JP4074126B2 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP4074126B2
JP4074126B2 JP2002132738A JP2002132738A JP4074126B2 JP 4074126 B2 JP4074126 B2 JP 4074126B2 JP 2002132738 A JP2002132738 A JP 2002132738A JP 2002132738 A JP2002132738 A JP 2002132738A JP 4074126 B2 JP4074126 B2 JP 4074126B2
Authority
JP
Japan
Prior art keywords
polishing composition
inorganic acid
composition according
polishing
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002132738A
Other languages
Japanese (ja)
Other versions
JP2003147337A5 (en
JP2003147337A (en
Inventor
憲彦 宮田
公弘 洪
順一郎 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Yamaguchi Seiken Kogyo Co Ltd
Original Assignee
Showa Denko KK
Yamaguchi Seiken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002132738A priority Critical patent/JP4074126B2/en
Application filed by Showa Denko KK, Yamaguchi Seiken Kogyo Co Ltd filed Critical Showa Denko KK
Priority to EP02797709A priority patent/EP1425357A1/en
Priority to AU2002334406A priority patent/AU2002334406A1/en
Priority to US10/488,296 priority patent/US20050028449A1/en
Priority to CN 02819416 priority patent/CN1561376A/en
Priority to PCT/JP2002/008925 priority patent/WO2003020839A1/en
Publication of JP2003147337A publication Critical patent/JP2003147337A/en
Publication of JP2003147337A5 publication Critical patent/JP2003147337A5/ja
Application granted granted Critical
Publication of JP4074126B2 publication Critical patent/JP4074126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、コンピュータ等の記憶装置に使用される磁気ディスク基板等の研磨に好適な研磨用組成物に関し、さらに詳しくは、磁気ヘッドが低浮上量で飛行するのに適した研磨精度の高い磁気ディスク表面を提供し得る磁気ディスク基板等の研磨用組成物に関する。
【0002】
【従来の技術】
コンピューターやワードプロセッサーの外部記憶装置の中で高速でアクセスできる手段として磁気ディスク(メモリーハードディスク)が広く使われている。この磁気ディスクの代表的な一例は、Al合金基板の表面にNiPを無電解メッキしたものを基板とし、この基板を表面研磨した後、Cr合金下地膜、Co合金磁性膜、カーボン保護膜を順次スパッターで形成したものである。
しかしながら、磁気ディスク表面に磁気ヘッド浮上量以上の高さを有する突起が残っていると、所定高さにて浮上しながら高速で飛行する磁気ヘッドがその突起に衝突して損傷する原因になる。また、磁気ディスク基板に突起や研磨傷などがあるとCr合金下地膜やCo合金磁性膜などを形成したとき、それらの膜の表面に突起が現れ、また研磨傷に基づく欠陥が生じ、磁気ディスク表面が精度の高い平滑面にならないので、ディスク表面の精度を上げるには基板を精密に研磨する必要がある。
【0003】
このため、磁気ディスク基板の研磨において、突起物をなくし、またはその高さをできるだけ低くし、かつ研磨傷が生じ難い研磨用組成物として多くのものが提案されてきた。
【0004】
中でも、特開平9−204657号公報にはコロイダルシリカに硝酸アルミニウム、ゲル化防止剤を添加してなる組成物の使用が開示され、また特開平9−204658号公報にはヒュームドシリカに硝酸アルミニウムを添加してなる組成物の使用が開示されている。これらの公報に開示の組成物は、砥粒に硬度の小さい酸化ケイ素微粒子を使用しているため、面精度は得られやすいが、現状の実生産に使用できる研磨速度の達成が困難である。
さらには、特開平10−204416号公報には研磨速度を高める手段として、多くの酸化剤の使用とFe塩の使用がそれぞれ提案されている。しかしながら、これらについても現状の実生産に使用できる研磨速度に比べ不十分であった。
【0005】
【発明が解決しようとする課題】
高密度磁気記録を可能とするアルミニウム磁気ディスク基板研磨用組成物に要求される品質は、ヘッドの低浮上を可能とする高精度ディスク面の達成である。従って、本発明の目的は、磁気ディスク基板の表面粗さが小さく、かつ突起や研磨傷を発生させず、高密度記録が達成可能であり、しかも経済的な速度で研磨できる磁気ディスク基板の研磨用組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、低浮上量型アルミニウム磁気ディスク基板に要求される高精度の研磨面を達成するための研磨剤について鋭意研究した結果、特にNi−Pメッキを施したアルミニウム磁気ディスク基板の研磨に優れた性能を示す研磨用組成物を見出し本発明に至った。
即ち、本発明は基本的には以下の各発明からなる。
(1)水性媒体に砥粒、リンを含む無機酸またはその塩及び他の無機酸またはその塩、酸化剤を配合したことを特徴とする研磨用組成物。
(2)砥粒が、アルミナ、チタニア、シリカ、ジルコニアからなる群より選ばれた少なくとも1種である上記(1)に記載の研磨用組成物。
(3)砥粒の平均粒子径が、0.001〜0.5μmである上記(1)または(2)に記載の研磨用組成物。
(4)砥粒が、コロイド粒子である上記(1)乃至(3)のいずれか1項に記載の研磨用組成物。
(5)リンを含む無機酸がリン酸またはホスホン酸である上記(1)乃至(4)のいずれか1項に記載の研磨用組成物。
(6)他の無機酸が、硝酸、硫酸、アミド硫酸、ホウ酸からなる群より選ばれた少なくとも1種である上記(1)乃至(5)のいずれか1項に記載の研磨用組成物。
(7)酸化剤が過酸化物、過ホウ酸塩、過硫酸塩、硝酸塩から選ばれた少なくとも1種である上記(1)乃至(6)のいずれか1項に記載の研磨用組成物。
(8)過酸化物が、過酸化水素である上記(7)に記載の研磨用組成物。
(9)過ホウ酸塩が、過ホウ酸ソーダである上記(7)に記載の研磨用組成物。
(10)pHが1〜5である上記(1)乃至(9)のいずれか1項に記載の研磨用組成物。
(11)砥粒の含有量が3〜30質量%の範囲内であり、無機酸またはその塩の含有量が0.1〜8質量%の範囲内であり、酸化剤の含有量が0.2〜5質量%の範囲内であることを特徴とする上記(1)乃至(10)のいずれか1項に記載の研磨用組成物。
(12)研磨用組成物が、磁気ディスク基板研磨用組成物である上記(1)乃至(11)のいずれか1項に記載の研磨用組成物。
(13) 上記(12)の研磨用組成物で研磨された磁気ディスク基板。
研磨用組成物。
【0007】
【発明の実施の形態】
本発明の研磨用組成物は水性媒体に砥粒、リンを含む無機酸またはその塩及び他の無機酸またはその塩、酸化剤を配合したことを特徴とする研磨用組成物である。
本発明の研磨用組成物に研磨材として含まれる砥粒は、特に限定されるものではなく、例えばアルミナ、チタニア、シリカ、ジルコニア等を使用することができる。また、それらの結晶型には限定されるものではない。例えば、アルミナ(酸化アルミニウム)には結晶型としてα型、γ型、δ型、η型、θ型、κ型、χ型等があり、チタニア(酸化チタン)には結晶型としてルチル型、アナターゼ型、ブルーカイト型等があり、シリカ(酸化ケイ素)にはコロイダルシリカ、フュームドシリカ、ホワイトカーボン等があり、ジルコニア(酸化ジルコニウム)には単斜晶系、正方晶系、非晶質等があり、いずれも好ましく使用できる。これらの砥粒はコロイド状粒子だとマイクロスクラッチの発生抑止効果が大きく好ましい。
【0008】
上記砥粒の平均粒子径は、通常0.001〜0.5μmの範囲、好ましくは0.01〜0.2μmの範囲、より好ましくは0.02〜0.2μmの範囲、最も好ましくは0.03〜0.2μmの範囲であり、更に、コロイド状粒子であれば前記したようにより好ましい。ここで、平均粒子径はレーザードップラー周波数解析式粒度分布測定器、マイクロトラックUPA150(Honeywell社製)により測定した値が適用される。
砥粒の粒子径が大きくなると細目粒子によるゲル化、凝集は抑制しやすくなるが、粗い粒子の存在確率も高くなるため、研磨傷発生の原因となる。また、粒子径が小さくなると、前述のゲル化、凝集が起きやすくなり、この場合も研磨傷発生の原因となる。
【0009】
本発明の研磨用組成物中の砥粒濃度が3質量%(以下断りない場合の%は質量%とする)未満の場合は研磨速度が著しく低下する。また、濃度が高くなるにつれて研磨速度は高くなるが、30%を越えると研磨速度の上昇が見られないだけでなく、特にコロイド状粒子ではゲル化しやすくなる。経済性を加味すると実用的には30%が上限となる。従って、砥粒の組成物中濃度としては3〜30%の範囲であることが好ましく、更には5〜15%が好ましい。
本発明の研磨用組成物ではリンを含む無機酸またはその塩及び他の無機酸またはその塩が併用されている。リンを含む無機酸は化合物の構成元素としてリンを含むものでリン酸またはホスホン酸が好ましい。リンを含む無機酸にはその誘導体も含む。リンを含む無機酸は2種以上を併用してもよい。
リンを含む無機酸に混合して用いられる他の無機酸としては塩酸、硫酸、クロム酸、炭酸、アミド硫酸、ホウ酸等を用いることができるが、硝酸、硫酸、アミド硫酸、ホウ酸が好ましい。これらの酸はその誘導体である場合も含む。リンを含む無機酸またはその塩及び他の無機酸の塩としてはLi、Be、Na、Mg、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Zr、Nb、Mo、Pd、Ag、Hf、Ta、W等の金属の塩を用いることができる。これらの塩は例えば上記金属の酸化物または炭酸塩をリンを含む無機酸及び他の無機酸に溶解して得ることができる。
【0010】
本発明の研磨用組成物中における、リンを含む無機酸またはその塩及び他の無機酸またはその塩の合計の配合量は0.1〜8%、好ましくは0.2〜6%、さらに好ましくは0.4〜4%の範囲がよい。無機酸またはその塩の配合量が0.1%未満ではマイクロスクラッチの抑制及び研磨速度の増大効果が見られない。また8%を越えるとpH低下が著しく、研磨機材に与えるダメージが大きく、取り扱い上問題となる。リンを含む無機酸またはその塩と他の無機酸またはその塩の混合割合は前者1モルに対し、後者が0.1〜5モルの範囲が好ましい。
後者が0.1モル未満ではスラリーの分散性が悪化しマイクロスクラッチが増加する。また5モルを越えるとpHが低下し、研磨機材に与えるダメージが大きくなる。
【0011】
本発明の研磨組成物は特定の無機酸またはその塩が2種以上含まれるが、リンを含む無機酸またはその塩を必須成分とすることにより、研磨速度の増大、マイクロスクラッチの発生抑止効果が高まる。
本発明において、特定の無機酸またはその塩を2種以上用いることの作用効果の機構については定かでないが一つは研磨組成物としての分散状態が良好になるためと推測される。
本発明の研磨用組成物に含まれる酸化剤は、好ましくは過酸化物、過ホウ酸塩、過硫酸塩、硝酸塩から少なくとも1種が選ばれるが、その代表例としては過酸化物として、過酸化水素、過ホウ酸塩として過ホウ酸ソーダ、過硫酸塩として過硫酸アンモニウム、硝酸塩として硝酸アンモニウムが好ましい。なお、前記の他の無機酸またはその塩が酸化作用を有する場合は酸化剤として兼用し、無機酸またはその塩のみとしてもよい。例えば硝酸塩は他の酸の塩として及び酸化剤として用いられる。勿論他の無機酸またはその塩が酸化作用を有する場合でも、これとは異なる酸化剤を加えてもよい。
酸化剤の効果として研磨速度の増大、面粗度の低下が挙げられる。その機構については明らかではないが、Ni−P表面のエッチング剤としての効果が考えられている。
酸化剤(例えば過酸化水素)の配合量は0.2〜5%、好ましくは0.5〜2%である。酸化剤の配合量が0.2%未満では研磨速度の増大、面粗度の低下の効果が少なく、また5%を越えるとその効果は飽和状態となる。
他の無機酸またはその塩が酸化剤を兼用する場合の配合量は両者の合量、即ち、他の無機酸またはその塩としての量と酸化剤としての量の合量となる。したがってリンを含む無機酸またはその塩と他の無機酸またはその塩の合計量は好ましくは0.3〜13%、より好ましくは0.7〜8%である。
さらに上記の組成に兼用でない無機酸またはその塩、酸化剤を含む場合は兼用の無機酸またはその塩をいずれか一方に最大限含めて兼用でない残りの酸化剤等の配合量の上限を決めることができる。例えばリン酸、硝酸塩(他の無機酸の塩であり、かつ酸化剤)、過酸化水素の場合、硝酸塩をすべて他の無機酸の塩として配合量を定め、過酸化水素は酸化剤として、その上限を5%とすることができる。また例えば硝酸塩に酸化剤でない無機酸またはその塩を含める場合は硝酸塩を酸化剤として5%を限度として含め、残りの酸化剤でない無機酸またはその塩の量を定めることができる。いずれの場合もリンを含む無機酸またはその塩、他の無機酸またはその塩、酸化剤の合計の配合量は好ましくは0.3〜13%、より好ましくは0.7〜8%である。
本発明の研磨用組成物において、pHの範囲は1〜5であることが好ましく、更には2〜4、また更には2〜3であることがより好ましい。液性を酸性とすることでNiの酸化を促進し研磨速度を向上させることができるが、pHが低すぎると装置の腐食等の問題もあるため、pHは2〜3であることがより好ましい。pH調整には過ホウ酸ソーダを使用することができる。
【0012】
なお、上記の各成分濃度は磁気ディスク基板を研磨する際の濃度である。研磨用組成物を製造し、運搬等する場合は上記濃度より濃厚な組成物とし、使用に際して上記の濃度に薄めて使用するのが効率的である。
本発明の磁気ディスク基板の研磨用組成物は、上記の各成分の他に界面活性剤及び防腐剤等を添加してもよい。しかし、その種類及び添加量はゲル化を引き起こさないよう細心の注意が必要である。
ゲル化の抑制のため、本研磨用組成物にゲル化防止剤を添加してもよい。用いられるゲル化防止剤として好ましくはホスホン酸系化合物、フェナントロリン及びアセチルアセトンアルミニウム塩から選ばれた少なくとも1種が好ましい。具体的には、ホスホン酸系化合物としては、1−ヒドロキシエタン−1,1−ジホスホン酸(C2672 )若しくはアミノトリメチレンホスホン酸(C21293 N)を例示することが出来る。フェナントロリンとしては、1,10−フェナントロリン一水和物(C1282 ・H2 O)を、アセチルアセトンアルミニウム塩としては、アセチルアセトンのアルミニウム錯塩(Al2 〔CH(COCH33 〕)をそれぞれ例示することができる。これらは2%以内で添加することが好ましい。
【0013】
本発明の研磨用組成物は、従来の研磨用組成物と同様に、水に砥粒を懸濁し、例えば、これにリン酸及び硝酸等の無機酸、過酸化水素を添加して調製することができる。使用の際には、全ての成分を混合したものを薄めて使用しても良いが、添加成分を2組、例えば水、砥粒、硝酸と水、リン酸、過酸化水素に分けて準備しておき、その2組を混合する方法をとっても良い。
【0014】
本発明の研磨用組成物は、例えば磁気抵抗(MR)効果を利用した磁気ヘッド用磁気ディスクに代表される高記録密度用の基板(通常、3Gbit/inch2 以上の記録密度を有する)に有利に適用できるが、それ以下の記録密度を有する磁気ディスクに対しても信頼性向上という見地から効果的に応用できる。
【0015】
本発明の研磨用組成物を適用する磁気ハードディスク基板は格別限定されるものではないが、アルミニウム基板(合金を含む)、とくに、NiPを例えば無電解メッキしたアルミニウム基板に本発明の組成物を適用すると、高品質の研磨面が工業上有利に得られる。
研磨方法は一般にスラリー状研磨材に用いられる研磨パッドを磁気ディスク基板上に摺り合わせ、パッドと基板の間にスラリーを供給しながらパッドまたは基板を回転させる方法である。
本発明の研磨用組成物により研磨した基板からつくられた磁気ディスクは、マイクロピット、マイクロスクラッチ等微細な欠陥について発生頻度が非常に低く、また表面粗さ(Ra)も2〜3μm位であり、非常に平滑性に優れている。
【0016】
以下、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0017】
【実施例】
実施例、比較例において用いた砥粒及びその特徴を表1に示す。
(実施例1〜15)
デュポン(株)製のコロイダルシリカ(サイトンHT−50F)に水、無機酸1、無機酸2、酸化剤を表2に示す割合で添加し、種々の水性研磨用組成物を調製し、以下に示す研磨装置及び研磨条件で研磨を行った。その結果を表2に示す。平均粒子経はレーザードップラー周波数解析式粒度分布測定器、マイクロトラック UPA150(Honeywell社製)により測定した。その粒度測定値を表1に示す。組成物のpHは(株)堀場製作所製D−13ガラス電極式水素イオン濃度計により測定した。
(実施例16、17)
日本シリカ工業(株)製のホワイトカーボン(E−150J)及び日本アエロジル(株)製のヒュームドシリカ(AEROSIL−50)を媒体攪拌ミルにより粉砕、整粒により粗粒子を除去し、平均粒子径が0.1μmの酸化ケイ素をまず得た。次に、水、無機酸1、無機酸2、酸化剤を表2に示す割合で添加し、種々の水性研磨用組成物を調製し、以下に示す研磨装置および研磨条件で研磨を行った。その結果を表2に示す。
(実施例18〜20)
昭和タイタニウム(株)製の酸化チタニウム(スーパータイタニアF−4)、アルミナ、ジルコニアを媒体攪拌ミルにより粉砕、整粒により粗粒子を除去し、平均粒子径が0.2μmの酸化チタニウム、アルミナ、ジルコニアをまず得た。次に、水、無機酸1、無機酸2、酸化剤を表2に示す割合で添加し、種々の水性研磨用組成物を調製し、以下に示す研磨装置および研磨条件で研磨を行った。その結果を表2に示す。
(実施例21)
日産化学工業(株)製のコロイダルシリカ(スノーテックス30)に、水、無機酸1、無機酸2、酸化剤を表2に示す割合で添加し、水性研磨用組成物を調製し、以下に示す研磨装置及び研磨条件で研磨を行った。その結果を表2に示す。(研磨条件)
基板として、NiPを無電解メッキした3.5インチサイズのアルミディスクを使用した。
(研磨装置および研磨条件)
研磨試験機‥‥‥‥‥4ウェイ式両面ポリシングマシン
研磨パッド‥‥‥‥‥スエードタイプ(ポリテックスDG、ロデール製)
下定盤回転速度‥‥‥60rpm
スラリー供給速度‥‥50ml/分
研磨時間‥‥‥‥‥‥5分
加工圧力‥‥‥‥‥‥50g/cm2
(研磨特性の評価)
研磨レート‥‥アルミディスクの研磨前後の重量減より換算
表面粗さ‥‥‥タリステップ、タリデータ2000(ランクテーラーホブソン社製)を使用
研磨傷の深さは触針式表面解析装置P−12(TENCOR社製)の3次元モードにより形状解析し深さをもとめた。
研磨特性の評価結果を表2に示す。表2中の研磨傷Aは研磨傷深さが2nm以下である。研磨傷Bは研磨傷深さが2〜10nmである。研磨傷深さが10nmより大なものは、実施例、比較例共に発生しなかった。
(比較例1〜7)
デュポン(株)製のコロイダルシリカ(サイトンHT−50F)に水、硝酸アルミニウム等、過酸化水素を表2に示す割合で添加し、水性研磨用組成物を調製し、実施例と同様に研磨した。その結果を表2に示す。
(比較例8)
昭和タイタニウム(株)製の酸化チタニウム(スーパータイタニアF−2)を媒体攪拌ミルにより粉砕、整粒により粗粒子を除去し、平均粒子径が0.3μmの酸化チタニウムをまず得た。次に、水、硝酸アルミニウムを表2に示す割合で添加し、水性研磨用組成物を調製し、実施例と同様に研磨した。その結果を表2に示す。
(比較例9)
昭和タイタニウム(株)製の酸化チタニウム(スーパータイタニアF−4)を媒体攪拌ミルにより粉砕、整粒により粗粒子を除去し、平均粒子径が0.2μmの酸化チタニウムをまず得た。次に、水、硝酸アルミニウムを表2に示す割合で添加し、水性研磨用組成物を調製し、実施例と同様に研磨した。その結果を表2に示す。
【0018】
【表1】

Figure 0004074126
【0019】
【表2】
Figure 0004074126
【表2】
Figure 0004074126
【0020】
【発明の効果】
本発明の研磨用組成物を用いてディスクの研磨を行うと、表面粗さが非常に小さく、しかも高い速度で研磨することができる。研磨したディスクを用いた磁気ディスクは低浮上型ハードディスクとして有用であり、高密度記録が可能である。
特に、研磨したディスクを用いた磁気ディスク磁気抵抗効果を利用したMRヘッド用メディアに代表される高記録密度媒体(3Gbit/inch2 以上の記録密度を有する)として有用度が高いが、それ以下のメディアにおいても高信頼性媒体あると言う観点で有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing composition suitable for polishing a magnetic disk substrate or the like used in a storage device such as a computer. More specifically, the present invention relates to a magnetic material having high polishing accuracy suitable for a magnetic head to fly with a low flying height. The present invention relates to a polishing composition such as a magnetic disk substrate that can provide a disk surface.
[0002]
[Prior art]
Magnetic disks (memory hard disks) are widely used as a means for high-speed access in external storage devices of computers and word processors. A typical example of this magnetic disk is a substrate obtained by electrolessly plating NiP on the surface of an Al alloy substrate. After polishing the surface of the substrate, a Cr alloy underlayer, a Co alloy magnetic layer, and a carbon protective layer are sequentially formed. It is formed with a sputter.
However, if a protrusion having a height higher than the flying height of the magnetic head remains on the surface of the magnetic disk, the magnetic head flying at a high speed while flying at a predetermined height may collide with the protrusion and be damaged. Also, if there are protrusions or polishing scratches on the magnetic disk substrate, when a Cr alloy underlayer film or Co alloy magnetic film is formed, protrusions appear on the surface of those films, and defects based on the polishing scratches occur, resulting in magnetic disk Since the surface does not become a highly accurate smooth surface, it is necessary to polish the substrate precisely in order to increase the accuracy of the disk surface.
[0003]
For this reason, many polishing compositions have been proposed in which the protrusions are eliminated or the height thereof is made as low as possible and polishing scratches hardly occur in polishing of the magnetic disk substrate.
[0004]
Among them, JP-A-9-204657 discloses the use of a composition obtained by adding aluminum nitrate and an antigelling agent to colloidal silica, and JP-A-9-204658 discloses aluminum nitrate on fumed silica. Is disclosed. Since the compositions disclosed in these publications use silicon oxide fine particles having low hardness for the abrasive grains, it is easy to obtain surface accuracy, but it is difficult to achieve a polishing rate that can be used in actual production.
Furthermore, Japanese Patent Application Laid-Open No. 10-204416 proposes the use of many oxidizing agents and the use of Fe salts as means for increasing the polishing rate. However, these are also insufficient compared to the polishing rate that can be used in actual production.
[0005]
[Problems to be solved by the invention]
The quality required for an aluminum magnetic disk substrate polishing composition that enables high-density magnetic recording is to achieve a high-precision disk surface that enables low head flying. Accordingly, an object of the present invention is to polish a magnetic disk substrate that has a small surface roughness of the magnetic disk substrate, can generate high-density recording without generating protrusions or polishing scratches, and can be polished at an economical speed. It is to provide a composition for use.
[0006]
[Means for Solving the Problems]
As a result of diligent research on an abrasive for achieving a highly accurate polished surface required for a low flying height type aluminum magnetic disk substrate, the present inventors have polished an aluminum magnetic disk substrate subjected to Ni-P plating in particular. The present inventors have found a polishing composition exhibiting excellent performance and have arrived at the present invention.
That is, the present invention basically comprises the following inventions.
(1) A polishing composition comprising an aqueous medium containing abrasive grains, phosphorus-containing inorganic acid or a salt thereof, another inorganic acid or a salt thereof, and an oxidizing agent.
(2) The polishing composition according to (1), wherein the abrasive grains are at least one selected from the group consisting of alumina, titania, silica, and zirconia.
(3) Polishing composition as described in said (1) or (2) whose average particle diameter of an abrasive grain is 0.001-0.5 micrometer.
(4) The polishing composition according to any one of (1) to (3), wherein the abrasive grains are colloidal particles.
(5) The polishing composition according to any one of (1) to (4), wherein the inorganic acid containing phosphorus is phosphoric acid or phosphonic acid.
(6) The polishing composition according to any one of (1) to (5), wherein the other inorganic acid is at least one selected from the group consisting of nitric acid, sulfuric acid, amidosulfuric acid, and boric acid. .
(7) The polishing composition according to any one of (1) to (6), wherein the oxidizing agent is at least one selected from peroxides, perborates, persulfates, and nitrates.
(8) The polishing composition according to (7), wherein the peroxide is hydrogen peroxide.
(9) The polishing composition according to (7), wherein the perborate is sodium perborate.
(10) The polishing composition according to any one of (1) to (9), wherein the pH is 1 to 5.
(11) The content of the abrasive grains is in the range of 3 to 30% by mass, the content of the inorganic acid or its salt is in the range of 0.1 to 8% by mass, and the content of the oxidizing agent is 0.00. The polishing composition according to any one of (1) to (10) above, which is in the range of 2 to 5% by mass.
(12) The polishing composition according to any one of (1) to (11), wherein the polishing composition is a magnetic disk substrate polishing composition.
(13) A magnetic disk substrate polished with the polishing composition according to (12) above.
Polishing composition.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The polishing composition of the present invention is a polishing composition comprising an aqueous medium containing abrasive grains, phosphorus-containing inorganic acid or a salt thereof, other inorganic acid or a salt thereof, and an oxidizing agent.
The abrasive grains contained in the polishing composition of the present invention as an abrasive are not particularly limited, and for example, alumina, titania, silica, zirconia and the like can be used. Moreover, it is not limited to those crystal forms. For example, alumina (aluminum oxide) includes α-type, γ-type, δ-type, η-type, θ-type, κ-type, χ-type, etc., and titania (titanium oxide) includes rutile-type and anatase-type crystal types. Type, blue kite type, etc., silica (silicon oxide) includes colloidal silica, fumed silica, white carbon, etc., zirconia (zirconium oxide) includes monoclinic, tetragonal, amorphous, etc. Yes, both can be used preferably. These abrasive grains are preferably colloidal particles because they have a great effect of suppressing the generation of micro scratches.
[0008]
The average particle size of the abrasive grains is usually in the range of 0.001 to 0.5 μm, preferably in the range of 0.01 to 0.2 μm, more preferably in the range of 0.02 to 0.2 μm, most preferably 0.00. In the range of 03 to 0.2 μm, colloidal particles are more preferable as described above. Here, the average particle diameter is a value measured by a laser Doppler frequency analysis type particle size distribution analyzer, Microtrac UPA150 (manufactured by Honeywell).
When the particle diameter of the abrasive grains is increased, gelation and agglomeration due to fine particles are easily suppressed, but the existence probability of coarse particles is also increased, which causes polishing scratches. Further, when the particle diameter is reduced, the above-mentioned gelation and aggregation are liable to occur, and in this case as well, it causes the generation of polishing scratches.
[0009]
When the abrasive grain concentration in the polishing composition of the present invention is less than 3% by mass (hereinafter, “%” unless otherwise specified is mass%), the polishing rate is remarkably reduced. Further, the polishing rate increases as the concentration increases. However, when the concentration exceeds 30%, not only the polishing rate does not increase, but particularly colloidal particles are easily gelled. In consideration of economy, the upper limit is practically 30%. Therefore, the concentration of the abrasive grains in the composition is preferably in the range of 3 to 30%, more preferably 5 to 15%.
In the polishing composition of the present invention, an inorganic acid containing phosphorus or a salt thereof and another inorganic acid or a salt thereof are used in combination. The inorganic acid containing phosphorus is one containing phosphorus as a constituent element of the compound and is preferably phosphoric acid or phosphonic acid. The inorganic acid containing phosphorus includes its derivatives. Two or more inorganic acids containing phosphorus may be used in combination.
As other inorganic acids used by mixing with an inorganic acid containing phosphorus, hydrochloric acid, sulfuric acid, chromic acid, carbonic acid, amidosulfuric acid, boric acid and the like can be used, but nitric acid, sulfuric acid, amidosulfuric acid and boric acid are preferable. . These acids include cases where they are derivatives thereof. Examples of inorganic acids containing phosphorus or salts thereof and other inorganic acids include Li, Be, Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, and Zr. Metal salts such as Nb, Mo, Pd, Ag, Hf, Ta, and W can be used. These salts can be obtained, for example, by dissolving the metal oxide or carbonate in an inorganic acid containing phosphorus and other inorganic acids.
[0010]
In the polishing composition of the present invention, the total amount of phosphorus-containing inorganic acid or salt thereof and other inorganic acid or salt thereof is 0.1 to 8%, preferably 0.2 to 6%, more preferably. Is preferably in the range of 0.4 to 4%. If the blending amount of the inorganic acid or its salt is less than 0.1%, the effect of suppressing the micro scratch and increasing the polishing rate is not observed. On the other hand, if it exceeds 8%, the pH is remarkably lowered and the damage to the polishing equipment is large, which causes a problem in handling. The mixing ratio of the inorganic acid or its salt containing phosphorus and the other inorganic acid or its salt is preferably in the range of 0.1 to 5 mol with respect to 1 mol of the former.
When the latter is less than 0.1 mol, the dispersibility of the slurry is deteriorated and the micro scratch is increased. On the other hand, when the amount exceeds 5 moles, the pH is lowered and the damage to the polishing equipment is increased.
[0011]
The polishing composition of the present invention contains two or more specific inorganic acids or salts thereof. By using an inorganic acid or salt thereof containing phosphorus as an essential component, the polishing rate can be increased and the occurrence of micro scratches can be suppressed. Rise.
In the present invention, the mechanism of the effect of using two or more specific inorganic acids or salts thereof is not clear, but one is presumed to be because the dispersion state as a polishing composition becomes good.
The oxidizing agent contained in the polishing composition of the present invention is preferably at least one selected from peroxides, perborates, persulfates, and nitrates. Hydrogen peroxide, sodium perborate as perborate, ammonium persulfate as persulfate, and ammonium nitrate as nitrate are preferable. In addition, when said other inorganic acid or its salt has an oxidizing action, it may serve as an oxidizing agent, and it is good also as only an inorganic acid or its salt. For example, nitrates are used as salts of other acids and as oxidizing agents. Of course, even when another inorganic acid or a salt thereof has an oxidizing action, an oxidizing agent different from this may be added.
Examples of the effect of the oxidizing agent include an increase in polishing rate and a decrease in surface roughness. Although the mechanism is not clear, an effect as an etchant on the Ni-P surface is considered.
The blending amount of the oxidizing agent (for example, hydrogen peroxide) is 0.2 to 5%, preferably 0.5 to 2%. If the blending amount of the oxidizing agent is less than 0.2%, the effect of increasing the polishing rate and decreasing the surface roughness is small, and if it exceeds 5%, the effect becomes saturated.
When the other inorganic acid or its salt also serves as the oxidizing agent, the blending amount is the total amount of both, that is, the total amount as the other inorganic acid or its salt and the amount as the oxidizing agent. Therefore, the total amount of the inorganic acid or salt thereof containing phosphorus and the other inorganic acid or salt thereof is preferably 0.3 to 13%, more preferably 0.7 to 8%.
In addition, if the above composition contains an inorganic acid or salt or oxidant that is not used in combination, the maximum amount of the remaining oxidant that is not used in combination should be determined by including the combined inorganic acid or salt in the maximum. Can do. For example, in the case of phosphoric acid, nitrate (which is a salt of other inorganic acids and an oxidizing agent), and hydrogen peroxide, the amount of nitrate is determined as a salt of other inorganic acids, and hydrogen peroxide is used as an oxidizing agent. The upper limit can be 5%. For example, when an inorganic acid that is not an oxidizing agent or a salt thereof is included in the nitrate, the amount of the remaining inorganic acid that is not an oxidizing agent or a salt thereof can be determined by including nitrate up to 5%. In any case, the total amount of the inorganic acid or salt thereof containing phosphorus, the other inorganic acid or salt thereof, and the oxidizing agent is preferably 0.3 to 13%, more preferably 0.7 to 8%.
In the polishing composition of the present invention, the pH range is preferably 1 to 5, more preferably 2 to 4, and even more preferably 2 to 3. By making the liquid property acidic, it is possible to promote the oxidation of Ni and improve the polishing rate. However, if the pH is too low, there is a problem such as corrosion of the apparatus, so the pH is more preferably 2 to 3. . Sodium perborate can be used for pH adjustment.
[0012]
The above-mentioned component concentrations are concentrations when the magnetic disk substrate is polished. When a polishing composition is produced and transported, it is efficient to use a composition thicker than the above concentration and dilute to the above concentration when used.
The polishing composition for a magnetic disk substrate of the present invention may contain a surfactant, a preservative and the like in addition to the above components. However, it is necessary to pay close attention to the type and amount of addition so as not to cause gelation.
In order to suppress gelation, an antigelling agent may be added to the polishing composition. The antigelling agent used is preferably at least one selected from phosphonic acid compounds, phenanthroline and acetylacetone aluminum salt. Specifically, as the phosphonic acid compound, 1-hydroxyethane-1,1-diphosphonic acid (C 2 H 6 O 7 P 2 ) or aminotrimethylene phosphonic acid (C 2 H 12 O 9 P 3 N) is used. Can be illustrated. As phenanthroline, 1,10-phenanthroline monohydrate (C1 2 H 8 N 2 .H 2 O) is used, and as acetylacetone aluminum salt, aluminum complex salt of acetylacetone (Al 2 [CH (COCH 3 ) 3 ]) is used. Each can be illustrated. These are preferably added within 2%.
[0013]
The polishing composition of the present invention is prepared by suspending abrasive grains in water and adding, for example, an inorganic acid such as phosphoric acid and nitric acid, and hydrogen peroxide to the polishing composition as in the conventional polishing composition. Can do. In use, the mixture of all components may be diluted and used, but the additive components are prepared in two sets, for example, water, abrasive grains, nitric acid and water, phosphoric acid, and hydrogen peroxide. In addition, a method of mixing the two sets may be used.
[0014]
The polishing composition of the present invention is advantageous for high recording density substrates (typically having a recording density of 3 Gbit / inch 2 or more) typified by a magnetic disk for a magnetic head using the magnetoresistive (MR) effect, for example. However, it can be effectively applied to a magnetic disk having a recording density lower than that from the viewpoint of improving reliability.
[0015]
The magnetic hard disk substrate to which the polishing composition of the present invention is applied is not particularly limited, but the composition of the present invention is applied to an aluminum substrate (including an alloy), particularly an aluminum substrate plated with NiP, for example, electrolessly. Then, a high-quality polished surface can be advantageously obtained industrially.
The polishing method is a method in which a polishing pad generally used for a slurry-like abrasive is slid onto a magnetic disk substrate, and the pad or the substrate is rotated while supplying the slurry between the pad and the substrate.
The magnetic disk made from the substrate polished with the polishing composition of the present invention has a very low frequency of occurrence of fine defects such as micropits and microscratches, and the surface roughness (Ra) is about 2 to 3 μm. Excellent in smoothness.
[0016]
Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.
[0017]
【Example】
Table 1 shows the abrasive grains used in Examples and Comparative Examples and their characteristics.
(Examples 1 to 15)
Water, an inorganic acid 1, an inorganic acid 2, and an oxidizing agent are added to DuPont's colloidal silica (Cyton HT-50F) in the proportions shown in Table 2 to prepare various aqueous polishing compositions. Polishing was performed with the polishing apparatus and polishing conditions shown. The results are shown in Table 2. The average particle diameter was measured by a laser Doppler frequency analysis type particle size distribution analyzer, Microtrac UPA150 (manufactured by Honeywell). The measured particle size is shown in Table 1. The pH of the composition was measured with a D-13 glass electrode type hydrogen ion concentration meter manufactured by Horiba, Ltd.
(Examples 16 and 17)
White silica (E-150J) manufactured by Nippon Silica Kogyo Co., Ltd. and fumed silica (AEROSIL-50) manufactured by Nippon Aerosil Co., Ltd. were pulverized with a medium agitating mill, coarse particles were removed by sizing, and the average particle size First, 0.1 μm of silicon oxide was obtained. Next, water, inorganic acid 1, inorganic acid 2, and oxidizing agent were added in the proportions shown in Table 2 to prepare various aqueous polishing compositions, and polishing was performed with the following polishing apparatus and polishing conditions. The results are shown in Table 2.
(Examples 18 to 20)
Titanium oxide manufactured by Showa Titanium Co., Ltd. (super titania F-4), alumina and zirconia were pulverized by a medium stirring mill, coarse particles were removed by sizing, and titanium oxide, alumina and zirconia having an average particle size of 0.2 μm I got first. Next, water, inorganic acid 1, inorganic acid 2, and oxidizing agent were added in the proportions shown in Table 2 to prepare various aqueous polishing compositions, and polishing was performed with the following polishing apparatus and polishing conditions. The results are shown in Table 2.
(Example 21)
Water, an inorganic acid 1, an inorganic acid 2, and an oxidizing agent are added to the colloidal silica (Snowtex 30) manufactured by Nissan Chemical Industries, Ltd. in the proportions shown in Table 2, to prepare an aqueous polishing composition. Polishing was performed with the polishing apparatus and polishing conditions shown. The results are shown in Table 2. (Polishing conditions)
As the substrate, a 3.5-inch size aluminum disk on which NiP was electrolessly plated was used.
(Polishing equipment and polishing conditions)
Polishing test machine ... 4-way double-sided polishing machine polishing pad ... Suede type (Polytex DG, manufactured by Rodel)
Lower platen rotation speed 60rpm
Slurry supply speed 50ml / min Polishing time 5 minutes Processing pressure 50g / cm 2
(Evaluation of polishing characteristics)
Polishing rate ··· Surface roughness converted from weight loss before and after polishing of aluminum disk ··········································· The shape was analyzed by the three-dimensional mode (manufactured by TENCOR) to determine the depth.
Table 2 shows the evaluation results of the polishing characteristics. The polishing flaw A in Table 2 has a polishing flaw depth of 2 nm or less. The polishing flaw B has a polishing flaw depth of 2 to 10 nm. No polishing flaw depth greater than 10 nm occurred in both the examples and the comparative examples.
(Comparative Examples 1-7)
A water-based polishing composition was prepared by adding hydrogen peroxide such as water and aluminum nitrate to a colloidal silica (Cyton HT-50F) manufactured by DuPont Co., Ltd. and polished in the same manner as in the examples. . The results are shown in Table 2.
(Comparative Example 8)
Titanium oxide (Super Titania F-2) manufactured by Showa Titanium Co., Ltd. was pulverized with a medium stirring mill and coarse particles were removed by sizing to obtain titanium oxide having an average particle size of 0.3 μm. Next, water and aluminum nitrate were added in the proportions shown in Table 2 to prepare an aqueous polishing composition, which was polished in the same manner as in the examples. The results are shown in Table 2.
(Comparative Example 9)
Titanium oxide (Super Titania F-4) manufactured by Showa Titanium Co., Ltd. was pulverized with a medium stirring mill and coarse particles were removed by sizing to obtain titanium oxide having an average particle size of 0.2 μm. Next, water and aluminum nitrate were added in the proportions shown in Table 2 to prepare an aqueous polishing composition, which was polished in the same manner as in the examples. The results are shown in Table 2.
[0018]
[Table 1]
Figure 0004074126
[0019]
[Table 2]
Figure 0004074126
[Table 2]
Figure 0004074126
[0020]
【The invention's effect】
When the disk is polished using the polishing composition of the present invention, the surface roughness is very small and the polishing can be performed at a high speed. A magnetic disk using a polished disk is useful as a low flying type hard disk, and high density recording is possible.
In particular, it is highly useful as a high recording density medium (having a recording density of 3 Gbit / inch 2 or more) typified by an MR head medium using a magnetoresistive effect of a magnetic disk using a polished disk. The media is also useful from the viewpoint that there is a highly reliable medium.

Claims (13)

水性媒体に砥粒、リンを含む無機酸またはその塩及び他の無機酸またはその塩、酸化剤を配合したことを特徴とする研磨用組成物であって、
リンを含む無機酸またはその塩と他の無機酸又はその塩の合計の含有量が0.1〜8質量%の範囲内であり、リンを含む無機酸またはその塩と他の無機酸またはその塩の混合割合は前者1モルに対し、後者が0.1〜5モルの範囲内であり、酸化剤の含有量が0.2〜5質量%の範囲内であり、砥粒が3〜30質量%の範囲内であることを特徴とする研磨用組成物。
A polishing composition comprising an aqueous medium containing abrasive grains, phosphorus-containing inorganic acid or a salt thereof, and other inorganic acid or a salt thereof, an oxidizing agent ,
The total content of the inorganic acid or its salt containing phosphorus and the other inorganic acid or its salt is in the range of 0.1 to 8% by mass, and the inorganic acid or its salt containing phosphorus and the other inorganic acid or its The mixing ratio of the salt is 1 to 5 mol of the former, the latter is in the range of 0.1 to 5 mol, the content of the oxidizing agent is in the range of 0.2 to 5 mass%, and the abrasive grains are 3 to 30. Polishing composition characterized by being in the range of mass%.
砥粒が、アルミナ、チタニア、シリカ、ジルコニアからなる群より選ばれた少なくとも1種である請求項1に記載の研磨用組成物。  The polishing composition according to claim 1, wherein the abrasive grains are at least one selected from the group consisting of alumina, titania, silica, and zirconia. 砥粒の平均粒子径が、0.001〜0.5μmである請求項1または2に記載の研磨用組成物。  The polishing composition according to claim 1 or 2, wherein the average particle diameter of the abrasive grains is 0.001 to 0.5 µm. 砥粒が、コロイド粒子である請求項1乃至3のいずれか1項に記載の研磨用組成物。  The polishing composition according to any one of claims 1 to 3, wherein the abrasive grains are colloidal particles. リンを含む無機酸が、リン酸またはホスホン酸である請求項1乃至4のいずれか1項に記載の研磨用組成物。  The polishing composition according to any one of claims 1 to 4, wherein the inorganic acid containing phosphorus is phosphoric acid or phosphonic acid. 他の無機酸が、硝酸、硫酸、アミド硫酸、ホウ酸からなる群より選ばれた少なくとも1種である請求項1乃至5のいずれか1項に記載の研磨用組成物。  The polishing composition according to any one of claims 1 to 5, wherein the other inorganic acid is at least one selected from the group consisting of nitric acid, sulfuric acid, amidosulfuric acid, and boric acid. 酸化剤が、過酸化物、過ホウ酸塩、過硫酸塩、硝酸塩から選ばれた少なくとも1種である請求項1乃至6のいずれか1項に記載の研磨用組成物。  The polishing composition according to any one of claims 1 to 6, wherein the oxidizing agent is at least one selected from peroxides, perborates, persulfates, and nitrates. 過酸化物が、過酸化水素である請求項7に記載の研磨用組成物。  The polishing composition according to claim 7, wherein the peroxide is hydrogen peroxide. 過ホウ酸塩が、過ホウ酸ソーダである請求項7に記載の研磨用組成物。  The polishing composition according to claim 7, wherein the perborate is sodium perborate. pHが1〜5である請求項1乃至9のいずれか1項に記載の研磨用組成物。  The polishing composition according to any one of claims 1 to 9, which has a pH of 1 to 5. リンを含む無機酸又はその塩、他の無機酸またはその塩、酸化剤の合計の配合量は0.3〜13質量%である請求項1乃至10のいずれか1項に記載の研磨用組成物。 11. The polishing composition according to claim 1 , wherein the total amount of phosphorus-containing inorganic acid or salt thereof , other inorganic acid or salt thereof, and oxidizing agent is 0.3 to 13% by mass. object. ゲル化防止剤を含む請求項1乃至11のいずれか1項に記載の研磨用組成物。The polishing composition according to any one of claims 1 to 11, comprising an anti-gelling agent. 研磨用組成物が、磁気ディスク基板研磨用組成物である請求項1乃至12のいずれか1項に記載の研磨用組成物。Polishing composition, the polishing composition according to any one of claims 1 to 12 which is a magnetic disk substrate polishing composition.
JP2002132738A 2001-09-03 2002-05-08 Polishing composition Expired - Lifetime JP4074126B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002132738A JP4074126B2 (en) 2001-09-03 2002-05-08 Polishing composition
AU2002334406A AU2002334406A1 (en) 2001-09-03 2002-09-03 Polishing composition
US10/488,296 US20050028449A1 (en) 2001-09-03 2002-09-03 Polishing composition
CN 02819416 CN1561376A (en) 2001-09-03 2002-09-03 Polishing composition
EP02797709A EP1425357A1 (en) 2001-09-03 2002-09-03 Polishing composition
PCT/JP2002/008925 WO2003020839A1 (en) 2001-09-03 2002-09-03 Polishing composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001266315 2001-09-03
JP2001-266315 2001-09-03
JP2002132738A JP4074126B2 (en) 2001-09-03 2002-05-08 Polishing composition

Publications (3)

Publication Number Publication Date
JP2003147337A JP2003147337A (en) 2003-05-21
JP2003147337A5 JP2003147337A5 (en) 2005-09-22
JP4074126B2 true JP4074126B2 (en) 2008-04-09

Family

ID=26621559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132738A Expired - Lifetime JP4074126B2 (en) 2001-09-03 2002-05-08 Polishing composition

Country Status (2)

Country Link
JP (1) JP4074126B2 (en)
CN (1) CN1561376A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986099B2 (en) * 2003-06-09 2012-07-25 花王株式会社 Substrate manufacturing method
JP2005001018A (en) * 2003-06-09 2005-01-06 Kao Corp Method of manufacturing substrate
JP4202201B2 (en) * 2003-07-03 2008-12-24 株式会社フジミインコーポレーテッド Polishing composition
DE102006007888A1 (en) * 2006-02-21 2007-08-23 Degussa Gmbh Aqueous alumina dispersion for use in melamine resin formulation for making cured product e.g. laminate for furniture or flooring contains highly disperse alumina surface modified with amino- and/or hydroxy-substituted organophosphonic acid
JP2008080486A (en) * 2007-10-04 2008-04-10 Kao Corp Polishing kit for magnetic disk
JP7061859B2 (en) * 2017-09-29 2022-05-02 株式会社フジミインコーポレーテッド Method for manufacturing polishing composition and magnetic disk substrate

Also Published As

Publication number Publication date
JP2003147337A (en) 2003-05-21
CN1561376A (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP4273475B2 (en) Polishing composition
US6569215B2 (en) Composition for polishing magnetic disk substrate
JP4009986B2 (en) Polishing composition and polishing method for polishing memory hard disk using the same
US6117220A (en) Polishing composition and rinsing composition
JP4439755B2 (en) Polishing composition and method for producing memory hard disk using the same
JP4707311B2 (en) Magnetic disk substrate
JP4003116B2 (en) Polishing composition for magnetic disk substrate and polishing method using the same
TW500783B (en) Polishing composition
JPH10204416A (en) Polishing composition
JP3997152B2 (en) Polishing liquid composition
US6910952B2 (en) Polishing composition
US20050028449A1 (en) Polishing composition
US5935278A (en) Abrasive composition for magnetic recording disc substrate
JP3877924B2 (en) Magnetic disk substrate polishing composition
JP4074126B2 (en) Polishing composition
TW528645B (en) Composition for polishing magnetic disk substrate
US6152976A (en) Abrasive composition for disc substrate, and process for polishing disc substrate
JP4373776B2 (en) Polishing liquid composition
JP4255976B2 (en) Polishing liquid composition for magnetic disk substrate
JP3997154B2 (en) Polishing liquid composition
JP3997153B2 (en) Polishing liquid composition
JPH10121034A (en) Composition for polishing magnetic disk substrate
JP2008094982A (en) Polishing liquid composition for memory hard disk substrate
JP3825844B2 (en) Precision polishing composition, method for polishing electroless NiP plating film formed on Al alloy substrate, method for manufacturing Al alloy substrate having electroless NiP plating film
JP2005008875A (en) Abrasive composition and abrasion method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term