JP2003211351A - Method of reducing micro projections - Google Patents

Method of reducing micro projections

Info

Publication number
JP2003211351A
JP2003211351A JP2002005943A JP2002005943A JP2003211351A JP 2003211351 A JP2003211351 A JP 2003211351A JP 2002005943 A JP2002005943 A JP 2002005943A JP 2002005943 A JP2002005943 A JP 2002005943A JP 2003211351 A JP2003211351 A JP 2003211351A
Authority
JP
Japan
Prior art keywords
polishing
substrate
acid
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002005943A
Other languages
Japanese (ja)
Other versions
JP4104335B2 (en
Inventor
Yoshiaki Ooshima
良暁 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002005943A priority Critical patent/JP4104335B2/en
Publication of JP2003211351A publication Critical patent/JP2003211351A/en
Application granted granted Critical
Publication of JP4104335B2 publication Critical patent/JP4104335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reducing micro projections of a polishing object substrate capable of economically and highly speedily reducing the surface defect such as a small surface roughness, a projection, and a polishing flaw on a workpiece after polishing, and especially the micro projection detected by a surface shape analysis using an atomic force microscope for finishing polishing of a memory hard disk and polishing for a semiconductor device, to provide a substrate for a magnetic disk obtained by the same method, and to provide manufacturing method for a substrate using the same method. <P>SOLUTION: This method reduces the micro projection of the polishing object substrate detected by the surface analysis using the atomic force microscope (AFM), and has a process of polishing the substrate using polishing liquid composition, which includes water, polishing material, and acid compound, shows acid pH, and has a concentration of the polishing material less than 10 wt.%. The substrate for the magnetic disk is provided by the same method. The method is to manufacture the substrate for the magnetic disk reducing the micro projection detected by the surface analysis using the atomic force microscope (AFM) using the same method. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子間力顕微鏡
(AFM)を用いた表面解析における微小突起を低減す
る方法、該方法を用いて得られる磁気ディスク用基板及
び前記方法を用いる基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing microscopic protrusions in surface analysis using an atomic force microscope (AFM), a magnetic disk substrate obtained by using the method, and a method for manufacturing a substrate using the method. Regarding the method.

【0002】[0002]

【従来の技術】近年のメモリーハードディスクドライブ
には、高容量・小径化が求められ記録密度を上げるため
に磁気ヘッドの浮上量を低下させたり、単位記録面積を
小さくすることが強いられている。それに伴い、磁気デ
ィスク用基板の製造工程においても研磨後に要求される
表面品質は年々厳しくなってきており、ヘッドの低浮上
に対応して、表面粗さ、微小うねり、ロールオフ、突起
の低減や単位記録面積の減少に対応して許容されるスク
ラッチ、ピットの大きさと深さがますます小さくなって
きている。
2. Description of the Related Art In recent years, memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, it is required to reduce the flying height of a magnetic head or reduce the unit recording area. Along with this, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, and in response to low head flying, surface roughness, minute waviness, roll-off, reduction of protrusions and The size and depth of scratches and pits that are permissible corresponding to the decrease in the unit recording area are becoming smaller and smaller.

【0003】また、半導体分野においても、高集積化、
高速化に伴って配線の微細化が進んでいる。半導体デバ
イスの製造プロセスにおいても、フォトレジストの露光
の際、配線の微細化に伴い焦点深度が浅くなるため、パ
ターン形成面のより一層の平滑化が望まれている。
Also in the semiconductor field, high integration,
The wiring is becoming finer with the increase in speed. In the semiconductor device manufacturing process as well, when the photoresist is exposed, the depth of focus becomes shallower as the wiring becomes finer. Therefore, further smoothing of the pattern formation surface is desired.

【0004】特に、メモリーハードディスクドライブの
高記録密度化を実現するため、ヘッドとディスク間のス
ペーシングが年々狭くなってきた結果、これまで問題に
されなかった原子間力顕微鏡(AFM)を用いた表面形
状解析で検知される微小突起(高さ:1〜30nm、
幅:1〜100nm)が問題となってきた。
Particularly, in order to realize a high recording density of a memory hard disk drive, the spacing between the head and the disk has become narrower year by year, and as a result, an atomic force microscope (AFM), which has not been a problem until now, was used. Minute protrusions detected by surface shape analysis (height: 1 to 30 nm,
(Width: 1 to 100 nm) has become a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、メモ
リーハードディスクの仕上げ研磨や半導体素子用の研磨
用として、研磨後の被研磨物の表面粗さが小さく、かつ
突起や研磨傷等の表面欠陥、特に原子間力顕微鏡を用い
た表面形状解析で検知される微小突起を経済的に高速に
低減することが可能である被研磨基板の微小突起の低減
方法、該方法を用いて得られる磁気ディスク用基板及び
前記方法を用いる基板の製造方法を提供することにあ
る。
DISCLOSURE OF THE INVENTION An object of the present invention is to finish polishing a memory hard disk and to polish a semiconductor element, and after polishing, the surface to be polished has a small surface roughness and has a surface such as a protrusion or a polishing scratch. A method for reducing defects, especially minute protrusions detected by surface shape analysis using an atomic force microscope, can be reduced economically and at high speed. It is an object to provide a disk substrate and a substrate manufacturing method using the above method.

【0006】[0006]

【課題を解決するための手段】即ち、本発明の要旨は、
〔1〕水、研磨材、酸化合物を含有してなり、pHが酸
性かつ研磨材の濃度が10重量%未満である研磨液組成
物を用いて被研磨基板の研磨を行う工程を有する、原子
間力顕微鏡(AFM)を用いた表面解析により検知され
る被研磨基板の微小突起を低減する方法、〔2〕前記
〔1〕記載の方法を用いて得られる磁気ディスク用基
板、並びに〔3〕前記〔1〕記載の方法を用いて原子間
力顕微鏡(AFM)を用いた表面解析により検知される
微小突起を低減した磁気ディスク用基板を製造する方法
に関する。
The summary of the present invention is as follows.
[1] A step of polishing a substrate to be polished using a polishing composition containing water, an abrasive, and an acid compound, having an acidic pH and an abrasive concentration of less than 10% by weight. A method for reducing minute protrusions on a substrate to be polished detected by surface analysis using an atomic force microscope (AFM), [2] a magnetic disk substrate obtained by using the method described in [1] above, and [3] The present invention relates to a method for manufacturing a magnetic disk substrate in which minute protrusions detected by surface analysis using an atomic force microscope (AFM) are reduced by using the method described in [1] above.

【0007】[0007]

【発明の実施の形態】本発明において、原子間力顕微鏡
を用いた表面形状解析で検知される微小突起(以下、単
に微小突起ともいう)は、高さ1〜30nm、幅1〜1
00nmの大きさを有する突起を意味する。ここで、原
子間力顕微鏡を用いた表面形状解析方法としては、後述
の実施例に記載の方法が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, minute protrusions (hereinafter, also simply referred to as minute protrusions) detected by surface shape analysis using an atomic force microscope have a height of 1 to 30 nm and a width of 1 to 1 nm.
It means a protrusion having a size of 00 nm. Here, examples of the surface shape analysis method using an atomic force microscope include the methods described in Examples below.

【0008】本発明の微小突起の低減方法は、前記のよ
うに、水、研磨材、酸化合物を含有してなり、pHが酸
性かつ研磨材の濃度が10重量%未満である研磨液組成
物を用いて、被研磨基板の研磨を行う工程を有するもの
である。
As described above, the method for reducing fine projections of the present invention comprises water, an abrasive, and an acid compound, and has a pH of acid and an abrasive concentration of less than 10% by weight. Is used to polish the substrate to be polished.

【0009】本発明に使用される研磨材には、研磨用に
一般に使用されている研磨材を使用することができる。
該研磨材として、金属;金属又は半金属の炭化物、窒化
物、酸化物、ホウ化物;ダイヤモンド等が挙げられる。
金属又は半金属元素は、周期律表(長周期型)の2A、
2B、3A、3B、4A、4B、5A、6A、7A又は
8A族由来のものである。研磨材の具体例として、酸化
アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシ
ウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジル
コニウム、シリカ等が挙げられ、これらを1種以上使用
することは研磨速度を向上させる観点から好ましい。中
でも、酸化アルミニウム、シリカ、酸化セリウム、酸化
ジルコニウム、酸化チタン等が、半導体ウェハや半導体
素子、磁気記録媒体用基板等の精密部品用基板の研磨に
適している。酸化アルミニウムについては、α、θ、γ
等種々の結晶系が知られているが、用途に応じ適宜選
択、使用することができる。この内、シリカ、特にコロ
イダルシリカは、より高度な平滑性を必要とする高記録
密度メモリー磁気ディスク用基板の最終仕上げ研磨用途
や半導体デバイス基板の研磨用途に適している。
As the abrasive used in the present invention, an abrasive generally used for polishing can be used.
Examples of the abrasive include metal; metal or metalloid carbide, nitride, oxide, boride; diamond and the like.
Metal or metalloid elements are 2A of the periodic table (long period type),
It is derived from 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or 8A group. Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, silica, and the like, and the use of one or more of these improves the polishing rate. It is preferable from the viewpoint. Among them, aluminum oxide, silica, cerium oxide, zirconium oxide, titanium oxide and the like are suitable for polishing substrates for precision parts such as semiconductor wafers, semiconductor elements and substrates for magnetic recording media. For aluminum oxide, α, θ, γ
Various crystal systems are known, and they can be appropriately selected and used according to the application. Among them, silica, particularly colloidal silica, is suitable for final finishing polishing of substrates for high recording density memory magnetic disks and polishing for semiconductor device substrates which require higher smoothness.

【0010】研磨材の一次粒子の平均粒径は、研磨速度
を向上させる観点から、好ましくは0.001 〜3 μm、よ
り好ましくは0.01〜3 μm、さらに好ましくは0.02〜0.
8 μm、特に好ましくは0.05〜0.5 μmである。さら
に、一次粒子が凝集して二次粒子を形成している場合
は、同様に研磨速度を向上させる観点及び被研磨物の表
面粗さを低減させる観点から、その二次粒子の平均粒径
は、好ましくは0.05〜3μm、さらに好ましくは0.1 〜
1.5 μm、特に好ましくは0.2 〜1.2 μmである。研磨
材の一次粒子の平均粒径は、走査型電子顕微鏡で観察
(好適には3000〜30000 倍)して画像解析を行い、2軸
平均粒径を測定することにより求めることができる。ま
た、二次粒子の平均粒径はレーザー光回折法を用いて体
積平均粒径として測定することができる。
The average particle size of the primary particles of the abrasive is preferably 0.001 to 3 μm, more preferably 0.01 to 3 μm, still more preferably 0.02 to 0, from the viewpoint of improving the polishing rate.
8 μm, particularly preferably 0.05 to 0.5 μm. Furthermore, when the primary particles are aggregated to form secondary particles, the average particle diameter of the secondary particles is the same from the viewpoint of improving the polishing rate and reducing the surface roughness of the object to be polished. , Preferably 0.05 to 3 μm, more preferably 0.1 to
The thickness is 1.5 μm, particularly preferably 0.2 to 1.2 μm. The average particle diameter of the primary particles of the abrasive can be determined by observing with a scanning electron microscope (preferably 3000 to 30000 times) and performing image analysis to measure the biaxial average particle diameter. The average particle diameter of the secondary particles can be measured as a volume average particle diameter by using a laser light diffraction method.

【0011】また、本発明においては、微小突起、表面
粗さ(Ra)を低減させて、表面品質を向上させる観点か
ら、研磨材としてシリカ粒子を用いることがより好まし
い。シリカ粒子としては、コロイダルシリカ粒子、ヒュ
ームドシリカ粒子、表面修飾したシリカ粒子等が挙げら
れ、中でも、コロイダルシリカ粒子が好ましい。なお、
コロイダルシリカ粒子は、例えば、ケイ酸水溶液から生
成させる製法により得ることができる。
Further, in the present invention, it is more preferable to use silica particles as the abrasive from the viewpoint of reducing fine projections and surface roughness (Ra) to improve the surface quality. Examples of the silica particles include colloidal silica particles, fumed silica particles, surface-modified silica particles, and the like. Among them, colloidal silica particles are preferable. In addition,
The colloidal silica particles can be obtained, for example, by a production method in which they are produced from an aqueous solution of silicic acid.

【0012】シリカ粒子の一次粒子の平均粒径は、研磨
速度を向上させる観点から、好ましくは0.001 μm以
上、より好ましくは0.01μm以上、さらに好ましくは0.
02μm以上であり、表面粗さ(Ra)を低減する観点か
ら、好ましくは0.6 μm以下、より好ましくは0.5 μm
以下、さらに好ましくは0.3 μm以下、特に好ましくは
0.2 μm以下である。該平均粒径は、好ましくは0.001
〜0.6 μm、より好ましくは0.001 〜0.5 μm、さらに
好ましくは0.01〜0.3 μm、特に好ましくは0.02〜0.2
μmである。なお、該粒径は走査型電子顕微鏡で観察し
て(好適には3000倍〜100000倍)画像解析を行い、2軸
平均径を測定することにより求めることができる。
The average particle size of the primary particles of the silica particles is preferably 0.001 μm or more, more preferably 0.01 μm or more, still more preferably 0.
From the viewpoint of reducing the surface roughness (Ra), it is preferably 0.6 μm or less, more preferably 0.5 μm.
Or less, more preferably 0.3 μm or less, particularly preferably
It is 0.2 μm or less. The average particle size is preferably 0.001
To 0.6 μm, more preferably 0.001 to 0.5 μm, even more preferably 0.01 to 0.3 μm, particularly preferably 0.02 to 0.2
μm. The particle diameter can be determined by observing with a scanning electron microscope (preferably 3000 times to 100,000 times), image analysis, and measuring the biaxial average diameter.

【0013】さらにシリカ粒子は、微小突起の発生を防
止する観点から、小粒径側からの積算粒径分布(個数基
準)が50%となる粒径(D50) に対する小粒径側か
らの積算粒径分布(個数基準)が90%となる粒径(D
90) の比(D90/D50) が1.0 〜1.5 で、且つD
50が10〜200 nmとなる粒径分布を示すことが好まし
い。なお、前記粒径分布は、全体的なシリカ粒子の粒径
分布を示すものであり、例えば、2種以上のシリカ粒子
を併用した場合、それらを混合したシリカ粒子について
測定したものである。
Further, from the viewpoint of preventing the generation of fine protrusions, the silica particles are integrated from the small particle size side to the particle size (D50) at which the integrated particle size distribution (number basis) from the small particle size side is 50%. Particle size distribution (number basis) is 90% (D
90) ratio (D90 / D50) is 1.0 to 1.5, and D
It is preferable that the particle size distribution of 50 is 10 to 200 nm. The particle size distribution indicates the particle size distribution of the entire silica particles, and, for example, when two or more kinds of silica particles are used in combination, they are measured for the silica particles mixed with each other.

【0014】前記粒径分布において、D90/D50は
1.0 〜1.5 が好ましく、より好ましくは1.0 〜1.45、さ
らに好ましくは1.0 〜1.4 、特に好ましくは1.0 〜1.35
である。
In the above particle size distribution, D90 / D50 is
1.0 to 1.5 is preferable, 1.0 to 1.45 is more preferable, 1.0 to 1.4 is still more preferable, 1.0 to 1.35 is particularly preferable.
Is.

【0015】また、粒径分布において、D50は、10〜
200 nmが好ましく、より好ましくは20〜180 nm、さ
らに好ましくは、30〜150 nm、特に好ましくは50〜10
0 nmである。該D50は、高い研磨速度を得る観点か
ら、10nm以上が好ましく、また、微小突起等の表面欠
陥の発生を防ぎ、良好な表面平滑性を得る観点から、20
0 nm以下が好ましい。
In the particle size distribution, D50 is 10 to
200 nm is preferable, more preferably 20 to 180 nm, further preferably 30 to 150 nm, particularly preferably 50 to 10 nm.
It is 0 nm. The D50 is preferably 10 nm or more from the viewpoint of obtaining a high polishing rate, and from the viewpoint of preventing generation of surface defects such as fine protrusions and obtaining good surface smoothness, 20
It is preferably 0 nm or less.

【0016】また、本発明に使用されるシリカ粒子の粒
径は、走査型電子顕微鏡(以下SEMという)を用いて
以下の方法により求めることができる。即ち、シリカ粒
子を含有する研磨液組成物をシリカ粒子濃度が0.5 重量
%になるようにエタノールで希釈する。この希釈した溶
液を約50℃に加温したSEM用の試料台に均一に塗布す
る。その後、過剰の溶液を濾紙で吸い取り溶液が凝集し
ないように均一に自然乾燥させる。
The particle size of the silica particles used in the present invention can be determined by the following method using a scanning electron microscope (hereinafter referred to as SEM). That is, the polishing liquid composition containing silica particles is diluted with ethanol so that the silica particle concentration becomes 0.5% by weight. The diluted solution is uniformly applied to a sample stage for SEM heated to about 50 ° C. Then, the excess solution is sucked with a filter paper and air-dried uniformly so that the solution does not aggregate.

【0017】自然乾燥させたシリカ粒子にPt−Pdを
蒸着させて、日立製作所(株)製電界放射型走査電子顕
微鏡(FE−SEM:S−4000型)を用いて、視野
中に500個程度のシリカ粒子が観察されるように倍率
を3000倍〜10万倍に調節し、一つの試料台につい
て2点観察し写真を撮影する。撮影された写真(10.16
cm×12.7cm)をコピー機等によりA4サイズに拡大
して、撮影されたすべてのシリカ粒子の粒径をノギス等
により計測し集計する。この操作を数回繰り返して、計
測するシリカ粒子の数が2000個以上になるようにす
る。SEMによる測定点数を増やすことは、正確な粒径
分布を求める観点からより好ましい。測定した粒径を集
計し、小さい粒径から順にその頻度(%)を加算してそ
の値が50%となる粒径をD50、90%となる粒径を
D90として本発明における個数基準の粒径分布を求め
ることができる。尚、ここでいう粒径分布は一次粒子の
粒径分布として求められる。但し、酸化アルミニウム、
酸化セリウム、ヒュームドシリカ等の一次粒子が融着し
た二次粒子が存在している場合においては、その二次粒
子の粒径に基づいて、粒径分布を求めることができる。
Pt-Pd was vapor-deposited on naturally dried silica particles, and about 500 particles were observed in the visual field using a field emission scanning electron microscope (FE-SEM: S-4000 type) manufactured by Hitachi, Ltd. The magnification is adjusted to 3000 times to 100,000 times so that the silica particles of (1) are observed, and two points are observed on one sample stage to take a photograph. Photo taken (10.16)
(cm x 12.7 cm) is enlarged to A4 size by a copier, etc., and the particle size of all the photographed silica particles is measured with a caliper or the like and tabulated. This operation is repeated several times so that the number of measured silica particles is 2000 or more. Increasing the number of measurement points by SEM is more preferable from the viewpoint of obtaining an accurate particle size distribution. The measured particle sizes are totaled, and the frequencies (%) are added in order from the smallest particle size, and the particle size at which the value is 50% is D50, and the particle size at which 90% is D90 is D90, and the number-based particle in the present invention is used. The diameter distribution can be obtained. The particle size distribution mentioned here is obtained as the particle size distribution of primary particles. However, aluminum oxide,
When there are secondary particles in which primary particles such as cerium oxide and fumed silica are fused, the particle size distribution can be obtained based on the particle size of the secondary particles.

【0018】また、シリカ粒子の粒径分布を調整する方
法としては、特に限定されないが、例えば、シリカ粒子
がコロイダルシリカの場合、その製造段階における粒子
の成長過程で新たな核となる粒子を加えることにより最
終製品に粒径分布を持たせる方法、異なる粒径分布を有
する2つ以上のシリカ粒子を混合する方法等で達成する
ことも可能である。
The method of adjusting the particle size distribution of the silica particles is not particularly limited. For example, when the silica particles are colloidal silica, particles that become new nuclei in the growth process of the particles in the manufacturing stage are added. Therefore, it can be achieved by a method of giving the final product a particle size distribution, a method of mixing two or more silica particles having different particle size distributions, or the like.

【0019】これらの研磨材の含有量は、研磨液組成物
中において10重量%未満である。かかる濃度範囲に調
整することで、AFMを用いた表面解析により検知され
る被研磨基板の微小突起を著しく低減できる。また、前
記研磨材の含有量は、微小突起を低減する観点、及び経
済性の観点から、好ましくは9重量%以下、より好まし
くは8重量%以下、さらに好ましくは7重量%以下であ
る。また、該含有量は、研磨速度を向上させる観点か
ら、好ましくは0.5 重量%以上、より好ましくは1重量
%以上、さらに好ましくは2重量%以上、特に好ましく
は3重量%以上である。
The content of these abrasives is less than 10% by weight in the polishing composition. By adjusting to such a concentration range, it is possible to significantly reduce the fine protrusions on the substrate to be polished which are detected by the surface analysis using AFM. In addition, the content of the abrasive is preferably 9% by weight or less, more preferably 8% by weight or less, and further preferably 7% by weight or less, from the viewpoint of reducing fine protrusions and economical efficiency. Further, the content is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 2% by weight or more, particularly preferably 3% by weight or more, from the viewpoint of improving the polishing rate.

【0020】すなわち、該含有量は、好ましくは0.5 重
量%以上、10重量%未満、より好ましくは1〜9重量
%、さらに好ましくは2〜8重量%、特に好ましくは3
〜7重量%である。
That is, the content is preferably 0.5% by weight or more and less than 10% by weight, more preferably 1 to 9% by weight, further preferably 2 to 8% by weight, particularly preferably 3% by weight.
~ 7% by weight.

【0021】本発明において酸化合物は、pK1が7以
下の酸性を示す化合物である。微小突起を低減する観点
から、pK1が3以下の化合物が好ましい。研磨速度向
上の観点では、pK1が7以下の化合物で被研磨物表面
に含有される金属をキレートする能力を有する化合物が
好ましい。具体的には、エチレンジアミンテトラ酢酸等
のアミノポリカルボン酸及びその塩や、クエン酸、リン
ゴ酸、酒石酸、シュウ酸、マロン酸、コハク酸、マレイ
ン酸、イタコン酸、スルホサリチル酸等の有機カルボン
酸及びその塩がある。微小スクラッチを低減する観点か
ら、pK1が3以下の化合物が好ましく、より好ましく
はpK1が2.5以下、さらに好ましくはpK1が2.
0以下、特に好ましくはpK1が1.5以下の化合物で
あり、pK1が1以下の化合物(即ち、pK1で表せな
い程の強い酸性を示す化合物)が最も好ましい。具体的
には、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、
リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、シュ
ウ酸、アミド硫酸、アスパラギン酸、2−アミノエチル
ホスホン酸、グルタミン酸、ピコリン酸、1−ヒドロキ
シエチリデン−1,1−ジホスホン酸(以下、HEDP
ともいう)等が挙げられる。これらの中でも、微小突起
の低減の観点から、硝酸、HEDP、硫酸、過塩素酸及
び塩酸が好ましく、硝酸、HEDP及び硫酸が特に好ま
しい。これらの酸は単独で又は2種以上を混合して用い
てもよい。ここで、pK1とは有機化合物又は無機化合
物の酸解離定数(25℃)の逆数の対数値を通常pKa
と表し、そのうちの第一酸解離定数の逆数の対数値をp
K1としている。各化合物のpK1は例えば改訂4版化
学便覧(基礎編)II、pp316−325(日本化学会
編)等に記載されている。
In the present invention, the acid compound is a compound showing an acidity of pK1 of 7 or less. From the viewpoint of reducing fine protrusions, compounds having a pK1 of 3 or less are preferable. From the viewpoint of improving the polishing rate, a compound having a pK1 of 7 or less and having the ability to chelate the metal contained on the surface of the object to be polished is preferable. Specifically, aminopolycarboxylic acids such as ethylenediaminetetraacetic acid and salts thereof, citric acid, malic acid, tartaric acid, oxalic acid, malonic acid, succinic acid, maleic acid, itaconic acid, organic carboxylic acids such as sulfosalicylic acid and I have that salt. From the viewpoint of reducing micro scratches, a compound having a pK1 of 3 or less is preferable, a pK1 of 2.5 or less is more preferable, and a pK1 of 2.
A compound having a pK1 of 0 or less, particularly preferably a pK1 of 1.5 or less, and a compound having a pK1 of 1 or less (that is, a compound exhibiting strong acidity that cannot be represented by pK1) are most preferable. Specifically, nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid,
Phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, oxalic acid, amidosulfate, aspartic acid, 2-aminoethylphosphonic acid, glutamic acid, picolinic acid, 1-hydroxyethylidene-1,1-diphosphonic acid (hereinafter, HEDP
(Also referred to as) and the like. Among these, nitric acid, HEDP, sulfuric acid, perchloric acid and hydrochloric acid are preferable, and nitric acid, HEDP and sulfuric acid are particularly preferable, from the viewpoint of reducing fine projections. You may use these acids individually or in mixture of 2 or more types. Here, pK1 is usually the logarithmic value of the reciprocal of the acid dissociation constant (25 ° C.) of an organic compound or an inorganic compound, which is usually pKa.
And the logarithm of the reciprocal of the primary acid dissociation constant
It is K1. The pK1 of each compound is described in, for example, Revised 4th Edition Chemical Handbook (Basic Edition) II, pp316-325 (Edited by The Chemical Society of Japan) and the like.

【0022】酸化合物の研磨液組成物中における含有量
は、充分な研磨速度を発揮する観点及び表面品質を向上
させる観点から、0.0001〜20重量%が好ましく、より好
ましくは、0.0003〜10重量%であり、さらに好ましく
は、0.001 〜5 重量%、特に好ましくは、0.0025〜3 重
量%である。
The content of the acid compound in the polishing composition is preferably 0.0001 to 20% by weight, more preferably 0.0003 to 10% by weight, from the viewpoint of exhibiting a sufficient polishing rate and improving the surface quality. And more preferably 0.001 to 5% by weight, particularly preferably 0.0025 to 3% by weight.

【0023】研磨液組成物は、研磨速度を向上させる観
点から酸化剤を含有することが好ましい。酸化剤として
は、過酸化物、過マンガン酸又はその塩、クロム酸又は
その塩、硝酸又はその塩、ペルオキソ酸又はその塩、酸
素酸又はその塩、金属塩類、硫酸類等が挙げられる。
The polishing composition preferably contains an oxidizing agent from the viewpoint of improving the polishing rate. Examples of the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, nitric acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof, metal salts, sulfuric acid and the like.

【0024】より具体例には、過酸化物としては、過酸
化水素、過酸化ナトリウム、過酸化バリウム等;過マン
ガン酸塩としては、過マンガン酸カリウム等;クロム酸
塩としては、クロム酸金属塩、重クロム酸金属塩等;硝
酸塩としては、硝酸鉄(III)、硝酸アンモニウム等;ペ
ルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペ
ルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属
塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホ
ウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタ
ル酸等;酸素酸又はその塩としては、次亜塩素酸、次亜
臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、過
塩素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム
等;金属塩類としては、塩化鉄(III)、硫酸鉄(III)、
クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げ
られる。好ましい酸化剤としては、過酸化水素、硝酸鉄
(III)、過酢酸、ペルオキソ二硫酸アンモニウム硫酸鉄
(III)及び硫酸アンモニウム鉄(III)等が挙げられる。
特に、表面に金属イオンが付着せず汎用に使用され安価
であるという観点から過酸化水素が好ましい。これらの
酸化剤は、単独で又は2種以上を混合して使用してもよ
い。
More specifically, peroxides include hydrogen peroxide, sodium peroxide, barium peroxide, etc .; permanganates, potassium permanganate etc .; chromates, metal chromates. Salts, metal dichromates, etc .; nitrates as iron (III) nitrate, ammonium nitrates, etc .; peroxo acids or salts thereof as peroxodisulfate, ammonium peroxodisulfate, metal salts of peroxodisulfate, peroxophosphoric acid, peroxosulfate. , Sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, perphthalic acid, etc .; as oxyacids or salts thereof, hypochlorous acid, hypobromic acid, hypoiodic acid, chloric acid, bromic acid, Iodic acid, perchloric acid, sodium hypochlorite, calcium hypochlorite, etc .; as metal salts, iron (III) chloride, iron (III) sulfate,
Examples include iron (III) citrate and iron (III) ammonium sulfate. Preferred oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate (III) sulfate, iron (III) sulfate, and the like.
In particular, hydrogen peroxide is preferable from the viewpoint that metal ions do not adhere to the surface and it is used widely and is inexpensive. You may use these oxidizing agents individually or in mixture of 2 or more types.

【0025】研磨速度を向上させる観点から、研磨液組
成物中の酸化剤の含有量は、好ましくは0.002 重量%以
上、より好ましくは0.005 重量%以上、さらに好ましく
は0.007 重量%以上、特に好ましくは0.01重量%以上で
あり、表面粗さを低減し、微小突起等の表面欠陥を減少
させて表面品質を向上させる観点及び経済性の観点か
ら、好ましくは20重量%以下、より好ましくは15重量%
以下、さらに好ましくは10重量%以下、特に好ましくは
5 重量%以下である。該含有量は、好ましくは0.002 〜
20重量%、より好ましくは0.005 〜15重量%、さらに好
ましくは、0.007〜10重量%、特に好ましくは0.01〜5
重量%である。
From the viewpoint of improving the polishing rate, the content of the oxidizing agent in the polishing composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, further preferably 0.007% by weight or more, particularly preferably It is 0.01% by weight or more, preferably 20% by weight or less, and more preferably 15% by weight from the viewpoint of reducing surface roughness, reducing surface defects such as fine protrusions to improve surface quality and economical efficiency.
Or less, more preferably 10% by weight or less, particularly preferably
It is 5% by weight or less. The content is preferably 0.002 to
20% by weight, more preferably 0.005 to 15% by weight, further preferably 0.007 to 10% by weight, particularly preferably 0.01 to 5%
% By weight.

【0026】研磨液組成物中の水は、媒体として使用さ
れるものであり、その含有量は、被研磨物を効率よく研
磨する観点から、好ましくは50重量%以上であり、より
好ましくは66重量%以上であり、さらに好ましくは77重
量%以上であり、特に好ましくは85重量%以上であり、
また、好ましくは99.4979 重量%以下、より好ましくは
98.9947 重量%以下、さらに好ましくは96.992重量%以
下、特に好ましくは、94.9875 重量%以下である。該含
有量は、好ましくは55〜99.4979 重量%、より好ましく
は67〜98.9947 重量%、さらに好ましくは75〜96.992重
量%、特に好ましくは84〜94.9875 重量%である。
Water in the polishing composition is used as a medium, and the content thereof is preferably 50% by weight or more, more preferably 66 from the viewpoint of efficiently polishing the object to be polished. % By weight or more, more preferably 77% by weight or more, particularly preferably 85% by weight or more,
Also, preferably 99.4979% by weight or less, more preferably
It is 98.9947% by weight or less, more preferably 96.992% by weight or less, and particularly preferably 94.9875% by weight or less. The content is preferably 55 to 99.4979% by weight, more preferably 67 to 98.99947% by weight, further preferably 75 to 96.992% by weight, and particularly preferably 84 to 94.9875% by weight.

【0027】尚、前記研磨液組成物中の各成分の濃度
は、該組成物製造時の濃度及び使用時の濃度のいずれで
あってもよい。通常、濃縮液として研磨液組成物は製造
され、これを使用時に希釈して用いる場合が多い。
The concentration of each component in the polishing composition may be either the concentration at the time of producing the composition or the concentration at the time of use. Usually, a polishing composition is produced as a concentrated solution, and it is often used by diluting it.

【0028】また、前記研磨液組成物には、必要に応じ
て他の成分を配合することができる。該他の成分として
は、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤
等が挙げられる。
If desired, the polishing composition may contain other components. Examples of the other components include thickeners, dispersants, rust preventives, basic substances, surfactants and the like.

【0029】研磨液組成物は、研磨材、酸化合物、水、
必要であれば酸化剤、他の成分等を公知の方法で混合す
ることにより調製することができる。
The polishing composition comprises an abrasive, an acid compound, water,
If necessary, it can be prepared by mixing an oxidizing agent, other components and the like by a known method.

【0030】研磨液組成物のpHは酸性であるが、具体
的なpHの値は、被加工物の種類や要求性能に応じて適
宜決定することが好ましい。被研磨物の材質により一概
に限定はできないが、一般に金属材料では研磨速度を向
上させる観点からpHは、7.0 未満が好ましく、より好
ましくは6.0 以下、さらに好ましくは5.0 以下、特に好
ましくは4.0 以下である。また、人体への影響や機械の
腐食性の観点から、pHは1.0 以上であることが好まし
く、より好ましくは1.2 以上、さらに好ましくは1.4 以
上特に好ましくは1.6 以上である。特にニッケル−リン
(Ni−P)メッキされたアルミニウム合金基板等の金
属を主対象とした精密部品基板においては、pHは、研
磨速度を向上させる観点から、4.5 以下が好ましく、よ
り好ましくは4.0 以下、さらに好ましくは3.5 以下、特
に好ましくは3.0 以下である。従って、重視する目的に
合わせてpHを設定すればよいが、特にNi−Pメッキ
されたアルミニウム合金基板等の金属を対象とした精密
部品基板においては、前記観点を総合して、pHは1.0
〜4.5 が好ましく、より好ましくは1.2 〜4.0 、さらに
好ましくは1.4 〜3.5 、特に好ましくは1.6 〜3.0 であ
る。pHは硝酸、硫酸等の無機酸やシュウ酸等の有機
酸、アンモニウム塩、アンモニア水、水酸化カリウム、
水酸化ナトリウム、アミン等の塩基性物質を適宜、所望
量で配合することにより調整することができる。
Although the pH of the polishing composition is acidic, it is preferable that the specific pH value be appropriately determined according to the type of the workpiece and the required performance. Although it cannot be unequivocally limited depending on the material to be polished, generally, in the case of a metal material, the pH is preferably less than 7.0, more preferably 6.0 or less, further preferably 5.0 or less, and particularly preferably 4.0 or less from the viewpoint of improving the polishing rate. is there. Further, from the viewpoint of the effect on the human body and the corrosiveness of machinery, the pH is preferably 1.0 or higher, more preferably 1.2 or higher, still more preferably 1.4 or higher, and particularly preferably 1.6 or higher. Particularly in the case of precision component substrates mainly intended for metals such as nickel-phosphorus (Ni-P) plated aluminum alloy substrates, the pH is preferably 4.5 or less, and more preferably 4.0 or less from the viewpoint of improving the polishing rate. , More preferably 3.5 or less, particularly preferably 3.0 or less. Therefore, it suffices to set the pH according to the purpose of importance, but particularly in the case of precision component substrates intended for metals such as Ni-P plated aluminum alloy substrates, the above viewpoint is taken into consideration and the pH is 1.0.
It is preferably 4.5 to 4.5, more preferably 1.2 to 4.0, still more preferably 1.4 to 3.5, and particularly preferably 1.6 to 3.0. The pH is inorganic acids such as nitric acid and sulfuric acid, organic acids such as oxalic acid, ammonium salts, aqueous ammonia, potassium hydroxide,
It can be adjusted by appropriately adding a basic substance such as sodium hydroxide or amine in a desired amount.

【0031】本発明の微小突起の低減方法は、例えば、
前記のような研磨液組成物を用いて、あるいは前記研磨
液組成物の組成となるように各成分を混合して研磨液を
調製して被研磨基板を研磨する工程を有しており、特に
精密部品用基板を好適に製造することができる。その具
体例としては、不織布状の有機高分子系研磨布等、好ま
しくはポリウレタン系研磨布を貼り付けた研磨盤で基板
を挟み込み、研磨液組成物を流量として被研磨基板1m
2 当たり0.076〜3.8L/分、好ましくは0.1
5〜1.5L/分で研磨面に供給し、荷重として2.9
〜19.6kPa、好ましくは4.9〜9.8kPaの
一定圧力を加えながら、上定盤又は下定盤と被研磨基板
との相対速度が定盤中央部で0.1〜2m/秒、好まし
くは0.3〜1m/秒となるように研磨盤や基板を動か
すことにより研磨する方法が挙げられる。
The method of reducing the fine protrusions of the present invention is, for example,
It has a step of polishing a substrate to be polished by preparing a polishing liquid by using the polishing liquid composition as described above or by mixing the respective components so as to have a composition of the polishing liquid composition, A substrate for precision parts can be suitably manufactured. Specific examples thereof include a non-woven fabric such as an organic polymer-based polishing cloth, preferably a polishing board having a polyurethane-based polishing cloth attached thereto, and the substrate is sandwiched between the polishing solution composition and the polishing liquid composition at a flow rate of 1 m.
0.076 to 3.8 L / min per 2 , preferably 0.1
It is supplied to the polishing surface at 5 to 1.5 L / min, and the load is 2.9.
The relative velocity between the upper platen or the lower platen and the substrate to be polished is 0.1 to 2 m / sec at the center of the platen, while a constant pressure of ˜19.6 kPa, preferably 4.9 to 9.8 kPa is applied. Is a method of polishing by moving a polishing board or a substrate so that the speed becomes 0.3 to 1 m / sec.

【0032】このように本発明の微小突起の低減方法を
用いることにより、微小突起を効率よく除去するだけで
なく、研磨速度を向上させ、微小スクラッチやピット等
の表面欠陥の発生が抑制され、表面粗さ(Ra)等の表
面平滑性を向上させることができるという効果が発現さ
れる。
As described above, by using the method for reducing fine projections of the present invention, not only the fine projections are efficiently removed, but also the polishing rate is improved and the occurrence of surface defects such as fine scratches and pits is suppressed. The effect that the surface smoothness such as surface roughness (Ra) can be improved is exhibited.

【0033】本発明の微小突起の低減方法が対象とする
被研磨基板としては、例えば、シリコン、アルミニウ
ム、ニッケル、タングステン、銅、タンタル、チタン等
の金属又は半金属及びこれらの合金、並びにガラス、ガ
ラス状カーボン、アモルファスカーボン等のガラス状物
質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、
炭化チタン等のセラミック材料、ポリイミド樹脂等の樹
脂等を材質とする基板が挙げられる。これらの中では、
アルミニウム、ニッケル、タングステン、銅等の金属及
びこれらの金属を主成分とする合金が被研磨物である
か、又は、半導体素子等の半導体基板のような、それら
が金属を含んだ被研磨物であるのが好ましく、例えば、
Ni−Pメッキされたアルミニウム合金基板や結晶化ガ
ラス、強化ガラス等のガラス基板がより好ましく、Ni
−Pメッキされたアルミニウム合金基板が特に好まし
い。
The substrate to be polished targeted by the method for reducing fine projections of the present invention includes, for example, metals or semimetals such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium and alloys thereof, and glass, Glassy substances such as glassy carbon and amorphous carbon, alumina, silicon dioxide, silicon nitride, tantalum nitride,
A substrate made of a ceramic material such as titanium carbide or a resin such as a polyimide resin may be used. Among these,
Metals such as aluminum, nickel, tungsten, and copper and alloys containing these metals as main components are objects to be polished, or objects such as semiconductor substrates such as semiconductor elements in which they contain metals. Preferably, for example,
A Ni-P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more preferable.
Particularly preferred is a P-plated aluminum alloy substrate.

【0034】被研磨基板の形状には特に制限がなく、例
えば、ディスク状、プレート状、スラブ状、プリズム状
等の平面部を有する形状や、レンズ等の曲面部を有する
形状が本発明の対象となる。その中でも、ディスク状の
被研磨基板の研磨に特に優れている。
The shape of the substrate to be polished is not particularly limited. For example, a shape having a flat surface portion such as a disk shape, a plate shape, a slab shape, a prism shape, or a shape having a curved surface portion such as a lens is an object of the present invention. Becomes Among them, it is particularly excellent in polishing a disk-shaped substrate to be polished.

【0035】本発明の微小突起の低減方法は、精密部品
基板の研磨に好適に用いられる。例えば、磁気ディス
ク、光ディスク、光磁気ディスク等の磁気記録媒体の基
板、フォトマスク基板、光学レンズ、光学ミラー、光学
プリズム、半導体基板等の精密部品基板の研磨に適して
いる。半導体基板の研磨は、シリコンウェハ(ベアウェ
ハ)のポリッシング工程、埋め込み素子分離膜の形成工
程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成
工程、埋め込みキャパシタ形成工程等において行われ
る。本発明の微小突起の低減方法は、特に、磁気ディス
ク用基板の研磨に適している。さらに、表面粗さ(R
a)0.3nm以下の磁気ディスク用基板を得るのに適
している。
The method for reducing fine protrusions of the present invention is preferably used for polishing precision component substrates. For example, it is suitable for polishing substrates for magnetic recording media such as magnetic disks, optical disks, magneto-optical disks, photomask substrates, optical lenses, optical mirrors, optical prisms, precision component substrates such as semiconductor substrates. The polishing of the semiconductor substrate is performed in a polishing step of a silicon wafer (bare wafer), a step of forming a buried element isolation film, a step of flattening an interlayer insulating film, a step of forming a buried metal wiring, a step of forming a buried capacitor, and the like. The method for reducing fine protrusions of the present invention is particularly suitable for polishing a magnetic disk substrate. Furthermore, the surface roughness (R
a) Suitable for obtaining a magnetic disk substrate of 0.3 nm or less.

【0036】本明細書では、表面粗さ(Ra)は、一般
に言われる中心線粗さとして求められ、80μm以下の
波長成分を持つ粗さ曲線から得られる中心線平均粗さを
Raと表す。このRaは、以下のように測定することが
できる。
In the present specification, the surface roughness (Ra) is obtained as a so-called center line roughness, and the center line average roughness obtained from a roughness curve having a wavelength component of 80 μm or less is represented by Ra. This Ra can be measured as follows.

【0037】中心線平均粗さ:Ra ランク・テーラーホブソン社製タリーステップ(「タリ
データ2000」)(以下、かぎ括弧内の用語は商品名
を示す)を用いて、以下の条件で測定する。 触針先端サイズ :2.5μm×2.5μm ハイパスフィルター :80μm 測定長さ :0.64mm
Centerline average roughness: Ra is measured under the following conditions using a Tally Step (“Taridata 2000”) manufactured by Rank Taylor Hobson Co., Ltd. (hereinafter, terms in brackets indicate trade names). Stylus tip size: 2.5 μm × 2.5 μm High-pass filter: 80 μm Measurement length: 0.64 mm

【0038】本発明の磁気ディスク用基板の製造方法
は、本発明の微小突起の低減方法を用いた研磨工程を有
し、該研磨工程は、複数の研磨工程の中でも2工程目以
降に行われるのが好ましく、最終研磨工程に行われるの
が特に好ましい。例えば、1工程又は2工程の研磨工程
によって表面粗さ(Ra)0.5nm〜1.5nmにし
たNi−Pメッキされたアルミニウム合金基板を、本発
明の微小突起の低減方法を用いた研磨工程によって研磨
して、表面粗さ(Ra)0.3nm以下の磁気ディスク
用基板を、好ましくは表面粗さ(Ra)0.25nm以
下の磁気ディスク用基板を製造することができる。特
に、本発明の微小突起の低減方法は、2工程の研磨で表
面粗さ(Ra)0.3nm以下の磁気ディスク用基板
を、好ましくは表面粗さ(Ra)0.25nm以下の磁
気ディスク用基板を製造する際の2工程目に用いられる
のに適している。
The method for manufacturing a magnetic disk substrate of the present invention has a polishing step using the method for reducing fine protrusions of the present invention, and the polishing step is performed after the second step among a plurality of polishing steps. Is preferable, and it is particularly preferable to carry out the final polishing step. For example, a Ni-P-plated aluminum alloy substrate having a surface roughness (Ra) of 0.5 nm to 1.5 nm obtained by the one-step or two-step polishing step is subjected to the polishing step using the method for reducing fine protrusions of the present invention. By polishing with, a magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less, preferably a magnetic disk substrate having a surface roughness (Ra) of 0.25 nm or less can be manufactured. In particular, the method of reducing fine protrusions of the present invention uses a magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less by polishing in two steps, and preferably a magnetic disk having a surface roughness (Ra) of 0.25 nm or less. It is suitable for use in the second step in manufacturing a substrate.

【0039】製造された磁気ディスク用基板は、微小突
起が極めて少なく、表面平滑性に優れたものである。そ
の表面平滑性として、表面粗さ(Ra)0.3nm以
下、好ましくは0.25nm以下が望ましい。
The manufactured magnetic disk substrate has very few fine protrusions and is excellent in surface smoothness. As the surface smoothness, a surface roughness (Ra) of 0.3 nm or less, preferably 0.25 nm or less is desirable.

【0040】以上のように、本発明の微小突起の低減方
法を用いることで、微小突起を効率良く除去することが
でき、さらに研磨速度を向上させると共に、スクラッ
チ、ピット等の表面欠陥が少なく、表面粗さ(Ra)及
びうねり(Wa)等の平滑性が向上した、表面性状に優
れた高品質の磁気ディスク用基板を生産効率よく製造す
ることができる。
As described above, by using the method for reducing fine projections of the present invention, the fine projections can be efficiently removed, the polishing rate can be further improved, and the number of surface defects such as scratches and pits can be reduced. It is possible to manufacture a high-quality magnetic disk substrate having excellent surface properties with improved smoothness such as surface roughness (Ra) and waviness (Wa) with high production efficiency.

【0041】なお、本発明の微小突起の低減方法は、ボ
リッシング工程において特に効果があるが、これ以外の
研磨工程、例えば、ラッピング工程等にも同様に適用す
ることができる。
Although the method for reducing fine projections of the present invention is particularly effective in the boring process, it can be similarly applied to other polishing processes such as lapping process.

【0042】[0042]

【実施例】(被研磨物)被研磨基板として、Ni−Pメ
ッキされた基板をアルミナ研磨材を含有する研磨液であ
らかじめ粗研磨し、基板表面粗さ1nmとした、厚さ0.
8 mmの95mmφのアルミニウム合金基板を用いて研
磨評価を行った。
Example (Substance to be polished) As a substrate to be polished, a substrate plated with Ni-P was rough-polished in advance with a polishing liquid containing an alumina polishing material to have a substrate surface roughness of 1 nm and a thickness of 0.
Polishing evaluation was performed using an aluminum alloy substrate having a diameter of 95 mm and a diameter of 8 mm.

【0043】実施例1〜7、比較例1〜3 表1に示すような一次粒子の平均粒径を有するコロイダ
ルシリカ、35% 過酸化水素(旭電化製)、1−ヒドロキ
シエチリデン−1,1−ジホスホン酸(HEDP、ソル
ーシア・ジャパン(株)製、pK1は1以下)又はエチ
レンジアミン四酢酸鉄塩(EDTA−Fe)を所定量
と、残りを水として合計100 重量% となるように調製し
た。混合する順番は、まずHEDP又はEDTA−Fe
を水で希釈した水溶液に過酸化水素を混合し、最後にコ
ロイダルシリカスラリーをゲル化しないように撹拌しな
がらすばやく加え、pHを所定値に調整して、研磨液組
成物を調製した。得られた研磨液組成物を用いて、以下
の研磨条件にて被研磨物を研磨し、研磨速度、表面粗さ
(Ra)及び微小突起の個数を以下の方法に基づいて測
定・評価した。得られた結果を表1に示す。
Examples 1 to 7 and Comparative Examples 1 to 3 Colloidal silica having an average particle size of primary particles as shown in Table 1, 35% hydrogen peroxide (manufactured by Asahi Denka Co., Ltd.), 1-hydroxyethylidene-1,1. -Diphosphonic acid (HEDP, manufactured by Solusia Japan KK, pK1 is 1 or less) or ethylenediaminetetraacetic acid iron salt (EDTA-Fe) was prepared in a predetermined amount and the rest was water so that the total amount was 100% by weight. The order of mixing is HEDP or EDTA-Fe.
Hydrogen peroxide was mixed with an aqueous solution diluted with water, and finally the colloidal silica slurry was quickly added while stirring so as not to gel, and the pH was adjusted to a predetermined value to prepare a polishing composition. The obtained polishing liquid composition was used to polish an object to be polished under the following polishing conditions, and the polishing rate, the surface roughness (Ra) and the number of fine projections were measured and evaluated based on the following methods. The results obtained are shown in Table 1.

【0044】(研磨条件) 研磨試験機:スピードファム社製「両面9B研磨機」 研磨パッド:鐘紡製「Belatrix N0058」 定盤回転数:35r/min スラリー供給量:40ml/min 研磨時間:4分 研磨荷重:7.8kPa 投入した基板の枚数:10枚(Polishing conditions) Polishing tester: "Double-sided 9B polishing machine" manufactured by Speedfam Polishing pad: Kanebo "Belatrix N0058" Plate rotation speed: 35r / min Slurry supply rate: 40 ml / min Polishing time: 4 minutes Polishing load: 7.8 kPa Number of substrates loaded: 10

【0045】(研磨速度)研磨試験前後の基板の重量差
(g)に比重(8.4g/cm3)をかけ、さらにディスクの表
面積(65.97cm2)と研磨時間で割ることにより、単位時
間当たりの両面研磨量を算出している。
(Polishing speed) The specific gravity (8.4 g / cm 3 ) is applied to the weight difference (g) of the substrate before and after the polishing test, and the result is divided by the surface area (65.97 cm 2 ) of the disk and the polishing time to give a unit time per unit time. The amount of double-sided polishing is calculated.

【0046】(表面粗さ(Ra))被研磨基板の裏表の
120°おきに各3点で計6点を原子間力顕微鏡(デジ
タルインスツルメント社製「Nanoscope III 」)を用い
て、ScanRateを1.0Hz で2μm×2 μmの範囲を測定し
たときの平均値をとった。なお、Raは中心線平均粗さ
を示す。
(Surface Roughness (Ra)) ScanRate was performed using an atomic force microscope (“Nanoscope III” manufactured by Digital Instrument Co., Ltd.) at a total of 6 points at 120 ° intervals on both sides of the substrate to be polished. Was measured at 1.0 Hz in the range of 2 μm × 2 μm, and the average value was taken. Ra indicates the center line average roughness.

【0047】(微小突起の個数)被研磨基板の裏表の1
20°おきに各3点で計6点を原子間力顕微鏡(デジタ
ルインスツルメント社製「Nanoscope III 」)を用い
て、ScanRateを1.0Hz で2μm×2 μmの範囲に含まれ
る微小突起(高さ1〜30nm、幅1〜100nmの突
起)の一基板当たりの平均値を求めた。
(Number of minute projections) 1 on the front and back of the substrate to be polished
Using an atomic force microscope (“Nanoscope III” manufactured by Digital Instruments Co., Ltd.), a total of 6 points with 3 points at every 20 °, ScanRate at 1.0 Hz, and microprojections included in a range of 2 μm × 2 μm (high The average value per substrate (length: 1 to 30 nm, width: 1 to 100 nm) was obtained.

【0048】[0048]

【表1】 [Table 1]

【0049】表1の結果より、実施例1〜7では、比較
例1〜3に比べ、いずれも微小突起がなく、且つ表面粗
さが低い基板を高速で得ることができることがわかる。
From the results shown in Table 1, it can be seen that in Examples 1 to 7, substrates having no fine protrusions and low surface roughness can be obtained at high speed, as compared with Comparative Examples 1 to 3.

【0050】[0050]

【発明の効果】本発明の微小突起の低減方法により、高
速研磨と高精度な表面品質、特に原子間力顕微鏡(AF
M)を用いた表面形状解析における微小突起の発生を防
止する基板を製造できるという効果が奏される。
The method of reducing fine projections according to the present invention enables high-speed polishing and highly accurate surface quality, particularly atomic force microscopy (AF).
It is possible to manufacture a substrate capable of preventing the generation of minute protrusions in the surface shape analysis using M).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水、研磨材、酸化合物を含有してなり、
pHが酸性かつ研磨材の濃度が10重量%未満である研
磨液組成物を用いて被研磨基板の研磨を行う工程を有す
る、原子間力顕微鏡(AFM)を用いた表面解析により
検知される被研磨基板の微小突起を低減する方法。
1. Containing water, an abrasive, and an acid compound,
An object to be detected by surface analysis using an atomic force microscope (AFM), which has a step of polishing a substrate to be polished with a polishing liquid composition having an acidic pH and an abrasive concentration of less than 10% by weight. A method for reducing minute protrusions on a polishing substrate.
【請求項2】 研磨液組成物が酸化剤をさらに含有して
なる、請求項1記載の方法。
2. The method according to claim 1, wherein the polishing composition further comprises an oxidizing agent.
【請求項3】 研磨材がシリカである請求項1又は2記
載の方法。
3. The method according to claim 1, wherein the abrasive is silica.
【請求項4】 酸化剤が過酸化水素である請求項2記載
の方法。
4. The method of claim 2 wherein the oxidant is hydrogen peroxide.
【請求項5】 請求項1〜4いずれか記載の方法を用い
て得られる磁気ディスク用基板。
5. A magnetic disk substrate obtained by using the method according to claim 1.
【請求項6】 請求項1〜4いずれか記載の方法を用い
て原子間力顕微鏡(AFM)を用いた表面解析により検
知される微小突起を低減した磁気ディスク用基板を製造
する方法。
6. A method for manufacturing a magnetic disk substrate in which minute protrusions detected by surface analysis using an atomic force microscope (AFM) are reduced by using the method according to any one of claims 1 to 4.
JP2002005943A 2002-01-15 2002-01-15 Method for reducing microprojections Expired - Lifetime JP4104335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005943A JP4104335B2 (en) 2002-01-15 2002-01-15 Method for reducing microprojections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005943A JP4104335B2 (en) 2002-01-15 2002-01-15 Method for reducing microprojections

Publications (2)

Publication Number Publication Date
JP2003211351A true JP2003211351A (en) 2003-07-29
JP4104335B2 JP4104335B2 (en) 2008-06-18

Family

ID=27644843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005943A Expired - Lifetime JP4104335B2 (en) 2002-01-15 2002-01-15 Method for reducing microprojections

Country Status (1)

Country Link
JP (1) JP4104335B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167670A (en) * 2002-10-30 2004-06-17 Kao Corp Polishing liquid composition
JP2005186269A (en) * 2003-12-24 2005-07-14 Fujimi Corp Polishing composition and polishing method
WO2005070618A1 (en) * 2004-01-23 2005-08-04 Bando Chemical Industries, Ltd. Polishing method and polishing film used in such polishing method
WO2005123857A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Polishing method for glass substrate, and glass substrate
WO2007072890A1 (en) * 2005-12-22 2007-06-28 Asahi Glass Co., Ltd. Glass substrate for mask blank and method of polishing for producing the same
JP2008012668A (en) * 2004-04-06 2008-01-24 Kao Corp Polishing-fluid composition
JP2008080486A (en) * 2007-10-04 2008-04-10 Kao Corp Polishing kit for magnetic disk
JP2010155902A (en) * 2008-12-26 2010-07-15 Kao Corp Rinse composition for magnetic disk substrate
US8070557B2 (en) 2007-06-05 2011-12-06 Asahi Glass Company, Limited Method of polishing glass substrate
JP2016016505A (en) * 2014-07-11 2016-02-01 旭硝子株式会社 Cleaning method of polishing pad

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167670A (en) * 2002-10-30 2004-06-17 Kao Corp Polishing liquid composition
JP2005186269A (en) * 2003-12-24 2005-07-14 Fujimi Corp Polishing composition and polishing method
WO2005070618A1 (en) * 2004-01-23 2005-08-04 Bando Chemical Industries, Ltd. Polishing method and polishing film used in such polishing method
JP2008012668A (en) * 2004-04-06 2008-01-24 Kao Corp Polishing-fluid composition
WO2005123857A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Polishing method for glass substrate, and glass substrate
WO2007072890A1 (en) * 2005-12-22 2007-06-28 Asahi Glass Co., Ltd. Glass substrate for mask blank and method of polishing for producing the same
DE112006003221T5 (en) 2005-12-22 2008-10-23 Asahi Glass Co., Ltd. Glass substrate for a mask preform and polishing process for making the same
US7923178B2 (en) 2005-12-22 2011-04-12 Asahi Glass Company, Limited Glass substrate for mask blank and method of polishing for producing the same
US8070557B2 (en) 2007-06-05 2011-12-06 Asahi Glass Company, Limited Method of polishing glass substrate
JP2008080486A (en) * 2007-10-04 2008-04-10 Kao Corp Polishing kit for magnetic disk
JP2010155902A (en) * 2008-12-26 2010-07-15 Kao Corp Rinse composition for magnetic disk substrate
JP2016016505A (en) * 2014-07-11 2016-02-01 旭硝子株式会社 Cleaning method of polishing pad

Also Published As

Publication number Publication date
JP4104335B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP4231632B2 (en) Polishing liquid composition
JP5219886B2 (en) Polishing liquid composition
TWI228146B (en) Polishing composition
US6551175B2 (en) Polishing composition
JP4451347B2 (en) Polishing liquid composition
JP4251516B2 (en) Polishing liquid composition
JP6110715B2 (en) Abrasive composition for rough polishing of Ni-P plated aluminum magnetic disk substrate, method for polishing Ni-P plated aluminum magnetic disk substrate, method for manufacturing Ni-P plated aluminum magnetic disk substrate, and Ni-P Plated aluminum magnetic disk substrate
JP3997152B2 (en) Polishing liquid composition
JP4213858B2 (en) Polishing liquid composition
JP4104335B2 (en) Method for reducing microprojections
JP2007320031A (en) Polishing liquid composition
JP4462599B2 (en) Polishing liquid composition
JP4214093B2 (en) Polishing liquid composition
JP4286168B2 (en) How to reduce nanoscratches
JP2004253058A (en) Polishing liquid composition
JP5377117B2 (en) Method for detecting non-spherical particles in a particle dispersion
JP2007301721A (en) Polishing liquid composition
JP4156174B2 (en) Polishing liquid composition
JP4267546B2 (en) Substrate manufacturing method
US6918938B2 (en) Polishing composition
JP4373776B2 (en) Polishing liquid composition
JP3997154B2 (en) Polishing liquid composition
JP3997153B2 (en) Polishing liquid composition
JP2006130638A (en) Encased abrasive material particle dispersed liquid
JP4640981B2 (en) Substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060920

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R151 Written notification of patent or utility model registration

Ref document number: 4104335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term