JPH10121034A - Composition for polishing magnetic disk substrate - Google Patents

Composition for polishing magnetic disk substrate

Info

Publication number
JPH10121034A
JPH10121034A JP5183897A JP5183897A JPH10121034A JP H10121034 A JPH10121034 A JP H10121034A JP 5183897 A JP5183897 A JP 5183897A JP 5183897 A JP5183897 A JP 5183897A JP H10121034 A JPH10121034 A JP H10121034A
Authority
JP
Japan
Prior art keywords
polishing
particles
magnetic disk
zirconium oxide
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5183897A
Other languages
Japanese (ja)
Inventor
Takeshi Ishitobi
健 石飛
Takanori Kido
高徳 貴堂
Hiroshi Sakamoto
博 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5183897A priority Critical patent/JPH10121034A/en
Priority to US08/890,330 priority patent/US5935278A/en
Priority to MYPI97003113A priority patent/MY119713A/en
Publication of JPH10121034A publication Critical patent/JPH10121034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a compsn. for polishing magnetic disk substrates which has a good polishing capability by using fine zirconium oxide particles having specified state and particle sizes together with an aluminum nitrate polishing accelerator and water. SOLUTION: This compsn. comprises fine zirconium oxide particles, a polishing accelerator, and water and can polish NiP-plated magnetic disk substrates at a high speed. The particles used are in the state of secondary particles, i.e., aggregates of primary particles, and the average secondary particle size is 0.1-1μm and the average primary particle size, 0.001-0.3μm (the smaller, the better). Pref. the particles are produced by a wet process followed by baking and crystallization. Aluminum nitrate is esp. pref. as the accelerator. Pref. the particles are contained in an amt. of 2-20wt.% in the compsn., and the accelerator, in an amt. of 1-20wt.%. A magnetic disk obtd. from a substrate polished with the compsn. has a low surface roughness and is free from the occurrence of polishing scratchs, pits, and missing pulse errors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気ディスク基板の
研磨用組成物に関し、さらに詳しくは磁気ヘッドが低浮
上量で飛行するのに適した精度の高い磁気ディスク表面
が得られる磁気ディスク基板の研磨用組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing composition for a magnetic disk substrate, and more particularly to a polishing method for a magnetic disk substrate capable of obtaining a highly accurate magnetic disk surface suitable for flying a magnetic head with a low flying height. To a composition for use.

【0002】[0002]

【従来の技術】コンピューターやワードプロセッサーの
外部記憶装置の中で高速でアクセスできる記憶手段とし
て磁気ディスク(メモリーハードディスク)が広く使わ
れている。この磁気ディスクはAl合金円板の表面にN
iPを無電解メッキしたものを基板とし、この基板を表
面研磨したのち、Cr合金下地膜、Co合金磁性膜、カ
ーボン保護膜を順序スパッターで被覆したものである。
磁気ディスク表面に磁気ヘッド浮上量以上の高さを持つ
突起が残っていると、所定高さにて浮上しながら高速で
飛行する磁気ヘッドがその突起に衝突して損傷させる原
因になる。磁気ディスク基板に突起や研磨傷があるとC
r合金下地膜やCo合金磁性膜等で被覆してもその表面
に突起が現れ、また研磨傷に基づく欠陥が生じ、磁気デ
ィスク表面が精度高い平滑面にならないので、ディスク
表面の精度を上げるには基板を精密研磨する必要があ
る。
2. Description of the Related Art Magnetic disks (memory hard disks) are widely used as storage means that can be accessed at high speed in external storage devices of computers and word processors. This magnetic disk has N surface on the surface of Al alloy disk.
A substrate obtained by electrolessly plating iP was used as a substrate, and after polishing the surface of the substrate, a Cr alloy base film, a Co alloy magnetic film, and a carbon protective film were coated by sequential sputtering.
If a protrusion having a height equal to or higher than the flying height of the magnetic head remains on the surface of the magnetic disk, the magnetic head flying at a high speed while flying at a predetermined height may collide with the protrusion and cause damage. If the magnetic disk substrate has protrusions or polishing scratches, C
Even when coated with an r-alloy base film or Co alloy magnetic film, projections appear on the surface and defects due to polishing scratches occur, and the magnetic disk surface does not become a highly accurate smooth surface, so it is necessary to improve the accuracy of the disk surface. Requires precise polishing of the substrate.

【0003】このため基板の研磨において突起物をなく
し、あるいはその高さをできるだけ低くし、かつ研磨傷
が生じない研磨用組成物が種々検討されてきた。従来提
案されているものとしては(1)特開昭60−1084
89(次亜塩素酸ナトリウムのような酸化剤を含む酸化
アルミニウムとコロイド状の酸化アルミニウム又は二酸
化セリウムを使った2段階研磨法)、(2)特開昭61
−291674(アルミナにスルファミン酸又は燐酸を
添加する方法)、(3)特開昭62−25187(アル
ミナに硝酸アルミニウムを添加する方法)、(4)特開
平1−188264(アルミナにベーマイトを添加する
方法)、(5)特開平1−205973(アルミナに金
属塩及びベーマイトを添加する方法)、(6)特開平2
−158682(アルミナに金属亜硝酸塩を添加する方
法)、(7)特開平2−158683(アルミナにベー
マイト、無機酸又は有機酸のアンモニウム塩を添加する
方法)、(8)特開平3−106984(超音波ろ過機
で前処理したアルミナスラリーを使用する方法)、
(9)特開平3−115383(アルミナにベーマイト
と水溶性過酸化物を添加する方法)、(10)特開平4
−108887(アルミナにアミノ酸を添加する方
法)、(11)特開平4−275387(アルミナに硫
酸アルミニウム、塩化アルミニウムと過酸化物、硝酸、
硝酸塩、亜硝酸塩及び芳香族ニトロ化合物を添加する方
法)、(12)特開平4−363385(アルミナにキ
レート化合物、ベーマイト、アルミニウム塩を添加する
方法)、(13)特開平5−271647(アルミナに
一次粒子が角状のギブサイトから熱処理してできたベー
マイトを添加する方法)、(14)特開平7−2400
25(化学腐食剤とシリカのコロイド粒子を添加する方
法)などがある。
[0003] For this reason, various polishing compositions have been studied in which the projections are eliminated or the height thereof is reduced as much as possible in the polishing of the substrate, and polishing scratches are not generated. Conventionally proposed (1) JP-A-60-1084
89 (two-stage polishing method using aluminum oxide containing an oxidizing agent such as sodium hypochlorite and colloidal aluminum oxide or cerium dioxide);
-291674 (a method of adding sulfamic acid or phosphoric acid to alumina), (3) JP-A-62-25187 (a method of adding aluminum nitrate to alumina), (4) JP-A-1-188264 (a method of adding boehmite to alumina) Method), (5) JP-A-1-2055973 (method of adding a metal salt and boehmite to alumina), (6) JP-A-Hei2
(158) (a method of adding metal nitrite to alumina), (7) JP-A-2-158683 (a method of adding an ammonium salt of boehmite, inorganic acid or organic acid to alumina), (8) JP-A-3-106984 ( Method using alumina slurry pre-treated with an ultrasonic filter),
(9) JP-A-3-115383 (method of adding boehmite and water-soluble peroxide to alumina), (10) JP-A-4-115383
-108887 (a method of adding an amino acid to alumina), (11) JP-A-4-27587 (alumina to aluminum sulfate, aluminum chloride and peroxide, nitric acid,
(12) JP-A-4-363385 (a method of adding a chelate compound, boehmite and aluminum salt to alumina), and (13) JP-A-5-271647 (a method of adding alumina). Method of adding boehmite produced by heat treatment of primary particles having angular gibbsite), (14) JP-A-7-2400
25 (a method of adding colloidal particles of a chemical corrosive and silica).

【0004】これらの公知の技術の中で(1)〜(1
3)は1μm前後のアルミナ又はアルミニウム化合物を
研磨材として使用しているので、従来の磁気ヘッドの浮
上量において磁気ディスクの突起の衝突を回避できる程
度の精度での研磨はできるが、最近顕著になってきた記
録密度アップによって求められている高いレベルの表面
精度を達成できていない。一方(14)は数十nmのシ
リカのコロイド粒子を研磨材として使用するので面精度
は達成し易いが研磨速度が遅いので求められている量産
性が十分でないし、長時間の研磨を行うと外周部が余分
に研磨される(面ダレという)問題が生じている。
[0004] Among these known techniques, (1) to (1)
3) uses an alumina or aluminum compound of about 1 μm as an abrasive, so that it can be polished with such an accuracy that collision of projections on a magnetic disk can be avoided in the flying height of a conventional magnetic head, but it has recently become remarkable. The high level of surface accuracy required by the increasing recording density has not been achieved. On the other hand, (14) uses colloidal particles of silica of several tens of nm as an abrasive, so that surface accuracy can be easily achieved, but the polishing rate is low, so that the required mass productivity is not sufficient. There is a problem that the outer peripheral portion is excessively polished (referred to as surface sagging).

【0005】[0005]

【発明が解決しようとする課題】研磨組成物を考える上
で基本となるのは研磨材である。一般的に材料としての
硬度が高いものを研磨材として使用した場合、研磨時に
研磨傷が発生し易いという問題を内在している。磁気デ
ィスク基板表面のNiPメッキ面の硬度を考慮し適度な
硬度の研磨材料を選択する必要がある。また粒子サイズ
は低浮上量型アルミニウム磁気ディスクに要求される品
質(研磨傷やピットの程度)を考慮すると、サブミクロ
ンでかつ粒度分布のシャープな研磨材が必要となる。従
来技術の項で説明したように、アルミニウム磁気ディス
ク基板研磨用にはαアルミナを研磨材として使用するの
が一般的である。しかし、αアルミナは研磨すべきNi
P面に比べ硬度が著しく高いため、低浮上量型アルミニ
ウム磁気ディスク用の研磨材としてαアルミナを使用す
る場合には、αアルミナの結晶構造、粒度分布などを厳
密に規定することが必要である。また、アルミナの微粒
子を工業的に得るには、通常微粉砕処理によるが、必要
粒の生産歩留まりが低く、アルミナ微粒子の生産性が悪
いという問題がある。
The basis for considering a polishing composition is an abrasive. In general, when a material having a high hardness as a material is used as an abrasive, there is an inherent problem that polishing scratches are easily generated during polishing. It is necessary to select a polishing material having an appropriate hardness in consideration of the hardness of the NiP plating surface on the surface of the magnetic disk substrate. Considering the quality (degree of polishing scratches and pits) required of the low flying height type aluminum magnetic disk, a submicron abrasive having a sharp particle size distribution is required. As described in the section of the prior art, α-alumina is generally used as an abrasive for polishing an aluminum magnetic disk substrate. However, α alumina is Ni
When α-alumina is used as an abrasive for low-flying height aluminum magnetic disks, it is necessary to strictly define the crystal structure, particle size distribution, etc. of α-alumina because the hardness is significantly higher than that of the P-plane. . In order to obtain alumina fine particles industrially, fine pulverization is usually performed. However, there is a problem that the production yield of necessary particles is low and the productivity of alumina fine particles is poor.

【0006】一方シリカを研磨材として使用するとシリ
カは硬度が低いのでディスク基板に研磨傷を発生するこ
とは少ないが、研磨速度が遅く生産性に問題がある。次
に磁気ディスクの面精度については単に平均粗さ(Ra
で評価する)、突起の有無だけの問題ではなく後述する
所定書式による書き込み・読み出し検査でエラーが出る
か出ないかである。このエラーは最近の解析で研磨工程
で残った研磨傷、または研磨ピットによることが確認さ
れており、これらの問題を解決することが求められてい
る。
On the other hand, when silica is used as an abrasive, the hardness of the silica is low, so that polishing scratches are hardly generated on the disk substrate, but the polishing rate is low and there is a problem in productivity. Next, regarding the surface accuracy of the magnetic disk, the average roughness (Ra)
It is not only a matter of the presence or absence of a protrusion, but also whether an error occurs or not in a write / read inspection in a predetermined format described later. It has been confirmed by recent analysis that this error is caused by polishing scratches or polishing pits remaining in the polishing process, and it is required to solve these problems.

【0007】本発明は磁気ディスクの表面粗さが小さ
く、かつ突起や研磨傷を発生させず、高記録密度が可能
であり、しかも高い速度で研磨できる磁気ディスク基板
の研磨用組成物を提供するものである。この研磨用組成
物は、例えば磁気抵抗(MR)効果を利用した磁気ヘッ
ド用磁気ディスクに代表される高記録密度用の基板(記
録密度で500Mbit/inch2 以上)に適用でき
るがそれ以下の磁気ディスクにおいても信頼性向上とい
う観点では効果的に応用できる。
The present invention provides a polishing composition for a magnetic disk substrate which has a small surface roughness of a magnetic disk, does not generate protrusions or polishing scratches, can have a high recording density, and can be polished at a high speed. Things. This polishing composition can be applied to a substrate for high recording density (500 Mbit / inch 2 or more in recording density) typified by, for example, a magnetic disk for a magnetic head utilizing the magnetoresistance (MR) effect, but has a magnetic property of less than that. It can be effectively applied to discs from the viewpoint of improving reliability.

【0008】[0008]

【課題を解決するための手段】本発明者は研磨材として
アルミナやシリカは前記したような問題があるため、こ
れらに代る研磨材について鋭意研究した結果、酸化ジル
コニウム微粒子を研磨材とする特定の組成物が優れてい
ることを見出し本発明に至った。即ち、本発明は水、酸
化ジルコニウム微粒子、研磨促進剤あるいはこれらと水
溶性酸化剤とからなる磁気ディスク基板の研磨用組成物
である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the use of alumina and silica as abrasives as described above, and have found that zirconium oxide fine particles are regarded as abrasives. Was found to be excellent, and the present invention was achieved. That is, the present invention is a composition for polishing a magnetic disk substrate, comprising water, zirconium oxide fine particles, a polishing accelerator or a water-soluble oxidizing agent.

【0009】本発明をなすに当り、本発明者は先ずどの
レベルの研磨傷や研磨ピットが磁気ディスクの読み出し
時にエラーとなるかを検討した。各種研磨方法で試作し
た磁気ディスクを日立DECO社製グライド・サーティ
ファイアーテスターRQ3000で検査し、読み取りエ
ラーの発生の頻度と磁気ディスク表面の状態を精密に比
較検討した。テスターの測定条件は以下とした。 トラック幅 3μm 記録密度 インチ当りフラックス変動70,000 ヘッド浮上量 2.0μinch(50.8nm) スライスレベル 65% このスライスレベルに達しないもの、すなわち、入力波
形に対し出力波形が65%未満のものをミッシングパル
スエラーとして扱い、ミッシングパルスエラーに対応す
る研磨傷の深さと大きさおよび研磨ピットの深さと大き
さを求めた。また、ミッシングパルスエラーの数も求め
た。研磨傷および研磨ピットの深さは光学式凹凸検査装
置(WYKO社製 Topo−3D、スリーディメンシ
ョナル・ノンコンスタント・サーフィス・プロファイラ
ー)を使用して、ミッシングパルスエラーとはならなか
った最大深さを測定した。この結果、深さ15nm以下
の傷、ピットであれば磁気ディスクへの記録・再生にお
いて支障がないことが判明した。これにより研磨傷およ
び研磨ピットの深さが15nm以下のものは合格品とし
た。
In making the present invention, the inventor first examined which level of polishing scratches and polishing pits would cause an error when reading a magnetic disk. Magnetic disks prototyped by various polishing methods were inspected with a glide certifier tester RQ3000 manufactured by Hitachi DECO, and the frequency of read errors and the state of the magnetic disk surface were precisely compared and examined. The measurement conditions of the tester were as follows. Track width 3 μm Recording density Flux variation per inch 70,000 Head flying height 2.0 μinch (50.8 nm) Slice level 65% Those that do not reach this slice level, that is, those whose output waveform is less than 65% of the input waveform Treated as a missing pulse error, the depth and size of the polishing flaw and the depth and size of the polishing pit corresponding to the missing pulse error were determined. The number of missing pulse errors was also determined. The depth of the polishing scratches and polishing pits was determined by using an optical unevenness inspection device (Topo-3D manufactured by WYKO, a three-dimensional non-constant surface profiler), and the maximum depth that did not cause a missing pulse error was measured. It was measured. As a result, it was found that scratches and pits having a depth of 15 nm or less had no problem in recording / reproducing to / from a magnetic disk. As a result, a polishing scratch and a polishing pit having a depth of 15 nm or less were accepted.

【0010】[0010]

【発明の実施の形態】本発明で用いられる研磨材は酸化
ジルコニウム微粒子である。この微粒子は二次粒子の平
均粒子径が0.1〜1.0μmで粒度分布がシャープで
あるものが好ましい。酸化ジルコニウム微粒子は微細な
一次粒子の集合体である二次粒子の形態で存在する。一
次粒子はSEM写真により粒子径(長短径の平均値)が
求められ、二次粒子はレーザー回折粒度測定装置により
測定することができる。酸化ジルコニウムの研磨作用は
二次粒子に依存するところが大きく、二次粒子が大きく
なると研磨作用が高まる。一方、研磨傷は二次粒子が大
きくなると発生し易くなるだけでなく、一次粒子の大き
さが大きくなっても発生し易くなる。従って、二次粒子
がある範囲に入る大きさであって、かつ一次粒子は小さ
いものが研磨作用が大きく、かつ研磨傷の発生を防ぐも
のとして好ましいと考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The abrasive used in the present invention is zirconium oxide fine particles. The fine particles preferably have an average secondary particle diameter of 0.1 to 1.0 μm and a sharp particle size distribution. Zirconium oxide fine particles exist in the form of secondary particles, which are aggregates of fine primary particles. For the primary particles, the particle diameter (average value of the major and minor axes) is determined from an SEM photograph, and for the secondary particles, the particle size can be measured with a laser diffraction particle size analyzer. The polishing action of zirconium oxide largely depends on the secondary particles, and the polishing action increases as the secondary particles become larger. On the other hand, polishing scratches not only tend to occur when the secondary particles are large, but also tend to occur when the primary particles are large. Therefore, it is considered that secondary particles having a size within a certain range and small primary particles are preferable as having a large polishing action and preventing generation of polishing scratches.

【0011】本発明における酸化ジルコニウム微粒子は
研磨傷の発生を防ぐため、好ましくは二次粒子として平
均粒子径が1.0μm以下である。また研磨作用を高め
ることから、二次粒子径は平均粒子径が0.1μm以上
が好ましい。そして二次粒子が上記の範囲にある場合、
一次粒子は平均粒子径が0.001〜0.3μmの範囲
となり、この中で小さいものが好ましい。酸化ジルコニ
ウムの粒子の粒度分布については平均粒子径が同じであ
っても粒度分布が広いと大きな粒子を含むことになり、
研磨傷の原因となるのでシャープな粒度分布が好まし
く、例えば二次粒子の粒度分布における累積90重量%
の粒子径と10重量%の粒子径の比D90/D10が
3.0以内であるものが特に好ましい。
In the present invention, the zirconium oxide fine particles preferably have an average particle diameter of 1.0 μm or less as secondary particles in order to prevent polishing scratches. Further, in order to enhance the polishing effect, the secondary particle diameter is preferably 0.1 μm or more in average particle diameter. And when the secondary particles are in the above range,
The primary particles have an average particle size in the range of 0.001 to 0.3 μm, and among these, smaller ones are preferable. Regarding the particle size distribution of the zirconium oxide particles, even if the average particle size is the same, a large particle size distribution will include large particles,
A sharp particle size distribution is preferable since it causes polishing scratches. For example, 90% by weight of the secondary particles in the particle size distribution is cumulative.
It is particularly preferable that the ratio D90 / D10 of the particle diameter of the particles to the particle diameter of 10% by weight is within 3.0.

【0012】次に酸化ジルコニウム粒子を製造する方法
について説明する。酸化ジルコニウムは微粒子なので、
その製法は湿式法が好ましく、例えばZrのアルコキシ
ド化合物やZrOCl2 、Zr(NO34 などを加水
分解する方法を用いることができる。例えばこれらの化
合物にアンモニア水などのアルカリ性化合物を加えて加
水分解し、pHを0〜4にするとコロイド状ゾルが得ら
れる。このゾルをさらにアンモニアなどで中和し、pH
を7〜8にするとコロイド状ゾルは凝集・沈澱する。得
られた沈澱物を水洗、濾過して塩化アンモニウム、塩酸
を除去する。
Next, a method for producing zirconium oxide particles will be described. Since zirconium oxide is fine particles,
The production method is preferably a wet method, for example, a method of hydrolyzing a Zr alkoxide compound, ZrOCl 2 , Zr (NO 3 ) 4, or the like. For example, when an alkaline compound such as aqueous ammonia is added to these compounds and hydrolyzed to a pH of 0 to 4, a colloidal sol is obtained. This sol is further neutralized with ammonia, etc.
Is set to 7 to 8, the colloidal sol aggregates and precipitates. The obtained precipitate is washed with water and filtered to remove ammonium chloride and hydrochloric acid.

【0013】洗浄後濾別回収した沈澱物を乾燥するとコ
ロイド状酸化ジルコニウム前駆体(ジルコニウムの水和
物ないしアモルファスの酸化ジルコニウム)となる。次
いでコロイド状酸化ジルコニウム前駆体を焼成して結晶
性酸化ジルコニウムとする。この前駆体の焼成温度は4
00〜1100℃が好ましい。焼成温度が400℃未満
では酸化ジルコニウムの結晶化が不充分であり、また1
100℃を越えると酸化ジルコニウム粒子の結晶径(一
次粒子及び二次粒子)が大きくなり、研磨性能が下が
る。
After washing, the precipitate collected by filtration is dried to obtain a colloidal zirconium oxide precursor (hydrate of zirconium or amorphous zirconium oxide). Next, the colloidal zirconium oxide precursor is fired to obtain crystalline zirconium oxide. The firing temperature of this precursor is 4
00-1100 degreeC is preferable. If the calcination temperature is lower than 400 ° C., crystallization of zirconium oxide is insufficient.
If the temperature exceeds 100 ° C., the crystal diameter (primary particles and secondary particles) of the zirconium oxide particles increases, and the polishing performance decreases.

【0014】焼成によって得られた結晶性酸化ジルコニ
ウム粉末は必要により分級やフィルターリング等により
粒度分布が前記したようなシャープなものにすることが
好ましい。この酸化ジルコニウム粉末はこれを水に分散
させてスラリーとする。分散方法は酸化ジルコニウム粉
末と水を例えばボールミル等に入れ、回転して粉末を十
分に解砕する方法が好ましい。この方法によって酸化ジ
ルコニウム微粒子の水中における分散性がよくなり、安
定なスラリーが得られる。
It is preferable that the crystalline zirconium oxide powder obtained by firing has a sharp particle size distribution as described above, if necessary, by classification or filtering. This zirconium oxide powder is dispersed in water to form a slurry. The dispersion method is preferably a method in which zirconium oxide powder and water are put into, for example, a ball mill and rotated to sufficiently pulverize the powder. By this method, the dispersibility of the zirconium oxide fine particles in water is improved, and a stable slurry can be obtained.

【0015】本発明の研磨用組成物において酸化ジルコ
ニウムはメカニカルな研磨作用をなしているが、さらに
研磨能率を高めるため、基板に対して化学的な作用をす
る研磨促進剤を添加する。研磨促進剤としては硝酸アル
ミニウム(Al(NO33)、硫酸アルミニウム(A
2 (SO43 )、蓚酸アルミニウム(Al2 (C2
43 )、硝酸鉄(Fe(NO33 )、乳酸アルミ
ニウム(Al(C3533 )、グルコン酸(C6
127 )、リンゴ酸(C465 )等が用いられ
る。これらの中でアルミニウム塩が好ましく、とりわけ
硝酸アルミニウムが好ましい。研磨促進剤は基板に対し
て腐食作用等の化学的に作用し、これに酸化ジルコニウ
ムによるメカニカルな研磨作用が加わって研磨能率が大
幅に向上する。さらに研磨促進剤の他に水溶性の酸化剤
を加えることも研磨性能を高める上で有効である。水溶
性の酸化剤としては過酸化水素(H22 )、硝酸、過
マンガン酸カリウム(KMnO4 )、過塩素酸(HCl
4 )、過塩素酸ソーダ(NaClO4 )、次亜塩素酸
ソーダ(NaClO)などが用いられる。その濃度は高
すぎても効果が増さないので10重量%以下が適当であ
る。
In the polishing composition of the present invention, zirconium oxide has a mechanical polishing action. However, in order to further enhance the polishing efficiency, a polishing accelerator which chemically acts on the substrate is added. Aluminum nitrate (Al (NO 3 ) 3 ), aluminum sulfate (A
l 2 (SO 4 ) 3 ), aluminum oxalate (Al 2 (C 2
O 4 ) 3 ), iron nitrate (Fe (NO 3 ) 3 ), aluminum lactate (Al (C 3 H 5 O 3 ) 3 ), gluconic acid (C 6
H 12 O 7), malic acid (C 4 H 6 O 5) or the like is used. Of these, aluminum salts are preferred, and aluminum nitrate is particularly preferred. The polishing accelerator chemically acts on the substrate such as a corrosive action, and a mechanical polishing action of zirconium oxide is added to the chemical, thereby greatly improving the polishing efficiency. Further, addition of a water-soluble oxidizing agent in addition to the polishing accelerator is also effective in improving the polishing performance. Hydrogen peroxide (H 2 O 2 ), nitric acid, potassium permanganate (KMnO 4 ), perchloric acid (HCl)
O 4 ), sodium perchlorate (NaClO 4 ), sodium hypochlorite (NaClO) and the like are used. Since the effect is not increased even if the concentration is too high, 10% by weight or less is appropriate.

【0016】本発明の磁気ディスク基板の研磨用組成物
は基本的には上記した酸化ジルコニウム微粒子、研磨促
進剤及び水からなるスラリー状のもので、必要によりさ
らに水溶性の酸化剤が添加されるが、その他に界面活性
剤、防腐剤、及びpH調整のため酸又はアルカリを添加
することができる。研磨促進剤として硝酸アルミニウム
等のアルミニウムの酸性塩を使用した場合好ましいpH
の範囲は2〜5である。本発明の研磨用組成物中の各成
分濃度については酸化ジルコニウムは2〜20重量%が
好ましい。2重量%未満では研磨速度が遅く、研磨に長
時間を要し、また20重量%を越えても研磨速度が高ま
らず経済的に不利である。
The composition for polishing a magnetic disk substrate of the present invention is basically a slurry composed of the above-mentioned zirconium oxide fine particles, a polishing accelerator and water, and a water-soluble oxidizing agent is further added if necessary. However, a surfactant, a preservative, and an acid or an alkali for pH adjustment may be added. Preferred pH when an acidic salt of aluminum such as aluminum nitrate is used as a polishing accelerator
Ranges from 2 to 5. The concentration of each component in the polishing composition of the present invention is preferably 2 to 20% by weight of zirconium oxide. If it is less than 2% by weight, the polishing rate is low, and a long time is required for polishing. If it exceeds 20% by weight, the polishing rate does not increase and it is economically disadvantageous.

【0017】研磨促進剤の添加量は1〜20重量%、好
ましくは2〜15重量%である。研磨促進剤の添加量が
1重量%より少ないと研磨速度が低下し、所定量の研磨
に必要な研磨時間が長くなり、それにより面ダレを増大
する。添加量を増やした場合15重量%までは研磨速度
は上昇するが、15重量%を越えて添加量を増やしても
研磨速度は上昇しない。従って15重量%以上添加して
も研磨面に悪影響は出ないが、経済性を考慮すると20
重量%が上限値と判断される。なお、上記の各成分濃度
は磁気ディスク基板を研磨する際の濃度である。研磨用
組成物を製造し、運搬等する場合は上記濃度より濃厚な
組成物とし、使用に際して上記の濃度に薄めて使用する
のが効率的である。
The addition amount of the polishing accelerator is 1 to 20% by weight, preferably 2 to 15% by weight. If the addition amount of the polishing accelerator is less than 1% by weight, the polishing rate decreases, and the polishing time required for polishing a predetermined amount increases, thereby increasing the surface sag. When the addition amount is increased, the polishing rate increases up to 15% by weight, but the polishing rate does not increase even when the addition amount exceeds 15% by weight. Therefore, even if added in an amount of 15% by weight or more, there is no adverse effect on the polished surface.
% By weight is determined to be the upper limit. The above-mentioned respective component concentrations are the concentrations when polishing the magnetic disk substrate. When a polishing composition is manufactured and transported, it is efficient to use a composition having a concentration higher than the above concentration and dilute it to the above concentration before use.

【0018】本発明の研磨用組成物が用いられる磁気デ
ィスク基板はNiPメッキ、Ni−Cu−Pメッキ、C
o−Pメッキしたアルミニウム(合金を含む)板、アル
マイト加工したアルミニウム板等である。研磨方法は一
般にスラリー状研磨材に用いられる研磨パッドを磁気デ
ィスク基板面上に摺り合せ、パッドと基板の間にスラリ
ーを供給しながらパッド又は基板を回転する方法であ
る。本発明の研磨用組成物により研磨した基板からつく
られた磁気ディスクは突起や研磨傷は極めて少なく、ま
た表面荒さ(Ra)も3〜5Å位であり、平滑性に優れ
ている。
The magnetic disk substrate on which the polishing composition of the present invention is used is NiP-plated, Ni-Cu-P-plated,
Examples are an o-P plated aluminum (including alloy) plate, an anodized aluminum plate, and the like. The polishing method is a method in which a polishing pad generally used for a slurry-like abrasive is rubbed on the surface of a magnetic disk substrate, and the pad or the substrate is rotated while supplying slurry between the pad and the substrate. A magnetic disk made from a substrate polished with the polishing composition of the present invention has very few protrusions and scratches, and has a surface roughness (Ra) of about 3 to 5 °, and is excellent in smoothness.

【0019】[0019]

【実施例】2リットルビーカー中で、オキシ塩化ジルコ
ニウム(ZrOCl2 ・8H2 O)250g、純水26
0ml、2.8Nアンモニア水320mlを混合した
後、混合溶液を容量1リットルのガラス製オートクレー
ブに移し、撹拌下、130℃で7時間加熱・加圧処理し
た。溶液を常温まで冷却後反応液を取り出すと、反応液
は乳白色のコロイド状ゾルで全量濾紙を通過した。この
ゾルをアンモニア水で中和しpHを7〜8にすると、コ
ロイド状ゾルは凝集・沈澱し、水洗・濾過ができる様に
なり、水洗・濾過を3回繰り返し反応で生じた塩化アン
モニウム、塩酸を除いた。洗浄後濾別回収した沈澱物を
150℃で3時間乾燥し104gのコロイド状酸化ジル
コニウム前駆体粉体を得た。この前駆体の比表面積は1
76.8m2 /gであった。次いで、この前駆体90g
をアルミナ坩堝中、500℃、30分焼成し酸化ジルコ
ニウム粉体を得た。得られた粉体は、X線回折による結
晶相の同定で単斜相のバッテライトであることを確認し
た。この粉体の比表面積は65.8m2 /gであった。
そして粉体粒子の一次粒子の平均粒子径はSEM測定法
により0.05μm、二次粒子の平均粒子径はレーザー
法粒度測定法により0.37μmであった。この酸化ジ
ルコニウムの二次粒子の粒度分布における累積90重量
%の粒子径と10重量%の粒子径の比D90/D10は
約2.8である。この粒度分布は島津製作所製の測定機
SALD−2000により測定した。この焼成粉体80
gを容量0.7リットルのナイロン製ポットミルに純水
187ml、直径5mmの酸化ジルコニウムボールと共
に入れ、ポット回転数80rpm、96時間解砕・分散
した。解砕終了後、ポットから回収した分散スラリーの
pHは少量残留していたHClのため4.9となった。
この酸化ジルコニウムスラリーは、1週間静置後でも、
わずかに沈澱物が認められるだけで、安定な分散体であ
った。解砕では酸化ジルコニウム粒子径は殆ど変わら
ず、従ってスラリー中の酸化ジルコニウム粒子の一次及
び二次粒子径は上記の値である。
EXAMPLES In a 2 liter beaker, zirconium oxychloride (ZrOCl 2 · 8H 2 O) 250g, pure water 26
After mixing 0 ml and 2.8 N ammonia water 320 ml, the mixed solution was transferred to a 1 liter glass autoclave, and heated and pressurized at 130 ° C. for 7 hours with stirring. After the solution was cooled to room temperature, the reaction solution was taken out, and the entire reaction solution was a milky white colloidal sol and passed through filter paper. When this sol is neutralized with aqueous ammonia to a pH of 7 to 8, the colloidal sol aggregates and precipitates, and can be washed and filtered. Ammonium chloride and hydrochloric acid produced by repeating water washing and filtration three times Was removed. After washing, the precipitate collected by filtration was dried at 150 ° C. for 3 hours to obtain 104 g of a colloidal zirconium oxide precursor powder. The specific surface area of this precursor is 1
It was 76.8 m 2 / g. Then 90 g of this precursor
Was fired in an alumina crucible at 500 ° C. for 30 minutes to obtain zirconium oxide powder. The obtained powder was identified as a monoclinic phase batterite by the identification of the crystal phase by X-ray diffraction. The specific surface area of this powder was 65.8 m 2 / g.
The average particle size of the primary particles of the powder particles was 0.05 μm by SEM measurement, and the average particle size of the secondary particles was 0.37 μm by laser particle size measurement. In the particle size distribution of the zirconium oxide secondary particles, the ratio D90 / D10 between the cumulative particle size of 90% by weight and the particle size of 10% by weight is about 2.8. This particle size distribution was measured by a measuring instrument SALD-2000 manufactured by Shimadzu Corporation. This fired powder 80
g was placed in a 0.7 liter nylon pot mill together with 187 ml of pure water and zirconium oxide balls having a diameter of 5 mm, and the mixture was disintegrated and dispersed at a pot rotation speed of 80 rpm for 96 hours. After the crushing was completed, the pH of the dispersion slurry recovered from the pot was 4.9 due to HCl remaining in a small amount.
This zirconium oxide slurry, even after standing for one week,
The dispersion was stable with only a slight precipitate visible. In the pulverization, the zirconium oxide particle size hardly changes, so that the primary and secondary particle sizes of the zirconium oxide particles in the slurry are the above values.

【0020】比較例に使用したアルミナはα−アルミナ
を微粉砕したもので平均粒子径は0.8μmである。コ
ロイダルシリカは日産化学(株)製NS−2で粒子径は
0.06μm程度である。研磨に用いた磁気ディスク基
板は直径3.5インチ(95mm)、厚さ0.8mmの
NiPメッキしたアルミニウム合金円板である。この基
板を以下の条件で研磨した。その際の研磨速度は研磨終
了後、基板を洗浄、乾燥し、研磨前後の重量減を測定
し、これを単位時間(min)当りに研磨された厚み
(μm)で表した。
The alumina used in the comparative example was obtained by finely pulverizing α-alumina, and had an average particle diameter of 0.8 μm. Colloidal silica is NS-2 manufactured by Nissan Chemical Industries, Ltd. and has a particle size of about 0.06 μm. The magnetic disk substrate used for polishing was a 3.5 inch (95 mm) diameter, 0.8 mm thick NiP plated aluminum alloy disk. This substrate was polished under the following conditions. After polishing, the substrate was washed and dried, the weight loss before and after polishing was measured, and the polishing rate was expressed as the thickness (μm) polished per unit time (min).

【0021】(研磨条件) 研磨機;4ウェイ式両面ポリッシングマシンSFDL−
98−PP(スピードファム(株)製)(定盤径640
mmφ) 研磨パッド;スエードタイプ(ポリテックスDG ロデ
ール(株)製) 下定盤回転数;60rpm スラリー(研磨用粗組成物)供給量;50ml/min 加工圧力;50g/m2 研磨後の基板上に直流スパッタ装置で厚さ100nmの
Cr層、厚さ25nmのCo86Cr12Ta2 磁性層及び
厚さ15nmのカーボン保護膜を成膜し、最後に潤滑剤
(パーフルオロポリエーテル系潤滑剤)を2nmの厚さ
に塗布してそれぞれ磁気ディスクを作製した。
(Polishing conditions) Polishing machine; 4-way double-side polishing machine SFDL-
98-PP (manufactured by Speed Fam Co., Ltd.) (platen diameter 640)
mmφ) Polishing pad; Suede type (Polytex DG Rodale Co., Ltd.) Lower platen rotation speed: 60 rpm Slurry (coarse composition for polishing) supply amount: 50 ml / min Working pressure: 50 g / m 2 On the polished substrate A 100-nm-thick Cr layer, a 25-nm-thick Co 86 Cr 12 Ta 2 magnetic layer and a 15-nm-thick carbon protective film are formed by a DC sputtering device. Finally, a lubricant (perfluoropolyether-based lubricant) is added. Each was coated to a thickness of 2 nm to produce a magnetic disk.

【0022】磁気ディスクの表面粗さ(Ra)はタリス
テップ及びタリデーター2000(いずれもランクテー
ラーホブソン社製)により測定した。磁気ディスクの研
磨傷は暗室でハロゲンランプ光の下で目視によりその有
無を判定した。表面欠陥は微分干渉顕微鏡(50倍)で
測定し、磁気ディスク一面当りに存在するピットの数で
表した。それぞれの磁気ディスクについて磁気ヘッドの
立上り特性を測定した。前記のグライド・サーティファ
イアーテスターを用い、ヘッドの浮上量を下げていった
とき、ヘッドが突起に衝突し始める高さを測定し浮上量
とした。磁気ディスクの記録、再生における支障の有無
を調べるため上記のグライド・サーティファイアーテス
ターにより、回転数5400rpm、スライスレベル6
5%でヘッドを使用してミッシングパルスエラーの個数
を測定した。
The surface roughness (Ra) of the magnetic disk was measured by Taristep and Taridata 2000 (both manufactured by Rank Taylor Hobson). The presence or absence of polishing scratches on the magnetic disk was visually determined in a dark room under the light of a halogen lamp. The surface defect was measured by a differential interference microscope (50 times) and expressed by the number of pits existing on one surface of the magnetic disk. The rising characteristics of the magnetic head were measured for each magnetic disk. When the flying height of the head was lowered using the glide certifier tester, the height at which the head started to collide with the projection was measured and defined as the flying height. The glide-certifier tester described above was used to check the recording / reproduction of the magnetic disk for any problems.
The number of missing pulse errors was measured using a head at 5%.

【0023】(実施例1〜16)酸化ジルコニウム、硝
酸アルミニウム等を表1に示す割合に配合した研磨用組
成物とした。表1において残部は水である。 (比較例1〜2)比較例1は研磨材にアルミナを、比較
例2はコロイダルシリカを用いた例である。これらの実
施例及び比較例の研磨用組成物を用い、前記基板の研磨
を行い、その研磨速度を測定し、研磨傷を目視で観察
し、さらに表面粗さ、ピット数を測定し、次いで磁気デ
ィスクとした後、磁気ヘッドの浮上量、ミッシングパル
スエラーを測定した。これらの結果を表2に示す。
Examples 1 to 16 Polishing compositions containing zirconium oxide, aluminum nitrate and the like in the proportions shown in Table 1 were prepared. In Table 1, the balance is water. Comparative Examples 1 and 2 Comparative Example 1 is an example using alumina as an abrasive, and Comparative Example 2 is an example using colloidal silica. Using the polishing compositions of these Examples and Comparative Examples, the substrate was polished, the polishing rate was measured, polishing flaws were visually observed, the surface roughness, the number of pits were measured, and then the magnetic field was measured. After the disk was formed, the flying height of the magnetic head and the missing pulse error were measured. Table 2 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】上記の結果からわかるようにアルミナを研
磨材とする場合は研磨速度は早いが磁気ディスクの表面
粗さが大きく、研磨傷やピットが発生し、また磁気ヘッ
ドの浮上量が大きく、ミッシングパルスエラーが多い。
コロイダルシリカを研磨材とすると磁気特性等は問題が
ないが研磨速度が遅い。これに対し本発明の研磨用組成
物ではすべての特性が満足でき、総合的に優れた効果が
もたらされた。
As can be seen from the above results, when alumina is used as the abrasive, the polishing rate is high but the surface roughness of the magnetic disk is large, polishing scratches and pits are generated, the flying height of the magnetic head is large, and the Many pulse errors.
When colloidal silica is used as an abrasive, there is no problem in magnetic properties and the like, but the polishing rate is low. On the other hand, the polishing composition of the present invention satisfied all the characteristics, and provided an overall excellent effect.

【0027】[0027]

【発明の効果】本発明の研磨用組成物は磁気ディスク基
板に対し、高い研磨速度で研磨でき、その基板を用いた
磁気ディスクは表面粗さが小さく、研磨傷やピットの発
生がなく、記録や再生におけるミッシングパルスエラー
がない。また磁気ヘッドの浮上量が小さい。これは磁気
ディスク表面に突起がないかあるいは突起が非常に小さ
いことを示す。このために例えばMRヘッドを用いた高
記録密度の磁気ディスクを提供することが可能となる。
The polishing composition of the present invention can polish a magnetic disk substrate at a high polishing rate, and a magnetic disk using the substrate has a small surface roughness, does not generate polishing scratches and pits, and has a recording property. And no missing pulse error in reproduction. Also, the flying height of the magnetic head is small. This indicates that there is no protrusion or the protrusion is very small on the surface of the magnetic disk. For this reason, for example, it is possible to provide a high-recording-density magnetic disk using an MR head.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水、酸化ジルコニウム微粒子及び研磨促
進剤からなる磁気ディスク基板の研磨用組成物。
1. A polishing composition for a magnetic disk substrate, comprising water, zirconium oxide fine particles and a polishing accelerator.
【請求項2】 水、酸化ジルコニウム微粒子、研磨促進
剤及び水溶性酸化剤からなる磁気ディスク基板の研磨用
組成物。
2. A polishing composition for a magnetic disk substrate, comprising water, zirconium oxide fine particles, a polishing accelerator and a water-soluble oxidizing agent.
【請求項3】 酸化ジルコニウム微粒子の平均粒子径が
二次粒子で0.1〜1.0μm、一次粒子で0.001
〜0.3μmである請求項1又は2に記載の研磨用組成
物。
3. The average particle diameter of the zirconium oxide fine particles is 0.1 to 1.0 μm for secondary particles and 0.001 for primary particles.
The polishing composition according to claim 1, wherein the thickness is from 0.3 to 0.3 μm.
【請求項4】 研磨用組成物中の酸化ジルコニウム微粒
子の濃度が2〜20重量%である請求項1〜3のいずれ
かに記載の研磨用組成物。
4. The polishing composition according to claim 1, wherein the concentration of the zirconium oxide fine particles in the polishing composition is 2 to 20% by weight.
【請求項5】 研磨促進剤がアルミニウム塩である請求
項1〜4のいずれかに記載の研磨用組成物。
5. The polishing composition according to claim 1, wherein the polishing accelerator is an aluminum salt.
【請求項6】 アルミニウム塩が硝酸アルミニウムであ
る請求項1〜5のいずれかに記載の研磨用組成物。
6. The polishing composition according to claim 1, wherein the aluminum salt is aluminum nitrate.
【請求項7】 研磨用組成物中の研磨促進剤の濃度が1
〜20重量%である請求項1〜6のいずれかに記載の研
磨用組成物。
7. The polishing composition wherein the concentration of the polishing accelerator is 1%.
The polishing composition according to any one of claims 1 to 6, wherein the amount is from 20 to 20% by weight.
【請求項8】 研磨用組成物中の水溶性酸化剤の濃度が
10重量%以下である請求項2〜7のいずれかに記載の
研磨用組成物。
8. The polishing composition according to claim 2, wherein the concentration of the water-soluble oxidizing agent in the polishing composition is 10% by weight or less.
JP5183897A 1996-03-18 1997-03-06 Composition for polishing magnetic disk substrate Pending JPH10121034A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5183897A JPH10121034A (en) 1996-03-18 1997-03-06 Composition for polishing magnetic disk substrate
US08/890,330 US5935278A (en) 1996-08-30 1997-07-09 Abrasive composition for magnetic recording disc substrate
MYPI97003113A MY119713A (en) 1996-08-30 1997-07-09 Abrasive composition for magnetic recording disc substrate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8871996 1996-03-18
JP8-230774 1996-08-30
JP8-88719 1996-08-30
JP23077496 1996-08-30
JP5183897A JPH10121034A (en) 1996-03-18 1997-03-06 Composition for polishing magnetic disk substrate

Publications (1)

Publication Number Publication Date
JPH10121034A true JPH10121034A (en) 1998-05-12

Family

ID=27294454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183897A Pending JPH10121034A (en) 1996-03-18 1997-03-06 Composition for polishing magnetic disk substrate

Country Status (1)

Country Link
JP (1) JPH10121034A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207161A (en) * 2000-01-24 2001-07-31 Showa Denko Kk Composition for abrading magnetic disk substrate
WO2006123562A1 (en) * 2005-05-20 2006-11-23 Nissan Chemical Industries, Ltd. Process for producing composition for polishing
JP2008108397A (en) * 2006-10-27 2008-05-08 Fuji Electric Device Technology Co Ltd Reusing method of non-metal substrate for magnetic recording medium
WO2012102180A1 (en) 2011-01-27 2012-08-02 株式会社 フジミインコーポレーテッド Polishing material and polishing composition
JP2012250318A (en) * 2011-06-02 2012-12-20 Tosoh Corp Zirconia-based abrasive
WO2013100154A1 (en) * 2011-12-29 2013-07-04 Hoya株式会社 Manufacturing method for magnetic-disk glass substrate
WO2013146090A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk
WO2015087771A1 (en) * 2013-12-13 2015-06-18 株式会社フジミインコーポレーテッド Article with metal oxide film

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207161A (en) * 2000-01-24 2001-07-31 Showa Denko Kk Composition for abrading magnetic disk substrate
US8323368B2 (en) 2005-05-20 2012-12-04 Nissan Chemical Industries, Ltd. Production method of polishing composition
WO2006123562A1 (en) * 2005-05-20 2006-11-23 Nissan Chemical Industries, Ltd. Process for producing composition for polishing
JP5218736B2 (en) * 2005-05-20 2013-06-26 日産化学工業株式会社 Method for producing polishing composition
US7678703B2 (en) 2005-05-20 2010-03-16 Nissan Chemical Industries, Ltd. Production method of polishing composition
JP4577296B2 (en) * 2006-10-27 2010-11-10 富士電機デバイステクノロジー株式会社 Reproduction method of non-metallic substrate for magnetic recording medium
JP2008108397A (en) * 2006-10-27 2008-05-08 Fuji Electric Device Technology Co Ltd Reusing method of non-metal substrate for magnetic recording medium
WO2012102180A1 (en) 2011-01-27 2012-08-02 株式会社 フジミインコーポレーテッド Polishing material and polishing composition
JP2012250318A (en) * 2011-06-02 2012-12-20 Tosoh Corp Zirconia-based abrasive
WO2013100154A1 (en) * 2011-12-29 2013-07-04 Hoya株式会社 Manufacturing method for magnetic-disk glass substrate
CN104011795A (en) * 2011-12-29 2014-08-27 Hoya株式会社 Manufacturing method for magnetic-disk glass substrate
JP5661950B2 (en) * 2011-12-29 2015-01-28 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
JPWO2013100154A1 (en) * 2011-12-29 2015-05-11 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
CN104011795B (en) * 2011-12-29 2017-02-22 Hoya株式会社 Manufacturing method for magnetic-disk glass substrate
WO2013146090A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk
JPWO2013146090A1 (en) * 2012-03-30 2015-12-10 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
WO2015087771A1 (en) * 2013-12-13 2015-06-18 株式会社フジミインコーポレーテッド Article with metal oxide film

Similar Documents

Publication Publication Date Title
JP4273475B2 (en) Polishing composition
JP4231632B2 (en) Polishing liquid composition
US6007592A (en) Polishing composition for aluminum disk and polishing process therewith
JP4090589B2 (en) Polishing composition
US6811583B2 (en) Polishing composition for a substrate for a magnetic disk and polishing method employing it
JP4439755B2 (en) Polishing composition and method for producing memory hard disk using the same
US6569215B2 (en) Composition for polishing magnetic disk substrate
TWI506621B (en) Polishing composition for hard disk substrate
JPH10204416A (en) Polishing composition
JP2001148117A (en) Polishing composition and method for manufacturing memory hard disk by using the same
GB2354769A (en) Polishing compositions for magnetic disks
US5935278A (en) Abrasive composition for magnetic recording disc substrate
JP3106339B2 (en) Polishing composition
US6152976A (en) Abrasive composition for disc substrate, and process for polishing disc substrate
US20050028449A1 (en) Polishing composition
JPH10121034A (en) Composition for polishing magnetic disk substrate
TW528645B (en) Composition for polishing magnetic disk substrate
JP2004253058A (en) Polishing liquid composition
JPH1121545A (en) Polishing composition
US6478837B1 (en) Abrasive composition substrate for magnetic recording disks and process for producing substrates for magnetic recording disk
JP3825844B2 (en) Precision polishing composition, method for polishing electroless NiP plating film formed on Al alloy substrate, method for manufacturing Al alloy substrate having electroless NiP plating film
JP3997154B2 (en) Polishing liquid composition
JP4074126B2 (en) Polishing composition
JPH10121035A (en) Composition for polishing magnetic disk substrate
JP3997153B2 (en) Polishing liquid composition

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060718