JP2006130638A - Encased abrasive material particle dispersed liquid - Google Patents

Encased abrasive material particle dispersed liquid Download PDF

Info

Publication number
JP2006130638A
JP2006130638A JP2004325158A JP2004325158A JP2006130638A JP 2006130638 A JP2006130638 A JP 2006130638A JP 2004325158 A JP2004325158 A JP 2004325158A JP 2004325158 A JP2004325158 A JP 2004325158A JP 2006130638 A JP2006130638 A JP 2006130638A
Authority
JP
Japan
Prior art keywords
container
polishing
particle dispersion
abrasive particle
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004325158A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ooshima
良暁 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004325158A priority Critical patent/JP2006130638A/en
Publication of JP2006130638A publication Critical patent/JP2006130638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an encased abrasive material particle dispersed liquid, remarkably reducing nano-scratch of material to be polished even in polishing after long-term storage independently of the storage period, and also to provide a polishing liquid kit including the encased abrasive material particle dispersed liquid. <P>SOLUTION: In this encased abrasive material particle dispersed liquid, the ratio of contact liquid area of polishing material particle dispersed liquid to the whole area of the wall surface in the case (contact liquid area)/(total wall surface area in the case) is 0.85 or more. This polishing liquid kit is composed of the encased abrasive material particle dispersed liquid, acid and/or its salt. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、容器入り研磨材粒子分散液及び該容器入り研磨材粒子分散液を用いる研磨液キットに関する。   The present invention relates to a container-containing abrasive particle dispersion and a polishing liquid kit using the container-containing abrasive particle dispersion.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきている。即ち、ヘッドの低浮上化に応じて、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に応じて、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. Along with this, the surface quality required after polishing in the manufacturing process of the magnetic disk substrate is becoming stricter year by year. That is, it is necessary to reduce the surface roughness, micro waviness, roll-off and protrusions according to the low flying height of the head, and the allowable number of scratches per substrate surface is small according to the decrease in the unit recording area, Its size and depth are getting smaller and smaller.

また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストに露光する際の焦点深度が浅くなり、より一層の表面平滑性が望まれている。
このような要求に対して、表面平滑性の向上を目的に、被研磨物の表面に生じる傷(スクラッチ等)の低減を図るべく、コロイダルシリカを含有した研磨液が提案されている(特許文献1)が、その容器、保存条件等には何ら言及されていない。
特開2002―327170号公報
Also in the semiconductor field, high integration and high speed are advancing. In particular, miniaturization of wiring is required for high integration. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus when exposing to a photoresist becomes shallow, and further surface smoothness is desired.
In response to such demands, a polishing liquid containing colloidal silica has been proposed in order to reduce the scratches (scratches, etc.) generated on the surface of the workpiece for the purpose of improving the surface smoothness (Patent Document). 1) is not mentioned at all about the container, storage conditions and the like.
JP 2002-327170 A

本発明の目的は、保管期間に依存せず、長期間保管した後の研磨でも被研磨物のナノスクラッチを顕著に低減することができる容器入り研磨材粒子分散液及び該容器入り研磨材粒子分散液を含む研磨液キットを提供することにある。   An object of the present invention is not dependent on a storage period, and is a container-containing abrasive particle dispersion that can remarkably reduce nano-scratches of an object to be polished even after polishing after long-term storage, and the container-containing abrasive particle dispersion It is providing the polishing liquid kit containing a liquid.

本発明者らは、研磨材粒子分散液を充填していた容器の内壁空間部に付着したシリカ分散液滴からの水分蒸発、乾燥により、固形状物が生成し、それが研磨材粒子分散液に混入し、研磨材粒子分散液を研磨液に用いた場合、その固形状物がナノスクラッチ形成の原因になることを見出した。
そこで、さらに検討を進めたところ、研磨材粒子分散液の容器内の充填状態を特定のものに調整することで、研磨材粒子分散液の物性、特に作用特性を長期間保持できることを見出し、本発明を完成した。
即ち、本発明の要旨は、
〔1〕容器内の壁面の全面積に対する研磨材粒子分散液の接液面積の比
(接液面積)/(容器内の全壁面面積)
が0.85以上である容器入り研磨材粒子分散液、並びに
〔2〕前記〔1〕記載の容器入り研磨材粒子分散液と酸及び/又はその塩とから構成される研磨液キット
に関する。
The inventors of the present invention produced a solid product by evaporation and drying of water from the silica dispersion droplets adhering to the inner wall space of the container filled with the abrasive particle dispersion, and this was generated as an abrasive particle dispersion. When the abrasive particle dispersion is used as a polishing liquid, the solid matter is found to cause nanoscratch formation.
As a result of further investigation, it was found that the physical properties, particularly the action characteristics, of the abrasive particle dispersion can be maintained for a long time by adjusting the filling state of the abrasive particle dispersion in the container to a specific one. Completed the invention.
That is, the gist of the present invention is as follows.
[1] Ratio of the wetted area of the abrasive particle dispersion to the total area of the wall surface in the container (wetted area) / (total wall surface area in the container)
The present invention relates to a container-containing abrasive particle dispersion having an A of 0.85 or more, and [2] an abrasive liquid kit comprising the container-containing abrasive particle dispersion described in [1] above and an acid and / or a salt thereof.

本発明の容器入り研磨材粒子分散液を、例えば、高密度化又は高集積化用の精密部品用基板の研磨工程で用いることにより、ナノスクラッチを顕著に低減できるため、表面性状に優れた高品質の磁気ディスク基板、半導体素子用基板等の精密部品用基板を製造することができるという効果が奏される。   By using the container-containing abrasive particle dispersion of the present invention, for example, in a polishing step of a substrate for precision parts for high density or high integration, nano scratches can be remarkably reduced, so that the surface property is excellent. There is an effect that a precision component substrate such as a quality magnetic disk substrate or a semiconductor element substrate can be manufactured.

本発明の容器入り研磨材粒子分散液は、前記のように容器内の壁面の全面積に対する研磨材粒子分散液が接液する壁面積の比[(接液面積)/(容器内の全壁面面積)]が0.85以上である点に大きな特徴があり、かかる特徴を有することで、保管期間に依存せず、長期間保管した後の研磨でも被研磨物のナノスクラッチを顕著に低減することができるという効果が奏される。   As described above, the container-containing abrasive particle dispersion of the present invention has a ratio of the wall area in contact with the abrasive particle dispersion to the total area of the wall surface in the container [(wetted area) / (total wall surface in the container (Area)] is 0.85 or more, and has such a feature. By having such a feature, the nano-scratch of the object to be polished is remarkably reduced even in polishing after storage for a long period of time without depending on the storage period. The effect that it can be performed is produced.

本発明において、「容器内の全壁面面積」とは、研磨材粒子分散液を入れることが可能な容器内面の全壁面の表面積を意味する(容器に栓がある場合、栓の部分も含む)。また、「接液面積」とは、容器内に研磨材粒子分散液を入れて該容器を静置した場合に、分散液が接触している容器内面の全壁面面積を意味する。なお、容器内の全壁面面積及び接液面積は、幾何学的計算や容器を展開し寸法を測定することにより算出することができる。この計算においては、容器の表面は平滑なものとして取り扱い、1mm未満の凹凸は無視するものとする。   In the present invention, the “total wall surface area in the container” means the surface area of the entire wall surface of the inner surface of the container in which the abrasive particle dispersion can be placed (including a stopper part when the container has a stopper). . Further, the “wetted area” means the total wall surface area of the inner surface of the container in contact with the dispersion when the abrasive particle dispersion is placed in the container and the container is left standing. In addition, the total wall surface area and the liquid contact area in the container can be calculated by geometric calculation or by developing the container and measuring the dimensions. In this calculation, the surface of the container is assumed to be smooth, and irregularities of less than 1 mm are ignored.

容器内の全壁面面積に対する接液面積の比は、ナノスクラッチ低減の観点から、0.85以上であり、好ましくは0.90以上、より好ましくは0.92以上であり、また、温度上昇による分散液の体積膨張により容器から液が溢れることを防止する観点から、0.99以下が好ましく、0.98以下がより好ましく、0.97以下がさらに好ましい。   The ratio of the wetted area to the total wall surface area in the container is 0.85 or more, preferably 0.90 or more, more preferably 0.92 or more from the viewpoint of nanoscratch reduction, and also due to temperature rise. From the viewpoint of preventing the liquid from overflowing from the container due to the volume expansion of the dispersion, it is preferably 0.99 or less, more preferably 0.98 or less, and even more preferably 0.97 or less.

なお、容器内の全壁面面積に対する接液面積の比は、容器への充填液量及びフレキシブルバック(たとえば、ポリエチレン製バッグ)の場合には容器内のエアー抜き等により任意に調節することができる。   In addition, the ratio of the liquid contact area to the total wall surface area in the container can be arbitrarily adjusted by the air filling in the container or the like in the case of a filling liquid amount in the container and a flexible bag (for example, polyethylene bag). .

また、本発明におけるナノスクラッチとは、深さが10nm以上、100nm未満、幅が5nm以上、500nm未満、長さが100μm以上の基板表面の微細な傷で、原子間力顕微鏡(AFM)で検出することができ、後述の実施例に記載の目視検査装置であるVISION PSYTEC社製「MicroMax」による測定でナノスクラッチの本数により定量評価できる。   The nano-scratch in the present invention is a fine scratch on the substrate surface having a depth of 10 nm or more, less than 100 nm, a width of 5 nm or more, less than 500 nm, and a length of 100 μm or more, and is detected by an atomic force microscope (AFM). It can be quantitatively evaluated by the number of nanoscratches by measurement with “MicroMax” manufactured by VISION PSYTEC, which is a visual inspection apparatus described in Examples described later.

前記ナノスクラッチは、従来では検出されなかった表面欠陥である。即ち、従来公知の方法を用いる場合、より高容量、高集積といった高密度化に対して、基板の品質が不十分であった。その原因について、本件発明者らが、鋭意研究をした結果、これまで検出できなかった「ナノスクラッチ」の低減が不十分なことにあることを初めて見出した。   The nano scratch is a surface defect that has not been detected conventionally. That is, when a conventionally known method is used, the quality of the substrate is insufficient for higher density such as higher capacity and higher integration. As a result of intensive studies by the inventors of the present invention, it has been found for the first time that the reduction of “nano scratches” that could not be detected has been insufficient.

本発明において、研磨材粒子分散液は、研磨材粒子が分散された液である。研磨材としては、研磨用に一般に使用される研磨材を使用することができ、例えば、金属、金属又は半金属の炭化物、金属又は半金属の窒化物、金属又は半金属の酸化物、金属又は半金属のホウ化物、ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の3A、4A、5A、3B、4B、5B、6A、7A又は8族に属するものが挙げられる。その例としては、二酸化ケイ素、酸化アルミニウム、酸化セリウム、酸化チタン、酸化ジルコニウム、窒化ケイ素、二酸化マンガン、炭化ケイ素、酸化亜鉛、ダイヤモンド及び酸化マグネシウム等が挙げられる。
中でも、研磨材粒子がコロイド粒子であることが好ましい。コロイド粒子とは、数平均粒径100nm以下の研磨材粒子をさす。コロイド粒子としては、コロイダルシリカ、コロイダルアルミナ、コロイダルセリア等が挙げられる。ナノスクラッチ低減の観点から、コロイダルシリカが好ましい。コロイダルシリカは、例えば珪酸水溶液から生成させる製法によって得ることができる。なお、これらの研磨材粒子の分散状態としては、特に限定はなく、流動性を有していればよい。
また、前記研磨材粒子は、2種以上を混合して用いることができる。また、これら粒子を官能基で表面修飾あるいは表面改質したもの、界面活性剤や他の研磨材で複合粒子化したもの等も用いることができる。
In the present invention, the abrasive particle dispersion is a liquid in which abrasive particles are dispersed. As the abrasive, abrasives generally used for polishing can be used, for example, metal, metal or metalloid carbide, metal or metalloid nitride, metal or metalloid oxide, metal or Examples include metalloid borides and diamond. Examples of the metal or metalloid element include those belonging to Group 3A, 4A, 5A, 3B, 4B, 5B, 6A, 7A or Group 8 of the periodic table (long period type). Examples thereof include silicon dioxide, aluminum oxide, cerium oxide, titanium oxide, zirconium oxide, silicon nitride, manganese dioxide, silicon carbide, zinc oxide, diamond and magnesium oxide.
Among these, the abrasive particles are preferably colloidal particles. Colloidal particles refer to abrasive particles having a number average particle size of 100 nm or less. Examples of colloidal particles include colloidal silica, colloidal alumina, and colloidal ceria. From the viewpoint of reducing nanoscratches, colloidal silica is preferred. Colloidal silica can be obtained, for example, by a production method in which an aqueous silica solution is used. The dispersion state of these abrasive particles is not particularly limited as long as it has fluidity.
The abrasive particles can be used in combination of two or more. In addition, those obtained by surface modification or surface modification of these particles with functional groups, those obtained by compounding with surfactants or other abrasives, and the like can also be used.

コロイド粒子等の研磨材粒子の一次粒子の平均粒径は、ナノスクラッチを低減する観点及び表面粗さ(中心線平均粗さ:Ra、Peak to Valley値:Rmax)を低減する観点から、1〜50nmが好ましい。同時に研磨速度を向上させる観点から、より好ましくは3〜50nm、さらに好ましくは5〜40nm、さらに好ましくは5〜30nmである。   The average particle diameter of primary particles of abrasive particles such as colloidal particles is 1 to 1 from the viewpoint of reducing nanoscratches and the surface roughness (centerline average roughness: Ra, Peak to Valley value: Rmax). 50 nm is preferred. From the viewpoint of simultaneously improving the polishing rate, the thickness is more preferably 3 to 50 nm, further preferably 5 to 40 nm, and further preferably 5 to 30 nm.

研磨材粒子の一次粒子の平均粒径は、透過型電子顕微鏡(TEM)での観察画像から求める方法や、滴定法、BET法によって、それぞれの方法で測定した時の平均粒径として求めることができる。   The average particle size of the primary particles of the abrasive particles can be determined as an average particle size when measured by each method by a method obtained from an observation image with a transmission electron microscope (TEM), a titration method, or a BET method. it can.

容器入り研磨材粒子分散液中の研磨材粒子の含有量としては、ナノスクラッチ低減の観点から、0.5〜50重量%が好ましく、0.5〜25重量%がより好ましい。   The content of abrasive particles in the container-containing abrasive particle dispersion is preferably 0.5 to 50% by weight, more preferably 0.5 to 25% by weight from the viewpoint of reducing nanoscratches.

また、使用時における研磨材粒子分散液中の研磨材粒子の含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、さらに好ましくは5重量%以上であり、また、経済的に表面品質を向上させる観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、さらに好ましくは10重量%以下である。従って、研磨速度を向上させ、且つ経済的に表面品質を向上させる観点から該含有量は、好ましくは0.5〜20重量%、より好ましくは1〜15重量%、さらに好ましくは3〜13重量%、さらに好ましくは5〜10重量%である。研磨材粒子の含有量は、研磨材粒子分散液製造時における含有量あるいは使用時における含有量のいずれであってもよく、通常、濃縮液として製造され、これを使用時に希釈して用いる場合が多い。   Further, the content of the abrasive particles in the abrasive particle dispersion at the time of use is preferably 0.5% by weight or more, more preferably 1% by weight or more, and further preferably 3% by weight from the viewpoint of improving the polishing rate. % Or more, more preferably 5% by weight or more, and from the viewpoint of economically improving the surface quality, it is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 13% by weight or less, Preferably it is 10 weight% or less. Therefore, from the viewpoint of improving the polishing rate and economically improving the surface quality, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, and further preferably 3 to 13% by weight. %, More preferably 5 to 10% by weight. The content of the abrasive particles may be either the content at the time of manufacturing the abrasive particle dispersion or the content at the time of use. Usually, it is manufactured as a concentrated liquid, and this may be used after being diluted. Many.

本発明の研磨材粒子分散液に使用される媒体としては、イオン交換水、蒸留水、超純水等の水、アルコール等が挙げられる。これらの媒体の含有量は、100重量%から研磨材及び後述の他の成分を除いた残部に相当し、60〜99重量%が好ましく、80〜97重量%がより好ましい。   Examples of the medium used for the abrasive particle dispersion of the present invention include water such as ion-exchanged water, distilled water, and ultrapure water, alcohol, and the like. The content of these media corresponds to the balance obtained by removing the abrasive and other components described later from 100% by weight, preferably 60 to 99% by weight, and more preferably 80 to 97% by weight.

保管時の容器入り研磨材粒子分散液のpHは、研磨材粒子の分散安定性及びナノスクラッチ低減の観点から、研磨材粒子の等電点から離れていることが好ましい。研磨材粒子の種類により等電点は異なる。例えば、コロイダルシリカの等電点は、1〜4であるため、保管時のpHは、7以上が好ましく、より好ましくは8以上、さらに好ましくは8.5以上、さらに好ましくは9以上であり、また、コロイド粒子の溶解の観点から、12以下が好ましく、より好ましくは11以下、さらに好ましくは10.5以下である。   The pH of the container-containing abrasive particle dispersion during storage is preferably away from the isoelectric point of the abrasive particles from the viewpoint of dispersion stability of the abrasive particles and reduction of nanoscratches. The isoelectric point varies depending on the type of abrasive particles. For example, since the isoelectric point of colloidal silica is 1 to 4, the pH during storage is preferably 7 or more, more preferably 8 or more, still more preferably 8.5 or more, still more preferably 9 or more, Further, from the viewpoint of dissolution of colloidal particles, 12 or less is preferable, more preferably 11 or less, and further preferably 10.5 or less.

かかる構成を有する本発明の容器入り研磨材粒子分散液は、例えば、前記研磨材粒子、水、必要であれば、他の研磨材等を公知の方法で混合した後、容器に入れたり、容器中に前記の成分を添加・混合することで調製することができる。   The container-containing abrasive particle dispersion of the present invention having such a structure is, for example, mixed with the abrasive particles, water, and, if necessary, other abrasives by a known method, and then put into a container or a container. It can be prepared by adding and mixing the above components therein.

研磨材粒子分散液を入れる容器としては、バックインボックス、缶、ドラム、コンテナ等が挙げられる。   Examples of the container for storing the abrasive particle dispersion include a back-in box, a can, a drum, and a container.

金属イオンの溶出による凝集防止の観点から、容器内の壁面部分の材質が有機高分子であることが好ましい。さらに研磨材粒子分散液の付着残りを低減する観点から、ポリエチレン、ポリプロピレン、ポリ(テトラフルオロエチレン)が特に好ましい。   From the viewpoint of preventing aggregation due to elution of metal ions, the material of the wall surface in the container is preferably an organic polymer. Further, polyethylene, polypropylene, and poly (tetrafluoroethylene) are particularly preferable from the viewpoint of reducing the adhesion residue of the abrasive particle dispersion.

また、研磨材粒子分散液を容器に入れる際には、該分散液中に含有する研磨一次粒子の凝集物あるいは粗大研磨一次粒子を効率的且つ経済的に除去する目的で、フィルターによる精密濾過が好適に用いられる。   In addition, when the abrasive particle dispersion is put in a container, microfiltration with a filter is performed for the purpose of efficiently and economically removing aggregates of abrasive primary particles or coarse abrasive primary particles contained in the dispersion. Preferably used.

また、前記のようにして容器内の壁面部分の材質と該容器に充填する研磨材粒子分散液との接触角は、ナノスクラッチ低減の観点から、80度以上が好ましく、より好ましくは85度以上、さらに好ましくは90度以上である。接触角は、容器内の壁面部分の材質と分散液の表面張力により決まる。
なお、接触角は、例えば、協和界面科学製、接触角測定器により測定することができる。
Further, the contact angle between the material of the wall surface portion in the container and the abrasive particle dispersion filled in the container as described above is preferably 80 degrees or more, more preferably 85 degrees or more from the viewpoint of reducing nanoscratches. More preferably, it is 90 degrees or more. The contact angle is determined by the material of the wall surface in the container and the surface tension of the dispersion.
The contact angle can be measured by, for example, a contact angle measuring device manufactured by Kyowa Interface Science.

以上のような構成を有する容器入り研磨材粒子分散液は、ナノスクラッチを低減する観点から、0℃以上60℃未満で保管することが好ましく、より好ましくは10℃以上45℃未満、さらに好ましくは20℃以上35℃未満である。   From the viewpoint of reducing nanoscratches, the container-containing abrasive particle dispersion having the above-described configuration is preferably stored at 0 ° C. or more and less than 60 ° C., more preferably 10 ° C. or more and less than 45 ° C., more preferably It is 20 degreeC or more and less than 35 degreeC.

本発明の容器入り研磨材粒子分散液は、研磨液組成物の原料として用いることができる。この場合、容器入り研磨材粒子分散液のpHを酸性に調整したものを研磨液組成物として用いることが好ましい。該pHは、具体的には、0.1〜7である。アルカリ性においては、酸性に比べてナノスクラッチの発生が著しい。その発生機構は明らかではないが、研磨粒子同士が表面電荷によって強く反発し合うアルカリ性雰囲気下では、研磨液組成物中に含有される研磨一次粒子の凝集物あるいは粗大研磨一次粒子が研磨部において密な充填ができずに、研磨圧力下で局部荷重を受けやすくなるためと推定している。pHは、被研磨物の種類や要求特性に応じて決定することが好ましく、被研磨物の材質が金属材料では、研磨速度を向上させる観点から、pHは、好ましくは6以下、より好ましくは5以下、さらに好ましくは4以下である。また、人体への影響や研磨装置の腐食防止の観点から、pHは、好ましくは0.5以上、より好ましくは1以上、さらに好ましくは1.4以上である。特に、ニッケル−リン(Ni−P)メッキされたアルミニウム合金基板のように被研磨物の材質が金属材料の精密部品用基板においては、前記観点を考慮してpHは、0.5〜6が好ましく、より好ましくは1.0〜5、さらに好ましくは1.4〜4である。   The container-containing abrasive particle dispersion of the present invention can be used as a raw material for the polishing composition. In this case, it is preferable to use what adjusted pH of the container-containing abrasive particle dispersion acidic, as an abrasive composition. The pH is specifically 0.1 to 7. In the alkalinity, the generation of nanoscratches is remarkable compared to the acidity. The generation mechanism is not clear, but in an alkaline atmosphere in which abrasive particles repel each other due to surface charges, aggregates of abrasive primary particles or coarse abrasive primary particles contained in the polishing composition are dense in the polishing part. It is presumed that it is not possible to perform proper filling and is likely to receive a local load under the polishing pressure. The pH is preferably determined according to the type of the object to be polished and the required characteristics. When the material of the object to be polished is a metal material, the pH is preferably 6 or less, more preferably 5 from the viewpoint of improving the polishing rate. Hereinafter, it is more preferably 4 or less. Further, from the viewpoint of the influence on the human body and the prevention of corrosion of the polishing apparatus, the pH is preferably 0.5 or more, more preferably 1 or more, and still more preferably 1.4 or more. In particular, in the case of a precision component substrate whose material to be polished is a metal material, such as a nickel-phosphorus (Ni-P) plated aluminum alloy substrate, the pH is 0.5 to 6 in consideration of the above viewpoint. More preferably, it is 1.0-5, More preferably, it is 1.4-4.

pHは、以下の酸及び/又はその塩によって調整することができる。具体的には、硝酸、硫酸、亜硝酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸又はそれらの塩、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸又はそれらの塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸又はそれらの塩、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸又はそれらの塩、等が挙げられる。中でもナノスクラッチを低減する観点から、無機酸又は有機ホスホン酸及びそれらの塩が好ましい。   The pH can be adjusted by the following acid and / or salt thereof. Specifically, inorganic acids such as nitric acid, sulfuric acid, nitrous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, or salts thereof, 2-amino Ethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane- 1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2- Diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane- , 3,4-tricarboxylic acid, organic phosphonic acids such as α-methylphosphonosuccinic acid or their salts, aminocarboxylic acids such as glutamic acid, picolinic acid or aspartic acid or their salts, oxalic acid, nitroacetic acid, maleic acid And carboxylic acids such as oxaloacetic acid or salts thereof. Of these, inorganic acids or organic phosphonic acids and their salts are preferred from the viewpoint of reducing nanoscratches.

また、無機酸又はそれらの塩の中では、硝酸、硫酸、塩酸、過塩素酸又はそれらの塩がより好ましく、有機ホスホン酸又はそれらの塩の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)又はそれらの塩がより好ましい。これらの酸又はそれらの塩は、単独で又は2種類以上を混合して用いてもよい。   Among inorganic acids or salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid or salts thereof are more preferable. Among organic phosphonic acids or salts thereof, 1-hydroxyethylidene-1,1-diphosphone is preferred. More preferred are acids, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) or salts thereof. These acids or their salts may be used alone or in admixture of two or more.

これらの塩の対イオン(陽イオン)としては、特に限定はなく、具体的には、金属イオン、アンモニウムイオン、アルキルアンモニウムイオンとの塩が挙げられる。金属の具体的な例としては、周期律表(長周期型)の1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。ナノスクラッチを低減する観点から、アンモニウムイオン又は1A族に属する金属イオンが好ましい。   The counter ion (cation) of these salts is not particularly limited, and specific examples include salts with metal ions, ammonium ions, and alkylammonium ions. Specific examples of the metal include metals belonging to 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8 of the periodic table (long period type). From the viewpoint of reducing nanoscratches, ammonium ions or metal ions belonging to Group 1A are preferred.

前記のように、本発明の容器入り研磨材粒子分散液を研磨液組成物として使用する態様としては、例えば、容器入り研磨材粒子分散液と、酸及び/又はその塩とから構成される研磨液キットが挙げられる。したがって、本発明は、かかる研磨液キットにも関する。   As described above, as an aspect of using the container-containing abrasive particle dispersion liquid of the present invention as a polishing liquid composition, for example, polishing composed of a container-containing abrasive particle dispersion liquid and an acid and / or a salt thereof is used. Liquid kits. Therefore, the present invention also relates to such a polishing liquid kit.

前記研磨液キットにおいて酸及び/又はその塩は、容器入り研磨材粒子分散液と混合しない状態であればよく、使用前まで別の耐性のある容器中に保管しておくことが好ましい。   In the polishing liquid kit, the acid and / or salt thereof may be in a state not mixed with the container-containing abrasive particle dispersion, and is preferably stored in another resistant container before use.

また、研磨液キットを使用する場合、ナノスクラッチ低減の観点から、使用直前に水で希釈したり、酸及び/又はその塩を添加して使用することが好ましい。また、同様の観点から、容器中の全量を1回で使い切ることが好ましい。   Moreover, when using a polishing liquid kit, it is preferable to dilute with water just before use, or to add and use an acid and / or its salt from a viewpoint of nano scratch reduction. From the same viewpoint, it is preferable to use up the entire amount in the container once.

本発明の研磨液キットにおいて、容器入り研磨材粒子分散液と酸及び/又はその塩とを混合することで、研磨液組成物を調製することができる。得られる研磨液組成物は、例えば、不織布の有機高分子系研磨布等(研磨パッド)と被研磨基板との間に供給され、即ち、研磨液組成物が研磨パッドを貼り付けた研磨盤で挟み込まれた基板研磨面に供給され、所定の圧力の下で研磨盤及び/又は基板を動かすことにより、基板に接触しながら研磨工程に用いられる。この研磨によりナノスクラッチの発生を顕著に抑えることができる。   In the polishing liquid kit of the present invention, a polishing liquid composition can be prepared by mixing a container-containing polishing material particle dispersion with an acid and / or a salt thereof. The resulting polishing liquid composition is supplied, for example, between a non-woven organic polymer polishing cloth or the like (polishing pad) and the substrate to be polished, that is, a polishing machine on which the polishing liquid composition is attached to the polishing pad. The substrate is supplied to the sandwiched substrate polishing surface, and is used for the polishing step while contacting the substrate by moving the polishing disk and / or the substrate under a predetermined pressure. This polishing can remarkably suppress the generation of nanoscratches.

効果的にナノスクラッチを低減するためには、前記研磨液組成物を用いて、あるいは研磨液組成物の組成となるように各成分を混合して研磨液組成物を調製し、被研磨基板を研磨する。これにより、被研磨基板の表面欠陥、特にナノスクラッチを顕著に低減でき、さらに表面粗さの低い表面品質に優れた基板を製造することができる。   In order to effectively reduce nano scratches, a polishing liquid composition is prepared by using the polishing liquid composition or by mixing each component so as to be a composition of the polishing liquid composition. Grind. Thereby, the surface defect of a to-be-polished substrate, especially nano scratch can be remarkably reduced, and a substrate excellent in surface quality with low surface roughness can be manufactured.

特に精密部品用基板の製造に好適である。例えば磁気ディスク、光磁気ディスク等の磁気ディスク基板、光ディスク、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板などの精密部品用基板の研磨に適している。半導体基板の製造においては、シリコンウエハ(ベアウエハ)のポリッシング工程、埋め込み素子分離膜の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において研磨液組成物を用いることができる。   It is particularly suitable for manufacturing precision component substrates. For example, it is suitable for polishing precision component substrates such as magnetic disk substrates such as magnetic disks and magneto-optical disks, optical disks, photomask substrates, optical lenses, optical mirrors, optical prisms, and semiconductor substrates. In the manufacture of a semiconductor substrate, a polishing liquid composition is used in a polishing process of a silicon wafer (bare wafer), a formation process of a buried element isolation film, a planarization process of an interlayer insulating film, a formation process of a buried metal wiring, a formation process of a buried capacitor, etc. Can be used.

研磨液組成物が好適な被研磨物の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中でも、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金を含有する被研磨物に好適である。例えば、Ni−Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板により適しており、Ni−Pメッキされたアルミニウム合金基板がさらに適している。   The material of the object to be polished for which the polishing composition is suitable is, for example, metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, or alloys thereof, glass, glassy carbon, amorphous carbon, etc. Glass materials, alumina, silicon dioxide, silicon nitride, tantalum nitride, titanium carbide and other ceramic materials, polyimide resin and the like. Among these, it is suitable for an object to be polished containing a metal such as aluminum, nickel, tungsten, or copper and an alloy mainly composed of these metals. For example, a Ni—P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more suitable, and a Ni—P plated aluminum alloy substrate is more suitable.

被研磨物の形状には特に制限は無く、例えばディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状のものに研磨液組成物は用いられる。中でも、ディスク状の被研磨物の研磨に優れている。   The shape of the object to be polished is not particularly limited. For example, the polishing composition is used for a shape having a flat portion such as a disk shape, a plate shape, a slab shape, a prism shape, or a shape having a curved surface portion such as a lens. It is done. Among them, it is excellent for polishing a disk-shaped workpiece.

基板の製造工程において、複数の研磨工程がある場合、2工程目以降に本発明の研磨液組成物が用いられるのが好ましく、ナノスクラッチ及び表面粗さを顕著に低減し、優れた表面平滑性を得る観点から、仕上げ研磨工程に用いられるのが特に好ましい。仕上げ研磨工程とは、複数の研磨工程がある場合、少なくとも一つの最後の研磨工程を指す。   In the substrate manufacturing process, when there are a plurality of polishing processes, it is preferable that the polishing composition of the present invention is used in the second and subsequent processes, which significantly reduces nanoscratches and surface roughness, and has excellent surface smoothness. From the viewpoint of obtaining the above, it is particularly preferred to be used in the finish polishing step. The finish polishing process refers to at least one final polishing process when there are a plurality of polishing processes.

実験例1〜7
研磨材粒子分散液として、コロイダルシリカ分散液(デュポン社製、一次粒子の平均粒径22nm、シリカ粒子濃度40重量%)を必要に応じて精密フィルターに通した後、容器内に入れた。適宜、エアー抜きをした後、所定の接液面積/容器内の全壁面面積の比になるよう調整して容器入りコロイダルシリカ分散液を得た。これを室温で1ヶ月保存後、容器入りコロイダルシリカ分散液と水とを1:6(体積比)の割合で希釈し、さらに硫酸(和光純薬工業社製特級)を0.4重量%となるように添加して、研磨液組成物を調製した(pH1.5)。
得られた研磨液組成物を用いて以下の方法に基づいて被研磨基板を研磨し、そのナノスクラッチの有無について評価した。
なお、表1に、使用した容器の種類、精密フィルター処理の有無、エアー抜きの有無及び接液面積/容器内の全壁面面積の比、コロイダルシリカ分散液のpH、容器材質、接触角、およびナノスクラッチの結果を示す。
Experimental Examples 1-7
As an abrasive particle dispersion, a colloidal silica dispersion (manufactured by DuPont, average particle diameter of primary particles 22 nm, silica particle concentration 40% by weight) was passed through a precision filter as necessary, and then placed in a container. After appropriately venting air, the mixture was adjusted so as to have a ratio of predetermined liquid contact area / total wall surface area in the container to obtain a colloidal silica dispersion containing the container. After storage at room temperature for 1 month, the colloidal silica dispersion in the container and water are diluted at a ratio of 1: 6 (volume ratio), and sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.) is further added to 0.4% by weight. Thus, a polishing composition was prepared (pH 1.5).
Using the polishing composition obtained, the substrate to be polished was polished based on the following method, and the presence or absence of the nanoscratch was evaluated.
In Table 1, the type of container used, presence / absence of precision filter treatment, presence / absence of air bleeding, ratio of wetted area / total wall area in the container, pH of colloidal silica dispersion, container material, contact angle, and The result of a nano scratch is shown.

1.研磨条件
・研磨試験機:スピードファム社製、両面9B研磨機
・研磨パッド:フジボウ社製、ウレタン製仕上げ研磨用パッド
・上定盤回転数:32.5r/min
・研磨液組成物供給量:100mL/min
・本研磨時間:4min
・本研磨荷重:7.8kPa
・投入した被研磨基板の枚数:10枚
1. Polishing conditions / polishing tester: Speedfam, double-sided 9B polisher / polishing pad: Fujibow, urethane finish polishing pad / upper plate rotation speed: 32.5 r / min
Polishing liquid composition supply amount: 100 mL / min
・ Main polishing time: 4 min
-Final polishing load: 7.8 kPa
・ Number of substrates to be polished: 10

2.被研磨基板
アルミナ研磨材を含有する研磨液であらかじめ粗研磨し、AFM−Ra10Åとした、厚さ1.27mmの外径95mmφで内径25mmφのNi−Pメッキされたアルミニウム合金基板を被研磨基板として用いた。
2. Substrate to be polished As a substrate to be polished, a Ni-P plated aluminum alloy substrate having an outer diameter of 95 mmφ and an inner diameter of 25 mmφ having a thickness of 1.27 mm and roughly polished with a polishing liquid containing an alumina abrasive was previously prepared. Using.

3.ナノスクラッチの測定条件
・測定機器:VISION PSYTEC社製、「MicroMax VMX−2100CSP」
・光源:2Sλ(250W)及び3Pλ(250W)共に100%
・チルト角:−6度
・倍率:最大(視野範囲:全面積の120分の1)
・観察領域:全面積(外周95mmφで内周25mmの基板)
・アイリス:notch
・評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、その4枚の基板の各々両面にあるナノスクラッチ数(本)の合計を8で除して、基板面当たりのナノスクラッチ数を算出した。
3. Nano scratch measurement conditions / measurement equipment: “MicroMax VMX-2100CSP” manufactured by VISION PSYTEC
-Light source: 100% for both 2Sλ (250W) and 3Pλ (250W)
-Tilt angle: -6 degrees-Magnification: Maximum (Field range: 1 / 120th of the total area)
・ Observation area: total area (substrate with outer circumference 95mmφ and inner circumference 25mm)
・ Iris: notch
・ Evaluation: Randomly select 4 out of the substrates put into the polishing tester, and divide the total number of nano scratches (on each side) of each of the 4 substrates by 8 to get The number of nano scratches was calculated.

Figure 2006130638
Figure 2006130638

表1の結果より、精密フィルターを用いたもの同士、あるいは用いないもの同士で比較すると、接液面積/容器内の全壁面面積の比が0.85以上のものがそれ未満のものに比べナノスクラッチの発生が顕著に抑えられていることがわかる。   From the results shown in Table 1, when the precision filter is used or not used, the ratio of wetted area / total wall surface area in the container is 0.85 or more compared to the smaller one. It can be seen that the occurrence of scratches is remarkably suppressed.

実験例8〜11
実験例1と同じ容器入りコロイダルシリカ分散液を表2に示す温度に設定された恒温槽内で1ヶ月保管した後、実験例1と同じ方法で研磨を行いナノスクラッチ評価を行った。その結果を表2に示す。
Experimental Examples 8-11
The same colloidal silica dispersion containing the same container as in Experimental Example 1 was stored for 1 month in a thermostatic chamber set to the temperature shown in Table 2, and then polished by the same method as in Experimental Example 1 for nano scratch evaluation. The results are shown in Table 2.

Figure 2006130638
Figure 2006130638

表2の結果より、得られた研磨液組成物は、5〜45℃という広い範囲の保管温度に関わらず、実用的なナノスクラッチ低減効果を十分に保持しているといえる。   From the results in Table 2, it can be said that the obtained polishing composition sufficiently retains a practical nanoscratch reduction effect regardless of a wide range of storage temperatures of 5 to 45 ° C.

本発明の容器入り研磨材粒子分散液は、例えば、磁気ディスク、光磁気ディスク等のディスク基板の研磨あるいは光ディスク、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨等に好適に使用することができる。   The container-containing abrasive particle dispersion of the present invention is used for polishing a disk substrate such as a magnetic disk or a magneto-optical disk or a precision component substrate such as an optical disk, a photomask substrate, an optical lens, an optical mirror, an optical prism, or a semiconductor substrate. It can be suitably used for polishing and the like.

Claims (7)

容器内の壁面の全面積に対する研磨材粒子分散液の接液面積の比
(接液面積)/(容器内の全壁面面積)
が0.85以上である容器入り研磨材粒子分散液。
Ratio of wetted area of abrasive particle dispersion to total area of wall surface in container (wetted area) / (total wall surface area in container)
A container-containing abrasive particle dispersion in which is 0.85 or more.
研磨材粒子がコロイド粒子である請求項1記載の容器入り研磨材粒子分散液。   The container-containing abrasive particle dispersion according to claim 1, wherein the abrasive particles are colloidal particles. pHが7以上である請求項1又は2記載の容器入り研磨材粒子分散液。   The container-containing abrasive particle dispersion according to claim 1 or 2, wherein the pH is 7 or more. 容器内の壁面部分の材質が有機高分子である請求項1〜3いずれか記載の容器入り研磨材粒子分散液。   The container-containing abrasive particle dispersion according to any one of claims 1 to 3, wherein the material of the wall portion in the container is an organic polymer. 容器内の壁面部分の材質と該容器に充填する研磨材粒子分散液との接触角が80度以上のものである請求項1〜4いずれか記載の容器入り研磨材粒子分散液。   The container-containing abrasive particle dispersion according to any one of claims 1 to 4, wherein the contact angle between the material of the wall surface portion in the container and the abrasive particle dispersion filled in the container is 80 degrees or more. 酸及び/又はその塩と共に用いられる請求項1〜5いずれか記載の容器入り研磨材粒子分散液。   The container-containing abrasive particle dispersion according to any one of claims 1 to 5, which is used together with an acid and / or a salt thereof. 請求項1〜6いずれか記載の容器入り研磨材粒子分散液と酸及び/又はその塩とから構成される研磨液キット。   A polishing liquid kit comprising the container-containing abrasive particle dispersion according to claim 1 and an acid and / or a salt thereof.
JP2004325158A 2004-11-09 2004-11-09 Encased abrasive material particle dispersed liquid Pending JP2006130638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325158A JP2006130638A (en) 2004-11-09 2004-11-09 Encased abrasive material particle dispersed liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325158A JP2006130638A (en) 2004-11-09 2004-11-09 Encased abrasive material particle dispersed liquid

Publications (1)

Publication Number Publication Date
JP2006130638A true JP2006130638A (en) 2006-05-25

Family

ID=36724621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325158A Pending JP2006130638A (en) 2004-11-09 2004-11-09 Encased abrasive material particle dispersed liquid

Country Status (1)

Country Link
JP (1) JP2006130638A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163054A (en) * 2006-12-26 2008-07-17 Kao Corp Dispersion packed in container
JP2008179763A (en) * 2006-12-26 2008-08-07 Kao Corp Polishing liquid kit
JP2008179762A (en) * 2006-12-26 2008-08-07 Kao Corp Silica particle dispersion for polishing
JP2009297814A (en) * 2008-06-11 2009-12-24 Shin-Etsu Chemical Co Ltd Synthetic silica glass substrate polishing agent
US9919962B2 (en) 2008-06-11 2018-03-20 Shin-Etsu Chemical Co., Ltd. Polishing agent for synthetic quartz glass substrate
JP2018053147A (en) * 2016-09-29 2018-04-05 株式会社フジミインコーポレーテッド Abrasive grain dispersion, packed abrasive grain dispersion and manufacturing method therefor
JP2018053148A (en) * 2016-09-29 2018-04-05 株式会社フジミインコーポレーテッド Preservation method of abrasive grain dispersion and manufacturing method of abrasive grain dispersion
JP2021116103A (en) * 2020-01-27 2021-08-10 日揮触媒化成株式会社 Solution storage method and storage container

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163054A (en) * 2006-12-26 2008-07-17 Kao Corp Dispersion packed in container
JP2008179763A (en) * 2006-12-26 2008-08-07 Kao Corp Polishing liquid kit
JP2008179762A (en) * 2006-12-26 2008-08-07 Kao Corp Silica particle dispersion for polishing
JP2009297814A (en) * 2008-06-11 2009-12-24 Shin-Etsu Chemical Co Ltd Synthetic silica glass substrate polishing agent
US9919962B2 (en) 2008-06-11 2018-03-20 Shin-Etsu Chemical Co., Ltd. Polishing agent for synthetic quartz glass substrate
JP2018053147A (en) * 2016-09-29 2018-04-05 株式会社フジミインコーポレーテッド Abrasive grain dispersion, packed abrasive grain dispersion and manufacturing method therefor
JP2018053148A (en) * 2016-09-29 2018-04-05 株式会社フジミインコーポレーテッド Preservation method of abrasive grain dispersion and manufacturing method of abrasive grain dispersion
JP6990969B2 (en) 2016-09-29 2022-02-03 株式会社フジミインコーポレーテッド Abrasive grain dispersion liquid, abrasive grain dispersion liquid in a container and its manufacturing method
JP2021116103A (en) * 2020-01-27 2021-08-10 日揮触媒化成株式会社 Solution storage method and storage container

Similar Documents

Publication Publication Date Title
JP4451347B2 (en) Polishing liquid composition
JP4231632B2 (en) Polishing liquid composition
JP5437571B2 (en) Polishing fluid kit
JP5219886B2 (en) Polishing liquid composition
US7014534B2 (en) Method for manufacturing substrate
US20070167116A1 (en) Polishing composition
JP5283247B2 (en) Polishing liquid composition for glass substrate
US8557137B2 (en) Polishing composition for nickel phosphorous memory disks
US20050003746A1 (en) Polishing composition
JP5019429B2 (en) Dispersion in container
JP4214093B2 (en) Polishing liquid composition
JP5606663B2 (en) Polishing silica particle dispersion
JP2007320031A (en) Polishing liquid composition
JP4286168B2 (en) How to reduce nanoscratches
JP2006130638A (en) Encased abrasive material particle dispersed liquid
JP4414292B2 (en) Polishing speed improvement method
JP4462599B2 (en) Polishing liquid composition
JP2007301721A (en) Polishing liquid composition
JP2003211351A (en) Method of reducing micro projections
JP4267546B2 (en) Substrate manufacturing method
US6918938B2 (en) Polishing composition
JP4648367B2 (en) Polishing liquid composition
JP4640981B2 (en) Substrate manufacturing method
JP2009181690A (en) Method of manufacturing substrate
JP4214107B2 (en) Polishing liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061206

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080422

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091113

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802