JP4156174B2 - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP4156174B2
JP4156174B2 JP2000141025A JP2000141025A JP4156174B2 JP 4156174 B2 JP4156174 B2 JP 4156174B2 JP 2000141025 A JP2000141025 A JP 2000141025A JP 2000141025 A JP2000141025 A JP 2000141025A JP 4156174 B2 JP4156174 B2 JP 4156174B2
Authority
JP
Japan
Prior art keywords
polishing
substrate
particle size
polished
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000141025A
Other languages
Japanese (ja)
Other versions
JP2001323255A (en
Inventor
宏一 内藤
滋夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000141025A priority Critical patent/JP4156174B2/en
Priority to MYPI20012102A priority patent/MY118582A/en
Priority to TW090111040A priority patent/TW526259B/en
Priority to US09/852,764 priority patent/US6551175B2/en
Priority to CNB011169346A priority patent/CN1180043C/en
Publication of JP2001323255A publication Critical patent/JP2001323255A/en
Application granted granted Critical
Publication of JP4156174B2 publication Critical patent/JP4156174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、研磨液組成物、該研磨液組成物を用いた被研磨基板の研磨方法及び基板の製造方法に関する。
【0002】
【従来の技術】
近年の磁気記録密度の増加に伴い、磁気情報を読み書きする際のメモリー磁気ディスクにおける磁気ヘッドの浮上量はますます低くなってきている。その結果、磁気ディスク基板の製造工程における表面研磨工程において、表面平滑性〔例えば、表面粗さ(Ra)及びうねり(wa)〕に優れ、且つ突起、スクラッチ、ピット等の表面欠陥がなく、これら表面欠陥に起因する磁気情報の書き込み・読み出しの際エラーも出ない、ヘッドの低浮上が可能な高精度のディスク面を製造することが要求されている。
【0003】
また、半導体分野においても、回路の高集積化、動作周波数の高速化に伴って配線の微細化が進んでいる。半導体デバイスの製造工程においても、フォトレジストの露光の際、配線の微細化に伴い焦点深度が浅くなるため、パターン形成面のより一層の平滑化が望まれている。
【0004】
しかしながら、従来用いられてきた粉砕により製造された研磨材は、研磨材中に残存する粗大粒子によって、被研磨面に研磨傷が発生するため、前記のような表面平滑性に優れた面質を維持しつつ研磨を行なうことが困難であるという欠点がある。
【0005】
そのため、粒径分布が狭く粗大粒子の混入が少ないコロイダルシリカが用いられている。しかしながら、コロイダルシリカによる研磨では、要求される高い面精度を達成することは比較的容易であるが、粒径が細かいために、研磨後の洗浄工程で被研磨板上に付着したコロイダルシリカを容易に除去できないという欠点がある。この被研磨基板上の残留した研磨材は、磁気記録層の厚みむら等の原因となり、その結果、磁気特性が不安定となるおそれがある。さらに磁気特性が不安定になると、読み書きエラーの発生原因ともなるため好ましくない。
【0006】
この欠点を解決するため、洗浄工程において、残留した研磨材を完全に除去するための様々な洗浄方法が試みられているが、未だ十分ではない。また、今後も研磨材の微粒化はさらに進むと考えられることからも、その除去はますます重要な課題となっている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、研磨後の洗浄工程で、被研磨基板上に実質的に研磨材が残留することなく、被研磨基板の表面平滑性を維持し、表面欠陥を発生させず、且つ経済的な速度で研磨できる研磨液組成物、該研磨液組成物を用いた被研磨基板の研磨方法、該研磨液組成物を用いた基板の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
即ち、本発明の要旨は、
〔1〕水と研磨材を含んでなる研磨液組成物であって、研磨材の粒径分布において、▲1▼粒径40nmにおける小粒径側よりの積算粒径分布(個数基準)が25%以下で、且つ▲2▼小粒径側よりの積算粒径分布(個数基準)が50%となる粒径(D50)が50〜600nmであることを特徴とする研磨液組成物、
〔2〕前記〔1〕記載の研磨液組成物を用いて被研磨基板を研磨する被研磨基板の研磨方法、並びに
〔3〕前記〔1〕記載の研磨液組成物を用いて、被研磨基板を研磨する工程を有する基板の製造方法に関する。
【0009】
【発明の実施の形態】
本発明で用いられる研磨材は、研磨用に一般に使用されている研磨材であればよい。該研磨材として、金属;金属又は半金属の炭化物、窒化物、酸化物、ホウ化物;ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8A族由来のものである。研磨材の具体例として、酸化アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、コロイダルシリカ、ヒュームドシリカ等が挙げられる。これらの中では、酸化アルミニウム、コロイダルシリカ、ヒュームドシリカ、酸化セリウム、酸化ジルコニウム、酸化チタン等が、半導体ウエハや半導体素子、磁気記録媒体用基板等の精密部品用基板の研磨に適している。酸化アルミニウムについては、α、γ等の種々の結晶系が知られているが、用途に応じ適宜選択して使用することができる。このうち、特にコロイダルシリカ粒子は、より高度な平滑性を必要とする高記録密度メモリー磁気ディスク基板の最終研磨用途や半導体基板の研磨用途に適している。これらの研磨材は、単独で又は2種以上を併用することができる。
【0010】
研磨材について、被研磨基板上への研磨材の残留量を低減する観点から粒径40nmにおける小粒径側よりの積算粒径分布は25%以下であり、好ましくは15%以下、より好ましくは10%以下、さらに好ましくは5%以下であり、特に好ましくは3%以下である。小粒径側よりの積算粒径分布を25%以下にするには、例えば、粒径が40nm以下の研磨材の含有量を低くすればよい。粒径が40nm以下の研磨材の含有率を低くする方法としては、シリカゾルを核として成長させるコロイダルシリカの合成において、活性ゾルの添加速度をコントロールすることにより小粒径品の含有の少ないコロイダルシリカを調整することができる。また、小粒径品を含有するコロイダルシリカを例えば、遠心分離機などにより分級して用いることも何ら問題はない。
【0011】
一方、経済的な研磨速度を達成する観点及び表面平滑性に優れ、表面欠陥のない良好な面質を達成する観点から、小粒径側よりの積算粒径分布が50%となる粒径(以下、D50ともいう)は、50〜600nmであり、好ましくは50〜200nm、更に好ましくは50〜150nmである。
【0012】
本発明においては、前記のように研磨材の粒径分布において、▲1▼粒径40nmにおける小粒径側よりの積算粒径分布が25%以下で、▲2▼D50が50〜600nmである点に一つの大きな特徴があり、かかる粒径分布を有する研磨材を用いることで、通常の洗浄により研磨材が被研磨物表面から容易に洗浄され得るという効果が発現される。
【0013】
また、研磨速度が高く、且つ表面平滑性に優れ、表面欠陥のない良好な面質を達成する観点から、小粒径側よりの積算粒径分布が90%となる粒径(以下、D90ともいう)とD50の比(D90/D50)の値は1.3〜3.0であることが好ましく、より好ましくは1.3〜2.0である。
【0014】
また、前記の範囲に研磨材の粒径分布を調整する方法としては、特に限定されないが、例えば、研磨材がコロイダルシリカの場合、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより最終製品に粒径分布を持たせる方法がある。また、異なる粒径分布を有する少なくとも2つ以上の研磨材を混合する方法などで達成することも可能である。この場合、研磨材は同種のものである必要はなく、異種のものを混合することも何ら問題ない。
【0015】
なお、研磨材の粒径は、走査型電子顕微鏡(以下SEMという)を用いて以下の方法により求めることができる。即ち、研磨材を含有する研磨液組成物を研磨材濃度が0.5重量%になるようにエタノールで希釈する。この希釈した溶液を約50℃に加温したSEM用の試料台に均一に塗布する。その後、過剰の溶液を濾紙で吸い取り溶液が凝集しないように均一に自然乾燥させる。
【0016】
自然乾燥させた研磨材にPt−Pdを蒸着させて、日立製作所(株)製電界効果走査型電子顕微鏡(FE−SEM:S−4000型)を用いて、視野中に500個程度の研磨材粒子が観察されるように倍率を3000倍〜10万倍に調節し、1つの試料台について2点観察し写真を撮影する。撮影された写真(4インチ×5インチ)をコピー機等によりA4サイズに拡大して、撮影されたすべての研磨材の粒径をノギス等により計測し集計する。この操作を数回繰り返して、計測する研磨材の数が2000個以上になるようにする。SEMによる測定点数を増やすことは、正確な粒径分布を求める観点からより好ましい。測定した粒径を集計し、小さい粒径から順にその頻度(%)を加算してその値が10%となる粒径をD10、同じく50%となる粒径をD50、90%となる粒径をD90として本発明における個数基準の粒径分布を求めることができる。尚、ここでいう粒径分布は一次粒子の粒径分布として求められる。但し、酸化アルミニウム、酸化セリウム、ヒュームドシリカ等の一次粒子が融着した二次粒子が存在している場合においては、その二次粒子の粒径に基づいて、粒径分布を求めることができる。
【0017】
研磨液組成物中における研磨材の含有量は、研磨速度を向上させる観点から、好ましくは0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、特に好ましくは5重量%以上であり、表面品質を向上させる観点、及び経済性の観点から50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下、特に好ましくは25重量%以下である。すなわち該含有量は、好ましくは0.5〜50重量%、より好ましくは1〜40重量%、さらに好ましくは3〜30重量%、特に好ましくは5〜25重量%である。
【0018】
研磨液組成物中の水は、媒体として使用されるものであり、その含有量は被研磨物を効率良く研磨する観点から、好ましくは50〜99.5重量%、より好ましくは60〜99重量%、さらに好ましくは70〜97重量%、特に好ましくは75〜95重量%である。
【0019】
また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。該他の成分としては、単量体型の酸化合物の金属塩、アンモニウム塩又はアミン塩、過酸化物、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤などが挙げられる。単量体型の酸化合物の金属塩、アンモニウム塩又はアミン塩や過酸化物の具体例としては、特開昭62-25187号公報2頁右上欄3行〜11行、特開昭63-251163 号公報2頁左下欄6行〜13行、特開平1-205973号公報3頁左上欄4行〜右上欄2行、特開平3-115383号公報2頁右下欄16行〜3頁左上欄11行、特開平4-275387号公報2頁右欄27行〜3頁左欄12行及び17行〜23行に記載されているものが挙げられる。
【0020】
また、研磨促進剤として、金属イオンと結合して錯体を形成しうる多座配位子を持つキレート化合物を配合することができる。キレート化合物の具体例としては、特開平4-363385号公報2頁右欄21行〜29行に記載されているものが挙げられる。これらの中では、鉄(III) 塩が好ましく、エチレンジアミン四酢酸−鉄塩、ジエチレントリアミン五酢酸−鉄塩が特に好ましい。
【0021】
これらの成分は単独で用いても良いし、2種以上を混合して用いても良い。また、その含有量は、研磨速度を向上させる観点、それぞれの機能を発現させる観点、及び経済性の観点から、好ましくは研磨液組成物中0.05〜20重量%、より好ましくは0.05〜10重量%、さらに好ましくは0.05〜5重量%である。
【0022】
尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度、及び使用時の濃度のいずれであってもよい。通常、濃縮液として組成物は製造され、これを使用時に希釈して用いる場合が多い。
【0023】
研磨液組成物のpHは、被研磨物の種類や要求品質等に応じて適宜決定することが好ましい。例えば、研磨液組成物のpHは、基板の洗浄性及び加工機械の腐食防止性、作業者の安全性の観点から、2 〜12が好ましい。また、被研磨物がNi-Pメッキされたアルミニウム合金基板等の金属を主対象とした精密部品用基板である場合、研磨速度の向上と表面品質の向上の観点から、2〜9がより好ましく、3〜8が特に好ましい。さらに、半導体ウェハや半導体素子等の研磨、特にシリコン基板、ポリシリコン膜、SiO2 膜等の研磨に用いる場合は、研磨速度の向上と表面品質の向上の観点から、7〜12が好ましく、8〜12がより好ましく、9〜11が特に好ましい。該pHは、必要により、硝酸、硫酸等の無機酸、有機酸、アンモニア、水酸化ナトリウム、水酸化カリウム等の塩基性物質を適宜、所望量で配合することで調整することができる。
【0024】
本発明の被研磨基板の研磨方法は、本発明の研磨液組成物を用いて、あるいは本発明の研磨液組成物の組成となるように各成分を混合して研磨液を調製して被研磨基板を研磨する工程を有している。該研磨方法の例としては、不織布状の有機高分子系研磨布等を貼り付けた研磨盤で基板を挟み込み、研磨液組成物を研磨面に供給し、一定圧力を加えながら研磨盤や基板を動かすことにより研磨する方法などが挙げられる。本発明の研磨方法において、本発明の研磨液組成物を用いることにより、研磨速度を向上させ、スクラッチやピット等の表面欠陥の発生が抑制され、表面粗さ(Ra)を低減させることができ、特に精密部品用基板を好適に製造することができる。
【0025】
また、本発明の基板の製造方法は、本発明の研磨液組成物を用いて被研磨液基板を研磨する工程を有する。
【0026】
被研磨基板等に代表される被研磨物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属、及びこれらの金属を主成分とした合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、窒化チタン等のセラミック材料、ポリイミド樹脂などの樹脂等が挙げられる。中でもNi−Pメッキされたアルミニウム合金からなる基板や結晶化ガラス、強化ガラスなどのガラス基板がより好ましく、Ni−Pメッキされたアルミニウム合金からなる基板が特に好ましい。
【0027】
これらの被研磨物の形状には、特に制限がなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が本発明の研磨液組成物を用いた研磨の対象となる。その中でも、ディスク状の被研磨物の研磨に特に優れている。
【0028】
本発明の研磨液組成物は、精密部品用基板の研磨に好適に用いられる。例えば、磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の研磨に適している。半導体基板の研磨は、シリコンウェハ(ベアウェハ)のポリッシング工程、埋め込み素子分離膜の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において行われる研磨がある。本発明の研磨液組成物は、特に磁気ディスク基板の研磨に適している。さらに、表面粗さ(Ra)3Å以下の磁気ディスク基板を得るのに適している。本明細書では、表面粗さ(Ra)は、一般に言われる中心線粗さとして求められ、80μm以下の波長成分を持つ粗さ曲線から得られる中心線平均粗さをRaと表す。これは以下のように測定することができる。
【0029】
中心線平均粗さ(Ra)
ランク・テーラーホブソン社製 タリーステップを用いて、以下の条件で測定する。
触針先端サイズ:2.5μm×2.5μm
ハイパスフィルター:80μm
測定長さ:0.64mm
【0030】
本発明の基板の製造方法は、前記研磨液組成物を用いた研磨工程を有し、該研磨工程は、複数の研磨工程の中でも2工程目以降に行われるのが好ましく、最終研磨工程に行われるのが特に好ましい。例えば、1工程、又は2工程の研磨工程によって、表面粗さ(Ra)を5Å〜15Åに調整したNi−Pメッキされたアルミニウム合金からなる基板を、本発明の研磨液組成物を用いた研磨工程によって研磨して、表面粗さ(Ra)3Å以下の磁気ディスク基板を、好ましくは表面粗さ(Ra)2.5Å以下の磁気ディスク基板を製造することができる。
【0031】
特に、本発明の研磨液組成物は、2工程の研磨で表面粗さ(Ra)3Å以下の磁気ディスク基板を、好ましくは表面粗さ(Ra)2.5Å以下の磁気ディスク基板を製造する際の2工程目に用いられるのに適している。
【0032】
製造された基板は、表面平滑性に優れたものである。例えば、磁気ディスク基板の場合は、その表面平滑性として、表面粗さ(Ra)が3Å以下、好ましくは2.5Å以下であることが望ましい。また、前記基板には表面欠陥が実質的に存しない。
【0033】
以上のように、本発明の研磨液組成物を用いることで、研磨速度を向上させると共に、スクラッチ、ピット等の表面欠陥が少なく、表面粗さ(Ra)等の平滑性が向上した、表面性状に優れた高品質の磁気ディスク基板を生産効率よく製造することができる。
【0034】
本発明の研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。
【0035】
【実施例】
実施例1〜5及び比較例1〜2(但し、実施例4と実施例5は参考例)
研磨材として、走査型電子顕微鏡(日立製作所社製S−4000型)を用い、発明の詳細な説明の項に記載した方法(粒径はノギスで測定)により算出された積算粒径D50が各々25〜160nmのコロイダルシリカを用い、適宜配合し表1に示す粒径分布(40nmにおける積算粒径分布、D50、D90及びD50/D90)を有する研磨材を調製した。得られた研磨材25重量部およびイオン交換水72重量部を添加混合した後、研磨促進剤としてEDTA−Fe 塩(キレスト(株)製、商品名:キレストFe)3重量部をさらに添加して研磨液組成物を調製した。また、実施例2では比較例2の研磨材を遠心分離機を用いて小粒径の研磨材を分級除去して研磨に供した。なお、図1は実施例2に用いた研磨材のFE−SEM像(倍率50000倍)を示す。図2は比較例1に用いた研磨材のFE−SEM像(倍率50000倍)を示す。図3は実施例3に用いた研磨材の粒径分布を示す。図4は比較例1に用いた研磨材の粒径分布を示す。
【0036】
被研磨基板として、Ni−Pメッキされた表面粗さRa=15Å、厚さ:0.8mmの直径3.5インチサイズのアルミニム合金基板を用いて研磨評価を行った。研磨条件は以下の通りである。
【0037】
〈両面研磨機の設定条件〉
研磨試験機:スピードファム社製 9B型両面研磨機
研磨パッド:ロデール・ニッタ社製 ポリテックスDG−H
定盤回転数:50r/min
スラリー供給量:20ml/min
研磨時間:4分
研磨荷重:7.8kPa
投入した基板の枚数:10枚
【0038】
研磨前後のアルミニウム合金基板の重量変化より研磨速度を求め、平均粒径:D50が100nmのコロイダルシリカで研磨した比較例2の研磨速度を基準とした相対値(相対研磨速度)を求めた。その結果を表1に合わせて示す。
【0039】
<被研磨基板上に残留した研磨材の測定>
被研磨基板上に残留した研磨材は、原子間力顕微鏡(AFM:デジタルインスツルメント社製 NanoscopeIII )によって、Scan rate=1Hzで被研磨基板の裏表各3カ所でμm×μmの範囲を測定し残留した研磨材(残留砥粒)の有無を確認した。その結果を表1に示す。なお、図5は、実施例3の研磨液組成物を用いて研磨した被研磨基板の洗浄した後のAFM像を示す。図6は、比較例1の研磨液組成物を用いて研磨した被研磨基板の洗浄した後のAFM像を示す。
【0040】
<表面粗さの測定>
ランク・テーラーホブソン社製 タリーステップを用いて、以下の条件で中心線表面粗さ(Ra)を測定した。その結果を表1に示す。
触針先端サイズ:2.5μm×2.5μm
ハイパスフィルター:80μm
測定長さ:0.64mm
【0041】
<スクラッチの測定>
光学顕微鏡観察(微分干渉顕微鏡)を用いて倍率200倍で各基板の表面を60度おきに6カ所測定した。その結果を表1に示す。
【0042】
<ピットの測定>
光学顕微鏡観察(微分干渉顕微鏡)を用いて倍率200 倍で各基板の表面を30度おきに12カ所測定し、12視野あたりのピット数を数えた。その結果を表1に示す。
【0043】
評価基準
表1に記載の研磨液により研磨された基板について、各項目の平均値を求め下記の基準により評価を行った。
残留した研磨材 ○:5個以下/μm×μm
×:5個を越える/μm×μm
表面粗さ(Ra) ○:3Å以下 ×:3Åを越える
スクラッチ ○:0.5本以下 ×:0.5本を越える
ピット ○:3個/面以下 ×:3個/面を越える
【0044】
【表1】

Figure 0004156174
【0045】
表1の結果より、実施例1〜5で得られた研磨液組成物は、いずれも比較例1〜2で得られた研磨液組成物より研磨速度が速く、研磨材の残留がなく、得られる被研磨物の表面平滑性にも優れ、スクラッチ、ピット等の表面欠陥もないものであることがわかる。
【0046】
【発明の効果】
本発明により、研磨・洗浄後の被研磨基板上に研磨材の残留がなく、さらにスクラッチ、ピット等の表面欠陥が少なく、表面粗さ(Ra)等の表面平滑性が向上したメモリー磁気ディスク基板等の被研磨基板を効率よく製造することができるという効果が奏される。
【図面の簡単な説明】
【図1】図1は、実施例2に用いた研磨材のFE−SEM像である。
【図2】図2は、比較例1に用いた研磨材のFE−SEM像である。
【図3】図3は、実施例3に用いた研磨材の粒径分布である。
【図4】図4は、比較例1に用いた研磨材の粒径分布である。
【図5】図5は、実施例3の研磨液組成物を用いて研磨した被研磨基板の洗浄した後のAFM像である。
【図6】図6は、比較例1の研磨液組成物を用いて研磨した被研磨基板の洗浄した後のAFM像である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing composition, a polishing method for a substrate to be polished using the polishing composition, and a method for manufacturing a substrate.
[0002]
[Prior art]
With the recent increase in magnetic recording density, the flying height of the magnetic head on the memory magnetic disk when reading and writing magnetic information is becoming increasingly lower. As a result, the surface polishing process in the manufacturing process of the magnetic disk substrate is excellent in surface smoothness [for example, surface roughness (Ra) and waviness (wa)], and there are no surface defects such as protrusions, scratches, pits, etc. There is a demand for manufacturing a highly accurate disk surface that can cause a low flying height of the head without causing an error in writing / reading magnetic information due to surface defects.
[0003]
Also in the semiconductor field, the miniaturization of wiring is progressing along with higher integration of circuits and higher operating frequency. Also in the manufacturing process of a semiconductor device, when the photoresist is exposed, the depth of focus becomes shallow with the miniaturization of the wiring, so that further smoothing of the pattern forming surface is desired.
[0004]
However, the abrasives produced by pulverization that have been used in the past have polishing scratches on the surface to be polished due to coarse particles remaining in the abrasive, so that the surface quality excellent in surface smoothness as described above is obtained. There is a drawback that it is difficult to polish while maintaining.
[0005]
For this reason, colloidal silica with a narrow particle size distribution and less coarse particles is used. However, in polishing with colloidal silica, it is relatively easy to achieve the required high surface accuracy. However, because the particle size is fine, colloidal silica adhering to the plate to be polished in the cleaning process after polishing is easy. However, there is a drawback that it cannot be removed. The abrasive remaining on the substrate to be polished may cause uneven thickness of the magnetic recording layer, and as a result, the magnetic characteristics may become unstable. Further, unstable magnetic characteristics are not preferable because it may cause read / write errors.
[0006]
In order to solve this drawback, various cleaning methods for completely removing the remaining abrasive material have been tried in the cleaning process, but it is still not sufficient. In addition, since it is thought that the atomization of abrasives will further progress in the future, the removal thereof has become an increasingly important issue.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to maintain the surface smoothness of the substrate to be polished without causing any abrasive material to remain on the substrate to be polished in the cleaning step after polishing, and to generate a surface defect without being economical. An object of the present invention is to provide a polishing liquid composition that can be polished at a high speed, a polishing method for a substrate to be polished using the polishing liquid composition, and a method for manufacturing a substrate using the polishing liquid composition.
[0008]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
[1] A polishing composition comprising water and an abrasive, and in the particle size distribution of the abrasive, (1) the cumulative particle size distribution (number basis) from the small particle size side at a particle size of 40 nm is 25. %, And (2) a polishing liquid composition having a particle size (D50) of 50 to 600 nm at which the cumulative particle size distribution (number basis) from the small particle size side is 50%,
[2] A polishing method for a substrate to be polished using the polishing liquid composition according to [1], and [3] a substrate to be polished using the polishing liquid composition according to [1]. It is related with the manufacturing method of the board | substrate which has the process of grinding | polishing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The abrasive used in the present invention may be an abrasive generally used for polishing. Examples of the abrasive include metal; metal or metalloid carbide, nitride, oxide, boride; diamond and the like. The metal or metalloid element is derived from the 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or 8A group of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, colloidal silica, and fumed silica. Among these, aluminum oxide, colloidal silica, fumed silica, cerium oxide, zirconium oxide, titanium oxide, and the like are suitable for polishing precision component substrates such as semiconductor wafers, semiconductor elements, and magnetic recording medium substrates. As for aluminum oxide, various crystal systems such as α and γ are known, but can be appropriately selected and used depending on the application. Of these, colloidal silica particles are particularly suitable for final polishing applications of high recording density memory magnetic disk substrates and semiconductor substrate polishing applications that require higher smoothness. These abrasives can be used alone or in combination of two or more.
[0010]
With respect to the abrasive, from the viewpoint of reducing the residual amount of abrasive on the substrate to be polished, the cumulative particle size distribution from the small particle size side at a particle size of 40 nm is 25% or less, preferably 15% or less, more preferably It is 10% or less, more preferably 5% or less, and particularly preferably 3% or less. In order to reduce the cumulative particle size distribution from the small particle size side to 25% or less, for example, the content of an abrasive having a particle size of 40 nm or less may be lowered. As a method for reducing the content of abrasives having a particle size of 40 nm or less, colloidal silica containing a small particle size is controlled by controlling the rate of addition of the active sol in the synthesis of colloidal silica grown using silica sol as a nucleus. Can be adjusted. Further, there is no problem in using colloidal silica containing a small particle size product by classification with a centrifuge, for example.
[0011]
On the other hand, from the viewpoint of achieving an economical polishing rate and excellent surface smoothness and achieving a good surface quality free from surface defects, a particle diameter (the cumulative particle diameter distribution from the small particle diameter side becomes 50% ( (Hereinafter also referred to as D50) is 50 to 600 nm, preferably 50 to 200 nm, and more preferably 50 to 150 nm.
[0012]
In the present invention, as described above, in the particle size distribution of the abrasive, (1) the cumulative particle size distribution from the small particle size side in the particle size of 40 nm is 25% or less, and (2) D50 is 50 to 600 nm. There is one big feature in the point, and by using an abrasive having such a particle size distribution, an effect that the abrasive can be easily cleaned from the surface of the object to be polished by normal cleaning is exhibited.
[0013]
Further, from the viewpoint of achieving a good surface quality with a high polishing rate, excellent surface smoothness, and no surface defects, a particle size (hereinafter also referred to as D90) having an integrated particle size distribution of 90% from the small particle size side. The ratio of D50 to D50 (D90 / D50) is preferably 1.3 to 3.0, more preferably 1.3 to 2.0.
[0014]
In addition, the method for adjusting the particle size distribution of the abrasive within the above range is not particularly limited. For example, when the abrasive is colloidal silica, particles that become new nuclei in the process of particle growth in the production stage are used. There is a method of giving the final product a particle size distribution by adding. It can also be achieved by a method of mixing at least two abrasives having different particle size distributions. In this case, it is not necessary that the abrasives are of the same type, and there is no problem in mixing different types of abrasives.
[0015]
The particle size of the abrasive can be determined by the following method using a scanning electron microscope (hereinafter referred to as SEM). That is, the polishing composition containing the abrasive is diluted with ethanol so that the abrasive concentration is 0.5% by weight. This diluted solution is uniformly applied to a sample stage for SEM heated to about 50 ° C. Thereafter, the excess solution is blotted with a filter paper and uniformly dried naturally so that the solution does not aggregate.
[0016]
Pt-Pd is vapor-deposited on a naturally-dried abrasive, and about 500 abrasives in the field of view using a field effect scanning electron microscope (FE-SEM: S-4000 type) manufactured by Hitachi, Ltd. The magnification is adjusted to 3000 times to 100,000 times so that particles can be observed, and two points are observed on one sample stage, and a photograph is taken. The photographed photograph (4 inches × 5 inches) is enlarged to A4 size by a copying machine or the like, and the particle diameters of all photographed abrasives are measured and counted by calipers or the like. This operation is repeated several times so that the number of abrasives to be measured is 2000 or more. Increasing the number of measurement points by SEM is more preferable from the viewpoint of obtaining an accurate particle size distribution. The measured particle diameters are aggregated, and the frequency (%) is added in order from the smallest particle diameter, the particle diameter at which the value is 10% is D10, the particle diameter at 50% is D50, the particle diameter at 90% D90 can be used to determine the number-based particle size distribution in the present invention. In addition, the particle size distribution here is calculated | required as a particle size distribution of a primary particle. However, when there are secondary particles in which primary particles such as aluminum oxide, cerium oxide, and fumed silica are fused, the particle size distribution can be obtained based on the particle size of the secondary particles. .
[0017]
The content of the abrasive in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, still more preferably 3% by weight or more, and particularly preferably 5% from the viewpoint of improving the polishing rate. It is 50% by weight or less, more preferably 40% by weight or less, still more preferably 30% by weight or less, and particularly preferably 25% by weight or less from the viewpoint of improving the surface quality and economical efficiency. That is, the content is preferably 0.5 to 50% by weight, more preferably 1 to 40% by weight, still more preferably 3 to 30% by weight, and particularly preferably 5 to 25% by weight.
[0018]
Water in the polishing composition is used as a medium, and the content thereof is preferably 50 to 99.5% by weight, more preferably 60 to 99% by weight from the viewpoint of efficiently polishing the object to be polished. %, More preferably 70 to 97% by weight, particularly preferably 75 to 95% by weight.
[0019]
Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. Examples of the other components include metal salts, ammonium salts or amine salts of monomeric acid compounds, peroxides, thickeners, dispersants, rust inhibitors, basic substances, and surfactants. Specific examples of monomeric acid compound metal salts, ammonium salts, amine salts and peroxides are disclosed in JP-A 62-25187, page 2, right upper column, lines 3 to 11, JP-A 63-251163. Japanese Laid-Open Patent Publication No. 2-lower left column 6 lines to 13 lines, Japanese Patent Laid-Open No. 1-205973, page 3, upper left column 4 lines to upper right column 2 lines, Japanese Patent Application Laid-Open No. 3-115383, page 2 lower right column 16 lines to page 3 upper left column 11 No. 4, JP-A-4-275387, page 2, right column, line 27 to page 3, left column, line 12 and lines 17 to 23.
[0020]
Further, as a polishing accelerator, a chelate compound having a multidentate ligand capable of binding to a metal ion to form a complex can be blended. Specific examples of the chelate compound include those described in JP-A-4-363385, page 2, right column, lines 21 to 29. Among these, iron (III) salts are preferable, and ethylenediaminetetraacetic acid-iron salts and diethylenetriaminepentaacetic acid-iron salts are particularly preferable.
[0021]
These components may be used alone or in combination of two or more. Further, the content is preferably 0.05 to 20% by weight, more preferably 0.05 in the polishing composition from the viewpoint of improving the polishing rate, the viewpoint of developing each function, and the economical viewpoint. -10 wt%, more preferably 0.05-5 wt%.
[0022]
The concentration of each component in the polishing liquid composition may be any of the concentration during production of the composition and the concentration during use. Usually, the composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.
[0023]
The pH of the polishing composition is preferably determined as appropriate according to the type of the object to be polished and the required quality. For example, the pH of the polishing composition is preferably 2 to 12 from the viewpoints of substrate cleaning properties, corrosion resistance of processing machines, and operator safety. In addition, when the object to be polished is a precision component substrate mainly made of a metal such as a Ni-P plated aluminum alloy substrate, 2 to 9 is more preferable from the viewpoint of improving the polishing rate and improving the surface quality. 3 to 8 are particularly preferable. Further, when used for polishing a semiconductor wafer, a semiconductor element, etc., particularly for polishing a silicon substrate, a polysilicon film, a SiO 2 film, etc., 7 to 12 are preferable from the viewpoint of improving the polishing rate and improving the surface quality. ~ 12 are more preferable, and 9-11 are particularly preferable. The pH can be adjusted by blending a basic substance such as an inorganic acid such as nitric acid or sulfuric acid, an organic acid, ammonia, sodium hydroxide, or potassium hydroxide in a desired amount as necessary.
[0024]
The polishing method of the substrate to be polished according to the present invention is prepared by using the polishing liquid composition of the present invention or by mixing each component so as to be the composition of the polishing liquid composition of the present invention to prepare a polishing liquid. A step of polishing the substrate. As an example of the polishing method, the substrate is sandwiched by a polishing machine with a non-woven organic polymer polishing cloth or the like attached thereto, the polishing composition is supplied to the polishing surface, and the polishing machine or substrate is applied while applying a certain pressure. For example, a method of polishing by moving. In the polishing method of the present invention, by using the polishing liquid composition of the present invention, the polishing rate can be improved, the occurrence of surface defects such as scratches and pits can be suppressed, and the surface roughness (Ra) can be reduced. In particular, a substrate for precision parts can be preferably manufactured.
[0025]
Moreover, the manufacturing method of the board | substrate of this invention has the process of grind | polishing a to-be-polished liquid board | substrate using the polishing liquid composition of this invention.
[0026]
The material of the object to be polished typified by the substrate to be polished is, for example, a metal or semi-metal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, an alloy mainly composed of these metals, glass, Examples thereof include glassy substances such as glassy carbon and amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium nitride, and resins such as polyimide resin. Of these, a substrate made of a Ni—P plated aluminum alloy or a glass substrate such as crystallized glass or tempered glass is more preferred, and a substrate made of a Ni—P plated aluminum alloy is particularly preferred.
[0027]
The shape of these objects to be polished is not particularly limited. For example, a shape having a flat portion such as a disk shape, a plate shape, a slab shape, or a prism shape, or a shape having a curved surface portion such as a lens can be polished according to the present invention. It becomes the object of polishing using the liquid composition. Among these, it is particularly excellent for polishing a disk-shaped workpiece.
[0028]
The polishing composition of the present invention is suitably used for polishing precision component substrates. For example, it is suitable for polishing a substrate of a magnetic recording medium such as a magnetic disk, an optical disk, and a magneto-optical disk, a photomask substrate, an optical lens, an optical mirror, an optical prism, and a semiconductor substrate. Polishing of a semiconductor substrate includes polishing performed in a silicon wafer (bare wafer) polishing process, a buried element isolation film forming process, an interlayer insulating film flattening process, a buried metal wiring forming process, a buried capacitor forming process, and the like. The polishing composition of the present invention is particularly suitable for polishing a magnetic disk substrate. Furthermore, it is suitable for obtaining a magnetic disk substrate having a surface roughness (Ra) of 3 mm or less. In the present specification, the surface roughness (Ra) is obtained as a generally-described centerline roughness, and the centerline average roughness obtained from a roughness curve having a wavelength component of 80 μm or less is represented by Ra. This can be measured as follows.
[0029]
Centerline average roughness (Ra)
Using a tally step manufactured by Rank Taylor Hobson, measure under the following conditions.
Tip size of stylus: 2.5 μm × 2.5 μm
High-pass filter: 80 μm
Measurement length: 0.64mm
[0030]
The method for producing a substrate of the present invention includes a polishing step using the polishing composition, and the polishing step is preferably performed after the second step among a plurality of polishing steps. It is particularly preferred that For example, a substrate made of a Ni—P plated aluminum alloy having a surface roughness (Ra) adjusted to 5 to 15 mm by a one-step or two-step polishing step is polished using the polishing composition of the present invention. By polishing according to the process, a magnetic disk substrate having a surface roughness (Ra) of 3 mm or less, preferably a magnetic disk substrate having a surface roughness (Ra) of 2.5 mm or less can be produced.
[0031]
In particular, the polishing composition of the present invention can be used to produce a magnetic disk substrate having a surface roughness (Ra) of 3 mm or less, preferably a magnetic disk substrate having a surface roughness (Ra) of 2.5 mm or less by two-step polishing. It is suitable for being used in the second step.
[0032]
The manufactured substrate is excellent in surface smoothness. For example, in the case of a magnetic disk substrate, as its surface smoothness, the surface roughness (Ra) is desirably 3 mm or less, preferably 2.5 mm or less. Further, the substrate is substantially free from surface defects.
[0033]
As described above, the use of the polishing composition of the present invention improves the polishing rate, reduces surface defects such as scratches and pits, and improves the smoothness such as surface roughness (Ra). High-quality magnetic disk substrates excellent in production can be produced with high production efficiency.
[0034]
The polishing composition of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.
[0035]
【Example】
Examples 1 to 5 and Comparative Examples 1 and 2 (However, Examples 4 and 5 are reference examples)
As the abrasive, a scanning electron microscope (S-4000 model manufactured by Hitachi, Ltd.) was used, and the cumulative particle diameter D50 calculated by the method described in the detailed description of the invention (particle diameter measured with calipers) Using a colloidal silica of 25 to 160 nm, an abrasive having a particle size distribution (integrated particle size distribution at 40 nm, D50, D90 and D50 / D90) shown in Table 1 was prepared as appropriate. After adding and mixing 25 parts by weight of the obtained abrasive and 72 parts by weight of ion-exchanged water, 3 parts by weight of EDTA-Fe salt (manufactured by Kirest Co., Ltd., trade name: Kirest Fe) was further added as a polishing accelerator. A polishing composition was prepared. Further, in Example 2, the abrasive of Comparative Example 2 was subjected to polishing by classifying and removing the abrasive having a small particle diameter using a centrifuge. FIG. 1 shows an FE-SEM image (magnification 50000 times) of the abrasive used in Example 2. FIG. 2 shows an FE-SEM image (50000 times magnification) of the abrasive used in Comparative Example 1. FIG. 3 shows the particle size distribution of the abrasive used in Example 3. FIG. 4 shows the particle size distribution of the abrasive used in Comparative Example 1.
[0036]
Polishing evaluation was performed using a Ni—P plated surface roughness Ra = 15 mm and a thickness: 0.8 mm of an aluminum alloy substrate having a diameter of 3.5 inches as a substrate to be polished. The polishing conditions are as follows.
[0037]
<Setting conditions of double-side polishing machine>
Polishing test machine: 9B type double-side polishing machine made by Speed Fam Co., Ltd. Polishing pad: Polytex DG-H made by Rodel Nitta
Plate rotation speed: 50r / min
Slurry supply amount: 20 ml / min
Polishing time: 4 minutes Polishing load: 7.8 kPa
Number of loaded substrates: 10 [0038]
The polishing rate was determined from the change in weight of the aluminum alloy substrate before and after polishing, and the relative value (relative polishing rate) was determined based on the polishing rate of Comparative Example 2 polished with colloidal silica having an average particle diameter D50 of 100 nm. The results are also shown in Table 1.
[0039]
<Measurement of polishing material remaining on substrate to be polished>
The polishing material remaining on the substrate to be polished was measured in an area of 2 μm × 2 μm at each of the three sides of the substrate to be polished with Scan rate = 1 Hz using an atomic force microscope (AFM: Nanoscope III manufactured by Digital Instruments). The presence or absence of the remaining abrasive (residual abrasive grains) was measured and confirmed. The results are shown in Table 1. FIG. 5 shows an AFM image after the substrate to be polished polished using the polishing composition of Example 3 is cleaned. FIG. 6 shows an AFM image after the substrate to be polished polished with the polishing composition of Comparative Example 1 was cleaned.
[0040]
<Measurement of surface roughness>
Using a tally step manufactured by Rank Taylor Hobson, the centerline surface roughness (Ra) was measured under the following conditions. The results are shown in Table 1.
Tip size of stylus: 2.5 μm × 2.5 μm
High-pass filter: 80 μm
Measurement length: 0.64mm
[0041]
<Measurement of scratch>
Using an optical microscope observation (differential interference microscope), the surface of each substrate was measured at 60 points every 60 degrees at a magnification of 200 times. The results are shown in Table 1.
[0042]
<Measurement of pits>
Using an optical microscope observation (differential interference microscope), the surface of each substrate was measured at 30 positions every 200 degrees at a magnification of 200 times, and the number of pits per 12 fields of view was counted. The results are shown in Table 1.
[0043]
Evaluation Criteria For the substrates polished with the polishing liquid shown in Table 1, the average value of each item was determined and evaluated according to the following criteria.
Remaining abrasive ○: 5 or less / 2 μm × 2 μm
×: five more than / 2 μm × 2 μm
Surface roughness (Ra) ○: 3 mm or less ×: Scratch exceeding 3 mm ○: 0.5 or less ×: 0.5 or more pits ○: 3 or less or less ×: 3 or more or more [0044]
[Table 1]
Figure 0004156174
[0045]
From the results in Table 1, the polishing liquid compositions obtained in Examples 1 to 5 were faster in polishing rate than the polishing liquid compositions obtained in Comparative Examples 1 and 2, and there was no residual abrasive. It can be seen that the surface to be polished is excellent in surface smoothness and has no surface defects such as scratches and pits.
[0046]
【The invention's effect】
According to the present invention, a memory magnetic disk substrate in which no polishing material remains on the substrate to be polished after polishing and cleaning, surface defects such as scratches and pits are small, and surface smoothness such as surface roughness (Ra) is improved. The effect that the substrate to be polished such as can be efficiently manufactured is exhibited.
[Brief description of the drawings]
FIG. 1 is an FE-SEM image of an abrasive used in Example 2. FIG.
FIG. 2 is an FE-SEM image of an abrasive used in Comparative Example 1.
FIG. 3 is a particle size distribution of an abrasive used in Example 3.
4 is a particle size distribution of an abrasive used in Comparative Example 1. FIG.
5 is an AFM image after cleaning of a substrate to be polished polished with the polishing composition of Example 3. FIG.
6 is an AFM image after cleaning of a substrate to be polished polished with the polishing composition of Comparative Example 1. FIG.

Claims (4)

水、コロイダルシリカ及びキレート化合物を含んでなるNi−Pメッキされたアルミニウム合金からなる基板用研磨液組成物であって、コロイダルシリカの粒径分布において、(1)粒径40nmにおける小粒径側よりの積算粒径分布(個数基準)が%以下で、且つ(2)小粒径側よりの積算粒径分布(個数基準)が50%となる粒径(D50)が50〜150nmであることを特徴とするNi−Pメッキされたアルミニウム合金からなる基板用研磨液組成物。A polishing composition for a substrate comprising a Ni-P plated aluminum alloy comprising water, colloidal silica and a chelate compound, wherein (1) the particle size distribution of colloidal silica is as follows: The cumulative particle size distribution (number basis) is 3 % or less, and (2) the particle size (D50) at which the cumulative particle size distribution (number basis) from the small particle size side is 50% is 50 to 150 nm. A polishing composition for substrates comprising a Ni-P plated aluminum alloy , characterized in that: 請求項1記載の研磨液組成物を用いて被研磨基板を研磨する被研磨基板の研磨方法。Polished substrate polishing method for polishing a substrate to be polished by using the polishing composition according to claim 1 Symbol placement. 請求項1記載の研磨液組成物を用いて、被研磨基板を研磨する工程を有する基板の製造方法。By using the polishing composition according to claim 1 Symbol mounting method of manufacturing a substrate having a step of polishing the substrate. 請求項1記載の研磨液組成物を用いて、被研磨基板を研磨することを特徴とする、残留砥粒の低減した基板を製造する方法。Method using the polishing liquid composition of claim 1 Symbol mounting, characterized by polishing the substrate, to produce a reduced substrate of residual abrasives.
JP2000141025A 2000-05-12 2000-05-12 Polishing liquid composition Expired - Fee Related JP4156174B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000141025A JP4156174B2 (en) 2000-05-12 2000-05-12 Polishing liquid composition
MYPI20012102A MY118582A (en) 2000-05-12 2001-05-04 Polishing composition
TW090111040A TW526259B (en) 2000-05-12 2001-05-09 Polishing composition
US09/852,764 US6551175B2 (en) 2000-05-12 2001-05-11 Polishing composition
CNB011169346A CN1180043C (en) 2000-05-12 2001-05-11 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141025A JP4156174B2 (en) 2000-05-12 2000-05-12 Polishing liquid composition

Publications (2)

Publication Number Publication Date
JP2001323255A JP2001323255A (en) 2001-11-22
JP4156174B2 true JP4156174B2 (en) 2008-09-24

Family

ID=18648203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141025A Expired - Fee Related JP4156174B2 (en) 2000-05-12 2000-05-12 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP4156174B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997152B2 (en) 2002-12-26 2007-10-24 花王株式会社 Polishing liquid composition
JP2005286046A (en) * 2004-03-29 2005-10-13 Nitta Haas Inc Abrasive composition for semiconductor
JP4951218B2 (en) * 2004-07-15 2012-06-13 三星電子株式会社 Cerium oxide abrasive particles and composition comprising the abrasive particles
DE102005017372A1 (en) * 2005-04-14 2006-10-19 Degussa Ag Aqueous cerium oxide dispersion
KR20120037451A (en) * 2009-08-07 2012-04-19 제이에스알 가부시끼가이샤 Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using same
JP5890088B2 (en) * 2010-07-26 2016-03-22 山口精研工業株式会社 Abrasive composition
JP6110681B2 (en) * 2013-02-13 2017-04-05 株式会社フジミインコーポレーテッド Polishing composition, polishing composition manufacturing method and polishing product manufacturing method
JP2015189965A (en) * 2014-03-31 2015-11-02 株式会社フジミインコーポレーテッド Composition for polishing

Also Published As

Publication number Publication date
JP2001323255A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
US6551175B2 (en) Polishing composition
JP4251516B2 (en) Polishing liquid composition
JP4231632B2 (en) Polishing liquid composition
US6454820B2 (en) Polishing composition
US7220676B2 (en) Roll-off reducing agent
JP4451347B2 (en) Polishing liquid composition
US20050208883A1 (en) Polishing composition
JP4213858B2 (en) Polishing liquid composition
JP4156174B2 (en) Polishing liquid composition
JP4286168B2 (en) How to reduce nanoscratches
JP4214093B2 (en) Polishing liquid composition
JP4104335B2 (en) Method for reducing microprojections
JP2007301721A (en) Polishing liquid composition
JP4021133B2 (en) Polishing liquid composition
JP3472687B2 (en) Method of manufacturing magnetic disk substrate
JP4267546B2 (en) Substrate manufacturing method
JP4092021B2 (en) Polishing liquid composition
JP4092015B2 (en) Polishing liquid composition
JP3606806B2 (en) Polishing liquid composition
JP3982925B2 (en) Polishing liquid composition
JP3997053B2 (en) Roll-off reducing agent
JP4076630B2 (en) Polishing liquid composition
JP3575750B2 (en) Polishing liquid composition
JP4076852B2 (en) Micro waviness reducing agent
JP4093506B2 (en) Polishing liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees