JP4462599B2 - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP4462599B2
JP4462599B2 JP2002218673A JP2002218673A JP4462599B2 JP 4462599 B2 JP4462599 B2 JP 4462599B2 JP 2002218673 A JP2002218673 A JP 2002218673A JP 2002218673 A JP2002218673 A JP 2002218673A JP 4462599 B2 JP4462599 B2 JP 4462599B2
Authority
JP
Japan
Prior art keywords
acid
polishing
less
polishing composition
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002218673A
Other languages
Japanese (ja)
Other versions
JP2003155471A (en
Inventor
良暁 大島
敏也 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002218673A priority Critical patent/JP4462599B2/en
Publication of JP2003155471A publication Critical patent/JP2003155471A/en
Application granted granted Critical
Publication of JP4462599B2 publication Critical patent/JP4462599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、研磨液組成物、該研磨液組成物を用いた微小スクラッチの低減方法及び前記研磨液組成物を用いた基板の製造方法に関する。
【0002】
【従来の技術】
近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させたり、単位記録面積を小さくすることが強いられている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上に対応して、表面粗さ、微小うねり、ロールオフ、突起の低減や単位記録面積の減少に対応して許容されるスクラッチ、ピットの大きさと深さがますます小さくなってきている。
【0003】
また、半導体分野においても、高集積化、高速化に伴って配線の微細化が進んでいる。半導体デバイスの製造プロセスにおいても、フォトレジストの露光の際、配線の微細化に伴い焦点深度が浅くなるため、パターン形成面のより一層の平滑化が望まれている。
【0004】
このような要求に対して、表面粗さRa、Rmax、スクラッチ、ピット、突起等の表面平滑性を向上させた研磨液組成物が提案されている(特開平9-204657号公報、特開平11-167715 号公報、特開平11-246849 号公報)。しかしながら、このように表面平滑性が向上した結果、これまで検出されなかった微小スクラッチ(深さ:0.1nm以上、5nm未満、幅:10μm以上、50μm未満、長さ:10μm以上、1mm未満)が新たに発見されるようになり、この発生を低減させることが問題になっている。また、従来、スクラッチの低減を図るため、コロイダルシリカのスラリーを用いた研磨工程をさらに追加することが知られている。しかしながら、かかる工程を行なうと、工程数が増えるため研磨速度が遅くなり、生産性が低下するという欠点がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、メモリーハードディスクの仕上げ研磨や半導体素子の研磨用として、研磨後の被研磨物の表面粗さが小さく、かつ突起や研磨傷等の表面欠陥、特に深さが0.1nm以上、5nm未満、幅が10μm以上、50μm未満、長さが10μm以上、1mm未満の微小スクラッチを顕著に低減し、しかも経済的に研磨をすることが可能である研磨液組成物、該研磨液組成物を用いた微小スクラッチの低減方法及び前記研磨液組成物を用いた基板の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
即ち、本発明の要旨は、
〔1〕 一次粒子の平均粒径が200nm以下であるコロイダルシリカ過酸化水素、pK1が2以下の酸及び/又はその塩、及び水を含有してなる磁気ディスク基板用研磨液組成物であって、前記pK1が2以下の酸が硝酸、硫酸、塩酸及び過塩素酸からなる群より選ばれ、その塩が周期律表(長周期型)1Aに属する金属又はアンモニウムとの塩であり、該研磨液組成物の酸価(Y)がmgKOH/g以下、0.mgKOH/g以上である磁気ディスク基板用研磨液組成物、
〔2〕 前記〔1〕記載の研磨液組成物を用いて磁気ディスク基板の微小スクラッチを低減する方法、
ならびに
〔3〕 前記〔1〕記載の研磨液組成物を用いて磁気ディスク基板を製造する方法
に関する。
【0007】
【発明の実施の形態】
本発明の研磨液組成物は、前記のように、一次粒子の平均粒径が200nm以下である研磨材、酸化剤、pK1が2以下の酸及び/又はその塩、及び水を含有してなる。
【0008】
本発明に使用される研磨材には、研磨用に一般に使用されている研磨材を使用することができる。該研磨材として、金属;金属又は半金属の炭化物、窒化物、酸化物、ホウ化物;ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8A族由来のものである。研磨材の具体例として、酸化アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、シリカ等が挙げられ、これらを1種以上使用することは研磨速度を向上させる観点から好ましい。中でも、酸化アルミニウム、シリカ、酸化セリウム、酸化ジルコニウム、酸化チタン等が、半導体ウエハや半導体素子、磁気記録媒体用基板等の精密部品用基板の研磨に適している。酸化アルミニウムについては、α、θ、γ等種々の結晶系が知られているが、用途に応じ適宜選択、使用することができる。この内、シリカ、特にコロイダルシリカは、より高度な平滑性を必要とする高記録密度メモリー磁気ディスク用基板の最終仕上げ研磨用途や半導体デバイス基板の研磨用途に適している。
【0009】
研磨材の一次粒子の平均粒径は、200nm以下であり、研磨速度を向上させる観点から、好ましくは1nm以上、より好ましくは10nm以上、さらに好ましくは20nm以上であり、表面粗さ(Ra、Rmax)、うねり(Wa)を低減する観点から、200nm以下、好ましくは150nm以下、より好ましくは120nm以下、特に好ましくは100nm以下である。該一次粒子の平均粒径は、好ましくは1〜200nm、より好ましくは1〜150nm、さらに好ましくは10〜120nm、特に好ましくは20〜100nmである。さらに、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び被研磨物の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは50〜3000nm、さらに好ましくは100〜1500nm、特に好ましくは200〜1200nmである。研磨材の一次粒子の平均粒径は、走査型電子顕微鏡で観察(好適には3000〜100000倍)した画像を解析して一次粒子の小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50)を測定することにより求めることができる。ここで、ひとつの一次粒子の粒径は、2軸平均(長径と短径の平均)粒径を用いることとする。また、二次粒子の平均粒径はレーザー光回折法を用いて体積平均粒径として測定することができる。
【0010】
また、本発明においては、表面粗さ(Ra 、Rmax) 、うねり(Wa)を低減し、スクラッチ等の表面欠陥を減少させて、表面品質を向上させる観点から、研磨材としてシリカ粒子を用いることがより好ましい。シリカ粒子としては、コロイダルシリカ粒子、ヒュームドシリカ粒子、表面修飾したシリカ粒子等が挙げられ、中でも、コロイダルシリカ粒子が好ましい。なお、コロイダルシリカ粒子は、例えば、ケイ酸水溶液から生成させる製法により得ることができる。
【0011】
本発明において、前記で示される粒径分布を有するシリカ粒子を含有した研磨液組成物を使用することで、研磨後の被研磨基板の表面粗さが小さく、且つ突起や研磨傷等の表面欠陥を発生することなく、経済的な速度で被研磨基板の研磨をすることができるという効果が発現される。
【0012】
前記の粒径分布におけるシリカ粒子の粒径は、走査型電子顕微鏡(以下SEMという)を用いて以下の方法により求めることができる。即ち、シリカ粒子を含有する研磨液組成物をシリカ粒子濃度が0.5 重量% になるようにエタノールで希釈する。この希釈した溶液を約50℃に加温したSEM用の試料台に均一に塗布する。その後、過剰の溶液を濾紙で吸い取り溶液が凝集しないように均一に自然乾燥させる。
【0013】
自然乾燥させたシリカ粒子にPt−Pdを蒸着させて、日立製作所(株)製電界効果走査型電子顕微鏡(FE−SEM:S−4000型)を用いて、視野中に500個程度のシリカ粒子が観察されるように倍率を3000倍〜10万倍に調節し、一つの試料台について2点観察し写真を撮影する。撮影された写真(10.16 cm×12.7cm)をコピー機等によりA4サイズ(210 mm×297mm)に拡大して、撮影されたすべてのシリカ粒子の粒径をノギス等により計測し集計する。この操作を数回繰り返して、計測するシリカ粒子の数が2000個以上になるようにする。SEMによる測定点数を増やすことは、正確な粒径分布を求める観点からより好ましい。測定した粒径を集計し、小さい粒径から順にその頻度(%)を加算してその値が50% となる粒径をD50 として本発明における個数基準の粒径分布を求めることができる。尚、ここでいう粒径分布は一次粒子の粒径分布として求められる。シリカ粒子以外の研磨材については、研磨材が水又はアルコール等の溶媒に分散したスラリー状の場合は、上記のシリカ粒子と同様の方法により粒径分布を求めることができる。この具体的な例としては、成長(ビルドアップ)法により製造された酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化亜鉛等が挙げられる。一方、研磨材が粉末状の場合は、SEM用試料台に導電テープを貼り、直接テープ上に研磨材の粉末を振りかけた後、Pt−Pdを蒸着して試料を作成し、これ以降はシリカ粒子の場合と同様な方法で粒径分布を求めることができる。この具体的な例としては、粉砕法により製造される炭化珪素、ダイヤモンド、酸化アルミニウム、酸化セリウム等が挙げられる。
また、酸化アルミニウム、酸化セリウム、ヒュームドシリカ等の一次粒子が融着した粒子が存在している場合は、その融着粒子を一次粒子とみなして、粒径分布を求めることができる。
【0014】
また、シリカ粒子の粒径分布を調整する方法としては、特に限定されないが、例えば、シリカ粒子がコロイダルシリカの場合、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより最終製品に粒径分布を持たせる方法、異なる粒径分布を有する2つ以上のシリカ粒子を混合する方法等で達成することも可能である。
【0015】
研磨材組成物中における研磨材の含有量は、研磨速度を向上させる観点から、好ましくは0.5 重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、特に好ましくは5重量%以上であり、また、表面品質を向上させる観点、及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、特に好ましくは10重量%以下である。
【0016】
すなわち、該含有量は、好ましくは0.5 〜20重量% 、より好ましくは1 〜15重量% 、さらに好ましくは3 〜13重量% 、特に好ましくは5 〜10重量% である。
【0017】
本発明に使用される酸化剤としては、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、硝酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硫酸類等が挙げられる。本発明においてはかかる酸化剤を使用することにより、研磨速度を向上することができるという利点がある。
【0018】
前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等;過マンガン酸又はその塩としては、過マンガン酸カリウム等;クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等;硝酸又はその塩としては、硝酸、硝酸鉄(III)、硝酸アンモニウム等;ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等;酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等;金属塩類としては、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。特に、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。なお、これらの酸化剤の中でも、硝酸又はその塩は、後述のpK1が2以下の酸又はその塩としても使用することができる。
【0019】
研磨速度を向上させる観点から、研磨液組成物中の酸化剤の含有量は、好ましくは0.002 重量% 以上、より好ましくは0.005 重量% 以上、さらに好ましくは0.007 重量% 以上、特に好ましくは0.01重量% 以上であり、表面粗さ、うねりを低減し、ピット、スクラッチ等の表面欠陥を減少させて表面品質を向上させる観点及び経済性の観点から、好ましくは20重量% 以下、より好ましくは15重量% 以下、さらに好ましくは10重量% 以下、特に好ましくは5 重量% 以下である。該含有量は、好ましくは0.002 〜20重量% 、より好ましくは0.005 〜15重量% 、さらに好ましくは、0.007 〜10重量% 、特に好ましくは0.01〜5 重量% である。
【0020】
本発明に用いられる酸及び/又はその塩としては、その酸のpK1が2以下の化合物が好ましく、微小スクラッチを低減する観点から、pK1が1.5以下、より好ましくは1以下、最も好ましくはpK1で表せない程の強い酸性を示す化合物が望ましい。その例としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸及びその塩、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1,−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸及びその塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸及びその塩、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸及びその塩等が挙げられる。中でも、微小スクラッチを低減する観点から、無機酸や有機ホスホン酸及びその塩が好ましい。また、無機酸及びその塩の中では、硝酸、硫酸、塩酸、過塩素酸及びそれらの塩がより好ましい。有機ホスホン酸及びその塩の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びそれらの塩がより好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよい。ここで、pK1とは有機化合物または無機化合物の酸解離定数(25℃)の逆数の対数値を通常PKaと表し、そのうちの第一酸解離定数の逆数の対数値をpK1としている。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316−325(日本化学会編)等に記載されている。なお、本発明においては、微小スクラッチの低減と研磨速度の両立の観点から、その酸のpK1が2以下の酸及び/又はその塩を用いることが特に好ましい。
【0021】
これらの酸の塩としては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム、有機アミン等との塩が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、微小スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。
【0022】
pK1が2以下の酸及びその塩の研磨液組成物中における含有量は、充分な研磨速度を発揮する観点および表面品質を向上させる観点から、0.0001〜5重量%が好ましく、より好ましくは0.0003〜3重量%であり、さらに好ましくは0.001 〜2重量%、特に好ましくは0.0025〜1重量%である。
【0023】
本発明の研磨液組成物中の水は、媒体として使用されるものであり、その含有量は、被研磨物を効率よく研磨する観点から、好ましくは55重量% 以上であり、より好ましくは67重量% 以上であり、さらに好ましくは75重量% 以上であり、特に好ましくは84重量% 以上であり、また、好ましくは99.4979 重量% 以下、より好ましくは98.9947 重量% 以下、さらに好ましくは96.992重量% 以下、特に好ましくは、94.9875 重量% 以下である。該含有量は、好ましくは55〜99.4979 重量% 、より好ましくは67〜98.9947 重量% 、さらに好ましくは75〜96.992重量% 、特に好ましくは84〜94.9875 重量% である。
【0024】
尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。
【0025】
また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。該他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。
【0026】
本発明の研磨液組成物は、一次粒子の平均粒径が200nm以下である研磨材、酸化剤、pK1が2以下の酸及び/又はその塩、水、必要に応じて他の成分等を公知の方法で混合することにより調製することができる。
【0027】
本発明の研磨液組成物の酸価(Y)は、20mgKOH/g以下、0.2mgKOH/g以上である。中でも、研磨液組成物中にpK1が2以下の酸として有機ホスホン酸が含有されている場合、微小スクラッチを低減する観点から、酸価(Y)としては、15mgKOH/g以下が好ましく、10mgKOH/g以下がより好ましく、7mgKOH/g以下が特に好ましく、3mgKOH/g以下が最も好ましい。pK1が2以下の酸として無機酸が含有されている場合、微小スクラッチを低減する観点から、5mgKOH/g以下が好ましく、3mgKOH/g以下がより好ましく、1.8mgKOH/g以下が特に好ましく、1.5mgKOH/g以下が最も好ましい。
【0028】
また、研磨速度を向上させる観点から、酸価(Y)としては、0.2mgKOH/g以上が好ましく、0.25mgKOH/g以上がより好ましく、0.3mgKOH/g以上がより好ましく、0.35mgKOH/g以上がより好ましく、0.4mgKOH/g以上がより好ましく、0.45mgKOH/g以上がより好ましく、0.5mgKOH/g以上が更に好ましく、0.75mgKOH/g以上が特に好ましく、1.0mgKOH/g以上が最も好ましい。
【0029】
酸価(Y)はJIS K 1557に従って測定され、研磨液組成物1gあたりの中和に必要な水酸化カリウム量(mg)として求められる。
【0030】
また、本発明の研磨液組成物の酸価(Y)としては、微小スクラッチを低減する観点から、式(1):
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+19.45 (1)
(但し、Xは研磨液組成物中における研磨材の個数濃度を示す)
を満たすことが好ましい。
【0031】
前記のように、微小スクラッチは、今まで注目されていなかった表面欠陥であり、この発生のメカニズムについては何も明確にされていない。そこで、本発明者らが鋭意検討した結果、驚くべきことに、微小スクラッチの発生は、研磨液組成物の腐食性の程度と、研磨時において研磨パッドと被研磨物とが直接接触する程度とのバランスに依存していることを新たに発見した。具体的には、研磨液組成物の腐食性の程度を酸価で示し、研磨パッドと被研磨物との直接接触の程度を研磨材の個数濃度で示す、前記式(1)の関係を満たす研磨液組成物を用いることにより、微小スクラッチを有意に低減し得ることを発見した。
【0032】
本発明において、研磨液組成物の酸価(Y)と研磨材の個数濃度が式(1)の関係を満たす場合、被研磨物に対するメカニカル因子(パッドと被研磨物の直接接触)とケミカル因子(腐食性)とのバランスがとれるため、微小スクラッチが有意に低減するという効果が発現される。ここで式(1)は、メカニカル因子である研磨材の個数濃度(X)とケミカル因子である酸価(Y)との関係を示しており、この酸価(Y)が右辺の研磨材濃度の一次関数より導き出される値以下であることは、ある特定の研磨材の個数濃度(X)においてパッドと被研磨物との直接接触の条件が決まると、微小スクラッチを顕著に低減し得る腐食性の強さ(酸価(Y))の上限が決まることを意味する。
特に前記式(1)の関係を満たす研磨液組成物を用いて基板を研磨することにより、後述の実施例のように、微小スクラッチをその深さの程度に応じて「大」、「中」、「小」の三段階にさらに細かく分類した場合に、基板上から3種類の微小スクラッチを実用上何の影響もない程度にまで低減する効果が発現される。
【0033】
なお、研磨液組成物中における研磨材の個数濃度(個/g):Xは、次式(2)により求められる。
【0034】
【数1】

Figure 0004462599
【0035】
研磨材の真比重は、例えばシリカの場合「The Chemistry OfSilica」(Iler、Ralph K. 、1979 John Wiley & Sons,Inc.)よりアモルファスシリカの2.2g/cm3 を使用できる。文献値のない場合は、一次粒子の平均粒径とBET 法による比表面積の実験値により求めることができ、その際使用する一次粒子の平均粒径は、前記のように走査型電子顕微鏡で観察(好適には3000〜100000倍)した画像を解析して、一次粒子の小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50)を用いることができる。
【0036】
Yを式(1)を満たすように調整する方法としては、例えば、あらかじめ計算により研磨材の個数濃度より求められる酸価(Y)の上限値をKOH1モルの重量56110mgで割って、〔モル/g〕に換算し、得られた換算値に使用する酸〔硝酸等〕の分子量をかけて、〔重量%〕に換算し直して得られた値を酸の添加量の上限値として研磨液組成物を調製する方法等が挙げられる。
【0037】
また、研磨液組成物が無機酸及び/又はその塩を含有する場合は、微小スクラッチを低減する観点から、
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+3.00を満たすことが好ましく、
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+1.77を満たすことが更に好ましく、
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+1.67を満たすことが特に好ましく、
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+1.47を満たすことが最も好ましい。
【0038】
研磨液組成物が無機酸以外のpK1が2以下の酸及び/又はその塩、特に有機ホスホン酸及び/又はその塩を含有する場合は、微小スクラッチを低減する観点から、
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+14.45を満たすことがより好ましく、
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+9.45を満たすことが更に好ましく
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+6.45を満たすことが特に好ましく、
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+2.45を満たすことが最も好ましい。
【0039】
本発明の研磨液組成物のpHは、被加工物の種類や要求性能に応じて適宜決定することが好ましい。被研磨物の材質により一概に限定はできないが、一般に金属材料では研磨速度を向上させる観点からpHは酸性が好ましく、7.0 未満が好ましく、より好ましくは6.0 以下、さらに好ましくは5.0 以下、特に好ましくは4.0 以下であることが望ましい。また、人体への影響や機械の腐食性の観点から、pHは1.0 以上であることが好ましく、より好ましくは1.2 以上、さらに好ましくは1.4 以上、特に好ましくは1.6 以上である。特にニッケル−リン(Ni−P)メッキされたアルミニウム合金基板等の金属を主対象とした精密部品基板においては、研磨速度の観点から、pHは酸性にすることが好ましく、研磨速度を向上させる観点からpHは4.5 以下が好ましく、より好ましくは4.0 以下、さらに好ましくは3.5 以下、特に好ましくは3.0 以下である。従って、重視する目的に合わせてpHを設定すればよいが、特にNi−Pメッキされたアルミニウム合金基板等の金属を対象とした精密部品基板においては、前記観点を総合して、pHは1.0 〜4.5 が好ましく、より好ましくは1.2 〜4.0 、さらに好ましくは1.4 〜3.5 、特に好ましくは1.6 〜3.0 である。pHは硝酸、硫酸等の無機酸やシュウ酸等の有機酸、アンモニウム塩、アンモニア水、水酸化カリウム、水酸化ナトリウム、アミン等の塩基性物質を適宜、所望量で配合することにより調整することができる。
【0040】
本発明の微小スクラッチを低減する方法としては、被研磨基板を研磨する際に、本発明の研磨液組成物を用いる方法が挙げられる。被研磨基板の研磨方法としては、本発明の研磨液組成物を用いて、あるいは本発明の研磨液組成物の組成となるように各成分を混合して研磨液組成物を調製して被研磨基板を研磨する工程を有しており、特に精密部品用基板を好適に製造することができる。また、本発明の研磨液組成物は、表面欠陥、特に微小スクラッチの発生を顕著に低減して高い研磨速度を発揮することができる。
【0041】
本発明の研磨液組成物が対象とする被研磨物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属およびこれらの合金、及びガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中では、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金が被研磨物であるか、又は半導体素子等の半導体基板のような、それらが金属を含んだ被研磨物であるのが好ましく、例えば、Ni−Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板がより好ましく、Ni−Pメッキされたアルミニウム合金基板が特に好ましい。
【0042】
被研磨物の形状には特に制限がなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が本発明の研磨液組成物を用いた研磨の対象となる。その中でも、ディスク状の被研磨物の研磨に特に優れている。
【0043】
本発明の研磨液組成物は、精密部品基板の研磨に好適に用いられる。例えば、磁気ディスク、光ディスク、光磁気ディスク等の磁気記録媒体の基板、フォトマスク基板、光学レンズ、光学ミラー、光学プリズム、半導体基板等の精密部品基板の研磨に適している。半導体基板の研磨は、シリコンウェハ(ベアウェハ)のポリッシング工程、埋め込み素子分離膜の形成工程、層間絶縁膜の平坦化工程、埋め込み金属配線の形成工程、埋め込みキャパシタ形成工程等において行われる。本発明の研磨液組成物は、特に、磁気ディスク用基板の研磨に適している。さらに、表面粗さ(Ra)0.3nm以下で、うねり(Wa)0.3nm以下の磁気ディスク用基板を得るのに適している。
【0044】
本明細書では、表面粗さ(Ra)とうねり(Wa)は、一般に言われる中心線粗さとして求められ、80μm以下の波長成分を持つ粗さ曲線から得られる中心線平均粗さをRaと言い、また0.4〜5mmの波長成分を持つ粗さ曲線の中心線平均粗さを中心線平均微小うねりとしてWaと表す。これらは以下のように測定することができる。
【0045】
中心線平均粗さ:Ra
ランク・テーラーホブソン社製 タリーステップ(タリデータ2000)を用いて、以下の条件で測定する。
触針先端サイズ :2.5μm×2.5μm
ハイパスフィルター :80μm
測定長さ :0.64mm
【0046】
中心線平均微小うねり:Wa
Zygo社製 New View 200を用いて、以下の条件で測定する。
対物レンズ :2.5倍
ImageZoom :0.5倍
Filter :Band Pass
Filter type :FFT Fixed
Filter High Wavelength :0.4mm
Filter Low Wavelength :5.0mm
Remove :Cylinder
【0047】
本発明の研磨液組成物を用いる研磨方法としては、例えば、不織布状の有機高分子系研磨布等を貼り付けた研磨盤で基板を挟み込み、研磨液組成物を研磨面に供給し、一定圧力を加えながら研磨盤や基板を動かすことにより研磨する方法等が挙げられる。前記方法において、本発明の研磨液組成物を用いることにより、微小スクラッチの発生が顕著に抑えられ、かつ研磨速度を向上させ、スクラッチやピット等の表面欠陥の発生が抑制され、表面粗さ(Ra)、うねり(Wa)等の表面平滑性を向上させることができる。即ち、前記研磨方法は、基板の微小スクラッチの低減方法である。
【0048】
本発明の基板の製造方法は、前記研磨液組成物を用いた研磨工程を有し、該研磨工程は、複数の研磨工程の中でも2工程目以降に行われるのが好ましく、最終研磨工程に行われるのが特に好ましい。例えば、1工程又は2工程の研磨工程によって表面粗さ(Ra)0.5〜1.5nm、うねり(Wa)0.5〜1nmにしたNi−Pメッキされたアルミニウム合金基板を、本発明の研磨液組成物を用いた研磨工程によって研磨して、表面粗さ(Ra)0.3nm以下、うねり(Wa)0.3nm以下の磁気ディスク用基板を、好ましくは表面粗さ(Ra)0.25nm以下、うねり(Wa)0.25nm以下の磁気ディスク用基板を製造することができる。特に、本発明の研磨液組成物は、2工程の研磨で表面粗さ(Ra)0.3nm以下、うねり(Wa)0.3nm以下の磁気ディスク用基板を、好ましくは表面粗さ(Ra)0.25nm以下、うねり(Wa)0.25nm以下の磁気ディスク用基板を製造する際の2工程目に用いられるのに適している。
【0049】
製造された基板は、微小スクラッチが顕著に低減されていることに加え、表面平滑性に優れたものである。その表面平滑性として、表面粗さ(Ra)0.3nm以下、好ましくは0.25nm以下が望ましい。また、うねり(Wa)は0.3nm以下、好ましくは0.25nm以下が望ましい。
【0050】
以上のように、本発明の研磨液組成物を用いることで、微小スクラッチの発生を顕著に低減させ、研磨速度を向上させると共に、スクラッチ、ピット等の表面欠陥が少なく、表面粗さ(Ra)及びうねり(Wa)等の平滑性が向上した、表面性状に優れた高品質の基板を生産効率よく製造することができる。
【0051】
本発明の研磨液組成物は、ポリッシング工程において特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。
【0052】
【実施例】
(被研磨物)
被研磨基板として、Ni−Pメッキされた基板をアルミナ研磨材を含有する研磨液であらかじめ粗研磨し、基板表面粗さ(Ra)1nmとした、厚さ0.8 mmの95mmφのアルミニウム合金基板を用いて研磨評価を行った。
【0053】
実施例1〜18(但し、実施例1、7、11〜18は参考例である)
表1に示すように市販のコロイダルシリカ(A(平均粒径50nm):日本化学工業製、B(平均粒径80nm):スタルクヴイテック(株)製、C(平均粒径20nm):デュポン(株)製)、35重量% 過酸化水素(旭電化製)、60重量% 硝酸(和光純薬工業(株)製、pK1は0以下)、98重量% 硫酸(和光純薬工業(株)製、pK1は0以下)等の各成分を所定量と、残りを水として合計100 重量% となるように調製した。混合する順番は、まず硝酸又は硫酸を水で希釈した水溶液に過酸化水素を、次いで残りの成分を混合し、最後にコロイダルシリカスラリーをゲル化しないように撹拌しながらすばやく加え調製した。
なお、表中、HEDPは1−ヒドロキシエチリデン−1,1−ジホスホン酸(ソルーシア・ジャパン製)、ATMPはアミノトリ(メチレンホスホン酸)(ソルーシア・ジャパン製)を示す。
【0054】
【表1】
Figure 0004462599
【0055】
比較例1〜7
表2に示すように、市販のコロイダルシリカ(A(平均粒径50nm):日本化学工業製、B(平均粒径80nm):スタルクヴイテック(株)製、C(平均粒径20nm) :デュポン(株)製)、35重量% 過酸化水素(旭電化工業製)、60重量% 硝酸(和光純薬工業(株)製)、硝酸アルミニウム・9水和物(特級:和光純薬工業(株)製)、他の成分を所定量と、残りを水として合計100 重量% となるように調製した。混合する順番は、まず硝酸を水で希釈した水溶液に過酸化水素と硝酸アルミニウム・9水和物とを、次いで残りの成分を混合し、最後にコロイダルシリカスラリーをゲル化しないように撹拌しながらすばやく加え調製した。
なお、表中、過硫酸アンモニウム及びコハク酸は和光純薬工業(株)製、特級を用い、硝酸Alは硝酸アルミニウム・9水和物(和光純薬工業(株)製、特級)を示す。
【0056】
【表2】
Figure 0004462599
【0057】
実施例1〜18及び比較例1〜7で得られた研磨液組成物について、酸価、研磨材の個数濃度、研磨速度並びに微小スクラッチ、表面粗さ、微小うねり、表面欠陥及びスクラッチの有無を以下の方法に基づいて測定・評価した。得られた結果を表1〜4に示す。
【0058】
(研磨条件)
研磨試験機:スピードファム社製 両面9B研磨機
研磨パッド:鐘紡 Belatrix N0058
定盤回転数:35r/min
スラリー供給量:40ml/min
研磨時間:4分
研磨荷重:7.8kPa
投入した基板の枚数:10枚
【0059】
(酸価の測定)
100 ml容のコレクションバイアルに研磨液組成物を約50g 天秤 (BP221S Sartorius社製) を用いて秤取し、小数点以下4桁まで記録した。次にテフロン製の攪拌子を入れ攪拌しながら、3点校正(pH=4.01 (25 ℃:フタル酸塩pH標準液 (東亜電波工業製))、pH=6.86 (25 ℃:中性りん酸塩 (東亜電波工業製))、pH=9.18 (25 ℃:ホウ酸塩pH標準液 (片山化学工業製))) したpHメーター (HM-30G (東亜電波工業製) 、電極:GST-5721C)でpHを測定した。これに10ml容の滴定管を用いて0.1mol/L水酸化カリウム水溶液 (ファクター1.000 ;シグマ アルドリッチ ジャパン製) を滴下し、pHが7.00を示す量(ml)を求める (通常pH7.00前後4点のデータから内挿法により算出する)。研磨液量(g)と必要な水酸化カリウムの量(ml)から1g当たりの研磨液組成物を中和するのに必要な水酸化カリウムの量を算出し、これを酸価(実測値) (mgKOH/g) とした。なお、表中、酸価(計算値)とは、後述のようにして得られた研磨材の個数濃度を前記式(1)の右辺の一次関数に代入して得られる値をいう。
【0060】
(研磨材の個数濃度の算出)
前記式(2)において比重をアモルファスシリカの2.2g/cm3とし算出した。
【0061】
(研磨速度)
研磨試験前後の基板の重量差(g) を比重(8.4g/cm 3 )で割り、さらにディスクの表面積(65.97cm2)と研磨時間で割ることにより、単位時間当たりの両面研磨量を算出している。
【0062】
(微小スクラッチ)
微分干渉式顕微鏡システム(金属顕微鏡:BX60M (オリンパス光学工業製)、対物レンズ:UMPlan FI 5 ×/0.15 BD P、CCD カラーカメラ:ICD-500AC (池上通信機製)、カラーモニター:UCM-1000 REV.8 (池上通信機製)) にて被研磨基板 10 枚の全面を観察し、 10 枚中で微小スクラッチ(深さ0.1nm以上、5nm未満、幅10μm以上、50μm未満、長さ10μm以上、1mm未満)の発生している枚数を、微小スクラッチの発生の程度を目視により大/中/小に分類して数えた。なお、大、中、小の評価基準は以下のとおり。
「大」:(深さ)1.0nm以上5.0nm未満、(幅)10μm以上50μm未満、(長さ)10μm以上1mm未満、
「中」:(深さ)0.5nm以上1.0nm未満、(幅)10μm以上50μm未満、(長さ)10μm以上1mm未満、
「小」:(深さ)0.1nm以上0.5nm未満、(幅)10μm以上50μm未満、(長さ)10μm以上1mm未満
本発明においては、「大」は0枚、且つ「中」は10枚中、5枚以下であるものを合格品とする。
【0063】
(表面粗さ(Ra、Rmax))
被研磨基板の裏表の120°おきに各3点で計6点を原子間力顕微鏡(デジタルインスツルメント社製 Nanoscope III 、Dimension3000 )を用いて、ScanRateを1.0Hz で2 μm×2 μmの範囲を測定したときの平均値をとった。
(Ra)○:0.35nm未満、×:0.35nm以上、(Rmax)◎:3nm 未満、○:3nm 以上5nm 未満、△:5nm 以上10nm未満、×:10nm以上として表3、4に示す。
なお、「Ra」は中心線平均粗さ、「Rmax」はP−V値(Peak-to-Valley値)を示す。
【0064】
(微小うねり(Wa))
前記条件での光学式表面形状測定装置(NewView200:Zygo社製)による測定を行った。○:0.45nm未満、×:0.45nm以上として表3、4に示す。
【0065】
(表面欠陥)
微分干渉式顕微鏡観察(金属顕微鏡BX60M (オリンパス工業社製)接眼レンズ×10、対物レンズ×20)により各基板の表面を30°おきに12カ所測定し、12視野当たりのピットと突起数を数えた。○:0個、×:1個以上として表3、4に示す。
【0066】
(スクラッチ)
高輝度ランプ(HPS-250 :山田光学工業社製)観察により基板10枚の表面を目視で観察し、基板1枚当たりのスクラッチを数えた。なお、この高輝度ランプでは前記微小スクラッチを観察することはできなかった。○:(深さ5nm以上、長さ1mm以上のスクラッチ)5個以下、×:6個以上として表3、4に示す。
【0067】
【表3】
Figure 0004462599
【0068】
【表4】
Figure 0004462599
【0069】
表3、4の結果より、実施例1〜18で得られた研磨液組成物は、いずれも比較例1〜7で得られた研磨液組成物に比べ、微小スクラッチの低減効果が著しく優れたものであることがわかる。また、実施例1〜18で得られた研磨液組成物は、いずれも研磨速度が速く、表面粗さ、微小うねり、表面欠陥、スクラッチ等の表面品質においても優れたものであることがわかる。
【0070】
【発明の効果】
本発明の研磨液組成物を用いることにより、表面粗さが小さく、かつ突起や研磨傷等の表面欠陥、特に深さが0.1nm以上、5nm未満、幅が10μm以上、50μm未満、長さが10μm以上、1mm未満の微小スクラッチが顕著に低減されたメモリーハードディスク、半導体素子等の基板を経済的に製造できるという効果が奏される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing composition, a method for reducing fine scratches using the polishing composition, and a method for producing a substrate using the polishing composition.
[0002]
[Prior art]
Memory hard disk drives in recent years are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced or the unit recording area is reduced. Along with this, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, corresponding to the low flying height of the head, surface roughness, micro waviness, roll-off, reduction of protrusions and The size and depth of scratches and pits allowed in response to the decrease in unit recording area are becoming increasingly smaller.
[0003]
Also in the semiconductor field, the miniaturization of wiring is progressing with higher integration and higher speed. Also in the manufacturing process of a semiconductor device, when the photoresist is exposed, the depth of focus becomes shallow as the wiring becomes finer, and therefore, further smoothing of the pattern formation surface is desired.
[0004]
In response to such demands, there have been proposed polishing liquid compositions having improved surface smoothness such as surface roughness Ra, Rmax, scratches, pits, and protrusions (Japanese Patent Laid-Open Nos. 9-204657 and 11). -167715, JP-A-11-246849). However, as a result of the improved surface smoothness, fine scratches that have not been detected so far (depth: 0.1 nm or more, less than 5 nm, width: 10 μm or more, less than 50 μm, length: 10 μm or more, less than 1 mm) Is newly discovered, and reducing this occurrence has become a problem. Conventionally, it is known to further add a polishing process using a colloidal silica slurry in order to reduce scratches. However, when such a process is performed, the number of processes increases, so that there is a disadvantage that the polishing rate becomes slow and the productivity decreases.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to have a small surface roughness of an object to be polished after polishing and a surface defect such as a protrusion or a polishing flaw, particularly a depth of 0.1 nm or more, for finish polishing of a memory hard disk and polishing of a semiconductor element. Polishing liquid composition capable of significantly reducing fine scratches of less than 5 nm, width of 10 μm or more, less than 50 μm, length of 10 μm or more and less than 1 mm, and capable of polishing economically, and the polishing liquid composition Another object of the present invention is to provide a method for reducing fine scratches using an object and a method for producing a substrate using the polishing composition.
[0006]
[Means for Solving the Problems]
  That is, the gist of the present invention is as follows.
[1] The average primary particle size is 200 nm or lessColloidal silica,hydrogen peroxide, An acid having a pK1 of 2 or less and / or a salt thereof, andThe waterContainFor magnetic disk substrateA polishing composition comprising an acid having a pK1 of 2 or less.,It is selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid and perchloric acid, and the salt thereof is a salt with a metal or ammonium belonging to the periodic table (long period type) 1A, and the acid value (Y) of the polishing composition But5mgKOH / g or less;4a polishing composition for a magnetic disk substrate that is at least mgKOH / g,
[2] Using the polishing composition according to [1]Magnetic diskA method for reducing micro scratches on a substrate;
And
[3] Using the polishing composition according to [1]Magnetic diskMethod for manufacturing a substrate
About.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the polishing composition of the present invention comprises an abrasive having an average primary particle size of 200 nm or less, an oxidizing agent, an acid having a pK1 of 2 or less and / or a salt thereof, and water. .
[0008]
As the abrasive used in the present invention, an abrasive generally used for polishing can be used. Examples of the abrasive include metal; metal or metalloid carbide, nitride, oxide, boride; diamond and the like. The metal or metalloid element is derived from the 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or 8A group of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, and silica. The use of one or more of these improves the polishing rate. It is preferable from the viewpoint. Among these, aluminum oxide, silica, cerium oxide, zirconium oxide, titanium oxide, and the like are suitable for polishing a substrate for precision parts such as a semiconductor wafer, a semiconductor element, and a magnetic recording medium substrate. As for aluminum oxide, various crystal systems such as α, θ, and γ are known, but can be appropriately selected and used according to the application. Of these, silica, particularly colloidal silica, is suitable for final finishing polishing for high recording density memory magnetic disk substrates that require higher smoothness and for polishing semiconductor device substrates.
[0009]
The average particle size of the primary particles of the abrasive is 200 nm or less, and from the viewpoint of improving the polishing rate, it is preferably 1 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, and the surface roughness (Ra, Rmax ), From the viewpoint of reducing waviness (Wa), it is 200 nm or less, preferably 150 nm or less, more preferably 120 nm or less, and particularly preferably 100 nm or less. The average particle diameter of the primary particles is preferably 1 to 200 nm, more preferably 1 to 150 nm, still more preferably 10 to 120 nm, and particularly preferably 20 to 100 nm. Furthermore, when primary particles are aggregated to form secondary particles, the average particle size of the secondary particles is similarly from the viewpoint of improving the polishing rate and reducing the surface roughness of the object to be polished. The thickness is preferably 50 to 3000 nm, more preferably 100 to 1500 nm, and particularly preferably 200 to 1200 nm. The average particle size of the primary particles of the abrasive is obtained by analyzing an image observed with a scanning electron microscope (preferably 3000 to 100000 times), and the integrated particle size distribution (number basis) from the small particle size side of the primary particles is It can be determined by measuring the particle size (D50) to be 50%. Here, the particle diameter of one primary particle is a biaxial average (average of major axis and minor axis). The average particle size of the secondary particles can be measured as a volume average particle size using a laser beam diffraction method.
[0010]
In the present invention, silica particles are used as an abrasive from the viewpoint of reducing surface roughness (Ra, Rmax), waviness (Wa), reducing surface defects such as scratches, and improving surface quality. Is more preferable. Examples of the silica particles include colloidal silica particles, fumed silica particles, and surface-modified silica particles. Among them, colloidal silica particles are preferable. The colloidal silica particles can be obtained, for example, by a production method in which the colloidal silica particles are generated from a silicic acid aqueous solution.
[0011]
In the present invention, by using the polishing composition containing silica particles having the particle size distribution shown above, the surface roughness of the substrate to be polished after polishing is small, and surface defects such as protrusions and polishing scratches The effect that the substrate to be polished can be polished at an economical speed without generating the above is exhibited.
[0012]
The particle size of the silica particles in the particle size distribution can be determined by the following method using a scanning electron microscope (hereinafter referred to as SEM). That is, the polishing composition containing silica particles is diluted with ethanol so that the silica particle concentration becomes 0.5% by weight. This diluted solution is uniformly applied to a sample stage for SEM heated to about 50 ° C. Thereafter, the excess solution is blotted with a filter paper and uniformly dried naturally so that the solution does not aggregate.
[0013]
Pt-Pd is vapor-deposited on naturally dried silica particles, and about 500 silica particles in the field of view using a field effect scanning electron microscope (FE-SEM: S-4000 type) manufactured by Hitachi, Ltd. The magnification is adjusted to 3000 times to 100,000 times so as to be observed, and two points are observed on one sample stage and a photograph is taken. The photographed photograph (10.16 cm × 12.7 cm) is enlarged to A4 size (210 mm × 297 mm) with a copy machine or the like, and the particle diameters of all photographed silica particles are measured and counted with a caliper or the like. This operation is repeated several times so that the number of silica particles to be measured is 2000 or more. Increasing the number of measurement points by SEM is more preferable from the viewpoint of obtaining an accurate particle size distribution. The measured particle diameters are summed up, and the frequency (%) is added in order from the smallest particle diameter, and the particle diameter distribution on the number basis in the present invention can be obtained by setting the particle diameter at which the value is 50% as D50. In addition, the particle size distribution here is calculated | required as a particle size distribution of a primary particle. As for the abrasive other than the silica particles, when the abrasive is in a slurry form dispersed in a solvent such as water or alcohol, the particle size distribution can be obtained by the same method as the above silica particles. Specific examples thereof include aluminum oxide, titanium oxide, zirconium oxide, and zinc oxide manufactured by a growth (build-up) method. On the other hand, when the abrasive is in powder form, a conductive tape is applied to the SEM sample stage, the abrasive powder is sprinkled directly on the tape, and then Pt-Pd is deposited to prepare a sample. The particle size distribution can be obtained by the same method as in the case of particles. Specific examples thereof include silicon carbide, diamond, aluminum oxide, cerium oxide and the like produced by a pulverization method.
In addition, when there are particles in which primary particles such as aluminum oxide, cerium oxide, and fumed silica are fused, the particle size distribution can be obtained by regarding the fused particles as primary particles.
[0014]
In addition, the method for adjusting the particle size distribution of the silica particles is not particularly limited. For example, when the silica particles are colloidal silica, the final particles are added by adding new core particles in the particle growth process in the production stage. It can also be achieved by a method of giving the product a particle size distribution, a method of mixing two or more silica particles having different particle size distributions, and the like.
[0015]
The content of the abrasive in the abrasive composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and particularly preferably 5% by weight from the viewpoint of improving the polishing rate. From the viewpoint of improving the surface quality and the economical aspect, it is preferably 20% by weight or less, more preferably 15% by weight or less, further preferably 13% by weight or less, and particularly preferably 10% by weight or less. It is.
[0016]
That is, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, still more preferably 3 to 13% by weight, and particularly preferably 5 to 10% by weight.
[0017]
Examples of the oxidizing agent used in the present invention include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, nitric acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof, metal salt, sulfuric acid Etc. In this invention, there exists an advantage that a grinding | polishing rate can be improved by using this oxidizing agent.
[0018]
Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide, etc .; examples of permanganic acid or salts thereof include potassium permanganate; examples of chromic acid or salts thereof include chromic acid metal salts and heavy chromium. Acid metal salt, etc .; nitric acid or its salt as nitric acid, iron (III) nitrate, ammonium nitrate, etc .; peroxo acid or its salt as peroxodisulfuric acid, ammonium peroxodisulfate, peroxodisulfate metal salt, peroxophosphoric acid, peroxo Sulfuric acid, sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, perphthalic acid, etc .; oxygen acids or their salts include hypochlorous acid, hypobromous acid, hypoiodic acid, chloric acid, bromic acid , Iodic acid, sodium hypochlorite, calcium hypochlorite, etc .; metal salts include iron (III) chloride, iron (III) sulfate, iron (III) citrate, ammonium sulfate Examples thereof include nium iron (III). Preferable oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate. In particular, hydrogen peroxide is preferable from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more. Among these oxidizing agents, nitric acid or a salt thereof can be used as an acid or a salt thereof having a pK1 of 2 or less, which will be described later.
[0019]
From the viewpoint of improving the polishing rate, the content of the oxidizing agent in the polishing composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, further preferably 0.007% by weight or more, and particularly preferably 0.01% by weight. From the viewpoint of reducing surface roughness, waviness, reducing surface defects such as pits and scratches and improving surface quality, and from the viewpoint of economy, it is preferably 20% by weight or less, more preferably 15% by weight. Hereinafter, it is more preferably 10% by weight or less, particularly preferably 5% by weight or less. The content is preferably 0.002 to 20% by weight, more preferably 0.005 to 15% by weight, still more preferably 0.007 to 10% by weight, and particularly preferably 0.01 to 5% by weight.
[0020]
The acid and / or salt thereof used in the present invention is preferably a compound having a pK1 of 2 or less, and from the viewpoint of reducing microscratches, the pK1 is 1.5 or less, more preferably 1 or less, most preferably A compound exhibiting strong acidity that cannot be expressed by pK1 is desirable. Examples thereof include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, and salts thereof, 2-aminoethylphosphone. Acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1 , 1,2-Triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic Acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane Organic phosphonic acids such as 2,3,4-tricarboxylic acid and α-methylphosphonosuccinic acid and salts thereof, aminocarboxylic acids such as glutamic acid, picolinic acid and aspartic acid and salts thereof, oxalic acid, nitroacetic acid, maleic acid, Examples thereof include carboxylic acids such as oxaloacetic acid and salts thereof. Among these, inorganic acids, organic phosphonic acids, and salts thereof are preferable from the viewpoint of reducing minute scratches. Among inorganic acids and salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid and salts thereof are more preferable. Among organic phosphonic acids and salts thereof, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and their salts are more preferred. preferable. These acids and salts thereof may be used alone or in admixture of two or more. Here, pK1 represents the logarithm of the reciprocal of the acid dissociation constant (25 ° C.) of an organic compound or inorganic compound as normal PKa, and the logarithm of the reciprocal of the first acid dissociation constant is pK1. The pK1 of each compound is described in, for example, the revised 4th edition, Chemical Handbook (Basic Edition) II, pp316-325 (Edited by Chemical Society of Japan). In the present invention, it is particularly preferable to use an acid having a pK1 of 2 or less and / or a salt thereof from the viewpoint of achieving both a reduction in fine scratches and a polishing rate.
[0021]
These acid salts are not particularly limited, and specific examples include salts with metals, ammonium, alkylammonium, organic amines and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these, a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing fine scratches.
[0022]
The content of the acid having a pK1 of 2 or less and the salt thereof in the polishing composition is preferably 0.0001 to 5% by weight, more preferably 0.0003 to 5% from the viewpoint of exhibiting a sufficient polishing rate and improving the surface quality. It is 3% by weight, more preferably 0.001 to 2% by weight, and particularly preferably 0.0025 to 1% by weight.
[0023]
Water in the polishing liquid composition of the present invention is used as a medium, and the content thereof is preferably 55% by weight or more, more preferably 67%, from the viewpoint of efficiently polishing an object to be polished. % By weight or more, more preferably 75% by weight or more, particularly preferably 84% by weight or more, preferably 99.4979% by weight or less, more preferably 98.9947% by weight or less, and further preferably 96.992% by weight or less. Particularly preferably, it is 94.9875% by weight or less. The content is preferably 55 to 99.4979% by weight, more preferably 67 to 98.9947% by weight, still more preferably 75 to 96.992% by weight, and particularly preferably 84 to 94.9875% by weight.
[0024]
The concentration of each component in the polishing liquid composition may be any of the concentration during production of the composition and the concentration during use. Usually, a polishing composition is produced as a concentrated liquid, and it is often used after being diluted at the time of use.
[0025]
Moreover, other components can be mix | blended with the polishing liquid composition of this invention as needed. Examples of the other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant.
[0026]
In the polishing composition of the present invention, an abrasive having an average primary particle size of 200 nm or less, an oxidizing agent, an acid having a pK1 of 2 or less and / or a salt thereof, water, and other components as necessary are known. It can prepare by mixing by the method of.
[0027]
The acid value (Y) of the polishing composition of the present invention is 20 mgKOH / g or less and 0.2 mgKOH / g or more. Among these, when organic phosphonic acid is contained as an acid having a pK1 of 2 or less in the polishing composition, the acid value (Y) is preferably 15 mgKOH / g or less from the viewpoint of reducing fine scratches, and 10 mgKOH / g or less is more preferred, 7 mg KOH / g or less is particularly preferred, and 3 mg KOH / g or less is most preferred. When an inorganic acid is contained as an acid having a pK1 of 2 or less, it is preferably 5 mgKOH / g or less, more preferably 3 mgKOH / g or less, particularly preferably 1.8 mgKOH / g or less, from the viewpoint of reducing fine scratches. 0.5 mgKOH / g or less is most preferable.
[0028]
From the viewpoint of improving the polishing rate, the acid value (Y) is preferably 0.2 mgKOH / g or more, more preferably 0.25 mgKOH / g or more, more preferably 0.3 mgKOH / g or more, and 0.35 mgKOH. / G or more is more preferable, 0.4 mgKOH / g or more is more preferable, 0.45 mgKOH / g or more is more preferable, 0.5 mgKOH / g or more is still more preferable, 0.75 mgKOH / g or more is particularly preferable, 1.0 mgKOH / G or more is most preferable.
[0029]
The acid value (Y) is measured according to JIS K 1557, and is determined as the amount of potassium hydroxide (mg) necessary for neutralization per 1 g of the polishing composition.
[0030]
Moreover, as an acid value (Y) of the polishing liquid composition of this invention, from a viewpoint of reducing a fine scratch, Formula (1):
Y (mgKOH / g) ≦ 5.7 × 10-17× X (pieces / g) + 19.45 (1)
(However, X represents the number concentration of the abrasive in the polishing composition)
It is preferable to satisfy.
[0031]
As described above, the micro scratch is a surface defect that has not been noticed until now, and nothing has been clarified about the mechanism of the occurrence. Therefore, as a result of intensive studies by the present inventors, surprisingly, the occurrence of micro scratches is the degree of corrosiveness of the polishing composition and the degree of direct contact between the polishing pad and the object to be polished during polishing. I found a new dependence on the balance. Specifically, the degree of corrosiveness of the polishing liquid composition is indicated by an acid value, and the degree of direct contact between the polishing pad and the object to be polished is indicated by the number concentration of the abrasive, which satisfies the relationship of the above formula (1). It has been discovered that micro scratches can be significantly reduced by using the polishing composition.
[0032]
In the present invention, when the acid value (Y) of the polishing composition and the number concentration of the polishing material satisfy the relationship of the formula (1), the mechanical factor (direct contact between the pad and the polishing object) and the chemical factor with respect to the polishing object Since the balance with (corrosive) can be taken, the effect that a micro scratch is reduced significantly is expressed. Here, the formula (1) shows the relationship between the number concentration (X) of the abrasive that is a mechanical factor and the acid value (Y) that is a chemical factor, and this acid value (Y) is the concentration of the abrasive on the right side. If the condition of direct contact between the pad and the object to be polished is determined at the number concentration (X) of a specific polishing material, it is corrosivity that can significantly reduce micro scratches. This means that the upper limit of the strength (acid value (Y)) is determined.
In particular, by polishing the substrate using a polishing composition that satisfies the relationship of the above formula (1), the fine scratches are “large” and “medium” according to the degree of depth as in the examples described later. In the case of further classifying into three stages of “small”, the effect of reducing the three kinds of micro scratches from the substrate to such an extent that there is no practical effect is exhibited.
[0033]
In addition, the number density | concentration (number / g) of abrasives in polishing liquid composition: X is calculated | required by following Formula (2).
[0034]
[Expression 1]
Figure 0004462599
[0035]
For example, in the case of silica, the true specific gravity of the abrasive is 2.2 g / cm2 of amorphous silica from "The Chemistry Of Silica" (Iler, Ralph K., 1979 John Wiley & Sons, Inc.).ThreeCan be used. When there is no literature value, it can be determined from the average particle size of the primary particles and the experimental value of the specific surface area by the BET method. The average particle size of the primary particles used at that time is observed with a scanning electron microscope as described above. By analyzing the image (preferably 3000 to 100000 times), the particle size (D50) at which the integrated particle size distribution (number basis) from the small particle size side of the primary particles becomes 50% can be used.
[0036]
As a method of adjusting Y so as to satisfy the formula (1), for example, the upper limit of the acid value (Y) obtained from the number concentration of the abrasive in advance by calculation is divided by the weight of 56110 mg of KOH, and [mol / g], multiplying the obtained converted value by the molecular weight of the acid [nitric acid, etc.] to be used, and converting it to [wt%], the value obtained by converting it to the upper limit of the amount of acid added And a method for preparing the product.
[0037]
Moreover, when the polishing composition contains an inorganic acid and / or a salt thereof, from the viewpoint of reducing fine scratches,
Y (mgKOH / g) ≦ 5.7 × 10-17X preferably satisfies X (pieces / g) +3.00,
Y (mgKOH / g) ≦ 5.7 × 10-17X It is more preferable to satisfy X (pieces / g) + 1.77,
Y (mgKOH / g) ≦ 5.7 × 10-17X It is particularly preferable that X (pieces / g) +1.67 is satisfied,
Y (mgKOH / g) ≦ 5.7 × 10-17It is most preferable to satisfy X (pieces / g) +1.47.
[0038]
When the polishing composition contains an acid having a pK1 other than inorganic acid and / or a salt thereof, particularly an organic phosphonic acid and / or a salt thereof, from the viewpoint of reducing fine scratches,
Y (mgKOH / g) ≦ 5.7 × 10-17X It is more preferable to satisfy X (pieces / g) + 14.45,
Y (mgKOH / g) ≦ 5.7 × 10-17X It is more preferable to satisfy X (pieces / g) +9.45
Y (mgKOH / g) ≦ 5.7 × 10-17It is particularly preferable that X (pieces / g) +6.45 is satisfied,
Y (mgKOH / g) ≦ 5.7 × 10-17X It is most preferable that X (pieces / g) +2.45 is satisfied.
[0039]
The pH of the polishing composition of the present invention is preferably determined as appropriate according to the type of workpiece and the required performance. Although it cannot be generally limited depending on the material of the object to be polished, in general, in the case of metal materials, the pH is preferably acidic from the viewpoint of improving the polishing rate, preferably less than 7.0, more preferably 6.0 or less, still more preferably 5.0 or less, particularly preferably. It is desirable to be 4.0 or less. Further, from the viewpoint of the influence on the human body and the corrosiveness of the machine, the pH is preferably 1.0 or more, more preferably 1.2 or more, still more preferably 1.4 or more, and particularly preferably 1.6 or more. Particularly in precision component substrates mainly made of metal such as nickel-phosphorus (Ni-P) plated aluminum alloy substrate, from the viewpoint of polishing rate, it is preferable to make the pH acidic, and to improve the polishing rate. Accordingly, the pH is preferably 4.5 or less, more preferably 4.0 or less, still more preferably 3.5 or less, and particularly preferably 3.0 or less. Accordingly, the pH may be set in accordance with the purpose to be emphasized, but in the case of precision component substrates targeting metals such as aluminum alloy substrates plated with Ni-P, the pH is 1.0 to 4.5 is preferable, more preferably 1.2 to 4.0, still more preferably 1.4 to 3.5, and particularly preferably 1.6 to 3.0. The pH is adjusted by appropriately mixing inorganic acids such as nitric acid and sulfuric acid, organic acids such as oxalic acid, ammonium salts, aqueous ammonia, potassium hydroxide, sodium hydroxide, amines, etc., in appropriate amounts. Can do.
[0040]
Examples of the method for reducing fine scratches of the present invention include a method of using the polishing composition of the present invention when polishing a substrate to be polished. As a polishing method for the substrate to be polished, the polishing composition of the present invention is used, or each component is mixed so as to be the composition of the polishing composition of the present invention to prepare a polishing composition and to be polished. It has the process of grind | polishing a board | substrate and can manufacture the board | substrate for precision components especially suitably. Moreover, the polishing composition of the present invention can exhibit a high polishing rate by remarkably reducing the occurrence of surface defects, particularly fine scratches.
[0041]
Examples of the material of the object to be polished by the polishing liquid composition of the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, and alloys thereof, and glass and glassy carbon. And glassy substances such as amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, metals such as aluminum, nickel, tungsten, and copper and alloys based on these metals are objects to be polished, or they include metals such as semiconductor substrates such as semiconductor elements. It is preferably a workpiece, for example, a Ni—P plated aluminum alloy substrate, a glass substrate such as crystallized glass or tempered glass is more preferred, and a Ni—P plated aluminum alloy substrate is particularly preferred.
[0042]
The shape of the object to be polished is not particularly limited. For example, the shape having a flat portion such as a disk shape, a plate shape, a slab shape, or a prism shape, or the shape having a curved surface portion such as a lens can be used. It becomes the object of polishing using. Among these, it is particularly excellent for polishing a disk-shaped workpiece.
[0043]
The polishing composition of the present invention is suitably used for polishing precision component substrates. For example, it is suitable for polishing a precision component substrate such as a magnetic recording medium substrate such as a magnetic disk, an optical disk, and a magneto-optical disk, a photomask substrate, an optical lens, an optical mirror, an optical prism, and a semiconductor substrate. The polishing of the semiconductor substrate is performed in a polishing process of a silicon wafer (bare wafer), a formation process of a buried element isolation film, a planarization process of an interlayer insulating film, a formation process of a buried metal wiring, a buried capacitor formation process, and the like. The polishing composition of the present invention is particularly suitable for polishing a magnetic disk substrate. Furthermore, it is suitable for obtaining a magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less and a waviness (Wa) of 0.3 nm or less.
[0044]
In the present specification, the surface roughness (Ra) and the waviness (Wa) are obtained as the centerline roughness generally referred to, and the centerline average roughness obtained from a roughness curve having a wavelength component of 80 μm or less is defined as Ra. In addition, the center line average roughness of the roughness curve having a wavelength component of 0.4 to 5 mm is expressed as Wa as the center line average minute waviness. These can be measured as follows.
[0045]
Centerline average roughness: Ra
Using a tally step (Taridata 2000) manufactured by Rank Taylor Hobson, measurement is performed under the following conditions.
Tip size of stylus: 2.5 μm × 2.5 μm
High-pass filter: 80 μm
Measurement length: 0.64 mm
[0046]
Centerline average micro swell: Wa
Using New View 200 manufactured by Zygo, measurement is performed under the following conditions.
Objective lens: 2.5x
ImageZoom: 0.5 times
Filter: Band Pass
Filter type: FFT Fixed
Filter High Wavelength: 0.4mm
Filter Low Wavelength: 5.0mm
Remove: Cylinder
[0047]
As a polishing method using the polishing liquid composition of the present invention, for example, a substrate is sandwiched with a polishing board to which a non-woven organic polymer polishing cloth or the like is attached, the polishing liquid composition is supplied to the polishing surface, and a constant pressure is applied. And a method of polishing by moving a polishing board or a substrate while adding. In the above method, by using the polishing composition of the present invention, the generation of fine scratches is remarkably suppressed, the polishing rate is improved, the occurrence of surface defects such as scratches and pits is suppressed, and the surface roughness ( Surface smoothness such as Ra) and waviness (Wa) can be improved. That is, the polishing method is a method for reducing micro scratches on the substrate.
[0048]
The substrate manufacturing method of the present invention includes a polishing step using the polishing composition, and the polishing step is preferably performed after the second step among the plurality of polishing steps. It is particularly preferred that For example, a Ni-P plated aluminum alloy substrate having a surface roughness (Ra) of 0.5 to 1.5 nm and a waviness (Wa) of 0.5 to 1 nm by one or two polishing steps is used. A magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less and a waviness (Wa) of 0.3 nm or less, preferably having a surface roughness (Ra) of 0. 0 is polished by a polishing step using the polishing composition. A magnetic disk substrate having a thickness of 25 nm or less and a waviness (Wa) of 0.25 nm or less can be manufactured. In particular, the polishing composition of the present invention is a magnetic disk substrate having a surface roughness (Ra) of 0.3 nm or less and waviness (Wa) of 0.3 nm or less, preferably surface roughness (Ra), in two steps of polishing. It is suitable for use in the second step in manufacturing a magnetic disk substrate having a 0.25 nm or less and waviness (Wa) 0.25 nm or less.
[0049]
The manufactured substrate is excellent in surface smoothness in addition to remarkably reducing fine scratches. The surface smoothness is desirably a surface roughness (Ra) of 0.3 nm or less, preferably 0.25 nm or less. Further, the swell (Wa) is 0.3 nm or less, preferably 0.25 nm or less.
[0050]
As described above, by using the polishing composition of the present invention, the generation of fine scratches is remarkably reduced, the polishing rate is improved, and there are few surface defects such as scratches and pits, and the surface roughness (Ra). In addition, it is possible to produce a high-quality substrate with improved surface properties with improved smoothness such as waviness (Wa) and the like with high production efficiency.
[0051]
The polishing composition of the present invention is particularly effective in the polishing process, but can be similarly applied to other polishing processes such as a lapping process.
[0052]
【Example】
(Polished object)
As the substrate to be polished, a 95 mmφ aluminum alloy substrate having a thickness of 0.8 mm and a substrate surface roughness (Ra) of 1 nm was prepared by rough polishing a Ni-P plated substrate in advance with a polishing liquid containing an alumina abrasive. Polishing evaluation was performed.
[0053]
Examples 1-18(However, Examples 1, 7, and 11 to 18 are reference examples)
  As shown in Table 1, commercially available colloidal silica (A (average particle size 50 nm): manufactured by Nippon Chemical Industry Co., Ltd., B (average particle size 80 nm): manufactured by Starck Vitec Co., Ltd., C (average particle size 20 nm): DuPont ( Co., Ltd.), 35 wt% hydrogen peroxide (Asahi Denka), 60 wt% nitric acid (Wako Pure Chemical Industries, pK1 is 0 or less), 98 wt% sulfuric acid (Wako Pure Chemical Industries, Ltd.) , PK1 is 0 or less) and the like, and the rest is water so that the total amount is 100% by weight. The mixing order was prepared by first adding hydrogen peroxide to an aqueous solution obtained by diluting nitric acid or sulfuric acid with water, then mixing the remaining components, and finally adding the colloidal silica slurry quickly with stirring so as not to gel.
  In the table, HEDP represents 1-hydroxyethylidene-1,1-diphosphonic acid (manufactured by Solusia Japan), and ATMP represents aminotri (methylenephosphonic acid) (manufactured by Solusia Japan).
[0054]
[Table 1]
Figure 0004462599
[0055]
Comparative Examples 1-7
As shown in Table 2, commercially available colloidal silica (A (average particle size 50 nm): manufactured by Nippon Chemical Industry Co., Ltd., B (average particle size 80 nm): manufactured by Starck Vitec Co., Ltd., C (average particle size 20 nm): DuPont 35% by weight hydrogen peroxide (Asahi Denka Kogyo Co., Ltd.), 60% by weight nitric acid (manufactured by Wako Pure Chemical Industries, Ltd.), aluminum nitrate nonahydrate (special grade: Wako Pure Chemical Industries, Ltd.) )), The other components were prepared in a predetermined amount, and the remainder was water so that the total amount was 100% by weight. The mixing order is as follows. First, hydrogen peroxide and aluminum nitrate.9 hydrate are mixed with an aqueous solution obtained by diluting nitric acid with water, then the remaining components are mixed, and finally the colloidal silica slurry is stirred so as not to gel. Quickly added and prepared.
In the table, ammonium persulfate and succinic acid are manufactured by Wako Pure Chemical Industries, Ltd., special grade, and aluminum nitrate is aluminum nitrate nonahydrate (Wako Pure Chemical Industries, Ltd., special grade).
[0056]
[Table 2]
Figure 0004462599
[0057]
About polishing liquid composition obtained in Examples 1-18 and Comparative Examples 1-7, the acid value, the number concentration of the abrasive, the polishing rate, and the presence or absence of scratches, surface roughness, microwaviness, surface defects, and scratches Measurement and evaluation were performed based on the following methods. The obtained results are shown in Tables 1 to 4.
[0058]
(Polishing conditions)
Polishing tester: Double-sided 9B polishing machine made by Speedfam
Polishing pad: Kanebo Belatrix N0058
Plate rotation speed: 35r / min
Slurry supply amount: 40ml / min
Polishing time: 4 minutes
Polishing load: 7.8 kPa
Number of substrates loaded: 10
[0059]
(Measurement of acid value)
The polishing composition was weighed into a 100 ml collection vial using a 50 g balance (manufactured by BP221S Sartorius) and recorded to 4 digits after the decimal point. Next, three-point calibration (pH = 4.01 (25 ° C: phthalate pH standard solution (manufactured by Toa Denpa Kogyo)), pH = 6.86 (25 ° C: neutral phosphate, while stirring with a Teflon stir bar. (Toa Denpa Kogyo Co., Ltd.)), pH = 9.18 (25 ° C: borate pH standard solution (Katayama Chemical Co., Ltd.))) pH meter (HM-30G (Toa Denpa Kogyo Co., Ltd.), electrode: GST-5721C) The pH was measured. A 0.1 ml / L potassium hydroxide aqueous solution (factor 1.000; manufactured by Sigma-Aldrich Japan) is added dropwise to a 10 ml titration tube to obtain an amount (ml) having a pH of 7.00 (normally around 4 points around pH 7.00). Calculated from the data by interpolation). Calculate the amount of potassium hydroxide required to neutralize the polishing composition per gram from the amount of polishing solution (g) and the required amount of potassium hydroxide (ml). (mgKOH / g). In the table, the acid value (calculated value) refers to a value obtained by substituting the abrasive number concentration obtained as described below into a linear function on the right side of the equation (1).
[0060]
(Calculation of abrasive number concentration)
In the above formula (2), the specific gravity is 2.2 g / cm of amorphous silica.ThreeAnd calculated.
[0061]
(Polishing speed)
Substrate weight difference before and after polishing test (g) is the specific gravity (8.4g / cmThree) And then the disc surface area (65.97cm)2) And the polishing time to calculate the double-sided polishing amount per unit time.
[0062]
(Micro scratch)
Differential interference microscope system (metal microscope: BX60M (manufactured by Olympus Optical Co., Ltd.)), objective lens: UMPlan FI 5 × / 0.15 BD P, CCD Color camera: ICD-500AC (manufactured by Ikegami Tsushinki), color monitor: UCM-1000 REV. 8 (manufactured by Ikegami Tsushinki Co., Ltd.)) Observe the entire surface of 10 substrates to be polished, and scratch scratches in 10 substrates (depth 0.1 nm to 5 nm, width 10 μm to 50 μm, length 10 μm to 1 mm) The number of occurrences of small scratches was counted by visually classifying the degree of occurrence of fine scratches as large / medium / small. The evaluation criteria for large, medium and small are as follows.
“Large”: (depth) 1.0 nm or more and less than 5.0 nm, (width) 10 μm or more and less than 50 μm, (length) 10 μm or more and less than 1 mm,
“Medium”: (depth) 0.5 nm to less than 1.0 nm, (width) 10 μm to less than 50 μm, (length) 10 μm to less than 1 mm,
“Small”: (depth) 0.1 nm to less than 0.5 nm, (width) 10 μm to less than 50 μm, (length) 10 μm to less than 1 mm
In the present invention, “Large” is 0, and “Medium” is 5 or less of 10 out of 10.
[0063]
(Surface roughness (Ra, Rmax))
Using an atomic force microscope (Nanoscope III, Dimension3000, manufactured by Digital Instruments Co., Ltd.), a total of 6 points at intervals of 120 ° on the front and back of the substrate to be polished. ScanRate in the range of 2 μm x 2 μm at 1.0 Hz The average value was measured.
(Ra) ○: Less than 0.35 nm, ×: 0.35 nm or more, (Rmax) :: Less than 3 nm, ○: 3 nm or more and less than 5 nm, Δ: 5 nm or more and less than 10 nm, ×: 10 nm or more.
“Ra” represents the center line average roughness, and “Rmax” represents the PV value (Peak-to-Valley value).
[0064]
(Micro wave (Wa))
Measurement was performed with an optical surface shape measuring device (NewView 200: manufactured by Zygo) under the above conditions. O: Less than 0.45 nm, x: 0.45 nm or more are shown in Tables 3 and 4.
[0065]
(Surface defect)
Measure the surface of each substrate at 12 locations every 30 ° with differential interference microscope observation (metal microscope BX60M (Olympus Kogyo) eyepiece × 10, objective lens × 20), and count the number of pits and protrusions per 12 fields of view. It was. O: 0, x: 1 or more are shown in Tables 3 and 4.
[0066]
(scratch)
The surface of 10 substrates was visually observed by observing a high-intensity lamp (HPS-250: manufactured by Yamada Optical Co., Ltd.), and the number of scratches per substrate was counted. It should be noted that the minute scratch could not be observed with this high-intensity lamp. ○: (Scratches with a depth of 5 nm or more and a length of 1 mm or more) 5 or less, x: 6 or more and shown in Tables 3 and 4.
[0067]
[Table 3]
Figure 0004462599
[0068]
[Table 4]
Figure 0004462599
[0069]
From the results of Tables 3 and 4, the polishing liquid compositions obtained in Examples 1 to 18 were significantly superior in the effect of reducing fine scratches as compared to the polishing liquid compositions obtained in Comparative Examples 1 to 7. It turns out that it is a thing. In addition, it can be seen that the polishing liquid compositions obtained in Examples 1 to 18 all have a high polishing rate and are excellent in surface quality such as surface roughness, microwaviness, surface defects, and scratches.
[0070]
【The invention's effect】
By using the polishing composition of the present invention, the surface roughness is small, and surface defects such as protrusions and polishing scratches, in particular, the depth is 0.1 nm or more and less than 5 nm, the width is 10 μm or more and less than 50 μm, the length. However, it is possible to economically manufacture a substrate such as a memory hard disk or a semiconductor element in which a minute scratch of 10 μm or more and less than 1 mm is remarkably reduced.

Claims (5)

一次粒子の平均粒径が200nm以下であるコロイダルシリカ過酸化水素、pK1が2以下の酸及び/又はその塩、及び水を含有してなる磁気ディスク基板用研磨液組成物であって、前記pK1が2以下の酸が硝酸、硫酸、塩酸及び過塩素酸からなる群より選ばれ、その塩が周期律表(長周期型)1Aに属する金属又はアンモニウムとの塩であり、該研磨液組成物の酸価(Y)がmgKOH/g以下、0.mgKOH/g以上である磁気ディスク基板用研磨液組成物。A polishing composition for a magnetic disk substrate , comprising colloidal silica having an average primary particle size of 200 nm or less, hydrogen peroxide , an acid having a pK1 of 2 or less and / or a salt thereof, and water , An acid having a pK1 of 2 or less is selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid and perchloric acid, and the salt thereof is a salt with a metal or ammonium belonging to the periodic table (long period type) 1A, and the polishing liquid The acid value (Y) of the composition is 5 mgKOH / g or less; A polishing composition for a magnetic disk substrate, which is 4 mgKOH / g or more. pK1が2以下の酸及び/又はその塩として、さらに有機ホスホン酸及び/又はその塩を含む請求項1記載の研磨液組成物。  The polishing composition according to claim 1, further comprising an organic phosphonic acid and / or a salt thereof as an acid having a pK1 of 2 or less and / or a salt thereof. 請求項1又は2記載の研磨液組成物であって、該研磨液組成物の酸価(Y)が式(1):
Y(mgKOH/g )≦5.7×10-17 × X(個/g)+19.45 (1)
(但し、Xは研磨液組成物中における研磨材の個数濃度を示す)
を満足する研磨液組成物。
The polishing liquid composition according to claim 1 or 2 , wherein the acid value (Y) of the polishing liquid composition is represented by formula (1):
Y (mgKOH / g) ≦ 5.7 × 10 −17 × X (pieces / g) +19.45 (1)
(However, X represents the number concentration of the abrasive in the polishing composition)
A polishing composition that satisfies the requirements.
請求項1〜いずれか記載の研磨液組成物を用いて磁気ディスク基板の微小スクラッチを低減する方法。Method of reducing the fine scratches of the magnetic disk substrate with claim 1-3 polishing composition according to any one. 請求項1〜いずれか記載の研磨液組成物を用いて磁気ディスク基板を製造する方法。Method of manufacturing a magnetic disk substrate with claim 1-3 polishing composition according to any one.
JP2002218673A 2001-08-21 2002-07-26 Polishing liquid composition Expired - Fee Related JP4462599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218673A JP4462599B2 (en) 2001-08-21 2002-07-26 Polishing liquid composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-250346 2001-08-21
JP2001250346 2001-08-21
JP2002218673A JP4462599B2 (en) 2001-08-21 2002-07-26 Polishing liquid composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009042953A Division JP5219886B2 (en) 2001-08-21 2009-02-25 Polishing liquid composition

Publications (2)

Publication Number Publication Date
JP2003155471A JP2003155471A (en) 2003-05-30
JP4462599B2 true JP4462599B2 (en) 2010-05-12

Family

ID=26620729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218673A Expired - Fee Related JP4462599B2 (en) 2001-08-21 2002-07-26 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP4462599B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986099B2 (en) * 2003-06-09 2012-07-25 花王株式会社 Substrate manufacturing method
JP2005001018A (en) * 2003-06-09 2005-01-06 Kao Corp Method of manufacturing substrate
JP4202201B2 (en) * 2003-07-03 2008-12-24 株式会社フジミインコーポレーテッド Polishing composition
JP4707311B2 (en) 2003-08-08 2011-06-22 花王株式会社 Magnetic disk substrate
JP2008012668A (en) * 2004-04-06 2008-01-24 Kao Corp Polishing-fluid composition
JP2007260853A (en) * 2006-03-29 2007-10-11 Konica Minolta Opto Inc Polishing method of amorphous glass
TWI411667B (en) 2006-04-28 2013-10-11 Kao Corp Polishing composition for magnetic disk substrate
JP2008074990A (en) * 2006-09-22 2008-04-03 Nihon Micro Coating Co Ltd Polishing slurry and method
JP2009181690A (en) * 2009-04-02 2009-08-13 Kao Corp Method of manufacturing substrate
KR20140106532A (en) * 2011-12-02 2014-09-03 아사히 가라스 가부시키가이샤 Glass plate-polishing device
WO2017061229A1 (en) * 2015-10-09 2017-04-13 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same, and method for producing an object intended to be and has been polished using polishing composition and polishing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189079B2 (en) * 1999-04-19 2008-12-03 株式会社トクヤマ Polishing method
JP2000340532A (en) * 1999-05-31 2000-12-08 Mitsubishi Materials Corp Slurry for polishing and polishing method using the same
US6280490B1 (en) * 1999-09-27 2001-08-28 Fujimi America Inc. Polishing composition and method for producing a memory hard disk
JP3877924B2 (en) * 2000-01-24 2007-02-07 昭和電工株式会社 Magnetic disk substrate polishing composition
US6355075B1 (en) * 2000-02-11 2002-03-12 Fujimi Incorporated Polishing composition

Also Published As

Publication number Publication date
JP2003155471A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP5219886B2 (en) Polishing liquid composition
JP4231632B2 (en) Polishing liquid composition
US7780751B2 (en) Polishing composition for hard disk substrate
JP4707311B2 (en) Magnetic disk substrate
JP3997152B2 (en) Polishing liquid composition
US6910952B2 (en) Polishing composition
JP4462599B2 (en) Polishing liquid composition
US20140346138A1 (en) Polishing composition for magnetic disk substrate
JP4104335B2 (en) Method for reducing microprojections
JP2004263074A (en) Polishing composition
JP2004253058A (en) Polishing liquid composition
JP4373776B2 (en) Polishing liquid composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP4267546B2 (en) Substrate manufacturing method
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP3997154B2 (en) Polishing liquid composition
JP4637003B2 (en) Manufacturing method of hard disk substrate
JP3997153B2 (en) Polishing liquid composition
JP2006130638A (en) Encased abrasive material particle dispersed liquid
JP4640981B2 (en) Substrate manufacturing method
JP2009181690A (en) Method of manufacturing substrate
JP2007179612A (en) Polishing liquid composition for magnetic disk substrate
JP3940111B2 (en) Polishing liquid composition
JP2008012668A (en) Polishing-fluid composition
JP2005001018A (en) Method of manufacturing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4462599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees