、1−ヒドロキシ−1,1−ジホスホン酸がより好ましい。   Further, as a preferable combination of the abrasive and the zeta potential adjusting agent, when the abrasive is silica, the zeta potential adjusting agent is nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, glycolic acid, oxalic acid, citric acid. 1-hydroxy-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenesulfonic acid), diethylenetriaminepenta (methylenephosphonic acid) are preferred, nitric acid, sulfuric acid, phosphoric acid, citric acid, 1-hydroxy More preferred is -1,1-diphosphonic acid.

また、研磨材がアルミナの場合は、ゼータ電位調整剤としては、硫酸、硫酸アンモニウム、リン酸、ポリリン酸、シュウ酸、クエン酸、1−ヒドロキシ−1,1−ジホスホン酸が好ましく、硫酸、硫酸アンモニウム、リン酸、ポリリン酸、クエン酸、1−ヒドロキシ−1,1−ジホスホン酸がより好ましい。   When the abrasive is alumina, the zeta potential adjuster is preferably sulfuric acid, ammonium sulfate, phosphoric acid, polyphosphoric acid, oxalic acid, citric acid, 1-hydroxy-1,1-diphosphonic acid, sulfuric acid, ammonium sulfate, Phosphoric acid, polyphosphoric acid, citric acid, and 1-hydroxy-1,1-diphosphonic acid are more preferable.

尚、研磨液組成物中におけるゼータ電位調整剤の含有量は研磨液組成物の液の性質、研磨材の性質、及び求めるゼータ電位に応じて決められ、一概には限定できないが、例えば、ナノスクラッチの低減の観点から、0.01〜20重量%が好ましく、0.05〜15重量%がより好ましい。また、ゼータ電位調整剤はあらかじめ研磨液組成物中に含有させても良いし、研磨直前に研磨液組成物に含有させて使用してもよい。   The content of the zeta potential adjusting agent in the polishing composition is determined according to the properties of the polishing composition, the properties of the polishing material, and the desired zeta potential. From the viewpoint of reducing scratches, 0.01 to 20% by weight is preferable, and 0.05 to 15% by weight is more preferable. Further, the zeta potential adjusting agent may be previously contained in the polishing liquid composition, or may be used by being included in the polishing liquid composition immediately before polishing.

また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。該他の成分としては、過酸化水素等の酸化剤、ラジカル捕捉剤、包摂化合物、防錆剤、消泡剤及び抗菌剤等が挙げられる。
これらの他の成分の含有量としては、研磨液組成物中、研磨速度の観点から、0〜10重量%が好ましく、0〜5重量%がより好ましい。
Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. Examples of the other components include oxidizing agents such as hydrogen peroxide, radical scavengers, inclusion compounds, rust inhibitors, antifoaming agents, and antibacterial agents.
The content of these other components is preferably 0 to 10% by weight and more preferably 0 to 5% by weight from the viewpoint of the polishing rate in the polishing composition.

更に、本発明の研磨液組成物中の媒体は水及び/又は水溶性有機溶剤が使用できる。水はイオン交換水、蒸留水、超純水等が挙げられ、水溶性有機溶剤としては一級〜三級アルコール、グリコール等が挙げられる。媒体の含有量は、100重量%から研磨材、ゼータ電位調整剤及び他の成分の含有量を引いた残部に相当する。この媒体の含有量としては、研磨液組成物中、60〜99重量%が好ましく、70〜98重量%がより好ましい。   Furthermore, water and / or a water-soluble organic solvent can be used as the medium in the polishing composition of the present invention. Examples of water include ion-exchanged water, distilled water, and ultrapure water, and examples of the water-soluble organic solvent include primary to tertiary alcohols and glycols. The content of the medium corresponds to the balance obtained by subtracting the content of the abrasive, the zeta potential adjusting agent and other components from 100% by weight. The content of this medium is preferably 60 to 99% by weight and more preferably 70 to 98% by weight in the polishing composition.

本発明の研磨液組成物は、前記成分を適宜混合することにより、調製することができる。   The polishing composition of the present invention can be prepared by appropriately mixing the above components.

尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。   The concentration of each component in the polishing liquid composition may be any of the concentration during production of the composition and the concentration during use. Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.

本発明の研磨液組成物のpHは、研磨速度及びナノスクラッチの低減の観点から、使用する研磨材及びその表面修飾等の表面改質度等に応じて決められる。コロイダルシリカの場合、好ましくは7以下、より好ましくは5以下、更に好ましくは4以下、更に好ましくは3以下、更に好ましくは2.5以下、更に好ましくは2以下である。   The pH of the polishing composition of the present invention is determined according to the polishing material used and the degree of surface modification such as surface modification from the viewpoint of reducing the polishing rate and nanoscratching. In the case of colloidal silica, it is preferably 7 or less, more preferably 5 or less, still more preferably 4 or less, still more preferably 3 or less, still more preferably 2.5 or less, and even more preferably 2 or less.

かかる構成を有する研磨液組成物を用いることで、ナノスクラッチが極めて少ない表面性状に優れた精密部品用基板を得ることができる。   By using the polishing composition having such a configuration, it is possible to obtain a substrate for precision parts having excellent surface properties with very few nanoscratches.

本発明におけるナノスクラッチとは、深さが10nm以上、100nm 未満、幅が5nm 以上500nm 未満、長さが100 μm 以上の基板表面の微細な傷で、原子間力顕微鏡(AFM)で検出することができ、後述の実施例に記載の目視検査装置である「MicroMax」による測定でナノスクラッチ本数として定量評価できる。   The nano-scratch in the present invention is a fine flaw on the substrate surface having a depth of 10 nm or more, less than 100 nm, a width of 5 nm or more and less than 500 nm, and a length of 100 μm or more, and is detected by an atomic force microscope (AFM). And can be quantitatively evaluated as the number of nano scratches by measurement with “MicroMax” which is a visual inspection apparatus described in Examples described later.

また、表面平滑性の尺度である表面粗さは、評価方法は限られないが、本発明では、AFM(原子間力顕微鏡)における波長10μm以下の短い波長で測定可能な粗さとして評価し、中心線平均粗さRaとして表わす。具体的には後述の実施例に記載の方法で得られる。   In addition, although the evaluation method is not limited to the surface roughness which is a measure of surface smoothness, in the present invention, it is evaluated as a roughness that can be measured at a short wavelength of 10 μm or less in an AFM (atomic force microscope), Expressed as centerline average roughness Ra. Specifically, it can be obtained by the method described in Examples below.

本発明において好適に使用される被研磨物の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中でも、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金を含有する被研磨物に好適である。例えばNi-Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板により適しており、Ni-Pメッキされたアルミニウム合金基板がさらに適している。   Examples of the material of the object preferably used in the present invention include metals or semimetals such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, and amorphous carbon. Examples thereof include glassy substances such as alumina, silicon dioxide, silicon nitride, tantalum nitride, titanium carbide and other ceramic materials, polyimide resins and the like. Among these, it is suitable for an object to be polished containing a metal such as aluminum, nickel, tungsten, or copper and an alloy containing these metals as a main component. For example, a Ni—P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more suitable, and a Ni—P plated aluminum alloy substrate is more suitable.

被研磨物の形状には特に制限は無く、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が本発明の研磨液組成物を用いた研磨の対象となる。その中でも、ディスク状の被研磨物の研磨に特に優れている。   The shape of the object to be polished is not particularly limited. For example, the shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, or the shape having a curved surface portion such as a lens can be used. It becomes the object of polishing using. Among these, it is particularly excellent for polishing a disk-shaped workpiece.

本発明の研磨液組成物は、精密部品基板の研磨に好適に用いられる。例えば、メモリーハードディスク基板等の磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に適している。中でも、本発明の研磨液組成物は、高密度化、高集積化において重要なナノスクラッチを顕著に低減し得るものであるため、メモリーハードディスク基板等の磁気ディスクや半導体基板の研磨により好適であり、磁気ディスク用基板の研磨に特に適している。   The polishing composition of the present invention is suitably used for polishing precision component substrates. For example, it is suitable for polishing a magnetic disk medium such as a memory hard disk substrate, a magnetic recording medium substrate such as an optical disk and a magneto-optical disk, a precision component substrate such as a photomask substrate, an optical lens, an optical mirror, an optical prism, and a semiconductor substrate. Among them, the polishing composition of the present invention can remarkably reduce nano scratches that are important for high density and high integration, and is therefore suitable for polishing magnetic disks such as memory hard disk substrates and semiconductor substrates. It is particularly suitable for polishing a magnetic disk substrate.

メモリーハードディスク基板や半導体基板の研磨は、シリコンウェハ(ベアウェハ)のポリッシング工程、埋め込み金属配線の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において行われる。   The polishing of the memory hard disk substrate and the semiconductor substrate is performed in a polishing process of a silicon wafer (bare wafer), a formation process of an embedded metal wiring, a planarization process of an interlayer insulating film, a formation process of an embedded metal wiring, an embedded capacitor formation process, and the like.

上記のように本発明の研磨液組成物を用いてナノスクラッチを低減することができる。具体的には、不織布状の有機高分子系研磨布等を貼り付けた研磨盤で基板を挟み込み、ゼータ電位調整剤の配合方法に関係なく、研磨材のゼータ電位を−15〜30mVに調整した研磨液組成物を基板表面に供給し、一定圧力を加えながら研磨盤や基板を動かすことにより研磨する方法等が挙げられる。   As described above, nanoscratches can be reduced by using the polishing composition of the present invention. Specifically, the substrate was sandwiched by a polishing machine on which a nonwoven organic polymer polishing cloth or the like was attached, and the zeta potential of the abrasive was adjusted to -15 to 30 mV regardless of the method of blending the zeta potential adjuster. Examples include a method of polishing by supplying a polishing composition to the substrate surface and moving the polishing plate or the substrate while applying a constant pressure.

本発明の研磨液組成物を用いた研磨工程に供する前の基板の表面性状は特に限定しないが、例えば、Raが1nmの表面性状を有する基板が適する。   The surface property of the substrate before being subjected to the polishing step using the polishing composition of the present invention is not particularly limited, but for example, a substrate having a surface property with an Ra of 1 nm is suitable.

また、本発明の基板の製造方法は、研磨材のゼータ電位を−15〜30mVに調整した研磨液組成物を用いて研磨する工程を有することに特徴があり、かかる特徴を有することで、研磨後の被研磨物の表面粗さが小さく、且つナノスクラッチを顕著に低減することができるという効果が発現される。   Further, the method for producing a substrate of the present invention is characterized by having a step of polishing using a polishing liquid composition in which the zeta potential of the abrasive is adjusted to -15 to 30 mV. The effect that the surface roughness of the subsequent workpiece is small and nano-scratch can be remarkably reduced is exhibited.

本発明の基板の製造方法において使用される研磨材としては、前記の本発明の研磨液組成物に使用されるものと同一のものであればよい。   The abrasive used in the method for producing a substrate of the present invention may be the same as that used in the polishing composition of the present invention.

中でも、研磨材の一次粒子の平均粒径は、研磨速度を向上させる観点から、1nm以上が好ましく、3nm以上がより好ましく、5nm以上がさらに好ましく、また、表面粗さを低減する観点から、40nm未満が好ましく、35nm以下がより好ましく、30nm以下が更に好ましく、25nm以下が更に好ましく、20nm以下が更に好ましい。従って、経済的に表面粗さを低減する観点から該一次粒子の平均粒径は、好ましくは1nm以上40nm未満、より好ましくは1〜35nm、更に好ましくは3〜30nm、更に好ましくは5〜25nm、更に好ましくは5〜20nmである。更に、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び基板の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは5〜150nm、より好ましくは5〜100nm、更に好ましくは5〜80nm、更に好ましくは5〜50nm、更に好ましくは5〜30nmである。   Among them, the average particle diameter of the primary particles of the abrasive is preferably 1 nm or more, more preferably 3 nm or more, further preferably 5 nm or more from the viewpoint of improving the polishing rate, and 40 nm from the viewpoint of reducing the surface roughness. Is preferably less than 35 nm, more preferably 35 nm or less, further preferably 30 nm or less, further preferably 25 nm or less, and further preferably 20 nm or less. Therefore, from the viewpoint of economically reducing the surface roughness, the average particle size of the primary particles is preferably 1 nm or more and less than 40 nm, more preferably 1 to 35 nm, still more preferably 3 to 30 nm, still more preferably 5 to 25 nm, More preferably, it is 5-20 nm. Furthermore, when primary particles are aggregated to form secondary particles, the average particle size of the secondary particles is preferably from the viewpoint of improving the polishing rate and reducing the surface roughness of the substrate. Is 5 to 150 nm, more preferably 5 to 100 nm, still more preferably 5 to 80 nm, still more preferably 5 to 50 nm, still more preferably 5 to 30 nm.

前記研磨工程は、複数研磨工程の中でも2工程目以降に行われるのが好ましく、最終研磨工程に行われるのが特に好ましい。その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、各段階毎に基板を洗浄することが好ましい。なお、研磨機としては、特に限定はない。   The polishing step is preferably performed after the second step among the plurality of polishing steps, and particularly preferably performed in the final polishing step. At that time, in order to avoid mixing of the polishing material or polishing liquid composition in the previous process, different polishing machines may be used, and in the case of using different polishing machines, the substrate is removed at each stage. It is preferable to wash. The polishing machine is not particularly limited.

本発明の研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。   The polishing composition of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.

以上のようにして本発明の研磨液組成物又は本発明の基板の製造方法を用いて製造された基板は、表面平滑性に優れ、たとえば表面粗さ(Ra)が0.3nm以下、好ましくは0.2nm以下、より好ましくは0.15nm以下、更に好ましくは0.13nm以下のものが得られる。   The substrate manufactured using the polishing composition of the present invention or the substrate manufacturing method of the present invention as described above is excellent in surface smoothness, for example, surface roughness (Ra) is 0.3 nm or less, preferably 0.2 nm or less, More preferably, 0.15 nm or less, More preferably, 0.13 nm or less is obtained.

また、製造された基板はナノスクラッチが極めて少ないものである。従って、該基板が、例えば、メモリーハードディスク基板である場合には、記録密度120G/inch2 、更には160G/inch2 のものにも対応することができ、半導体基板である場合には、配線幅65nm、更には45nmのものにも対応することができる。 Further, the manufactured substrate has very few nano scratches. Accordingly, when the substrate is, for example, a memory hard disk substrate, it can also cope with a recording density of 120 G / inch 2 and further 160 G / inch 2 , and when it is a semiconductor substrate, the wiring width 65 nm and even 45 nm can be supported.

被研磨基板として、Ni−Pメッキされた基板をアルミナ研磨材を含有する研磨液であらかじめ粗研磨し、Raが1nmとした、厚さ1.27mmの外周95mmφで内周25mmφのアルミニウム合金基板を用いて研磨評価を行った。   As a substrate to be polished, a Ni-P plated substrate was coarsely polished in advance with a polishing liquid containing an alumina abrasive to obtain an Ra of 1 nm, an aluminum alloy substrate having an outer periphery of 95 mmφ and an inner periphery of 25 mmφ. Polishing evaluation was performed.

実施例1〜9及び比較例1〜5(但し、実施例8、9は参考例である)
表1に示すように、研磨材としてはコロイダルシリカA(デュポン製、一次粒子の平均粒径27nm、D90/D50=3.1)、B(デュポン製、一次粒子の平均粒径15nm、D90/D50=2.2)、C(デュポン製、一次粒子の平均粒径19nm、D90/D50=1.6)又は実施例4に相当するAとBの混合物(デュポン製、一次粒子の平均粒径18nm、D90/D50=3.0)を、ゼータ電位調整剤としては60重量%のHEDP水溶液、98重量%の硫酸、及び/又はクエン酸を、またその他成分としては必要に応じて35重量%の過酸化水素水溶液を用いて、表1に示した組成、pH、及び研磨材のゼータ電位を有する研磨液組成物を調製した。尚、残部はイオン交換水である。
Examples 1-9 and Comparative Examples 1-5 (however, Examples 8 and 9 are reference examples)
As shown in Table 1, as the abrasive, colloidal silica A (manufactured by DuPont, average particle size of primary particles 27 nm, D90 / D50 = 3.1), B (manufactured by DuPont, average particle size of primary particles 15 nm, D90 / D50 = 2.2), C (DuPont, average particle size of primary particles 19 nm, D90 / D50 = 1.6) or a mixture of A and B corresponding to Example 4 (DuPont, average particle size of primary particles) 18 nm, D90 / D50 = 3.0), 60% by weight of HEDP aqueous solution, 98% by weight sulfuric acid and / or citric acid as zeta potential adjusting agent, and 35% by weight as other components as required A polishing liquid composition having the composition, pH, and zeta potential of the abrasive shown in Table 1 was prepared using an aqueous hydrogen peroxide solution. The balance is ion exchange water.

各成分を混合する順番は、ゼータ電位調整剤であるHEDPと硫酸又はクエン酸とを水で希釈した水溶液に過酸化水素を加え、次いで残りの成分を添加、混合、調整後、それを撹拌下のコロイダルシリカスラリーに少しずつ加え、調製した。   The order of mixing each component is that hydrogen peroxide is added to an aqueous solution of HEDP and sulfuric acid or citric acid diluted with water, and then the remaining components are added, mixed and adjusted, and then stirred. Were added little by little to the colloidal silica slurry.

実施例1〜9及び比較例1〜5で得られた研磨液組成物について、ゼータ電位、ナノスクラッチ及び表面粗さ(Ra)を以下の方法に基づいて測定・評価した。得られた結果を表1に示す。   About the polishing liquid composition obtained in Examples 1-9 and Comparative Examples 1-5, zeta potential, nano scratch, and surface roughness (Ra) were measured and evaluated based on the following methods. The obtained results are shown in Table 1.

1.研磨条件
・研磨試験機:スピードファム社製、両面9B研磨機
・研磨布:フジボウ社製、仕上げ研磨用パッド(厚さ0.9mm、開孔径30μm、ショアA硬度60°)
・定盤回転数:32.5r/min
・研磨液組成物供給量:100mL/min
・研磨時間:4分
・研磨荷重:7.8kPa
・投入した基板の枚数:10枚
1. Polishing conditions / polishing tester: Speedfam, double-sided 9B polishing machine / polishing cloth: Fujibow, polishing pad (thickness 0.9 mm, hole diameter 30 μm, Shore A hardness 60 °)
・ Surface plate speed: 32.5r / min
Polishing liquid composition supply amount: 100 mL / min
Polishing time: 4 minutes Polishing load: 7.8 kPa
・ Number of loaded substrates: 10

2.ゼータ電位の測定条件
・測定機器:大塚電子社製、「ELS−8000」(平板セルタイプ)
・印加電圧:80V
・測定温度:25℃
・測定試料:研磨液組成物のpHと同一のpHに調整したゼータ電位調整剤水溶液(対応する研磨液組成物中のゼータ電位調整剤と水とからなる水溶液)を使って、研磨材濃度が0.05重量%となるように希釈した研磨液組成物を測定試料として調製した。
・測定回数:同一試料、同一測定条件にて、3回測定を繰り返し、その3回の平均値をゼータ電位とした。
2. Zeta potential measurement conditions and measurement equipment: “ELS-8000” (flat cell type) manufactured by Otsuka Electronics Co., Ltd.
・ Applied voltage: 80V
・ Measurement temperature: 25 ℃
・ Measurement sample: Using an aqueous solution of a zeta potential adjusting agent adjusted to the same pH as that of the polishing liquid composition (an aqueous solution comprising a zeta potential adjusting agent and water in the corresponding polishing liquid composition), the abrasive concentration is A polishing composition diluted to 0.05% by weight was prepared as a measurement sample.
-Number of measurements: The measurement was repeated three times under the same sample and the same measurement conditions, and the average of the three times was defined as the zeta potential.

3.ナノスクラッチの測定条件
・測定機器:VISION PSYTEC製、「MicroMax VMX−2100CSP」
・光源:2Sλ(250W)及び3Pλ(250W)共に100%
・チルド角:−6°
・倍率:最大(視野範囲:全面積の120分の1)
・観察領域:全面積(外周95mmφで内周25mmの基板)
・アイリス:notch
・評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、その4枚の基板の各々両面にあるナノスクラッチ数(本)の合計を8で除して、基板面当たりのナノスクラッチ数を算出した。また、表に記載したナノスクラッチの評価は比較例1のナノスクラッチ数(本/面)に対する相対評価で行った。
3. Nano scratch measurement conditions / measurement equipment: “MicroMax VMX-2100CSP” manufactured by VISION PSYTEC
-Light source: 100% for both 2Sλ (250W) and 3Pλ (250W)
・ Chilled angle: -6 °
・ Magnification: Maximum (Field range: 1/120 of the total area)
・ Observation area: total area (substrate with outer circumference 95mmφ and inner circumference 25mm)
・ Iris: notch
・ Evaluation: Randomly select 4 out of the substrates put into the polishing tester, and divide the total number of nano scratches (on each side) of each of the 4 substrates by 8 to get The number of nano scratches was calculated. Moreover, the evaluation of the nanoscratches described in the table was performed by relative evaluation with respect to the number of nanoscratches (lines / surface) of Comparative Example 1.

4.表面粗さ(Ra)の測定条件
・測定機器:デジタルインスツルメント製、「NanoScopeIII 、Dimension3000」
・Scanrate:1.0Hz
・Scanarea:2×2μm
・評価:内周と外周間の中心を120°毎に3点測定し、これを基板の両面について行い、計6点の平均値を求めた。
4). Surface roughness (Ra) measurement conditions / measurement equipment: “NanoScope III, Dimension 3000”, manufactured by Digital Instruments
・ Scanrate: 1.0 Hz
・ Scanarea: 2 × 2 μm
Evaluation: The center between the inner periphery and the outer periphery was measured at 120 points every 120 °, and this was performed on both sides of the substrate to obtain an average value of a total of 6 points.

Figure 0004286168
Figure 0004286168

表1に示した結果から、実施例1〜9の研磨液組成物を用いて得られた基板は、比較例1〜5のそれらに比べ、ナノスクラッチの発生が抑制され、かつ表面粗さが低減されたものであることがわかる。   From the results shown in Table 1, in the substrates obtained using the polishing liquid compositions of Examples 1 to 9, the generation of nanoscratches was suppressed and the surface roughness was lower than those of Comparative Examples 1 to 5. It can be seen that it is reduced.

本発明の研磨液組成物は、精密部品基板、例えば、磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に好適に使用される。   The polishing composition of the present invention is a precision component substrate, for example, a precision component such as a magnetic recording medium substrate such as a magnetic disk, an optical disk, or a magneto-optical disk, a photomask substrate, an optical lens, an optical mirror, an optical prism, or a semiconductor substrate. It is suitably used for polishing a substrate.

Claims (7)

一次粒子の平均粒径が1nm以上30nm以下であるコロイダルシリカとゼータ電位調整剤とを含有してなるpHが1〜4の研磨液組成物を用いて、Ni−Pメッキされたアルミニウム合金基板のナノスクラッチを低減する方法であって、該研磨液組成物中のコロイダルシリカのゼータ電位を−10〜10mVに調整する工程を有する、Ni−Pメッキされたアルミニウム合金基板のナノスクラッチを低減する方法。 An aluminum alloy substrate plated with Ni-P using a polishing composition having a pH of 1 to 4 comprising colloidal silica having an average primary particle size of 1 nm to 30 nm and a zeta potential adjuster . A method for reducing nanoscratches, comprising the step of adjusting the zeta potential of colloidal silica in the polishing composition to −10 to 10 mV, and reducing nanoscratches in a Ni—P plated aluminum alloy substrate . ゼータ電位調整剤が、酸、塩基、塩及び界面活性剤からなる群より選ばれる一種以上である、請求項1記載の方法 Zeta potential adjusting agent is an acid, a base, one or more selected from the group consisting of salts and surfactants, the process of claim 1. 研磨液組成物がさらに過酸化水素を含有してなる、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the polishing composition further comprises hydrogen peroxide . ゼータ電位調整剤が、硝酸、硫酸、リン酸、クエン酸及び1−ヒドロキシエチリデン−1,1−ジホスホン酸から選ばれる一種以上である、請求項1〜3いずれかに記載の方法。The method according to any one of claims 1 to 3, wherein the zeta potential regulator is one or more selected from nitric acid, sulfuric acid, phosphoric acid, citric acid and 1-hydroxyethylidene-1,1-diphosphonic acid. 研磨液組成物中におけるゼータ電位調整剤の含有量が、0.05〜15重量%である、請求項1〜4いずれかに記載の方法。The method in any one of Claims 1-4 whose content of the zeta potential adjusting agent in polishing liquid composition is 0.05 to 15 weight%. 研磨液組成物中におけるコロイダルシリカの含有量が、1〜15重量%である、請求項1〜5いずれかに記載の方法。The method according to claim 1, wherein the content of colloidal silica in the polishing composition is 1 to 15% by weight. コロイダルシリカのD90/D50が、1〜5である、請求項1〜6いずれかに記載の方法 The method in any one of Claims 1-6 whose D90 / D50 of colloidal silica is 1-5 .
JP2004081768A 2004-03-22 2004-03-22 How to reduce nanoscratches Expired - Fee Related JP4286168B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004081768A JP4286168B2 (en) 2004-03-22 2004-03-22 How to reduce nanoscratches
TW094106992A TW200613485A (en) 2004-03-22 2005-03-08 Polishing composition
GB0505057A GB2412917B (en) 2004-03-22 2005-03-11 Polishing composition
US11/081,560 US20050208883A1 (en) 2004-03-22 2005-03-17 Polishing composition
MYPI20051185A MY141876A (en) 2004-03-22 2005-03-18 Polishing composition.
CN2005100590654A CN1673306B (en) 2004-03-22 2005-03-22 Polishing composition
US11/692,619 US20070167116A1 (en) 2004-03-22 2007-03-28 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081768A JP4286168B2 (en) 2004-03-22 2004-03-22 How to reduce nanoscratches

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007222603A Division JP2007301721A (en) 2007-08-29 2007-08-29 Polishing liquid composition

Publications (3)

Publication Number Publication Date
JP2005262413A JP2005262413A (en) 2005-09-29
JP2005262413A5 JP2005262413A5 (en) 2007-02-15
JP4286168B2 true JP4286168B2 (en) 2009-06-24

Family

ID=35087477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081768A Expired - Fee Related JP4286168B2 (en) 2004-03-22 2004-03-22 How to reduce nanoscratches

Country Status (1)

Country Link
JP (1) JP4286168B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863943B (en) 2005-08-30 2015-03-25 花王株式会社 Polishing composition for hard disk substrate, polishing method and manufacture method of substrate
JP4637003B2 (en) * 2005-11-11 2011-02-23 花王株式会社 Manufacturing method of hard disk substrate
JP2007257811A (en) 2006-03-24 2007-10-04 Hoya Corp Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP5332249B2 (en) * 2007-06-05 2013-11-06 旭硝子株式会社 Glass substrate polishing method
JP2009087441A (en) * 2007-09-28 2009-04-23 Hoya Corp Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP5306644B2 (en) * 2007-12-29 2013-10-02 Hoya株式会社 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
JP5484782B2 (en) * 2009-04-30 2014-05-07 花王株式会社 Manufacturing method of abrasive slurry
CN110283572B (en) * 2014-03-20 2021-08-24 福吉米株式会社 Polishing composition, polishing method, and method for producing substrate
JP6730921B2 (en) * 2016-12-28 2020-07-29 花王株式会社 Method for producing polishing liquid composition
JP6924660B2 (en) * 2017-09-21 2021-08-25 株式会社フジミインコーポレーテッド Method for manufacturing polishing composition

Also Published As

Publication number Publication date
JP2005262413A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4451347B2 (en) Polishing liquid composition
JP4231632B2 (en) Polishing liquid composition
JP4781693B2 (en) Method for reducing nano scratch on magnetic disk substrate
US6551175B2 (en) Polishing composition
US20050208883A1 (en) Polishing composition
JP4251516B2 (en) Polishing liquid composition
JP4863524B2 (en) Chemical mechanical polishing slurry composition for polishing polycrystalline silicon film and method for producing the same
JP4286168B2 (en) How to reduce nanoscratches
JP2005023266A (en) Polishing liquid composition
JP2007301721A (en) Polishing liquid composition
JP4414292B2 (en) Polishing speed improvement method
JP4214093B2 (en) Polishing liquid composition
JP2007320031A (en) Polishing liquid composition
JP5461772B2 (en) Polishing liquid composition
JP2004263074A (en) Polishing composition
JP4104335B2 (en) Method for reducing microprojections
JP6092623B2 (en) Manufacturing method of magnetic disk substrate
JP4156174B2 (en) Polishing liquid composition
JP2008101132A (en) Polishing fluid composition for memory hard disk substrate
JP4267546B2 (en) Substrate manufacturing method
JP2006130638A (en) Encased abrasive material particle dispersed liquid
JP2009155469A (en) Polishing liquid composition
JP6316680B2 (en) Polishing liquid composition for magnetic disk substrate
JP4640981B2 (en) Substrate manufacturing method
JP2007331105A (en) Polishing liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071005

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4286168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees