JP2007260906A - Manufacturing method of substrate - Google Patents

Manufacturing method of substrate Download PDF

Info

Publication number
JP2007260906A
JP2007260906A JP2007192491A JP2007192491A JP2007260906A JP 2007260906 A JP2007260906 A JP 2007260906A JP 2007192491 A JP2007192491 A JP 2007192491A JP 2007192491 A JP2007192491 A JP 2007192491A JP 2007260906 A JP2007260906 A JP 2007260906A
Authority
JP
Japan
Prior art keywords
polishing
substrate
less
liquid composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007192491A
Other languages
Japanese (ja)
Inventor
Yuichi Honma
祐一 本間
Kenichi Suenaga
憲一 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007192491A priority Critical patent/JP2007260906A/en
Publication of JP2007260906A publication Critical patent/JP2007260906A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a substrate capable of reducing nano scratch which is significant in high densification, and performing polishing work economically, in a polishing process of a precise parts substrate such as a memory hard disc and a semiconductor element. <P>SOLUTION: The manufacturing method of the substrate includes a step of polishing a substrate by supplying a polishing liquid composition to a polishing machine having a surface plate at a flow rate of 0.06 cm<SP>3</SP>/min or more per polished area 1 cm<SP>2</SP>of the substrate. The polishing liquid composition contains at least polishing material and water, has pH of 0.1 to 7, and includes polishing particles of 0.56 μm or more and less than 1 μm in an amount of 500,000 pieces or less per 1 cm<SP>3</SP>of the polishing liquid composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板の製造方法に関する。   The present invention relates to a method for manufacturing a substrate.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上化に対応して、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に対応して、許容される基板面当たりのスクラッチ数は少なく、その大きさと深さはますます小さくなってきている。   Recent memory hard disk drives are required to have a high capacity and a small diameter, and in order to increase the recording density, the flying height of the magnetic head is reduced to reduce the unit recording area. As a result, the surface quality required after polishing in the manufacturing process of magnetic disk substrates has become stricter year by year, and the surface roughness, micro waviness, roll-off and protrusions have been reduced in response to the low flying height of the head. Corresponding to the decrease in unit recording area, the allowable number of scratches per substrate surface is small, and its size and depth are getting smaller.

また、半導体分野においても、高集積化と高速化が進んでおり、特に高集積化では配線の微細化が要求されている。その結果、半導体基板の製造プロセスにおいては、フォトレジストの露光の際の焦点深度が浅くなり、より一層の表面平滑性が望まれている。   Also in the semiconductor field, high integration and high speed are advancing. In particular, miniaturization of wiring is required for high integration. As a result, in the manufacturing process of a semiconductor substrate, the depth of focus at the time of exposure of the photoresist becomes shallow, and further surface smoothness is desired.

このような要求に対して、0.2μm以上のスクラッチを低減させるための研磨液組成物(特許文献1)や、幅が広く非常に浅い傷である「微小スクラッチ」(深さが0.1nm以上5nm未満、幅が10μm以上50μm未満、長さが10μm以上1000μm未満)の低減を目的とした研磨液組成物が提案されている(特許文献2)。
特開2003-188122号公報 特開2003-155471号公報
In response to such demands, a polishing liquid composition (Patent Document 1) for reducing scratches of 0.2 μm or more, or “micro scratch” (depth of 0.1 nm or more) which is a wide and very shallow scratch. There has been proposed a polishing liquid composition aiming at reduction of less than 5 nm, a width of 10 μm or more and less than 50 μm, and a length of 10 μm or more and less than 1000 μm (Patent Document 2).
JP 2003-188122 A JP 2003-155471 A

しかし、上記の方法を用いても、より高容量、高集積といった高密度化に対し、高品質でかつ経済的に基板を製造するためにはまだ十分とはいえない。したがって、ナノスクラッチの発生を低減させた基板を製造することが本発明の解決しようとする課題である。   However, even if the above-described method is used, it cannot be said that it is sufficient to manufacture a high-quality and economical substrate for higher density such as higher capacity and higher integration. Therefore, it is a problem to be solved by the present invention to manufacture a substrate with reduced generation of nanoscratches.

本発明の目的は、メモリーハードディスクや半導体素子等の精密部品基板の研磨工程において、高密度化において重要になる上記ナノスクラッチを顕著に低減し、しかも経済的に研磨をすることが可能である研磨工程を有する基板の製造方法を提供することにある。   The object of the present invention is to significantly reduce the above-mentioned nano-scratch that is important in increasing the density in the polishing process of precision component substrates such as memory hard disks and semiconductor elements, and to perform polishing that is economical. It is providing the manufacturing method of the board | substrate which has a process.

そこで、本件発明者らが鋭意研究をしたところ、その原因として、品質面ではこれまで検出できなかった「ナノスクラッチ」(深さが10nm以上、100nm未満、幅が5nm以上500nm未満、長さが100μm以上の基板表面の微細な傷)の低減が不十分なことにあることを見出した。
本発明の要旨は、少なくとも研磨材と水とを含有してなるpHが0.1〜7の研磨液組成物で且つ、0.56μm以上1μm未満の研磨粒子が研磨液組成物1cm当り500,000個以下である研磨液組成物を定盤を備えた研磨機に基板の被研磨面積1cm2あたり0.06cm3/分以上の流量で供給して基板を研磨する工程を有する基板の製造方法に関する。
Therefore, the inventors of the present invention diligently studied, and as a cause thereof, “nano scratch” (depth of 10 nm or more, less than 100 nm, width of 5 nm or more and less than 500 nm, length was undetectable until now in terms of quality) It has been found that the reduction of fine scratches on the substrate surface of 100 μm or more is insufficient.
The gist of the present invention is a polishing composition having a pH of 0.1 to 7 containing at least an abrasive and water, and abrasive particles of 0.56 μm or more and less than 1 μm are 500 per cm 3 of the polishing composition. , 000 or less polishing liquid compositions are supplied to a polishing machine equipped with a surface plate at a flow rate of 0.06 cm 3 / min or more per 1 cm 2 of the substrate to be polished, and the substrate is polished. About.

本発明の基板の製造方法により、研磨後の基板のナノスクラッチの顕著な低減が実現できるため、表面性状に優れた高品質のメモリーハードディスク用基板及び半導体素子用基板等の精密部品基板を経済的に製造できるという効果を奏する。   The substrate manufacturing method of the present invention can realize a remarkable reduction of the nano-scratch of the substrate after polishing. Therefore, it is economical to use high-quality memory hard disk substrates with excellent surface properties and precision component substrates such as semiconductor device substrates. There is an effect that it can be manufactured.

本発明の基板の製造方法は、少なくとも研磨材と水とを含有してなるpHが0.1〜7の研磨液組成物で且つ、0.56μm以上1μm未満の研磨粒子が研磨液組成物1cm当り500,000個以下である研磨液組成物を定盤を備えた研磨機に基板の被研磨面積1cm2あたり0.06cm3/分以上の流量で供給して基板を研磨する工程を有することを特徴とし、欠陥の原因となるナノスクラッチを顕著に低減でき、優れた表面平滑性を有する基板を提供することができる。ここで、研磨粒子とは、研磨材の一次粒子のみならず、一次粒子が凝集して生成した凝集粒子をも含むものとする。ナノスクラッチは、特に、メモリーハードディスク基板又は半導体素子用基板において、高密度化又は高集積化に重要となる物性である。従って、本発明の基板の製造方法を用いることで、表面性状に優れた高品質のメモリーハードディスク基板又は半導体素子用基板を製造することができる。 In the method for producing a substrate of the present invention, a polishing liquid composition containing at least an abrasive and water and having a pH of 0.1 to 7 and abrasive particles of 0.56 μm or more and less than 1 μm are contained in 1 cm of the polishing liquid composition. Having a step of polishing the substrate by supplying 500,000 or less of polishing composition per 3 to a polishing machine equipped with a surface plate at a flow rate of 0.06 cm 3 / min per 1 cm 2 of the substrate to be polished. It is possible to provide a substrate having excellent surface smoothness that can significantly reduce nano-scratches that cause defects. Here, the abrasive particles include not only primary particles of the abrasive but also aggregated particles formed by aggregation of the primary particles. Nano-scratch is a physical property that is important for high density or high integration especially in a memory hard disk substrate or a semiconductor device substrate. Therefore, by using the substrate manufacturing method of the present invention, a high-quality memory hard disk substrate or semiconductor element substrate having excellent surface properties can be manufactured.

本発明におけるナノスクラッチとは、深さが10nm以上、100nm未満、幅が5nm以上、500nm未満、長さが100μm以上の基板表面の微細な傷で、原子間力顕微鏡(AFM)で検出することができ、後述の実施例に記載の目視検査装置であるVISION PSYTEC社製「MicroMax」による測定でスクラッチの本数により定量評価できる。   The nano-scratch in the present invention is a fine flaw on the substrate surface having a depth of 10 nm or more and less than 100 nm, a width of 5 nm or more and less than 500 nm, and a length of 100 μm or more, and is detected by an atomic force microscope (AFM). It can be quantitatively evaluated by the number of scratches by measurement with “MicroMax” manufactured by VISION PSYTEC, which is a visual inspection apparatus described in Examples described later.

本発明におけるナノスクラッチの低減機構は明らかではない。研磨は基板を研磨パットで挟みこみ一定の荷重下で行われるが、研磨液組成物中に含有される研磨一次粒子の凝集物あるいは粗大研磨一次粒子が、該荷重下で局部圧力を受け基板表面に押し込まれて深いナノスクラッチが生じると推定される。本発明では、研磨液組成物中に存在する特定の大きさの粗大研磨粒子あるいは研磨粒子凝集物の量と研磨時の研磨圧力を制御することによりナノスクラッチを低減できることを明らかにした。   The mechanism for reducing nanoscratches in the present invention is not clear. Polishing is performed under a constant load by sandwiching the substrate with a polishing pad, but aggregates of abrasive primary particles or coarse abrasive primary particles contained in the polishing liquid composition are subjected to local pressure under the load and receive a local pressure. It is presumed that deep nanoscratches are generated by being pushed in. In the present invention, it has been clarified that nanoscratches can be reduced by controlling the amount of coarse abrasive particles or abrasive particle aggregates having a specific size present in the polishing composition and the polishing pressure during polishing.

すなわち、研磨液組成物中の0.56μm以上1μm未満の研磨粒子が1cm当り500,000個を超える場合はナノスクラッチが多くなる。研磨液組成物中の0.56μm以上1μm未満の研磨粒子は、ナノスクラッチ低減の観点から、好ましくは300,000個以下、より好ましくは200,000個以下、さらに好ましくは100,000個以下、さらに好ましくは10,000個以下である。ここで、「0.56μm以上1μm未満」とは、研磨粒子の粒子径をいう。 That is, when the number of abrasive particles of 0.56 μm or more and less than 1 μm in the polishing composition exceeds 500,000 per cm 3, nano scratches increase. From the viewpoint of reducing nanoscratches, the number of abrasive particles of 0.56 μm or more and less than 1 μm in the polishing composition is preferably 300,000 or less, more preferably 200,000 or less, and even more preferably 100,000 or less, More preferably, it is 10,000 or less. Here, “0.56 μm or more and less than 1 μm” refers to the particle size of the abrasive particles.

また、研磨液組成物中の全研磨粒子に対して1μm以上の研磨粒子は、ナノスクラッチ低減の観点から、0.001重量%以下が好ましく、0.0008重量%以下がより好ましく、0.0007重量%以下がさらに好ましく、0.0006重量%以下がさらに好ましく、0.0005重量%以下がさらに好ましい。   Further, the amount of abrasive particles of 1 μm or more with respect to all abrasive particles in the polishing composition is preferably 0.001% by weight or less, more preferably 0.0008% by weight or less, from the viewpoint of reducing nanoscratches, and 0.0007. % By weight or less is more preferable, 0.0006% by weight or less is more preferable, and 0.0005% by weight or less is more preferable.

また、研磨液組成物中の全研磨粒子に対して3μm以上の研磨粒子は、ナノスクラッチ低減の観点から、0.0008重量%以下が好ましく、0.0007重量%以下がより好ましく、0.0006重量%以下がさらに好ましく、0.0005重量%以下がさらに好ましく、0.0004重量%以下がさらに好ましい。   Further, the abrasive particles having a size of 3 μm or more with respect to all the abrasive particles in the polishing composition are preferably 0.0008% by weight or less, more preferably 0.0007% by weight or less, from the viewpoint of reducing nanoscratches, and 0.0006. % By weight or less is more preferable, 0.0005% by weight or less is more preferable, and 0.0004% by weight or less is more preferable.

研磨液組成物中の研磨粒子径は、個数カウント方式(Sizing Particle Optical Sensing法)が使用でき、例えば、米国パーティクルサイジングシステムズ(Particle Sizing Systems)社製「アキュサイザー(Accusizer)780」及びコールター(Coulter)社製「コールターカウンター」等によって測定できる。   The polishing particle diameter in the polishing composition can be determined by a number counting system (Sizing Particle Optical Sensing method), for example, “Accumizer 780” and Coulter (Culter) manufactured by Particle Sizing Systems, USA. ) It can be measured by “Coulter Counter” manufactured by the company.

0.5μm以上1μm未満の研磨粒子を低減するためには、フィルターによる濾過等が効果的である。たとえば孔径0.45μmの濾過精度の高いプリーツ型フィルターを使用するとナノスクラッチは低減でき、更にナノスクラッチの原因となる、研磨粒子の凝集物あるいは粗大研磨粒子を基板と研磨パットとの間に侵入させないようにする為に、研磨時の定盤圧力を3〜50kPaに調整することで、大幅にナノスクラッチを低減できるという利点がある。   In order to reduce abrasive particles of 0.5 μm or more and less than 1 μm, filtration with a filter or the like is effective. For example, if a pleated filter with a pore size of 0.45 μm and high filtration accuracy is used, nano scratches can be reduced, and aggregates of abrasive particles or coarse abrasive particles that cause nano scratches are prevented from entering between the substrate and the polishing pad. Therefore, by adjusting the platen pressure during polishing to 3 to 50 kPa, there is an advantage that nanoscratches can be greatly reduced.

精密濾過用の濾過材としては、デプス型フィルターやプリーツ型フィルターを用いることができる。デプス型フィルターとしては、バッグ式(3M社等)の他、カートリッジ式(アドバンテック東洋社、日本ポール社、CUNO社、ダイワボウ社製等)のフィルターを用いることができる。   A depth type filter or a pleat type filter can be used as a filtering material for microfiltration. As a depth type filter, a filter of a cartridge type (manufactured by Advantech Toyo Co., Ltd., Nippon Pole Co., CUNO Co., Ltd., Daiwabo Co., Ltd.) can be used in addition to a bag type (3M Co., Ltd.).

デプス型のフィルターとは、濾過材の孔構造が入口で粗く、出口側で細かく、且つ入口側から出口側へ向かうにつれて連続的に又は段階的に細かくなる特徴を持つ。即ち、粗大粒子の中でも比較的大きな粒子は入口側付近で捕集され、比較的小さな粒子は出口側付近で捕集され、全体として、粗大粒子はフィルターの厚み方向の各部分で捕集され、濾過材が十分に厚いために、濾過材を通過する流体中から多量の異物を除去できるフィルターである。その結果、粗大粒子の除去が確実に行われるとともに、フィルター自体が目詰りし難く、その寿命を延ばす効果がある。デプス型フィルターの形状は、袋状のバッグタイプでもよく、また、中空円筒形状のカートリッジタイプでもよい。   The depth type filter is characterized in that the pore structure of the filter medium is rough at the inlet, finer at the outlet side, and finer continuously or stepwise from the inlet side toward the outlet side. That is, relatively large particles among the coarse particles are collected near the inlet side, relatively small particles are collected near the outlet side, and as a whole, the coarse particles are collected in each part in the thickness direction of the filter, Since the filter medium is sufficiently thick, the filter can remove a large amount of foreign substances from the fluid passing through the filter medium. As a result, coarse particles are reliably removed, and the filter itself is less likely to be clogged, thereby extending its life. The shape of the depth filter may be a bag-like bag type or a hollow cylindrical cartridge type.

プリーツ型のフィルターとは、濾過材をヒダ状(プリーツ状)に成形加工して、中空円筒形状のカートリッジタイプにしたものである。厚み方向の各部分で捕集するデプス型フィルターと異なり、プリーツ型フィルターは、濾過材の厚みが薄く、フィルター表面での捕集が主体と言われており、一般的に濾過精度が高いことが特徴である。   A pleated filter is a hollow cylindrical cartridge type formed by filtering a filtering material into a pleat shape. Unlike depth-type filters that collect in each part in the thickness direction, pleated filters are said to be mainly collected on the filter surface because the filter material is thin and generally has high filtration accuracy. It is a feature.

濾過材としては、デプス型とプリーツ型の中間構造を有するフィルターを使用することもできる。   As the filter medium, a filter having an intermediate structure between a depth type and a pleat type can also be used.

濾過方法は、繰り返し濾過する循環式でもよく、1回パス方式でもよい。また、1回パス方式を繰り返すバッチ式を用いてもよい。通液方法は、加圧するために、循環式ではポンプが好適に用いられ、1回パス方式ではポンプを用いる他に、タンクに空気圧等を導入する加圧濾過法を用いることが出来る。   The filtration method may be a circulation method in which filtration is repeated, or a one-pass method. Alternatively, a batch method that repeats the one-pass method may be used. As the liquid passing method, a pump is suitably used in the circulation type in order to pressurize, and in addition to using the pump in the single pass method, a pressure filtration method in which air pressure or the like is introduced into the tank can be used.

フィルターの孔構造を適切に選択することで、除去する粗大粒子の粒径を制御することができる。
フィルターシステムは、1段濾過でもよく、組合せによる多段濾過でもよい。多段濾過については、フィルターの孔径と濾過材の構造を適切に選択し、更に該フィルターの処理順序を適切に選択することで、除去する粗大粒子の粒径制御(濾過精度)と経済性を向上できる効果がある。即ち、孔構造が大きいフィルターを前段に用い、細かいフィルターを後段に用いると、フィルターの寿命を全体として長くできる効果がある。濾過材の構造では、前段にデプス型を用い、後段にプリーツ型を用いると、フィルターの寿命を全体として長くでき経済的であり、更にフィルター交換頻度が低減する為に生産性を向上させる効果がある。
By appropriately selecting the pore structure of the filter, the particle size of the coarse particles to be removed can be controlled.
The filter system may be single-stage filtration or multistage filtration in combination. For multi-stage filtration, the filter pore size and filter material structure are selected appropriately, and the processing order of the filter is selected appropriately to improve the particle size control (filtration accuracy) and economic efficiency of coarse particles to be removed. There is an effect that can be done. That is, when a filter having a large pore structure is used in the former stage and a fine filter is used in the latter stage, there is an effect that the lifetime of the filter can be extended as a whole. In the structure of the filter medium, if the depth type is used at the front stage and the pleat type is used at the rear stage, the life of the filter can be extended as a whole, and it is economical, and further, the effect of improving productivity because the frequency of filter replacement is reduced. is there.

一般にフィルターの孔径は、99%除去可能な絶対濾過精度として表され、例えば孔径1μmとは、直径1μmの粒子を99%除去可能なフィルターを示している。本発明に使用するプリーツ型フィルターの孔径は、1μm以下が好ましく、より好ましくは0.8μm以下、更に好ましくは0.6μm以下、更には0.5μm以下が好ましい。   Generally, the pore diameter of a filter is expressed as an absolute filtration accuracy capable of removing 99%. For example, a pore diameter of 1 μm indicates a filter capable of removing 99% of particles having a diameter of 1 μm. The pore size of the pleated filter used in the present invention is preferably 1 μm or less, more preferably 0.8 μm or less, still more preferably 0.6 μm or less, and further preferably 0.5 μm or less.

更に経済性を考慮して、プリーツ型フィルターの前段にプリーツ型フィルターよりも大きな孔径のデプス型フィルターを使用することができる。デプス型フィルターの孔径は、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。   Further, in consideration of economy, a depth type filter having a larger pore diameter than the pleated type filter can be used before the pleated type filter. The pore size of the depth filter is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less.

研磨時は、不織布の有機高分子系研磨布等(研磨パッド)と被研磨基板との間に研磨液組成物を供給し、即ち、研磨液組成物が研磨パッドを貼り付けた定盤に押し付けられた基板研磨面に供給され、一定の圧力の下で定盤及び/又は基板を動かすことにより、基板に接触しながら研磨工程に用いられる。   During polishing, the polishing composition is supplied between the non-woven organic polymer polishing cloth (polishing pad) and the substrate to be polished, that is, the polishing composition is pressed against the surface plate on which the polishing pad is attached. The substrate is supplied to the polished surface of the substrate and is used for the polishing process while contacting the substrate by moving the surface plate and / or the substrate under a certain pressure.

本発明において定盤圧力とは、研磨時に被研磨基板の研磨面に加えられる定盤の圧力をいう。この定盤圧力を好ましくは3〜50kPaの範囲に調整すると、基板研磨面と研磨パッドの隙間が適度に狭くなるため、ナノスクラッチの原因となる研磨粒子の凝集物等が基板上に流出しにくくなりナノスクラッチが低減すると推定している。例えば、定盤圧力が3kPa以上では基板研磨面と研磨パットの隙間に研磨粒子の凝集物等が入りにくくなる為、ナノスクラッチは低減する。また定盤圧力を50kPa以下にすると、摩擦抵抗が低い為に研磨機の振動が適度に維持され、振動によって生じる基板研磨面と研磨パッドの隙間が小さくなり、研磨粒子の凝集物等の挟みこみが生じにくくなり、ナノスクラッチが低減する。生産性の観点からは、3kPa以上が好ましく、より好ましくは5kPa以上、さらに好ましくは8kPa以上である。したがって、経済的にナノスクラッチを低減する観点から、定盤圧力は5〜40kPaが好ましく、10〜30kPaが更に好ましい。   In the present invention, the surface plate pressure refers to the pressure of the surface plate applied to the polishing surface of the substrate to be polished during polishing. When this platen pressure is preferably adjusted to a range of 3 to 50 kPa, the gap between the substrate polishing surface and the polishing pad is appropriately narrowed, so that agglomerates of abrasive particles that cause nanoscratching are unlikely to flow out onto the substrate. It is estimated that nanoscratches will be reduced. For example, when the platen pressure is 3 kPa or more, since aggregates of abrasive particles and the like hardly enter the gap between the substrate polishing surface and the polishing pad, nanoscratching is reduced. If the platen pressure is 50 kPa or less, the friction of the polishing machine is kept low due to low frictional resistance, the gap between the substrate polishing surface and the polishing pad caused by the vibration is reduced, and the abrasive particle aggregates are trapped. Is less likely to occur and nanoscratches are reduced. From the viewpoint of productivity, 3 kPa or more is preferable, more preferably 5 kPa or more, and still more preferably 8 kPa or more. Therefore, from the viewpoint of economically reducing nanoscratches, the platen pressure is preferably 5 to 40 kPa, and more preferably 10 to 30 kPa.

なお、前記定盤圧力の調整は、定盤及び/又は基板に空気圧や重りを負荷することにより行なうことができる。   The platen pressure can be adjusted by applying air pressure or weight to the platen and / or the substrate.

前記研磨工程においては、多孔質の有機高分子系の研磨布等を貼りつけた研磨盤で基板を挟み込み、研磨液組成物を研磨面に供給して、圧力を加えながら研磨盤や基板を動かすことで、被研磨基板を研磨することができる。研磨を行う際の他の条件(研磨機の種類、研磨布の種類など)については特に限定されない。また、研磨液組成物を研磨面に供給する方法、研磨盤や基板を作動させる方法等も公知の方法であればよい。   In the polishing step, the substrate is sandwiched by a polishing disk with a porous organic polymer polishing cloth or the like attached thereto, the polishing composition is supplied to the polishing surface, and the polishing disk or the substrate is moved while applying pressure. Thus, the substrate to be polished can be polished. There are no particular restrictions on the other conditions for polishing (type of polishing machine, type of polishing cloth, etc.). The method for supplying the polishing composition to the polishing surface, the method for operating the polishing disk and the substrate, etc. may be any known method.

本発明の基板の製造方法に使用する研磨液組成物中の研磨材の含有量は、研磨振動によるナノスクラッチ発生の観点から、たとえば1重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上、更に好ましくは7重量%以上であり、また経済性の観点から、たとえば20重量%以下、好ましくは15重量%以下、より好ましくは13重量%以下、更に好ましくは10重量%以下である。すなわち、該含有量は、たとえば1〜20重量%、好ましくは3〜15重量%、より好ましくは5〜13重量%、更に好ましくは7〜10重量%である。これら含有量は、研磨液組成物製造時の含有量あるいは使用時の含有量のいずれであってもよく、通常、濃縮液として製造され、これを使用時に希釈して用いる場合が多い。   The content of the abrasive in the polishing composition used in the method for producing a substrate of the present invention is, for example, 1% by weight or more, preferably 3% by weight or more, more preferably 5% from the viewpoint of generation of nanoscratches due to polishing vibration. % By weight or more, more preferably 7% by weight or more, and from the viewpoint of economy, for example, 20% by weight or less, preferably 15% by weight or less, more preferably 13% by weight or less, and even more preferably 10% by weight or less. is there. That is, the content is, for example, 1 to 20% by weight, preferably 3 to 15% by weight, more preferably 5 to 13% by weight, and still more preferably 7 to 10% by weight. These contents may be either the contents at the time of production of the polishing composition or the contents at the time of use, and are usually produced as a concentrated solution, which is often diluted and used at the time of use.

本発明における研磨液組成物のpHは0.1〜7である。pHが7を超えると、研磨材としてコロイダルシリカを使用した場合、ナノスクラッチが増大する。一般的に基板研磨は物理的な研磨力と化学的な研磨力のバランスによって成り立っている。具体的には化学研磨力によって基板表面を腐食させ削り易くし、物理的な研磨力で腐食部分を削り取って研磨が進む。たとえばNi-Pメッキされた基板の場合、pH7を超えると化学的な研磨力は非常に弱く、物理的な研磨力が支配的となるため、ナノスクラッチが多くなるだけでなく研磨速度が大幅に低下する。   The pH of the polishing composition in the present invention is 0.1 to 7. When the pH exceeds 7, nanoscratch increases when colloidal silica is used as an abrasive. In general, substrate polishing is based on a balance between physical polishing force and chemical polishing force. Specifically, the substrate surface is corroded by chemical polishing force to make it easy to cut, and the corroded portion is scraped off by physical polishing force and polishing proceeds. For example, in the case of a substrate plated with Ni-P, when the pH exceeds 7, the chemical polishing power is very weak and the physical polishing power becomes dominant, so not only the number of nano scratches but also the polishing speed is greatly increased. descend.

研磨液組成物のpHは、研磨速度を向上させる観点から5以下が好ましく、4以下がより好ましい。また人体への影響や機械の腐食の観点から、pHは0.1以上であり、好ましくは0.5以上、より好ましくは1以上、さらに好ましくは1.4以上である。特にニッケル-リン(Ni-P)メッキされたアルミニウム合金基板の金属を対象にした精密部品加工基板においては、好ましくは4.5以下、より好ましくは3.5以下である。従って重視する目的に合わせてpHを調整すれば良いが、特にニッケル-リン(Ni-P)メッキされたアルミニウム合金基板の金属を対象にした精密部品加工基板においては、前記観点を考慮してpHは0.1〜6が好ましく、より好ましくは1〜4.5、更に好ましくは1.4〜3.5である。   From the viewpoint of improving the polishing rate, the pH of the polishing composition is preferably 5 or less, and more preferably 4 or less. Further, from the viewpoint of influence on the human body and machine corrosion, the pH is 0.1 or more, preferably 0.5 or more, more preferably 1 or more, and still more preferably 1.4 or more. In particular, in a precision component processed substrate intended for a metal of an aluminum alloy substrate plated with nickel-phosphorous (Ni-P), it is preferably 4.5 or less, more preferably 3.5 or less. Therefore, the pH should be adjusted according to the purpose to be emphasized. However, in the case of precision component processed substrates especially for nickel-phosphorus (Ni-P) plated aluminum alloy substrates, the pH is taken into consideration. Is preferably 0.1 to 6, more preferably 1 to 4.5, and still more preferably 1.4 to 3.5.

更に、研磨前の研磨液組成物のpHと研磨後の研磨廃液のpHの差が2以下であることが好ましく、1以下が更に好ましく、更に0.5以下がより好ましい。ここで研磨前の研磨液組成物とは研磨液組成物を研磨面に供給する前の研磨液組成物を指し、研磨後の研磨廃液とは基板に研磨液組成物を供給し研磨した後に排出される研磨液の廃液のことである。前記pHの変動が大きい場合、研磨液組成物に含有する砥粒は研磨時に凝集しやすく、この凝集物がナノスクラッチの原因物質となり得る。一方、該pH差を2以下に調整すると、砥粒の凝集が抑制されやすく、ナノスクラッチを低減した基板をより好適に製造できる。   Furthermore, the difference between the pH of the polishing liquid composition before polishing and the pH of the polishing waste liquid after polishing is preferably 2 or less, more preferably 1 or less, and even more preferably 0.5 or less. Here, the polishing liquid composition before polishing refers to the polishing liquid composition before supplying the polishing liquid composition to the polishing surface, and the polishing waste liquid after polishing is discharged after supplying the polishing liquid composition to the substrate and polishing. It is the waste liquid of the polishing liquid. When the pH variation is large, the abrasive grains contained in the polishing composition are likely to aggregate during polishing, and the aggregate can be a causative substance of nanoscratches. On the other hand, when the pH difference is adjusted to 2 or less, agglomeration of abrasive grains is easily suppressed, and a substrate with reduced nanoscratches can be more suitably manufactured.

前記pH差を2以下にするには、たとえば研磨液組成物の流量を調整することで可能であり、変動が大きな研磨液組成物を使用するときは、流量を多くすることで変動を抑制できる。   In order to reduce the pH difference to 2 or less, for example, it is possible to adjust the flow rate of the polishing liquid composition. When using a polishing liquid composition having a large fluctuation, the fluctuation can be suppressed by increasing the flow rate. .

研磨液組成物の研磨機に供給する流量は、基板の被研磨面積1cm2あたり、0.06cm3/分以上である。0.06cm3/分未満では、摩擦抵抗が大きくなる為に研磨機が振動を起こし、振動によって基板研磨面と研磨パッドの隙間が大きくなり、研磨粒子の凝集物等が挟みこまれてナノスクラッチが増加してしまう。該流量は、研磨振動によるナノスクラッチ発生の観点から、好ましくは0.09cm3/分以上、より好ましくは0.12cm3/分以上、更に好ましくは0.15cm3/分以上であり、また経済性の観点から、好ましくは0.46cm3/分以下、より好ましくは0.30cm3/分以下、更に好ましくは0.23cm3/分以下である。また、該流量は、好ましくは0.09〜0.46cm3/分、より好ましくは0.12〜0.30cm3/分、更に好ましくは0.15〜0.23cm3/分である。 The flow rate of the polishing composition supplied to the polishing machine is 0.06 cm 3 / min or more per 1 cm 2 of the substrate to be polished. If it is less than 0.06 cm 3 / min, the polishing machine vibrates because the frictional resistance is increased, and the gap between the substrate polishing surface and the polishing pad is increased by the vibration, and aggregates of abrasive particles are sandwiched between the nano scratches. Will increase. The flow rate, from the viewpoint of nano scratching by the polishing vibration, preferably 0.09 cm 3 / min or more, more preferably 0.12 cm 3 / min or more, further preferably 0.15 cm 3 / min or more, economical From the viewpoint of property, it is preferably 0.46 cm 3 / min or less, more preferably 0.30 cm 3 / min or less, still more preferably 0.23 cm 3 / min or less. Further, the flow rate is preferably 0.09~0.46cm 3 / min, more preferably 0.12~0.30cm 3 / min, more preferably 0.15~0.23cm 3 / min.

本発明における研磨液組成物に使用される研磨材としては、研磨用に一般的に使用されている研磨材を使用することができ、金属、金属若しくは半金属の炭化物、窒化物、酸化物、又はホウ化物、ダイヤモンド等があげられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体的な例としては、酸化アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、シリカ等が挙げられ、これらの1種以上を使用することは研磨速度を向上させる観点から好ましい。中でも酸化アルミニウム、ヒュームドシリカ、コロイダルシリカ、酸化セリウム、酸化ジルコニウム、酸化チタン等が半導体ウエハや半導体素子、磁気記録媒体用基板等の精密部品用基板の研磨に適している。   As the abrasive used in the polishing composition in the present invention, abrasives generally used for polishing can be used, and metal, metal or metalloid carbide, nitride, oxide, Or a boride, a diamond, etc. are mention | raise | lifted. The metal or metalloid element is derived from groups 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or 8 of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, silica, and the like. It is preferable from the viewpoint of improving the speed. Among these, aluminum oxide, fumed silica, colloidal silica, cerium oxide, zirconium oxide, titanium oxide, and the like are suitable for polishing precision component substrates such as semiconductor wafers, semiconductor elements, and magnetic recording medium substrates.

研磨材の形状は、球状のコロイダル粒子が、充填率を上げ平滑な表面を得るのに好ましく、更に表面欠陥となるナノスクラッチを低減する観点から、コロイダル酸化セリウム粒子、コロイダルシリカ粒子、表面修飾したコロイダルシリカ粒子等が好ましく、中でもコロイダルシリカ粒子が好ましい。なおコロイダルシリカ粒子は、例えば珪酸水溶液から生成させる製法によって得ることができる。コロイダルシリカは、より高度な平滑性を必要とする高記録密度メモリー磁気ディスク用基板、好ましくはメモリーハードディスク用基板の仕上げ研磨、好ましくは最終研磨用途や、半導体デバイス基板の研磨用途に適している。   As for the shape of the abrasive, spherical colloidal particles are preferable for increasing the filling rate and obtaining a smooth surface. Further, from the viewpoint of reducing nano-scratches that cause surface defects, colloidal cerium oxide particles, colloidal silica particles, surface-modified Colloidal silica particles and the like are preferable, and colloidal silica particles are particularly preferable. The colloidal silica particles can be obtained, for example, by a production method in which the colloidal silica particles are generated from a silicic acid aqueous solution. Colloidal silica is suitable for finish polishing of a high recording density memory magnetic disk substrate that requires a higher degree of smoothness, preferably for a memory hard disk substrate, preferably for final polishing or for polishing a semiconductor device substrate.

前記研磨液組成物の残部は水である。その含有量としては、特に限定はない。
また、前期研磨液組成物は、前記研磨材と水とを少なくとも含有していればよいが、所望の作用を付与する観点から、酸、塩、酸化剤等の成分を含有してもよい。
The balance of the polishing composition is water. The content is not particularly limited.
In addition, the previous polishing composition only needs to contain at least the abrasive and water, but may contain components such as acids, salts, and oxidizing agents from the viewpoint of imparting a desired action.

本発明に使用する好適な被研磨物である基板の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、ニ酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中でも、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金を含有する被研磨物に好適である。例えばNi-Pメッキされたアルミニウム合金基板や結晶化ガラス、強化ガラス等のガラス基板により適しており、Ni-Pメッキされたアルミニウム合金基板がさらに適している。   Examples of the material of the substrate that is a suitable object to be used in the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, Examples thereof include glassy substances such as amorphous carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, it is suitable for an object to be polished containing a metal such as aluminum, nickel, tungsten, or copper and an alloy mainly composed of these metals. For example, a Ni—P plated aluminum alloy substrate or a glass substrate such as crystallized glass or tempered glass is more suitable, and a Ni—P plated aluminum alloy substrate is more suitable.

効果的には、基板の製造工程において、粗研磨工程も含めた複数の研磨工程がある場合2工程目以降に本発明を用いるのが好ましく、たとえば仕上げ研磨工程で用いることが好ましい。このようにして製造された基板はナノスクラッチが顕著に低減されており、且つ表面平滑性に優れたものである。   Effectively, in the substrate manufacturing process, when there are a plurality of polishing processes including a rough polishing process, the present invention is preferably used in the second and subsequent processes, for example, in the final polishing process. The substrate manufactured in this manner has nano scratches remarkably reduced and is excellent in surface smoothness.

以上のように、本発明の基板の製造方法を用いることで、ナノスクラッチの発生を顕著に低減させ、表面性状に優れた高品質の基板、例えばメモリーハードディスクや半導体素子等の精密部品用基板を好適に製造することができる。   As described above, by using the substrate manufacturing method of the present invention, it is possible to remarkably reduce the occurrence of nanoscratches and to produce a high-quality substrate having excellent surface properties, for example, a substrate for precision parts such as a memory hard disk and a semiconductor element. It can manufacture suitably.

被研磨基板として、Ni−Pメッキされた基板をアルミナ研磨材を含有する研磨液であらかじめ粗研磨し、表面粗さ(Ra)1nm、うねり(Wa)4.8nmとした、厚さ0.8mmの95mmφのアルミニウム合金基板を用いて研磨評価を行った。   As a substrate to be polished, a Ni-P plated substrate was previously roughly polished with a polishing liquid containing an alumina abrasive to obtain a surface roughness (Ra) of 1 nm and a swell (Wa) of 4.8 nm, and a thickness of 0.8 mm. Polishing evaluation was performed using a 95 mmφ aluminum alloy substrate.

研磨液組成物1の調製
イオン交換水に、研磨材としてコロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径22nm、シリカ粒子濃度40重量%品)を7重量%、35重量%の過酸化水素(旭電化社製)を0.6重量%、さらにpHが1.5となるように、HEDP水溶液(1−ヒドロキシエチリデン−1,1−ジホスホン酸、60重量%品、ソルーシア・ジャパン社製)を添加して、研磨液組成物を得た。この研磨液組成物をプリーツ型フィルター(アドバンテック東洋社製、「MCS−045−C10S」)で濾過して研磨液組成物1を得た。この研磨液組成物中1の研磨粒子を測定したところ、0.56μm以上1μm未満のシリカ粒子数(表中、粗大研磨粒子数)が1cm当り53,000個、1μm以上の研磨粒子は全研磨粒子に対して0.000042重量%であった。
Preparation of polishing liquid composition 1 In ion-exchange water, 7% by weight and 35% by weight of a colloidal silica slurry (manufactured by DuPont, average particle size of primary particles: 22 nm, silica particle concentration: 40% by weight) as an abrasive. HEDP aqueous solution (1-hydroxyethylidene-1,1-diphosphonic acid, 60% by weight, manufactured by Solusia Japan Co., Ltd.) so that hydrogen (manufactured by Asahi Denka) is 0.6% by weight and further pH is 1.5. ) Was added to obtain a polishing composition. The polishing composition was filtered through a pleated filter (“MCS-045-C10S” manufactured by Advantech Toyo Co., Ltd.) to obtain polishing composition 1. When 1 abrasive particle in this polishing liquid composition was measured, the number of silica particles of 0.56 μm or more and less than 1 μm (the number of coarse abrasive particles in the table) was 53,000 per 1 cm 3 , and all abrasive particles of 1 μm or more were all. The amount was 0.000042% by weight based on the abrasive particles.

研磨液組成物2の調製
イオン交換水に、研磨材としてコロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径10nm、シリカ粒子濃度40重量%品)を7重量%、35重量%の過酸化水素(旭電化社製)を0.6重量%、さらにpHが1.5となるように、HEDP水溶液(1−ヒドロキシエチリデン−1,1−ジホスホン酸、60重量%品、ソルーシア・ジャパン社製)を添加して、研磨液組成物を得た。
この研磨液組成物をプリーツ型フィルター(アドバンテック東洋社製、「MCP−JX−C10S」)で濾過して研磨液組成物2を得た。この研磨液組成物2の研磨粒子を測定したところ、0.56μm以上1μm未満のシリカ粒子数が1cm当り137,400個、1μm以上の研磨粒子は全研磨粒子に対して0.000086重量%であった。
Preparation of Polishing Liquid Composition 2 In ion-exchanged water, 7% by weight and 35% by weight of a colloidal silica slurry (manufactured by DuPont, average particle size of primary particles 10 nm, silica particle concentration 40% by weight) as an abrasive. HEDP aqueous solution (1-hydroxyethylidene-1,1-diphosphonic acid, 60% by weight, manufactured by Solusia Japan Co., Ltd.) so that hydrogen (manufactured by Asahi Denka) is 0.6% by weight and further pH is 1.5. ) Was added to obtain a polishing composition.
This polishing liquid composition was filtered with a pleated filter (manufactured by Advantech Toyo Co., Ltd., “MCP-JX-C10S”) to obtain a polishing liquid composition 2. When the abrasive particles of this polishing liquid composition 2 were measured, the number of silica particles of 0.56 μm or more and less than 1 μm was 137,400 per cm 3 , and the abrasive particles of 1 μm or more were 0.000086% by weight with respect to the total abrasive particles. Met.

研磨液組成物3の調製
プリーツ型フィルターを用いない以外は、研磨液組成物1と同様にして研磨液組成物3を得た。この研磨液組成物3の研磨粒子を測定したところ、0.56μm以上1μm未満のシリカ粒子数が1cm当り520,500個、1μm以上の研磨粒子は全研磨粒子に対して0.000242重量%であった。
Preparation of Polishing Liquid Composition 3 A polishing liquid composition 3 was obtained in the same manner as the polishing liquid composition 1 except that the pleated filter was not used. When the abrasive particles of the polishing composition 3 were measured, the number of silica particles of 0.56 μm or more and less than 1 μm was 520,500 per cm 3 , and 1 μm or more of abrasive particles was 0.000242% by weight based on the total abrasive particles. Met.

研磨液組成物4の調製
プリーツ型フィルター(アドバンテック東洋製、「MCP−FX−C10S」)で濾過する以外は、研磨液組成物1と同様にして研磨液組成物4を得た。この研磨液組成物4の研磨粒子を測定したところ、0.56μm以上1μm未満のシリカ粒子数が1cm当り181,200個、1μm以上の研磨粒子は全研磨粒子に対して0.000166重量%であった。
Preparation of Polishing Liquid Composition 4 A polishing liquid composition 4 was obtained in the same manner as the polishing liquid composition 1 except that it was filtered with a pleated filter (Advantech Toyo, "MCP-FX-C10S"). When the abrasive particles of this polishing composition 4 were measured, the number of silica particles of 0.56 μm or more and less than 1 μm was 181,200 per cm 3 , and 1 μm or more of abrasive particles was 0.000166 wt% with respect to the total abrasive particles. Met.

研磨液組成物5の調製
pHを9.5に調整する以外は、研磨液組成物1と同様にして研磨液組成物を得た。更にこの研磨液組成物をプリーツ型フィルター(アドバンテック東洋製、「MCP−JX−C10S」)で濾過して研磨液組成物5を得た。この研磨液組成物5の研磨粒子を測定したところ、0.56μm以上1μm未満のシリカ粒子数が1cm当り101,000個、1μm以上の研磨粒子は全研磨粒子に対して0.000042重量%であった。
Preparation of polishing liquid composition 5 A polishing liquid composition was obtained in the same manner as the polishing liquid composition 1 except that the pH was adjusted to 9.5. Further, this polishing composition was filtered through a pleated filter (Advantech Toyo make, “MCP-JX-C10S”) to obtain a polishing composition 5. When the abrasive particles of the polishing composition 5 were measured, the number of silica particles of 0.56 μm or more and less than 1 μm was 101,000 per cm 3 , and the abrasive particles of 1 μm or more were 0.000042% by weight based on the total abrasive particles. Met.

研磨液組成物6の調製
シリカスラリー中のシリカ粒子濃度が3.5重量%である以外は、研磨液組成物1と同様にして研磨液組成物を得た。更にこの研磨液組成物をプリーツ型フィルター(アドバンテック東洋社製、「MCS−045−C10S」)で濾過して研磨液組成物6を得た。この研磨液組成物1の研磨粒子を測定したところ、0.56μm以上1μm未満のシリカ粒子数が1cm当り26,000個、1μm以上の研磨粒子は全研磨粒子に対して0.000062重量%であった。
Preparation of Polishing Liquid Composition 6 A polishing liquid composition was obtained in the same manner as the polishing liquid composition 1 except that the silica particle concentration in the silica slurry was 3.5% by weight. Further, this polishing composition was filtered through a pleated filter (manufactured by Advantech Toyo Co., Ltd., “MCS-045-C10S”) to obtain a polishing composition 6. When the abrasive particles of this polishing liquid composition 1 were measured, the number of silica particles of 0.56 μm or more and less than 1 μm was 26,000 per cm 3 , and 1 μm or more of abrasive particles was 0.000062 wt% with respect to the total abrasive particles. Met.

実施例1〜11、比較例1〜4
前記研磨液組成物1〜6を用いて、以下および表1に示すような研磨条件で基板を研磨した。
Examples 1-11, Comparative Examples 1-4
Using the polishing composition 1 to 6, the substrate was polished under the following polishing conditions as shown in Table 1.

1.研磨条件
・ 研磨試験機:スピードファム社製、両面9B研磨機
・ 研磨布:富士紡績社製 ウレタン製研磨パッド
・ 定盤回転数:32.5r/min
・ 研磨液組成物供給量 基板の被研磨面積1cmあたり:0.03〜0.15cm/分
・ 研磨時間:4分
・ 定盤圧力:2〜20kPa
・ 投入した基板の枚数:10枚
1. Polishing conditions ・ Polishing tester: Speed Fam Co., double-sided 9B polishing machine ・ Polishing cloth: Fuji Spinning Co., Ltd. urethane polishing pad ・ Surface plate rotation speed: 32.5 r / min
-Polishing liquid composition supply amount Per 1 cm < 2 > of substrate to be polished: 0.03-0.15 cm < 3 > / min- Polishing time: 4 minutes- Platen pressure: 2-20 kPa
・ Number of loaded substrates: 10

Figure 2007260906
Figure 2007260906

実施例1〜11及び比較例1〜4で得られた基板について、ナノスクラッチを以下の方法に基づいて測定・評価した。得られた結果を表1に示す。
About the board | substrate obtained by Examples 1-11 and Comparative Examples 1-4, nano scratch was measured and evaluated based on the following method. The obtained results are shown in Table 1.

2.研磨粒子の測定条件
・測定機器:PSS社製 「アキュサイザー780APS」
・インジェクション・ループ・ボリューム(Injection Loop Volume):1ml
・フローレート(Flow Rate):60cm3/分
・データ・コレクション・タイム(Data Collection Time):60sec
・チャンネル数(Number Channels):128
2. Measuring conditions and measuring equipment for abrasive particles: “Accurizer 780APS” manufactured by PSS
・ Injection Loop Volume: 1ml
・ Flow Rate: 60cm 3 / min ・ Data Collection Time: 60sec
・ Number of channels: 128

3.ナノスクラッチの測定条件
・ 測定機器:VISION PSYTEC社製、「MicroMax VMX−2100」
・ 光源:2Sλ(250W)及び3Pλ(250W)共に100%
・ チルド角:−6°
・ 倍率:最大(視野範囲:全面積の120分の1)
・ 観察領域:全面積
・ アイリス:notch
評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、その4枚の基板の各々両面にあるナノスクラッチ数(本)の合計を8で除して、基板1面当たりのナノスクラッチ数を算出した。
3. Nano scratch measurement conditions and measurement equipment: “MicroMax VMX-2100” manufactured by VISION PSYTEC
・ Light source: 100% for both 2Sλ (250W) and 3Pλ (250W)
・ Chilled angle: -6 °
・ Magnification: Maximum (Field of view: 1/120 of the total area)
・ Observation area: Total area ・ Iris: notch
Evaluation: Randomly select 4 out of the substrates put into the polishing tester, and divide the total number of nano scratches (on each side) of each of the 4 substrates by 8 to obtain 1 per substrate. The number of nano scratches was calculated.

表1の結果より、実施例1〜11で得られた基板では、比較例1〜4のものに比べてナノスクラッチが有意に低減されていることがわかる。   From the results of Table 1, it can be seen that the nano-scratch is significantly reduced in the substrates obtained in Examples 1 to 11 compared to those in Comparative Examples 1 to 4.

本発明の研磨液組成物は、例えば、メモリーハードディスクや半導体素子等の精密部品基板の研磨工程になどに好適に使用することができる。   The polishing composition of the present invention can be suitably used for, for example, a polishing process of precision component substrates such as memory hard disks and semiconductor elements.

Claims (2)

複数の研磨工程を有する基板の製造方法において、少なくともコロイダルシリカと水とを含有してなるpH0.1〜3.5の研磨液組成物であって、且つ、0.56μm以上1μm未満の研磨粒子が研磨液組成物1cm当り200,000個以下であり、コロイダルシリカ濃度が3〜10重量%である研磨液組成物を、定盤を備えた研磨機に基板の被研磨面積1cm2あたり0.06〜0.23cm3/分の流量で供給し、研磨前の研磨液組成物のpHと研磨後の研磨廃液のpHの差が2以下であり、定盤圧力が3〜15kPaで基板を研磨する工程を仕上げ研磨で行う、メモリーハードディスク用基板の製造方法。 In the method for producing a substrate having a plurality of polishing steps, a polishing liquid composition having a pH of 0.1 to 3.5 and containing at least colloidal silica and water, and having an abrasive particle size of 0.56 μm or more and less than 1 μm Is 200,000 or less per 1 cm 3 of polishing liquid composition, and a polishing liquid composition having a colloidal silica concentration of 3 to 10% by weight is added to a polishing machine equipped with a surface plate at a rate of 0.06 per 1 cm 2 of the substrate to be polished. was supplied at ~0.23cm 3 / min flow rate, the difference in pH of the polishing liquid waste after polishing the pH of the polishing composition before polishing is not less than 2, step platen pressure to polish the substrate in 3~15kPa A method of manufacturing a memory hard disk substrate, which is performed by finish polishing. さらに1μm以上の研磨粒子が研磨液組成物中の全研磨粒子に対して0.001重量%以下である、請求項1記載の製造方法。

Furthermore, the manufacturing method of Claim 1 whose abrasive particle of 1 micrometer or more is 0.001 weight% or less with respect to all the abrasive particles in polishing liquid composition.

JP2007192491A 2007-07-24 2007-07-24 Manufacturing method of substrate Withdrawn JP2007260906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192491A JP2007260906A (en) 2007-07-24 2007-07-24 Manufacturing method of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192491A JP2007260906A (en) 2007-07-24 2007-07-24 Manufacturing method of substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004289475A Division JP4125706B2 (en) 2004-08-09 2004-10-01 Substrate manufacturing method

Publications (1)

Publication Number Publication Date
JP2007260906A true JP2007260906A (en) 2007-10-11

Family

ID=38634393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192491A Withdrawn JP2007260906A (en) 2007-07-24 2007-07-24 Manufacturing method of substrate

Country Status (1)

Country Link
JP (1) JP2007260906A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179763A (en) * 2006-12-26 2008-08-07 Kao Corp Polishing liquid kit
JP2008179762A (en) * 2006-12-26 2008-08-07 Kao Corp Silica particle dispersion for polishing
JP2012044056A (en) * 2010-08-20 2012-03-01 Hitachi Chem Co Ltd Method of preparing cmp polishing liquid and method of polishing substrate
CN104169384A (en) * 2012-03-30 2014-11-26 Lg化学株式会社 Adhesive tape
JP2016098369A (en) * 2014-11-26 2016-05-30 花王株式会社 Manufacturing method of polishing liquid composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221058A (en) * 1994-01-31 1995-08-18 Sony Corp Flattening method and polishing device
JP2000015560A (en) * 1998-06-30 2000-01-18 Okamoto Machine Tool Works Ltd Abrasive powder slurry and its manufacture
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP2003188122A (en) * 2001-12-18 2003-07-04 Sanyo Chem Ind Ltd Polishing liquid for cmp process
JP2003197573A (en) * 2001-12-26 2003-07-11 Ekc Technology Kk Colloidal silica for polishing surface wherein metal film and insulation film coexist
JP2004259421A (en) * 2003-02-05 2004-09-16 Kao Corp Polishing composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221058A (en) * 1994-01-31 1995-08-18 Sony Corp Flattening method and polishing device
JP2000015560A (en) * 1998-06-30 2000-01-18 Okamoto Machine Tool Works Ltd Abrasive powder slurry and its manufacture
JP2001326199A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
JP2003188122A (en) * 2001-12-18 2003-07-04 Sanyo Chem Ind Ltd Polishing liquid for cmp process
JP2003197573A (en) * 2001-12-26 2003-07-11 Ekc Technology Kk Colloidal silica for polishing surface wherein metal film and insulation film coexist
JP2004259421A (en) * 2003-02-05 2004-09-16 Kao Corp Polishing composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179763A (en) * 2006-12-26 2008-08-07 Kao Corp Polishing liquid kit
JP2008179762A (en) * 2006-12-26 2008-08-07 Kao Corp Silica particle dispersion for polishing
JP2012044056A (en) * 2010-08-20 2012-03-01 Hitachi Chem Co Ltd Method of preparing cmp polishing liquid and method of polishing substrate
CN104169384A (en) * 2012-03-30 2014-11-26 Lg化学株式会社 Adhesive tape
CN104169384B (en) * 2012-03-30 2017-03-22 Lg化学株式会社 Pressure sensitive adhesive tape
US9802294B2 (en) 2012-03-30 2017-10-31 Lg Chem, Ltd. Pressure-sensitive adhesive tape
JP2016098369A (en) * 2014-11-26 2016-05-30 花王株式会社 Manufacturing method of polishing liquid composition

Similar Documents

Publication Publication Date Title
JP2006136996A (en) Polishing composition manufacturing method
US20060030243A1 (en) Polishing composition
TWI527617B (en) A method for producing a
JP4451347B2 (en) Polishing liquid composition
JP5833390B2 (en) Method for producing polishing composition
JP2007260906A (en) Manufacturing method of substrate
WO2012086698A1 (en) Method for producing polishing liquid composition
JP2007320031A (en) Polishing liquid composition
JP4214093B2 (en) Polishing liquid composition
JP4125706B2 (en) Substrate manufacturing method
JP4836441B2 (en) Polishing liquid composition
JP2009113148A (en) Method of filtrating polishing sluryy, and method and device for recovering polishing material
JP5019429B2 (en) Dispersion in container
CN100529008C (en) Polishing composition
JP4648367B2 (en) Polishing liquid composition
JP4156174B2 (en) Polishing liquid composition
JP4214107B2 (en) Polishing liquid composition
WO2012039428A1 (en) Process for producing polishing liquid composition
JP4267546B2 (en) Substrate manufacturing method
GB2395486A (en) Polishing composition
JP6280561B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4949432B2 (en) Manufacturing method of hard disk substrate
JP4640981B2 (en) Substrate manufacturing method
JP5283249B2 (en) Method for producing polishing composition
JP2006297501A (en) Polishing material and polishing method of composite material composed of magnetic metal film and insulating material film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100709