JP2004259421A - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP2004259421A
JP2004259421A JP2003430933A JP2003430933A JP2004259421A JP 2004259421 A JP2004259421 A JP 2004259421A JP 2003430933 A JP2003430933 A JP 2003430933A JP 2003430933 A JP2003430933 A JP 2003430933A JP 2004259421 A JP2004259421 A JP 2004259421A
Authority
JP
Japan
Prior art keywords
silica particles
polishing
acid
polishing composition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003430933A
Other languages
Japanese (ja)
Other versions
JP4373776B2 (en
Inventor
Kenichi Suenaga
憲一 末永
Yoshiaki Ooshima
良暁 大島
Toshiya Hagiwara
敏也 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003430933A priority Critical patent/JP4373776B2/en
Publication of JP2004259421A publication Critical patent/JP2004259421A/en
Application granted granted Critical
Publication of JP4373776B2 publication Critical patent/JP4373776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing composition capable of reducing a micro waviness on the surface of a substrate for memory hard disk to the practically sufficient degree without impairing the productivity, and also to provide a manufacturing method of the substrate. <P>SOLUTION: This polishing composition for a substrate for memory hard disk contains silica particles in a aqueous medium. In the silica particles, a standard deviation (δ) to the averaged particle size on the the number basis satisfies an inequality (1): δ≥0.3×r (wherein, r is the average particle size (nm) on the number basis, and δ is the standard deviation (nm) on the number basis), and also a cumulative volume frequency (V) in the range of the particle diameter 60 to 120 nm of the silica particle satisfies an inequality (2): V≥0.5×R and an inequality (3): V≤0.25×R+75 (wherein, R is the particle size (nm) of silica particle, and V is the cumulative volume frequency (%) from the side of small particle size of the silica particle) with respect to the particle diameter (R). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、研磨液組成物、該研磨液組成物を用いるメモリーハードディスク用基板の微小うねりの低減方法、及び前記研磨液組成物を用いるメモリーハードディスク用基板の製造方法に関する。   The present invention relates to a polishing composition, a method for reducing micro-undulations on a substrate for a memory hard disk using the polishing composition, and a method for producing a substrate for a memory hard disk using the polishing composition.

近年のメモリーハードディスクドライブには、高容量・小径化が求められ記録密度を上げるために磁気ヘッドの浮上量を低下させたり、単位記録面積を小さくすることが強いられている。それに伴い、メモリーハードディスク用基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきており、ヘッドの低浮上に対応して、表面粗さ、平均うねり、ロールオフ、突起の低減や単位記録面積の減少に対応して許容されるスクラッチ、ピットの大きさと深さがますます小さくなってきている。   In recent years, memory hard disk drives are required to have a large capacity and a small diameter, and in order to increase a recording density, it is required to reduce a flying height of a magnetic head or to reduce a unit recording area. As a result, the surface quality required after polishing in the manufacturing process of memory hard disk substrates has become stricter year by year, and the surface roughness, average waviness, roll-off, reduction of protrusions, The size and depth of the scratches and pits allowed in response to the decrease in the unit recording area are becoming smaller.

このような要求に対し、平均うねりが小さく、表面欠陥の少ないアルミニウムディスク基板を得ることのできる異なったモノモーダル数粒子径分布を有する複数のコロイダルシリカ粒子群を混合した研磨材を含む、アルミニウムディスク基板の研磨用組成物が知られている(特許文献1)。   In response to such demands, an aluminum disk containing an abrasive mixed with a plurality of colloidal silica particles having different monomodal number particle size distributions capable of obtaining an aluminum disk substrate having a small average undulation and having few surface defects. A polishing composition for a substrate is known (Patent Document 1).

しかし、かかる研磨液組成物は、平均うねりは低減しても、最近磁気ヘッドの浮上量低減に対して重要視されてきた粗さと平均うねりの中間の波長である微小うねり(短波長(50〜500μm)と長波長(500μm〜5mm))を低減するには不十分であり、さらなる改善が求められている。   However, such a polishing composition has a small undulation (short wavelength (50 to 50)) which is an intermediate wavelength between roughness and average undulation, which has recently been regarded as important for reducing the flying height of a magnetic head, even though the average undulation is reduced. 500 μm), which is insufficient for reducing long wavelengths (500 μm to 5 mm), and further improvement is required.

特開2002−30274号公報JP 2002-30274 A

本発明の目的は、メモリーハードディスク用基板の表面の微小うねりを生産性を損なうことなく、実用上充分な程度に低減させうる研磨液組成物、ならびに該研磨液組成物を用いる、メモリーハードディスク用基板の微小うねりの低減方法及びメモリーハードディスク用基板の製造方法を提供することにある。   An object of the present invention is to provide a polishing composition capable of reducing micro-undulation on the surface of a memory hard disk substrate to a practically sufficient degree without impairing productivity, and a memory hard disk substrate using the polishing liquid composition. And a method for manufacturing a substrate for a memory hard disk.

即ち、本発明の要旨は、
〔1〕 水系媒体中にシリカ粒子を含有してなるメモリーハードディスク用基板用の研磨液組成物であって、前記シリカ粒子が、透過型電子顕微鏡(TEM)観察による測定で得られた該シリカ粒子の個数基準の平均粒子径(r)に対して個数基準の標準偏差(σ)が、以下の式(1):
σ≧0.3×r (1)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
を満たし、かつ該シリカ粒子の粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、以下の式(2)及び(3):
V≧0.5×R (2)
V≦0.25×R+75 (3)
(式中、Rはシリカ粒子の粒子径(nm)、Vはシリカ粒子の小粒子径側からの累積体積頻度(%)を示す)
を満たすものである、研磨液組成物、
〔2〕 前記〔1〕記載の研磨液組成物を用いてメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の微小うねりの低減方法、並びに
〔3〕 前記〔1〕記載の研磨液組成物を用いて、Ni−Pメッキされたメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の製造方法
に関する。
That is, the gist of the present invention is:
[1] A polishing composition for a substrate for a memory hard disk comprising silica particles in an aqueous medium, wherein the silica particles are obtained by measurement by observation with a transmission electron microscope (TEM). The standard deviation (σ) based on the number with respect to the average particle diameter (r) based on the number is represented by the following formula (1):
σ ≧ 0.3 × r (1)
(In the formula, r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm).)
And the cumulative volume frequency (V) of the silica particles in the range of 60 to 120 nm is based on the following formulas (2) and (3) with respect to the particle size (R):
V ≧ 0.5 × R (2)
V ≦ 0.25 × R + 75 (3)
(In the formula, R represents the particle diameter (nm) of the silica particles, and V represents the cumulative volume frequency (%) from the small particle diameter side of the silica particles.)
A polishing liquid composition that satisfies
[2] A method for reducing micro-undulations on a memory hard disk substrate, comprising a step of polishing a memory hard disk substrate using the polishing composition according to [1], and [3] the polishing according to [1]. The present invention relates to a method for manufacturing a memory hard disk substrate, which includes a step of polishing a Ni-P plated memory hard disk substrate using a liquid composition.

本発明の研磨液組成物によれば、表面の微小うねり、さらにはマイクロピット等の表面欠陥が低減された、実用上充分な平滑性を有するディスク用基板が効率的に得られる。   ADVANTAGE OF THE INVENTION According to the polishing composition of the present invention, a disk substrate having practically sufficient smoothness with reduced surface undulations and surface defects such as micropits is efficiently obtained.

本発明の研磨液組成物は、水系媒体と、研磨材として特定のシリカ粒子とを含有してなる、メモリーハードディスク用基板(以下、ディスク用基板という)用の研磨液組成物である。   The polishing composition of the present invention is a polishing composition for a memory hard disk substrate (hereinafter, referred to as a disk substrate), comprising an aqueous medium and specific silica particles as an abrasive.

本発明に使用されるシリカ粒子は、その個数基準の平均粒子径(r)に対して個数基準の標準偏差(σ)が、前記式(1)を満たし、かつ該シリカ粒子の粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、前記式(2)及び(3)を満たすという特定の粒径分布を有するものである。本発明の研磨液組成物は、当該シリカ粒子を研磨材として含有してなることを大きな1つの特徴としており、かかる構成を有することから、ディスク用基板の表面の微小うねりを実用上充分な程度に低減させうる。従って、本発明の研磨液組成物により研磨されたディスク用基板の表面は優れた平滑性を有する。   The silica particles used in the present invention have a number-based standard deviation (σ) with respect to the number-based average particle diameter (r) that satisfies the formula (1), and the silica particles have a particle size of 60 to 60. It has a specific particle size distribution such that the cumulative volume frequency (V) in the range of 120 nm satisfies the above formulas (2) and (3) with respect to the particle size (R). The polishing composition of the present invention has one of the major features that the silica particles are contained as an abrasive, and having such a configuration, a fine undulation on the surface of the disk substrate is practically sufficient. Can be reduced. Therefore, the surface of the disk substrate polished with the polishing composition of the present invention has excellent smoothness.

本明細書において、「微小うねり」とは、粗さとうねりの中間の波長を持つ表面の凹凸であり、短波長うねり(波長50〜500μmのうねり)、長波長うねり(波長500μm〜5mmのうねり)に分類される。   In the present specification, “small undulations” are irregularities on the surface having a wavelength between roughness and undulation, and include short-wave undulations (50-500 μm undulation) and long-wave undulations (500 μm-5 mm undulation). are categorized.

すなわち、微小うねりは、対象物の表面の平滑性を示す指標となり、磁気ヘッド浮上量に影響を及ぼす。したがって、微小うねりの値が小さい程、対象物の表面の平滑性は優れることとなり、磁気ヘッドの低浮上化が可能となる。   That is, the minute waviness becomes an index indicating the smoothness of the surface of the target object, and affects the flying height of the magnetic head. Therefore, the smaller the value of the minute waviness, the better the smoothness of the surface of the object, and the lower the flying height of the magnetic head becomes.

一般に、対象物の表面の微小うねりは、対象物の表面からランダムに抜き取った各部分の平均として求められる。対象物の表面では、個々の位置における微小うねりは一様ではなく、相当に大きなバラツキを示すのが普通である。従って、対象物の表面の微小うねりを求めるには、その母平均が効果的に推定できるように測定位置及びその個数を定める必要がある。よって、データの信頼性は、測定位置及びその個数の選択に大きく依存するが、本発明においては、この信頼性が高い測定方法により微小うねりを求める。   In general, the minute undulation on the surface of the object is obtained as an average of each part randomly extracted from the surface of the object. On the surface of the object, the micro-undulations at individual positions are usually not uniform, but show a considerable variation. Therefore, in order to determine the minute waviness on the surface of the object, it is necessary to determine the measurement positions and the number of the measurement positions so that the population mean can be effectively estimated. Therefore, the reliability of the data largely depends on the selection of the measurement position and the number of the measurement positions. In the present invention, the minute undulation is obtained by the highly reliable measurement method.

本発明における微小うねりの測定方法の詳細については、後述の実施例において記載する。   The details of the method for measuring minute undulations in the present invention will be described in Examples below.

本発明に使用されるシリカ粒子としては、例えば、コロイダルシリカ粒子、ヒュームドシリカ粒子、表面修飾したシリカ粒子等が挙げられる。ディスク基板の表面のより高度な平滑性を得る観点から、コロイダルシリカ粒子が好ましい。当該コロイダルシリカ粒子は、市販のものでも、例えば、ケイ酸水溶液から生成させる公知の製造方法により得られたものであってもよい。シリカ粒子の使用形態としては、スラリー状であるのが好ましい。   Examples of the silica particles used in the present invention include colloidal silica particles, fumed silica particles, and surface-modified silica particles. Colloidal silica particles are preferred from the viewpoint of obtaining higher smoothness of the surface of the disk substrate. The colloidal silica particles may be commercially available, or may be those obtained by, for example, a known production method of producing a silicic acid aqueous solution. The form of use of the silica particles is preferably a slurry.

前記シリカ粒子の粒径分布は、以下の方法により求めることができる。即ち、シリカ粒子を日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)で観察した写真をパソコンにスキャナで画像データとして取込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1000個以上のシリカ粒子データについて1個1個のシリカ粒子の円相当径を求め、それを直径とし、表計算ソフト「EXCEL」(マイクロソフト社製)にて、個数基準の平均粒子径(r)及び標準偏差値(σ)を得る。   The particle size distribution of the silica particles can be determined by the following method. That is, a photograph obtained by observing the silica particles with a transmission electron microscope (TEM) manufactured by JEOL Ltd. (trade name: “JEM-2000FX”, 80 kV, 10,000 to 50,000 times) is taken into a personal computer as image data by a scanner, and analysis software “WinROOF” is used. (Distributor: Mitani Shoji Co., Ltd.), obtain the equivalent circle diameter of each individual silica particle for 1000 or more silica particle data, use that as the diameter, and use spreadsheet software “EXCEL” (manufactured by Microsoft). To obtain the number-based average particle diameter (r) and standard deviation value (σ).

本発明において、シリカ粒子は、個数基準の平均粒子径(r)に対して、個数基準の標準偏差値(σ)が式(1)を満たすものであるが、研磨速度を向上させる観点から、式(4)を満たすことが好ましく、式(5)を満たすことが更に好ましい。
σ≧0.34×r (4)
σ≧0.375×r (5)
In the present invention, the silica particles are such that the standard deviation value (σ) based on the number satisfies the formula (1) with respect to the average particle diameter (r) based on the number, but from the viewpoint of improving the polishing rate, Formula (4) is preferably satisfied, and formula (5) is more preferably satisfied.
σ ≧ 0.34 × r (4)
σ ≧ 0.375 × r (5)

また、表面あらさを低減する観点から、式(6)を満たすことが好ましく、式(7)を満たすことが更に好ましい。
−0.2×r+25≧σ (6)
−0.25×r+25≧σ (7)
From the viewpoint of reducing the surface roughness, it is preferable to satisfy Expression (6), and it is more preferable to satisfy Expression (7).
−0.2 × r + 25 ≧ σ (6)
−0.25 × r + 25 ≧ σ (7)

また、前記表計算ソフト「EXCEL」にて、粒子直径から粒子体積に換算して得られるシリカ粒子の粒径分布データに基づき、全粒子中における、ある粒子径の粒子の割合(体積基準%)を小粒子径側からの累積頻度として表し、累積体積頻度(%)を得る。以上のようにして得られたシリカ粒子の粒子径及び累積体積頻度データに基づき、粒子径に対して累積体積頻度をプロットすることにより、粒子径対累積体積頻度グラフが得られる。   Further, based on the particle size distribution data of the silica particles obtained by converting the particle diameter into the particle volume by the spreadsheet software “EXCEL”, the ratio of the particles having a certain particle diameter to the whole particles (% by volume) Is expressed as the cumulative frequency from the small particle diameter side, and the cumulative volume frequency (%) is obtained. By plotting the cumulative volume frequency against the particle size based on the particle size and cumulative volume frequency data of the silica particles obtained as described above, a particle size versus cumulative volume frequency graph can be obtained.

本発明において、シリカ粒子は、前記粒子径対累積体積頻度グラフにおいて、粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、前記式(2)及び(3)を満たす粒径分布を有するものであるが、ディスク用基板の表面の微小うねりの低減による当該基板の表面の平滑性の向上の観点から、粒子径105nm以上の範囲で累積体積頻度が90%となる粒径分布を有するものが好ましい。   In the present invention, in the silica particle, the cumulative volume frequency (V) in the particle diameter range of 60 to 120 nm is larger than the particle diameter (R) in the above-described formulas (2) and (3) in the graph of the particle diameter versus the cumulative volume frequency. However, from the viewpoint of improving the smoothness of the surface of the disk substrate by reducing minute waviness on the surface of the disk substrate, the cumulative volume frequency is 90% in the range of particle diameter of 105 nm or more. Those having the following particle size distribution are preferable.

中でも、スクラッチ低減と表面粗さ低減により優れる観点から、粒子径60〜120nmの範囲における前記シリカ粒子の粒径分布は、式(8):
V ≧ 0.60×R−5 (8)
を満たすことが好ましく、式(9):
V ≧ 0.70×R−10 (9)
を満たすことがより好ましく、式(10):
V ≧ 0.80×R−14 (10)
を満たすことがさらに好ましい。
Above all, from the viewpoint of being excellent in reducing scratches and reducing surface roughness, the particle size distribution of the silica particles in the particle size range of 60 to 120 nm is represented by the following formula (8):
V ≧ 0.60 × R-5 (8)
It is preferable to satisfy the following expression (9):
V ≧ 0.70 × R−10 (9)
More preferably, the formula (10):
V ≧ 0.80 × R−14 (10)
It is more preferable to satisfy the following.

また、マイクロピット低減により優れる観点から、粒子径60〜120nmの範囲における前記シリカ粒子の粒径分布は、式(11):
V ≦ 0.35×R+65 (11)
を満たすことが好ましく、式(12):
V ≦ 0.45×R+55 (12)
を満たすことがより好ましい。
In addition, from the viewpoint of being more excellent in reducing micropits, the particle size distribution of the silica particles in the particle size range of 60 to 120 nm is represented by the following formula (11)
V ≦ 0.35 × R + 65 (11)
It is preferable to satisfy the following expression (12):
V ≦ 0.45 × R + 55 (12)
It is more preferable to satisfy the following.

本発明において、前記式(1)は、シリカ粒子の粒径分布の広がりを示す指標であり、かかる範囲内の粒径分布を有するシリカ粒子は、その粒径分布がある一定以上の広がりを有するものであることを意味する。
また、本発明において、前記式(2)及び(3)は、シリカ粒子の存在割合を示す指標であり、粒子径60〜120nmの範囲において前記式(2)及び(3)を満たすシリカ粒子は、所定の粒子径のものをある一定以上の割合で含有することを意味する。
これらの式を満たすことにより、生産性を損なうことなく、微小うねりを実用上充分な程度に低減させることができる。
In the present invention, the formula (1) is an index indicating the spread of the particle size distribution of the silica particles, and the silica particles having the particle size distribution within such a range have a certain size or more of the particle size distribution. Means something.
Further, in the present invention, the formulas (2) and (3) are indices indicating the proportion of silica particles present, and the silica particles satisfying the formulas (2) and (3) in the range of particle diameter of 60 to 120 nm are: Means that the particles having a predetermined particle size are contained at a certain ratio or more.
By satisfying these equations, it is possible to reduce minute waviness to a practically sufficient level without impairing productivity.

また、シリカ粒子は、キャリア鳴きの低減に優れる観点から、粒子径5〜60nmの範囲の粒径分布が、式(13):
V ≦ (2/3)×R+50 (13)
を満たすことが好ましく、マイクロピットの低減に優れる観点から、粒子径30〜60nmの範囲の粒径分布が、式(14):
V ≧ R−30 (14)
を満たすことがより好ましい。
Further, the silica particles have a particle size distribution in the range of 5 to 60 nm in terms of the expression (13) from the viewpoint of excellent reduction of carrier squeal.
V ≦ (2/3) × R + 50 (13)
Is preferably satisfied, and from the viewpoint of excellent reduction of micropits, the particle size distribution in the range of particle size of 30 to 60 nm is represented by the following formula (14):
V ≧ R-30 (14)
It is more preferable to satisfy the following.

本発明に使用されるシリカ粒子としては、前記のような粒径分布を有するものであれば、特定の粒径分布を有する1種類のシリカ粒子からなるものであっても、異なる粒径分布を有する2種類以上のシリカ粒子を混合してなるものであってもよい。なお、2種以上のシリカ粒子を用いる場合、シリカ粒子の粒径分布とは、混合したシリカ粒子の粒径分布をいう。   As the silica particles used in the present invention, as long as they have the above-mentioned particle size distribution, even if they are composed of one kind of silica particles having a specific particle size distribution, they have different particle size distributions. It may be a mixture of two or more types of silica particles. When two or more types of silica particles are used, the particle size distribution of the silica particles refers to the particle size distribution of the mixed silica particles.

シリカ粒子の粒径分布を調整する方法としては、特に限定されないが、例えば、シリカ粒子がコロイダルシリカ粒子の場合、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより最終製品に粒径分布を持たせる方法、異なる粒径分布を有する2つ以上のシリカ粒子を混合する方法等が挙げられる。   The method for adjusting the particle size distribution of the silica particles is not particularly limited.For example, when the silica particles are colloidal silica particles, the final product is added by adding particles serving as new nuclei in the growth process of the particles in the production stage. And a method of mixing two or more silica particles having different particle size distributions.

また、研磨材としては、前記シリカ粒子に加えて、研磨用に一般に使用されている研磨材を使用することもできる。該研磨材として、金属;金属又は半金属の炭化物、窒化物、酸化物、ホウ化物;ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体例として、酸化アルミニウム、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム等が挙げられ、これらを1種以上使用することは研磨速度を向上させる観点から好ましい。中でも、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化チタン等が、磁気記録媒体用基板等の精密部品用基板の研磨に適している。酸化アルミニウムについては、α、θ、γ等種々の結晶系が知られているが、用途に応じ適宜選択、使用することができる。   As the abrasive, in addition to the silica particles, an abrasive generally used for polishing can also be used. Examples of the abrasive include: metals; metal or metalloid carbides, nitrides, oxides, borides; and diamond. The metal or metalloid element is derived from group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or 8 of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide, silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, and the like. Use of at least one of these abrasives improves the polishing rate. preferable. Among them, aluminum oxide, cerium oxide, zirconium oxide, titanium oxide and the like are suitable for polishing substrates for precision components such as substrates for magnetic recording media. Various crystal systems such as α, θ, and γ are known for aluminum oxide, but can be appropriately selected and used depending on the application.

シリカ粒子以外の研磨材の一次粒子の平均粒径は、200nm以下であり、研磨速度を向上させる観点から、好ましくは1nm以上、より好ましくは10nm以上、さらに好ましくは20nm以上であり、表面粗さ(Ra、Rmax)、うねり(Wa)を低減する観点から、200nm以下、好ましくは150nm以下、より好ましくは120nm以下、さらに好ましくは100nm以下である。該一次粒子の平均粒径は、好ましくは1〜200nm、より好ましくは1〜150nm、さらに好ましくは10〜120nm、さらに好ましくは20〜100nmである。さらに、一次粒子が凝集して二次粒子を形成している場合は、同様に研磨速度を向上させる観点及び被研磨物の表面粗さを低減させる観点から、その二次粒子の平均粒径は、好ましくは50〜3000nm、さらに好ましくは100〜1500nm、さらに好ましくは200〜1200nmである。   The average particle size of the primary particles of the abrasive other than the silica particles is 200 nm or less, and from the viewpoint of improving the polishing rate, is preferably 1 nm or more, more preferably 10 nm or more, and still more preferably 20 nm or more. From the viewpoint of reducing (Ra, Rmax) and undulation (Wa), the thickness is 200 nm or less, preferably 150 nm or less, more preferably 120 nm or less, and further preferably 100 nm or less. The average particle diameter of the primary particles is preferably 1 to 200 nm, more preferably 1 to 150 nm, further preferably 10 to 120 nm, and further preferably 20 to 100 nm. Furthermore, when the primary particles are aggregated to form secondary particles, similarly from the viewpoint of improving the polishing rate and reducing the surface roughness of the object to be polished, the average particle size of the secondary particles is , Preferably 50 to 3000 nm, more preferably 100 to 1500 nm, and still more preferably 200 to 1200 nm.

シリカ粒子以外の研磨材の一次粒子の平均粒径は、走査型電子顕微鏡で観察(好適には3000〜100000倍)した画像を解析して一次粒子の小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50)を測定することにより求めることができる。ここで、ひとつの一次粒子の粒径は、2軸平均(長径と短径の平均)粒径を用いることとする。また、二次粒子の平均粒径はレーザー光回折法を用いて体積平均粒径として測定することができる。   The average particle size of the primary particles of the abrasive other than the silica particles is determined by analyzing an image observed with a scanning electron microscope (preferably 3000 to 100,000 times) and calculating the integrated particle size distribution from the small particle size side of the primary particles ( It can be determined by measuring the particle size (D50) at which the (by number) is 50%. Here, as the particle diameter of one primary particle, a biaxial average (average of a major axis and a minor axis) particle diameter is used. The average particle size of the secondary particles can be measured as a volume average particle size using a laser light diffraction method.

研磨液組成物中におけるシリカ粒子の含有量は、研磨速度を向上させる観点から、好ましくは0.5 重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上、さらに好ましくは5重量%以上であり、また、表面品質を向上させる観点、及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下、さらに好ましくは10重量%以下である。すなわち、該含有量は、研磨液組成物中において好ましくは0.5 〜20重量% 、より好ましくは1 〜15重量% 、さらに好ましくは3 〜13重量% 、さらに好ましくは5 〜10重量% である。   The content of the silica particles in the polishing composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, and further preferably 5% by weight, from the viewpoint of improving the polishing rate. From the viewpoint of improving the surface quality and economical efficiency, preferably 20% by weight or less, more preferably 15% by weight or less, further preferably 13% by weight or less, further preferably 10% by weight or less. It is. That is, the content is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, further preferably 3 to 13% by weight, and still more preferably 5 to 10% by weight in the polishing composition.

また、本発明の研磨液組成物は、さらに酸、その塩、および酸化剤からなる群より選ばれる少なくとも1種を含有することで、効果をさらに優れたものにすることができる。   In addition, the polishing liquid composition of the present invention can further improve the effect by further containing at least one selected from the group consisting of an acid, a salt thereof, and an oxidizing agent.

本発明の研磨液組成物は、研磨速度をより向上させる観点から、酸化剤を含有することが好ましい。酸化剤としては、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硫酸類等が挙げられる。   The polishing composition of the present invention preferably contains an oxidizing agent from the viewpoint of further improving the polishing rate. Examples of the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxoacid or a salt thereof, oxyacid or a salt thereof, metal salts, and sulfuric acid.

前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等;過マンガン酸又はその塩としては、過マンガン酸カリウム等;クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等;ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等;酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等;金属塩類としては、塩化鉄(III)、硝酸鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。特に、基板表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。   Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide, and the like; examples of permanganic acid or a salt thereof include potassium permanganate; and examples of the chromic acid or a salt thereof include a chromate metal salt and bichromium. Acid metal salts and the like; peroxoacids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, metal peroxodisulfate, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, performic acid, peracetic acid, perbenzoic acid, Phthalic acid and the like; oxygen acids or salts thereof, such as hypochlorous acid, hypobromous acid, hypoiodic acid, chloric acid, bromic acid, iodic acid, sodium hypochlorite, calcium hypochlorite; metals Examples of the salts include iron (III) chloride, iron (III) nitrate, iron (III) sulfate, iron (III) citrate, and iron (III) ammonium sulfate. Preferred oxidizing agents include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate and iron (III) ammonium sulfate. In particular, hydrogen peroxide is preferable from the viewpoint that metal ions do not adhere to the substrate surface and are widely used and inexpensive. These oxidizing agents may be used alone or in combination of two or more.

研磨速度を向上させる観点から、研磨液組成物中の酸化剤の含有量は、好ましくは0.002 重量% 以上、より好ましくは0.005 重量% 以上、さらに好ましくは0.007 重量% 以上、さらに好ましくは0.01重量% 以上であり、表面粗さ、微小うねりを低減し、ピット、スクラッチ等の表面欠陥を減少させて表面品質を向上させる観点及び経済性の観点から、好ましくは20重量% 以下、より好ましくは15重量% 以下、さらに好ましくは10重量% 以下、さらに好ましくは5 重量% 以下である。該含有量は、研磨液組成物中、好ましくは0.002 〜20重量% 、より好ましくは0.005 〜15重量% 、さらに好ましくは0.007 〜10重量% 、さらに好ましくは0.01〜5 重量% である。   From the viewpoint of improving the polishing rate, the content of the oxidizing agent in the polishing composition is preferably 0.002% by weight or more, more preferably 0.005% by weight or more, still more preferably 0.007% by weight or more, further preferably 0.01% by weight. From the viewpoint of improving surface quality by reducing surface roughness, fine undulations, reducing surface defects such as pits and scratches and improving surface quality and from the viewpoint of economy, preferably 20% by weight or less, more preferably 15% by weight. %, More preferably 10% by weight or less, more preferably 5% by weight or less. The content is preferably 0.002 to 20% by weight, more preferably 0.005 to 15% by weight, further preferably 0.007 to 10% by weight, and still more preferably 0.01 to 5% by weight in the polishing composition.

また、本発明の研磨液組成物は、研磨速度をさらに上げる観点から、酸及び/又はその塩を含有することが好ましい。酸及び/又はその塩としては、その酸のpK1が2以下の化合物が好ましく、微小スクラッチを低減する観点から、pK1が1.5以下の化合物が好ましく、より好ましくは1以下、さらに好ましくはpK1で表せない程の強い酸性を示す化合物が望ましい。その例としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸及びその塩、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸、α−メチルホスホノコハク酸等の有機ホスホン酸及びその塩、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸及びその塩、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸及びその塩等が挙げられる。中でも、微小スクラッチを低減する観点から、無機酸や有機ホスホン酸及びその塩が好ましい。また、無機酸及びその塩の中では、硝酸、硫酸、塩酸、過塩素酸及びそれらの塩がより好ましい。有機ホスホン酸及びその塩の中では、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びそれらの塩がより好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよい。ここで、pK1とは有機化合物又は無機化合物の酸解離定数(25℃)の逆数の対数値を通常pKaと表し、そのうちの第一酸解離定数の逆数の対数値をpK1としている。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316−325(日本化学会編)等に記載されている。なお、本発明においては、微小スクラッチの低減と研磨速度向上の両立の観点から、その酸のpK1が2以下の酸及び/又はその塩を用いることがさらに好ましい。   Further, the polishing composition of the present invention preferably contains an acid and / or a salt thereof from the viewpoint of further increasing the polishing rate. As the acid and / or the salt thereof, a compound having a pK1 of 2 or less is preferable, and a compound having a pK1 of 1.5 or less is preferable, more preferably 1 or less, and still more preferably pK1 from the viewpoint of reducing minute scratches. A compound exhibiting such a strong acidity that it cannot be expressed by is desirable. Examples thereof include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, and salts thereof, and 2-aminoethylphosphonic acid. Acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1, 1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid , Methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane- , 3,4-tricarboxylic acid, organic phosphonic acids such as α-methylphosphonosuccinic acid and salts thereof, aminocarboxylic acids and salts thereof such as glutamic acid, picolinic acid and aspartic acid, oxalic acid, nitroacetic acid, maleic acid, oxalo Examples thereof include carboxylic acids such as acetic acid and salts thereof. Above all, from the viewpoint of reducing minute scratches, inorganic acids, organic phosphonic acids and salts thereof are preferable. Further, among inorganic acids and salts thereof, nitric acid, sulfuric acid, hydrochloric acid, perchloric acid and salts thereof are more preferable. Among organic phosphonic acids and salts thereof, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and salts thereof are more preferable. preferable. These acids and salts thereof may be used alone or in combination of two or more. Here, pK1 is usually the logarithm of the reciprocal of the acid dissociation constant (25 ° C.) of the organic compound or the inorganic compound, and pKa is the logarithm of the reciprocal of the first acid dissociation constant. The pK1 of each compound is described in, for example, Revised Fourth Edition Chemical Handbook (Basic Edition) II, pp 316-325 (Chemical Society of Japan), and the like. In the present invention, it is more preferable to use an acid having a pK1 of 2 or less and / or a salt thereof, from the viewpoint of reducing minute scratches and improving the polishing rate.

これらの酸の塩としては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム、有機アミン等との塩が挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、微小スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。   The salts of these acids are not particularly limited, and specific examples include salts with metals, ammonium, alkylammonium, organic amines, and the like. Specific examples of metals include metals belonging to Group 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or 8 of the Periodic Table (Long Period Type). Among these, a salt with a metal or ammonium belonging to Group 1A is preferable from the viewpoint of reducing minute scratches.

前記酸及びその塩の研磨液組成物中における含有量は、充分な研磨速度を発揮する観点及び表面品質を向上させる観点から、0.0001〜5重量%が好ましく、より好ましくは0.0003〜4 重量%であり、さらに好ましくは0.001 〜3 重量%、さらに好ましくは0.0025〜2.5 重量%である。   The content of the acid and its salt in the polishing composition is preferably 0.0001 to 5% by weight, more preferably 0.0003 to 4% by weight, from the viewpoint of exhibiting a sufficient polishing rate and improving the surface quality. And more preferably 0.001 to 3% by weight, more preferably 0.0025 to 2.5% by weight.

本発明の研磨液組成物中の水系媒体としては、例えば、蒸留水、イオン交換水、超純水等が使用される。その含有量は、被研磨物を効率よく研磨する観点から、好ましくは55重量% 以上であり、より好ましくは67重量% 以上であり、さらに好ましくは75重量% 以上であり、さらに好ましくは84重量% 以上であり、また、好ましくは99.4979 重量% 以下、より好ましくは98.9947 重量% 以下、さらに好ましくは96.992重量% 以下、さらに好ましくは、94.9875 重量% 以下である。該含有量は、好ましくは55〜99.4979 重量% 、より好ましくは67〜98.9947 重量% 、さらに好ましくは75〜96.992重量% 、さらに好ましくは84〜94.9875 重量% である。   As the aqueous medium in the polishing composition of the present invention, for example, distilled water, ion-exchanged water, ultrapure water and the like are used. The content thereof is preferably 55% by weight or more, more preferably 67% by weight or more, further preferably 75% by weight or more, further preferably 84% by weight, from the viewpoint of efficiently polishing the object to be polished. %, More preferably not more than 99.4979% by weight, more preferably not more than 98.9947% by weight, still more preferably not more than 96.992% by weight, further preferably not more than 94.9875% by weight. The content is preferably 55 to 99.4997% by weight, more preferably 67 to 98.9947% by weight, further preferably 75 to 96.992% by weight, further preferably 84 to 94.9875% by weight.

尚、前記研磨液組成物中の各成分の濃度は、該組成物製造時の濃度及び使用時の濃度のいずれであってもよい。通常、濃縮液として研磨液組成物は製造され、これを使用時に希釈して用いる場合が多い。   The concentration of each component in the polishing composition may be either the concentration at the time of manufacturing the composition or the concentration at the time of use. Usually, a polishing liquid composition is produced as a concentrated liquid, which is often diluted at the time of use.

また、本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。該他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。   Further, other components can be added to the polishing composition of the present invention as needed. Examples of the other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant.

本発明の研磨液組成物は、前記研磨材及び水系媒体、さらに所望により酸化剤、酸及び/又はその塩、他の成分等を公知の方法で混合することにより調製することができる。   The polishing composition of the present invention can be prepared by mixing the above-mentioned abrasive and aqueous medium, and if desired, an oxidizing agent, an acid and / or a salt thereof, and other components, by a known method.

本発明の研磨液組成物のpHは、被加工物の種類や要求性能に応じて適宜決定することが好ましい。研磨液組成物のpHは、被研磨物の材質により一概に限定はできないが、一般に金属材料では研磨速度を向上させる観点からpHは酸性であり、7 未満が好ましく、より好ましくは6 以下、さらに好ましくは5 以下、さらに好ましくは4 以下であることが望ましい。また、人体への影響や機械の腐食性の観点から、pHは1 以上であることが好ましく、より好ましくは1.1 以上、さらに好ましくは1.2 以上、さらに好ましくは1.3 以上である。特にニッケル−リン(Ni−P)メッキされたアルミニウム合金基板等の金属を主対象とした精密部品用基板においては、研磨速度を向上させる観点から、pHは酸性にすることが好ましく、pHは4.5 以下がより好ましく、さらに好ましくは4 以下、さらに好ましくは3.5 以下、さらに好ましくは3 以下である。従って、重視する目的に合わせてpHを設定すればよいが、さらにNi−Pメッキされたアルミニウム合金基板等の金属を対象とした精密部品用基板においては、前記観点を総合して、pHは1 〜4.5 が好ましく、より好ましくは1.1 〜4 、さらに好ましくは1.2 〜3.5 、さらに好ましくは1.3 〜3 である。pHは硝酸、硫酸等の無機酸やシュウ酸等の有機酸、アンモニウム塩、アンモニア水、水酸化カリウム、水酸化ナトリウム、アミン等の塩基性物質を適宜、所望量で配合することにより調整することができる。   It is preferable that the pH of the polishing composition of the present invention is appropriately determined according to the type of the workpiece and the required performance. The pH of the polishing composition is not necessarily limited depending on the material of the object to be polished, but generally, the pH of a metal material is acidic from the viewpoint of improving the polishing rate, and is preferably less than 7, more preferably 6 or less, furthermore It is preferably 5 or less, more preferably 4 or less. Further, from the viewpoint of the effect on the human body and the corrosiveness of the machine, the pH is preferably 1 or more, more preferably 1.1 or more, further preferably 1.2 or more, and further preferably 1.3 or more. In particular, in the case of a precision component substrate mainly made of a metal such as an aluminum alloy substrate plated with nickel-phosphorus (Ni-P), the pH is preferably acidic, and the pH is preferably 4.5 from the viewpoint of improving the polishing rate. The following is more preferred, and still more preferably 4 or less, still more preferably 3.5 or less, and still more preferably 3 or less. Therefore, the pH may be set in accordance with the purpose to be emphasized. However, in the case of a precision component substrate for a metal such as an Ni-P plated aluminum alloy substrate, the pH is set to 1 based on the above viewpoints. To 4.5, more preferably 1.1 to 4, further preferably 1.2 to 3.5, and still more preferably 1.3 to 3. The pH is adjusted by appropriately mixing inorganic acids such as nitric acid and sulfuric acid, organic acids such as oxalic acid, ammonium salts, aqueous ammonia, potassium hydroxide, sodium hydroxide, and basic substances such as amines in desired amounts. Can be.

本発明のディスク用基板の微小うねりの低減方法としては、メモリーハードディスク用基板に代表される被研磨基板を研磨する際に、本発明の研磨液組成物を用いる方法が挙げられる。前記被研磨基板の研磨方法としては、本発明の研磨液組成物を用いて、あるいは本発明の研磨液組成物の組成となるように各成分を混合して研磨液組成物を調製して被研磨基板を研磨する工程を有しており、特にメモリーハードディスク用基板等の精密部品用基板を好適に製造することができる。また、本発明の研磨液組成物は、ディスク用基板の微小うねりを顕著に低減して高い研磨速度を発揮することができる。   Examples of the method for reducing micro-undulations of the disk substrate of the present invention include a method of using the polishing composition of the present invention when polishing a substrate to be polished such as a memory hard disk substrate. As a method for polishing the substrate to be polished, a polishing composition is prepared by using the polishing composition of the present invention or by mixing the respective components so as to have the composition of the polishing composition of the present invention. The method includes a step of polishing a polished substrate. In particular, a substrate for precision parts such as a substrate for a memory hard disk can be suitably manufactured. In addition, the polishing composition of the present invention can exhibit a high polishing rate by remarkably reducing minute waviness of a disk substrate.

本発明の研磨液組成物が対象とする被研磨物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属又は半金属及びこれらの合金、及びガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料、ポリイミド樹脂等の樹脂等が挙げられる。これらの中では、アルミニウム、ニッケル、タングステン、銅等の金属及びこれらの金属を主成分とする合金が被研磨物であるのが好ましく、例えば、Ni−Pメッキされたアルミニウム合金基板がより好ましい。   The material of the object to be polished by the polishing composition of the present invention is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, and alloys thereof, and glass, glassy carbon. , A glassy substance such as amorphous carbon, a ceramic material such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide; and a resin such as a polyimide resin. Among these, metals such as aluminum, nickel, tungsten, and copper and alloys containing these metals as main components are preferably polished objects, and for example, an Ni-P plated aluminum alloy substrate is more preferable.

本発明のディスク用基板の微小うねりの低減方法でディスク用基板の研磨を行う工程は、例えば、公知の研磨機を用いて好適に実施することができる。例えば、不織布状の有機高分子系研磨布等、好ましくはポリウレタン系研磨布を貼り付けた研磨盤でディスク用基板を挟み込み、研磨液組成物を流量として直径95mmのディスク用基板1枚当たり1〜30mL/分、好ましくは3〜20mL/分で研磨対象の表面に供給し、荷重として、通常、2.9〜14.7kPa、好ましくは4.9〜10.8kPaの一定圧力を加えながら、上定盤又は下定盤とディスク用基板との相対速度が定盤中央部で、通常、0.1〜2m/秒、好ましくは0.3〜1m/秒となるように研磨盤やディスク用基板を動かすことにより研磨することにより行われる。   The step of polishing the disk substrate by the method for reducing minute waviness of the disk substrate of the present invention can be suitably performed using, for example, a known polishing machine. For example, a non-woven organic polymer polishing cloth or the like, preferably, a disk substrate is sandwiched between polishing disks to which a polyurethane polishing cloth is attached, and the polishing composition is flowed at a rate of 1 to 1 per disk substrate having a diameter of 95 mm. It is supplied to the surface to be polished at a rate of 30 mL / min, preferably 3 to 20 mL / min, and the load is applied while applying a constant pressure of usually 2.9 to 14.7 kPa, preferably 4.9 to 10.8 kPa. The polishing plate or the disk substrate is adjusted so that the relative speed between the platen or lower platen and the disk substrate is generally 0.1 to 2 m / sec, preferably 0.3 to 1 m / sec at the central portion of the platen. It is performed by polishing by moving.

かかるディスク用基板の微小うねりの低減方法によればディスク用基板の表面の微小うねりが生産性を損なうことなく、効果的に低減され、さらにマイクロピット等の表面欠陥も低減されるので、実用上充分なディスク用基板の表面の平滑性が得られる。   According to such a method for reducing micro-undulations on the disk substrate, the micro-undulations on the surface of the disk substrate are effectively reduced without impairing productivity, and furthermore, surface defects such as micropits are also reduced. Sufficient smoothness of the surface of the disk substrate can be obtained.

また、本発明の一態様として、本発明の研磨液組成物により被研磨基板を研磨する工程を含む、ディスク用基板の製造方法、特に、本発明の研磨液組成物を用いて、Ni−Pメッキされたディスク用基板の研磨を行う工程を含む、ディスク用基板の製造方法が提供される。   Further, as one embodiment of the present invention, a method for producing a disk substrate, which includes a step of polishing a substrate to be polished with the polishing liquid composition of the present invention, in particular, using a polishing liquid composition of the present invention to form There is provided a method of manufacturing a disk substrate, comprising a step of polishing a plated disk substrate.

本発明のNi−Pメッキされたディスク用基板の製造方法(以下、ディスク用基板の製造方法という)は、該基板を本発明の研磨液組成物を用いて研磨する工程を含むが、かかる工程は、複数の研磨工程の中でも第2工程目以降に行われるのが好ましく、最終研磨工程に行われるのがより好ましい。例えば、アルミナ砥粒等の公知の研磨材を含んでなる研磨スラリーを使用する、第1研磨工程又は第2研磨工程により、微小うねりとして短波長うねりを0.4〜0.6nm、長波長うねりを0.35〜0.5nmにした前記ディスク用基板(例えば、Ni−Pメッキされたアルミニウム合金基板)を、本発明の研磨液組成物を用いた研磨工程により、さらに研磨する。本発明の研磨液組成物を用いた研磨工程は、例えば、前記ディスク用基板の微小うねりの低減方法における研磨工程と同様に実施すればよい。   The method for producing the Ni-P plated disk substrate of the present invention (hereinafter referred to as the disk substrate producing method) includes a step of polishing the substrate using the polishing composition of the present invention. Is preferably performed in the second and subsequent steps among a plurality of polishing steps, and is more preferably performed in the final polishing step. For example, by using a polishing slurry containing a known abrasive such as alumina abrasive grains, the first polishing step or the second polishing step causes short-wave undulations of 0.4 to 0.6 nm and long-wave undulations as minute undulations. The disk substrate (for example, an Ni-P plated aluminum alloy substrate) having a thickness of 0.35 to 0.5 nm is further polished by a polishing step using the polishing composition of the present invention. The polishing step using the polishing composition of the present invention may be performed, for example, in the same manner as the polishing step in the method for reducing minute waviness of the disk substrate.

本発明のディスク用基板の製造方法においては、2工程のみからなる研磨工程により、微小うねりとして短波長うねりを0.12nm以下、長波長うねりを0.25nm以下のディスク用基板を製造することを所望する場合、第2工程目を、本発明の研磨液組成物を用いたディスク用基板の研磨工程とするのが好適である。   In the method for manufacturing a disk substrate of the present invention, a polishing process including only two steps is used to manufacture a disk substrate having a short wavelength undulation of 0.12 nm or less and a long wavelength undulation of 0.25 nm or less as minute undulations. If desired, the second step is preferably a step of polishing a disk substrate using the polishing composition of the present invention.

本発明のディスク用基板の製造方法によれば、微小うねりが低減された、優れた表面の平滑性を有するNi−Pメッキされたディスク用基板を効率的に製造することができる。   ADVANTAGE OF THE INVENTION According to the manufacturing method of the disk substrate of this invention, the micro waviness is reduced and the Ni-P plating disk substrate which has excellent surface smoothness can be manufactured efficiently.

(被研磨物)
アルミナ砥粒を含有する研磨スラリーであらかじめ粗研磨して微小うねりとして短波長うねりを0.5nm、長波長うねりを0.45nmとした、厚さ1.27mm、直径95mmのNi−Pメッキされたアルミニウム合金基板を被研磨物として用い、以下の実施例及び比較例で得られた研磨液組成物を用いて当該基板に対する研磨評価を行った。
(Polished object)
Ni-P plated with a thickness of 1.27 mm and a diameter of 95 mm was rough-polished in advance with a polishing slurry containing alumina abrasive grains and finely undulated with 0.5 nm short-wave undulation and 0.45 nm long-wave undulation. Using an aluminum alloy substrate as an object to be polished, polishing evaluation was performed on the substrate using the polishing composition obtained in the following Examples and Comparative Examples.

実施例1〜6及び比較例1〜3
表1に記載のコロイダルシリカ(シリカA〜H)、過酸化水素(H2 2 )、HEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸)及び残部水(イオン交換水)を添加、混合することにより、表1に記載の組成を有する研磨液組成物を調製した。混合する順番としては、HEDPを水に希釈した水溶液に35重量%過酸化水素水を、次いで残りの成分を混合し、最後にコロイダルシリカスラリーをゲル化しないように攪拌しながら配合し、研磨液組成物を調製した。
Examples 1 to 6 and Comparative Examples 1 to 3
Add and mix colloidal silica (silica A to H), hydrogen peroxide (H 2 O 2 ), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) and the remaining water (ion-exchanged water) shown in Table 1. As a result, a polishing composition having the composition shown in Table 1 was prepared. The order of mixing is as follows. A 35 wt% aqueous solution of hydrogen peroxide is added to an aqueous solution obtained by diluting HEDP in water, then the remaining components are mixed, and finally, the colloidal silica slurry is mixed while stirring so as not to gel, and the polishing liquid is mixed. A composition was prepared.

Figure 2004259421
Figure 2004259421

なお、表中、シリカAは「カタロイドSI−30」(触媒化成工業社製)、
シリカBは「カタロイドSI−40」(触媒化成工業社製)、
シリカCは「カタロイドSI−50」(触媒化成工業社製)、
シリカDは「カタロイドSI−45P」(触媒化成工業社製)、
シリカEは「カタロイドSI−80P」(触媒化成工業社製)、
シリカFは「Syton520」(デュポン社製)、
シリカGは「Syton524」(デュポン社製)、
シリカHは「Syton HS40」(デュポン社製)、
HEDPは1−ヒドロキシエチリデン−1,1−ジホスホン酸(「ディクエスト2010」、ソルーシア・ジャパン製)、及び
2 2 は、35重量%過酸化水素水(旭電化社製)
を示す。
In the table, silica A is "Cataloid SI-30" (manufactured by Catalyst Chemical Industry Co., Ltd.),
Silica B is "Cataloid SI-40" (manufactured by Catalyst Chemical Industry Co., Ltd.),
Silica C is "Cataloid SI-50" (manufactured by Catalyst Chemical Industry Co., Ltd.),
Silica D is "Cataloid SI-45P" (manufactured by Catalyst Kasei Kogyo),
Silica E is "Cataloid SI-80P" (manufactured by Catalyst Chemical Industry Co., Ltd.),
Silica F is "Syton520" (manufactured by DuPont),
Silica G is "Syton 524" (manufactured by DuPont),
Silica H is "Syton HS40" (manufactured by DuPont),
HEDP is 1-hydroxy-1,1-diphosphonic acid ( "Di Quest 2010", manufactured by Solutia Japan), and H 2 O 2 is 35 percent by weight aqueous hydrogen peroxide solution (manufactured by Asahi Denka Co., Ltd.)
Is shown.

前記研磨液組成物におけるシリカ粒子の粒径分布について、以下の〔シリカ粒子の粒径分布の測定〕に記載の方法に従い、粒子径を測定し、個数基準の平均粒子径、標準偏差値及び累積体積頻度を求め、粒子径対累積体積頻度グラフを作成した。各実施例で使用されたシリカ粒子の粒子径対累積体積頻度グラフを図1に、各比較例で使用されたシリカ粒子の粒子径対累積体積頻度グラフを図2に示す。   For the particle size distribution of the silica particles in the polishing composition, according to the method described in the following [measurement of the particle size distribution of the silica particles], measured the particle size, the number-based average particle size, standard deviation value and cumulative The volume frequency was determined and a graph of particle size versus cumulative volume frequency was created. FIG. 1 shows a graph of the particle size of the silica particles used in each example versus the cumulative volume frequency, and FIG. 2 shows a graph of the particle size of the silica particles used in each comparative example versus the cumulative volume frequency.

〔シリカ粒子の粒径分布の測定〕
スラリー状のシリカ粒子を試料として用い、日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)により、試料を観察し、TEM像を写真撮影した。当該写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1個1個のシリカ粒子の円相当径を求め、それを直径とし、1000個以上のシリカ粒子データを解析した後、それをもとに表計算ソフト「EXCEL」(マイクロソフト社製)にて、シリカ粒子の個数基準の平均粒子径及び標準偏差値を得た。その結果を表2に示す。
(Measurement of particle size distribution of silica particles)
Using the slurry-form silica particles as a sample, the sample was observed by a transmission electron microscope (TEM) manufactured by JEOL Ltd. (trade name "JEM-2000FX", 80 kV, 10,000 to 50,000 times), and a TEM image was photographed. . The photograph is taken into a personal computer as image data using a scanner, and the circle-equivalent diameter of each silica particle is determined using analysis software “WinROOF” (sold by Mitani Shoji). After analyzing the silica particle data, an average particle diameter and a standard deviation value based on the number of silica particles were obtained using spreadsheet software “EXCEL” (manufactured by Microsoft) based on the data. Table 2 shows the results.

Figure 2004259421
Figure 2004259421

また、表計算ソフト「EXCEL」にて、粒子直径から粒子体積に換算して得られるシリカ粒子の粒径分布データに基づき、全粒子中における、ある粒子径の粒子の割合(体積基準%)を小粒子径側からの累積頻度として表し、累積体積頻度(%)を得た。   In addition, based on the particle size distribution data of the silica particles obtained by converting the particle diameter into the particle volume with spreadsheet software “EXCEL”, the ratio of the particles having a certain particle diameter to the total particles (% by volume) is calculated. Expressed as the cumulative frequency from the small particle diameter side, the cumulative volume frequency (%) was obtained.

以上のようにして得られたシリカ粒子の粒子径及び累積体積頻度データに基づき、粒子径に対して累積体積頻度をプロットすることにより、粒子径対累積体積頻度グラフを得た。   Based on the particle size and cumulative volume frequency data of the silica particles obtained as described above, the cumulative volume frequency was plotted against the particle size to obtain a graph of the particle size versus the cumulative volume frequency.

また、実施例1〜6及び比較例1〜3の研磨液組成物を用いて、以下に示す研磨条件にて被研磨物を研磨した。次いで、被研磨物の表面の微小うねり及びマイクロピットを以下の方法に基づいて測定し、評価を行った。各実施例及び比較例につき10枚の被研磨物を用いて評価を行い、微小うねりは各被研磨物を用いて得られた個々のデータの平均とした。得られた結果を表3に示す。   In addition, using the polishing composition of Examples 1 to 6 and Comparative Examples 1 to 3, the object to be polished was polished under the following polishing conditions. Next, the micro undulations and micro pits on the surface of the object to be polished were measured and evaluated based on the following method. Each of the examples and comparative examples was evaluated using ten polished objects, and the fine waviness was an average of individual data obtained using each polished object. Table 3 shows the obtained results.

(研磨条件)
研磨試験機 :スピードファム社製「両面9B研磨機」
研磨パッド :カネボウ社製「Bellatrix N0058」
研磨荷重 :7.8kPa
スラリー供給量 :100mL/分
下定盤回転数 :30r/min
研磨時間 :4分
投入した基板の枚数:10枚
(Polishing conditions)
Polishing tester: Speed Fam Co., Ltd. "Double-sided 9B polishing machine"
Polishing pad: "Bellatrix N0058" manufactured by Kanebo
Polishing load: 7.8 kPa
Slurry supply amount: 100 mL / min Lower platen rotation speed: 30 r / min
Polishing time: 4 minutes Number of substrates loaded: 10

〔微小うねりの測定〕
Zygo製、「New View200」を用いて被測定基板を180°おきに2点(計4点)について、以下の条件で短波長うねりと長波長うねりを測定し、その4点の測定値の平均値を1枚の基板の短波長うねり又は長波長うねりとして算出した。
対物レンズ :2.5 倍 Michelson
ズーム比 :0.5倍
フィルター :Band Pass
フィルタータイプ:FFT Fixed
測定波長:
・短波長うねり:Filter High Wavelength 0.05mm
Filter Low Wavelength 0.50mm
・長波長うねり:Filter High Wavelength 0.50mm
Filter Low Wavelength 5.00mm
[Measurement of minute undulations]
Using a “New View 200” manufactured by Zygo, short-wave undulation and long-wave undulation were measured at two points (a total of four points) of the substrate to be measured every 180 ° under the following conditions, and the average of the measured values of the four points was measured. The value was calculated as the short-wave or long-wave undulation of one substrate.
Objective lens: 2.5x Michelson
Zoom ratio: 0.5x Filter: Band Pass
Filter type: FFT Fixed
Measurement wavelength:
・ Short wavelength swell: Filter High Wavelength 0.05mm
Filter Low Wavelength 0.50mm
・ Long wavelength swell: Filter High Wavelength 0.50mm
Filter Low Wavelength 5.00mm

[マイクロピットの測定方法]
微分干渉式顕微鏡観察〔金属顕微鏡「BX60M」(オリンパス工業社製)、倍率50倍(接眼レンズ10倍、対物レンズ5倍)〕により5枚の基板について表面、裏面ともに図3に示すように線AB、CD、EF、GHについて走査しながらマイクロピットの個数をカウントした。
その結果を以下の評価基準に基づいて、表3に示す。
[Method of measuring micro pits]
Observation with a differential interference microscope [Metal microscope “BX60M” (Olympus Corporation), magnification: 50 × (eyepiece: 10 ×, objective: 5 ×)) was performed using a line as shown in FIG. The number of micropits was counted while scanning for AB, CD, EF, and GH.
The results are shown in Table 3 based on the following evaluation criteria.

評価基準
「◎」:0.3個/面未満
「○」:0.3個/面以上、1個/面未満
「△」:1個/面以上、5個/面未満
「×」:5個/面以上
Evaluation criteria “◎”: less than 0.3 / face “O”: 0.3 / face or more, less than 1 piece / face “△”: 1 / face or more, less than 5 pieces / face “×”: 5 Pieces / side or more

Figure 2004259421
Figure 2004259421

表3の結果より、実施例1〜6の研磨液組成物によれば、比較例1〜3のものに比べ、被研磨物の表面の微小うねり、さらにはマイクロピットもより低減されることが分かる。   From the results in Table 3, it can be seen that, according to the polishing composition of Examples 1 to 6, fine undulations on the surface of the object to be polished and further micro pits are further reduced as compared with those of Comparative Examples 1 to 3. I understand.

本発明の研磨液組成物は、磁気記録媒体用基板等の精密部品用基板、中でも、Ni−Pメッキされたディスク用基板の製造に好適に使用される。   The polishing composition of the present invention is suitably used for the production of substrates for precision parts such as substrates for magnetic recording media, among others, Ni-P plated disk substrates.

図1は、各実施例で使用されたシリカ粒子の粒子径対累積体積頻度グラフである。FIG. 1 is a graph of the particle diameter of the silica particles used in each example versus the cumulative volume frequency. 図2は、各比較例で使用されたシリカ粒子の粒子径対累積体積頻度グラフである。FIG. 2 is a graph of the particle diameter of the silica particles used in each comparative example versus the cumulative volume frequency. 図3は、マイクロピットの測定の際に、微分干渉式顕微鏡で走査した基板上の部位を示す概略図である。FIG. 3 is a schematic diagram showing a portion on the substrate scanned by a differential interference microscope when measuring the micropits.

Claims (6)

水系媒体中にシリカ粒子を含有してなるメモリーハードディスク用基板用の研磨液組成物であって、前記シリカ粒子が、透過型電子顕微鏡(TEM)観察による測定で得られた該シリカ粒子の個数基準の平均粒子径(r)に対して個数基準の標準偏差(σ)が、以下の式(1):
σ≧0.3×r (1)
(式中、rは個数基準の平均粒子径(nm)、σは個数基準の標準偏差(nm)を示す)
を満たし、かつ該シリカ粒子の粒子径60〜120nmの範囲における累積体積頻度(V)が粒子径(R)に対し、以下の式(2)及び(3):
V≧0.5×R (2)
V≦0.25×R+75 (3)
(式中、Rはシリカ粒子の粒子径(nm)、Vはシリカ粒子の小粒子径側からの累積体積頻度(%)を示す)
を満たすものである、研磨液組成物。
A polishing composition for a substrate for a memory hard disk comprising silica particles in an aqueous medium, wherein the silica particles are based on the number of silica particles obtained by measurement by observation with a transmission electron microscope (TEM). The standard deviation (σ) based on the number with respect to the average particle diameter (r) is represented by the following formula (1):
σ ≧ 0.3 × r (1)
(In the formula, r represents the number-based average particle diameter (nm), and σ represents the number-based standard deviation (nm).)
And the cumulative volume frequency (V) of the silica particles in the range of 60 to 120 nm is based on the following formulas (2) and (3) with respect to the particle size (R):
V ≧ 0.5 × R (2)
V ≦ 0.25 × R + 75 (3)
(In the formula, R represents the particle diameter (nm) of the silica particles, and V represents the cumulative volume frequency (%) from the small particle diameter side of the silica particles.)
A polishing liquid composition that satisfies the following.
シリカ粒子がコロイダルシリカ粒子である請求項1記載の研磨液組成物。   The polishing composition according to claim 1, wherein the silica particles are colloidal silica particles. さらに酸、その塩および酸化剤からなる群より選ばれる少なくとも1種を含有する請求項1又は2記載の研磨液組成物。   3. The polishing composition according to claim 1, further comprising at least one member selected from the group consisting of an acid, a salt thereof, and an oxidizing agent. pHが1〜4.5である請求項1〜3いずれか記載の研磨液組成物。   The polishing composition according to any one of claims 1 to 3, wherein the pH is 1 to 4.5. 請求項1〜4いずれか記載の研磨液組成物を用いてメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の微小うねりの低減方法。   A method for reducing micro-undulations on a substrate for a memory hard disk, comprising a step of polishing a substrate for a memory hard disk using the polishing composition according to any one of claims 1 to 4. 請求項1〜4いずれか記載の研磨液組成物を用いて、Ni−Pメッキされたメモリーハードディスク用基板の研磨を行う工程を含む、メモリーハードディスク用基板の製造方法。   A method for manufacturing a memory hard disk substrate, comprising the step of polishing a Ni-P plated memory hard disk substrate using the polishing composition according to claim 1.
JP2003430933A 2003-02-05 2003-12-25 Polishing liquid composition Expired - Fee Related JP4373776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430933A JP4373776B2 (en) 2003-02-05 2003-12-25 Polishing liquid composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003028348 2003-02-05
JP2003430933A JP4373776B2 (en) 2003-02-05 2003-12-25 Polishing liquid composition

Publications (2)

Publication Number Publication Date
JP2004259421A true JP2004259421A (en) 2004-09-16
JP4373776B2 JP4373776B2 (en) 2009-11-25

Family

ID=33133682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430933A Expired - Fee Related JP4373776B2 (en) 2003-02-05 2003-12-25 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP4373776B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417034A (en) * 2004-08-09 2006-02-15 Kao Corp Polishing composition
JP2007260906A (en) * 2007-07-24 2007-10-11 Kao Corp Manufacturing method of substrate
JP2007260853A (en) * 2006-03-29 2007-10-11 Konica Minolta Opto Inc Polishing method of amorphous glass
JP2007320031A (en) * 2007-07-24 2007-12-13 Kao Corp Polishing liquid composition
JP2007331105A (en) * 2004-08-09 2007-12-27 Kao Corp Polishing liquid composition
WO2010026792A1 (en) * 2008-09-03 2010-03-11 三井金属鉱業株式会社 Glass polishing material slurry
JP2012025873A (en) * 2010-07-26 2012-02-09 Yamaguchi Seiken Kogyo Kk Abrasive composition
JP2015204127A (en) * 2014-04-16 2015-11-16 株式会社フジミインコーポレーテッド Polishing composition and magnetic disk substrate production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417034A (en) * 2004-08-09 2006-02-15 Kao Corp Polishing composition
JP2007331105A (en) * 2004-08-09 2007-12-27 Kao Corp Polishing liquid composition
GB2417034B (en) * 2004-08-09 2010-01-13 Kao Corp Polishing composition
JP4648367B2 (en) * 2004-08-09 2011-03-09 花王株式会社 Polishing liquid composition
JP2007260853A (en) * 2006-03-29 2007-10-11 Konica Minolta Opto Inc Polishing method of amorphous glass
JP2007260906A (en) * 2007-07-24 2007-10-11 Kao Corp Manufacturing method of substrate
JP2007320031A (en) * 2007-07-24 2007-12-13 Kao Corp Polishing liquid composition
WO2010026792A1 (en) * 2008-09-03 2010-03-11 三井金属鉱業株式会社 Glass polishing material slurry
JP2010059310A (en) * 2008-09-03 2010-03-18 Mitsui Mining & Smelting Co Ltd Abrasive slurry for glass
JP2012025873A (en) * 2010-07-26 2012-02-09 Yamaguchi Seiken Kogyo Kk Abrasive composition
JP2015204127A (en) * 2014-04-16 2015-11-16 株式会社フジミインコーポレーテッド Polishing composition and magnetic disk substrate production method

Also Published As

Publication number Publication date
JP4373776B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP5219886B2 (en) Polishing liquid composition
JP4231632B2 (en) Polishing liquid composition
JP4707311B2 (en) Magnetic disk substrate
US6910952B2 (en) Polishing composition
JP3997152B2 (en) Polishing liquid composition
JP5289877B2 (en) Polishing liquid composition for magnetic disk substrate
US20140346138A1 (en) Polishing composition for magnetic disk substrate
US7147682B2 (en) Polishing composition
JP4986099B2 (en) Substrate manufacturing method
JP4651532B2 (en) Manufacturing method of magnetic disk substrate
JP4373776B2 (en) Polishing liquid composition
JP2004253058A (en) Polishing liquid composition
JP4462599B2 (en) Polishing liquid composition
JP4104335B2 (en) Method for reducing microprojections
JP3997154B2 (en) Polishing liquid composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP2004204152A (en) Abrasive liquid composition
JP2008094982A (en) Polishing liquid composition for memory hard disk substrate
JP4074126B2 (en) Polishing composition
JP2007130728A (en) Polishing solution composition
JP2009181690A (en) Method of manufacturing substrate
JP2005001018A (en) Method of manufacturing substrate
JP2007136583A (en) Method of producing magnetic disk substrate
JP2004127327A (en) Composition for polishing magnetic disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4373776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees